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Abstract

This work focuses on the computation of the steady state distribution of a Markov chain, making use of an
embedding algorithm. In this regard, a well-known approach dubbed time aggregation has been proposed
in [7]. Roughly, the idea hinges on the partition of the state space into two subsets. The linchpin in this
partitioning process is a small subset of states, selected to be the state space of the aggregated process, which
will account for the state space of the embedded semi-Markov process. Although this approach has provided
an interesting body of theoretical results and advanced in the study of the so-called curse of dimensionality,
one is still left with a high-dimensional problem to be solved. In this paper we investigate the possibility
to remedy this problem by proposing a time aggregation approach with multiple subsets. This is achieved
by devising a decomposition algorithm which makes use of a partition scheme to evaluate the steady state
probabilities of the chain. Besides the convergence proof of the algorithm, we prove also a result for the
cardinality of the partition, vis-a-vis the computational effort of the algorithm, for the case in which the
state space is partitioned in a collection of subsets of the same cardinality.

Keywords: Markov Processes, Embedding, Time Aggregation, Policy Evaluation.

1. INTRODUCTION

Large scale Markov chains can benefit from embedding algorithms [e.g., 18] by finding an equivalent
process in a reduced dimension. This approach, also known in the literature as time aggregation [e.g.,
7], gives rise to an embedded Markov chain with modified costs and time scale, in such a way that the
performance of the process in reduced dimension equals that of the original process under study. Arruda
and Fragoso [2] argue that this can be seen as a transformation of a Markov chain into an embedded semi-
Markov process with costs and transition times determined by the trajectories leaving and returning to the
embedded domain.

Another popular approach for large scale Markov processes is state aggregation [e.g., 1, 10]. Similarly
to time aggregation, state aggregation seeks a problem in a reduced dimension. However, as stated by Cao
et al. [7], the latter method fails to maintain the Markov property and works instead with an approximated
version of the original problem. Dimensionality is also an issue when control is involved, in the context of
Markov decision processes. In such a context, approximate dynamic programming [21] and reinforcement
learning [24] tools can be effectively used to find approximate sub-optimal solutions.

* A preliminary version of this paper was presented at the 2017 IEEE Conference on Decision and Control (CDC) - [3]
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Also concerned with dimensionality reduction are multi-grid aggregation/disaggregation methods [e.g.
12, 19, 5]. These methods typically work on two levels, a coarse level or aggregated domain with reduced
cardinality and a fine level in the original domain [17], in order to iteratively evaluate the stationary
probability of the Markov chain. Aggregation/disaggregation methods consist in an aggregated step where
they evaluate the steady state probabilities in the coarse grid. A disaggregation step follows in which the
results in the coarse grid are propagated to the larger domain, to recover the steady state probabilities in
the whole state space. This approach allows parallelisation [8, 15] and may be efficiently applied to large
scale problems. However, it is not guaranteed to converge faster than the direct algorithm for problems with
moderate dimension [13].

As proposed by Cao et al. [7], time aggregation partitions the state space into two components: a small
subset of states which is selected to be the state space of the aggregated process, and a much larger subset
with all the remaining states. The embedded semi-Markov process which is solved in reduced dimension,
however, requires the evaluation of trajectories leaving and returning to the embedded domain. Hence,
although the embedded domain is typically reduced, one is still left with a high-dimensional Markov chain
problem to solve. To circumvent that, this paper proposes a generalisation of the partition scheme in time
aggregation in the sense that, instead of only two subsets, we allow an arbitrary number of subsets, an
approach that resembles aggregation/disaggregation routines. The inchoate idea here lies on evaluating
trajectories leaving the subsets in the partition, which tend to be much shorter than the sojourns outside
of each subset, because the cardinality of the subsets tend to be much smaller than that of the whole state
space. Hence, one can expect that the system spends a fairly larger portion of the time outside of a given
subset. By doing so, we keep the computational effort as a function of the cardinality of the subsets in the
partition scheme.

The main focus of the paper is on the design of the partition scheme. The transitions between subsets
are modelled as a semi-Markov master model whose state space is comprised of the subsets in the partition
scheme; hence, the cardinality of the state space is the number of subsets in the scheme. An auxiliary
problem is solved within each subset to determine the average length and the number of visits to each state
in an outbound trajectory, which are incorporated into the master model to produce transition probabilities
and times between successive transitions. The steady state probabilities of the Markov chain are then found
by an iterative algorithm which produces solutions to the semi-Markov process and then disaggregates the
solution to find the probabilities in the original domain. The proposed approach also resembles the rationale
in the context of large deviations [25], in that the semi-Markov process can be seen as connecting subsets
in different time scales, whereas the transitions among the subsets can be seen as perturbations that occur
with reduced probability in a model that is driven by the dynamics within the subsets of the partition.

Although it may seem at first that by increasing the number of subsets we improve the classical time
aggregation approach, notice that by increasing too much the number of subsets one increases, as a by-
product, the state space of the semi-Markov master model. In fact we have two equivalent extremes: a
single subset and a partition scheme where each state is a subset of the semi-Markov master model. To
select the proper scheme between these extremes, a key question in the partition scheme proposed here is
regarding the suitable number of subsets. In this paper, the problem of properly selecting the subsets in the
partition, with a view to optimise the overall computational effort, is tackled and we find the optimal number
of subsets for a partition scheme with subsets of the same cardinality. Numerical results are presented to
illustrate this choice.

While this paper deals with the design of a partition scheme, the focus is on the properties of the partition
scheme and on the advantages of generalising time aggregation for multiple subsets. Since the main purpose
here is to improve upon standard time aggregation approach, we performed a direct comparison with the
latter in the numerical experiments, as it seemed natural. For a thorough evaluation of other numerical
procedures to find steady state probabilities of Markov chains, we refer to [23].

It is perhaps worth mentioning that a very preliminary version of this paper appeared in [3]. The present
manuscript incorporates many developments and new results, which add up to a completely reformulated
text. For instance, the results regarding the optimal choice of the partition scheme in Section 5 are completely
new; the literature review was completely reformulated; the numerical experiments were expanded and the
proofs are modified and expanded.



This paper is organized as follows. Section 2 introduces the partition scheme and the section that follows
makes use of it to derive the stationary probabilities of the original process. Then, an algorithm is brought
forth in Section 4 which iteratively finds the stationary distribution, making use of the partition scheme.
Next, Section 5 addresses the problem of finding an optimal number of subsets in the partition, and Section
6 features numerical experiments that highlight the results. The paper is concluded in Section 7.

2. Notations and Preliminaries

Let (2, F,P) be a probability space carrying a homogenous discrete-time Markov chain X, k > 0. To
motivate the partition scheme, suppose that the state space S is finite, but very large. We assume that the
one-step transitions of the Markov chain are governed by a transition probability matrix P := [p;;], with
pij € [0,1], 4,5 € S denoting the probability that the process will visit state j in the next period, given
that it arrived to state ¢ at the current period. In addition, we assume that the chain is ergodic, i.e. it
is irreducible and aperiodic. It then follows from classical Markov chain results that the chain possesses a
unique stationary distribution, which is independent of the initial states [6]. Furthermore, we denote by I
the identity matrix (with suitable dimension); by € {.} the mathematical expected value and by &,, {.} the
expected value with relation to the measure p;. Finally, |S| stands for the cardinality of a set S.

Since the proposed approach is rooted in partitioning the state space, we consider n disjoint subsets

Fi, ..., F, such that UL, F; = S (see Figure 1 for an example of a partition scheme with two subsets, with
the arrows representing positive transition probabilities in P). In addition, for the decision maker to map
the transitions between subsets one can think of a subset Fj, i = 1,...,n as a transient class. Henceforth,

we use the terms class and subsets interchangeably. Since the chain is ergodic, it follows that subset F; will
be left in finite time. Naturally, after evolving within subset Fj for a finite time, the process will finally leave
and reach a distinct subset F,,m # [. We first stop our analysis precisely at the time the process reaches
a different subset, taking into account the probability of reaching each of the other subsets.
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Figure 1: An example of a two-subset partition scheme

Roughly, a key technical idea behind the proposed approach here is to decompose the problem of finding
the stationary distribution of process Xi, & > 0 in two steps. In the first, a partition scheme is devised
and we define a master semi-Markov process that models the transitions between subsets in the partition.
That allows us to evaluate the long-term probabilities of each subset. Then, to evaluate individually the
long-term probability of each state in a given subset, we make use of absorption analysis. This step is applied



individually for each subset in the partition, which is treated as a transient class, and the process is detailed
in Section 2.2.

In what follows we fleetingly refer to some technical results which are germane for the development of
our approach, including results on absorption analysis with a single transient class.

2.1. Absorption analysis

Absorption analysis is centred on the division of the state space into recurrent and transient classes; the
objective is to find the time, and possibly the costs, until the chain is absorbed by a recurrent class [see,
e.g., 6]. Standard absorption analysis is often performed by splitting the transition probability matrix of
the Markov chain into blocks by writing;:

M = L§%+fiﬁ, R=[Ri Ry ...Ry). (1)

In the decomposition above one can make R;, [ = 1,...,n represent the aggregate probabilities that the
process will be immediately absorbed by recurrent class I. In addition, O is the sub-matrix that represents
the transitions between transient states.

To understand the behaviour of the system up to absorption, we can make use of the fundamental matriz:

Mp=(1-0)"1,

which gives the number of visits to each transient state, j, before absorption, for each possible initial state
¢ from the transient subset, see for example [6, Section 4.6]. For any finite absorbing Markov chain, the
inverse in the right hand side of the preceding expression exists [e.g., 16, Theorem 3.21, Page 46]. To find
the probability of absorption by each recurrent class, from each initial transient state, one simply evaluates:

My = MpR.

2.2. State space decomposition

In order to carry out our analysis, we consider 79 = 0 and 7, = min{t > 74,1 : Xt € Fp, and Xy 1 ¢
F,, for somem € {1,...n} andt € N}. One can see that 7, k& > 0 is the sequence of times on which the
process Xy, k > 0 registers changes of subsets within the partition. Between any successive times in this
sequence, the process evolves in a single subset of the partition.

To account for the hitting times of each subset Fj, [ = 1, ..., n we denote by X; = X, k> 0 the
process at the moments the system changes subsets, also known in the literature as the jump process [20].
Note that process X, k > 0 also evolves in S. However, as stated in Remark 2, some states in S may be
transient with respect to X, k > 0.

The transitions among subsets are monitored by means of a semi-Markov process Y, k > 0, defined as

Yk:zl.ﬂ{)_ﬁcGFl}ﬂ (2)
=1

where 1l¢cy is the indicator function of statement C'; which is equal to one whenever C holds true and is nil
otherwise. One can easily see from (2) that process Yy, k > 0 gives, at each time, the label of the subset
the system is evolving in. Hence, the state space of this process is given by Sy = {1, 2, ..., n}, and the
transition matrix for its embedded Markov chain, denoted as @ := [¢;;], with ¢;; € [0,1], 4, j € Sy, conveys
the dynamics of the transitions among subsets of the partition [e.g., 14].

Now, to quantify the transitions between subsets we make use of the block structure in (1) in order to
define, for each subset Fj, an auxiliary absorption problem with:

O =P, and (3)
Ri=[Ra|Ral|...| R | Rty |- | Bin |,
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where

le:[z pijl, i€ F,m#l (5)

JEFm

where P, is a square matrix with dimension equal to the cardinality of the subset F; and Ry, is a column
vector with number of elements equal to the cardinality of the subset Fj.
In what follows we shall need the additional notations:

e Matrix E; = [e;(4,7)] concerning the outbound trajectories from subset Fj. The element e;(i, ) gives
the expected number of visits that an outbound trajectory starting at state ¢ € F; will pay to state
j € F; before leaving subset F;. From Section 2.1, it follows that:

Ey=(-FR)", (6)

e Matrix A; = [a;(i,m)] concerning the jumps between subsets. Element a;(i, m) is the probability that
a trajectory starting at state ¢ € F} reaches subset F,,, m € Sy, m # [, upon leaving F;. Bearing in
mind the definition of M4 in Section 2.1, it follows that:

A =E R (7)

Remark 1. Notice that, since matriz QQ monitors transitions between subsets, it evolves in the same time
scale as process Xy, k > 0, which we will call the jump time scale. Such a time scale does not account for the
actual time spent between transitions. Therefore, to completely specify the semi-Markov process Yy, k > 0
we need to keep an account of the inter-jump times (Ty+1 — Tk, k > 0) in order to evaluate the process in the
original time scale (the time scale of Xy, k > 0). Let wy be the steady state probabilities of process Yy, k > 0
and 7(l) denote the total duration of a visit to subset F}, i.e. the inter-jump time when 1, and Tp+1 are the
entrance and departure times of subset Fy, respectively. Standard semi-Markov results yield that [e.g 14]:

_ E(r(l

my (1) = WY(Z)—( _( ))7 le Sy, (8)

where T is the steady state probability vector of the embedded process induced by Q, E(7(1)) = w Ej e (where

Wi 18 a row vector denoting a probability distribution over F} and e is a column vector of ones of appropriate

dimension) is the expected duration of a visit to subset F} with respect to the measure generated by process
n

Xk, k > 0 (in the time scale of X, k > 0) and T = Zfr(l)é‘(r(l)) is the expected time between subset

. =1
Jjumps.

Theorem 1. Let p; = [u(4)], j € Fi, be a row vector of dimension |Fy| representing the initial distribution
of Xk, k > 0 upon reaching set Fy, with y;(7) € [0,1)Vj € F;. Then

Gim = P(Yir =m|Yy = 1) = Y u(i)ai(i,m). (9)
i€h

Proof. We first make sure that the block structure in (1), with the elements given in (3) is indeed a absorbing
Markov chain, i.e. one that eventually leaves the transient subset F;. To see that, we recall that by
hypothesis the process Xg, &k > 0 is irreducible. Hence, the states in F; cannot form by themselves a closed
communication class, otherwise the chain could be reduced to such a class [e.g., 6]. As a consequence, there
must be some states not in F; that can be directly accessed from Fj, which implies that the block structure
chosen for Fj is an absorbing Markov chain.

It is clear that, if the initial state in the trajectory is drawn according to p;, then Eq. (9) gives the
probability of reaching F;,, from Fj, and that concludes the proof. O
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We shall also need additional notations below:

e A matrix for transitions between states outside of F

P =[pyl. i,j ¢ Fis (10)
e A matrix for transitions to subset F} from any other subset in the partition
Ry =lpyl, i¢F,jekF; (11)
e A matrix for inbound trajectories to Fy, starting from any other subset Fj,, m # [, in the partition

E = (I-PF)" (12)

Similarly to matrix F; in (6), E; is concerned with the average length of the trajectories started
elsewhere until they reach subset F;. Element €(4,7) gives the expected number of visits that an
outbound trajectory starting at state i ¢ F; will pay to state j ¢ F; before reaching subset Fj;

e A matrix to evaluate the destination of outbound trajectories started in Fj
Bi=FE;-R.,, with R,=I[pjl,i€F,j¢H. (13)

Element b;(4, j) gives the probability that an outbound trajectory started at ¢ € Fj reaches state j ¢ F;
immediately after leaving Fi;

e A transition matrix to evaluate the destination of inbound trajectories to F) starting at any other
subset in the partition
Ar=F;-Ry. (14)

Element a;(i,j), ¢ ¢ F;, j € Fj, yields the probability that an inbound trajectory started at i ¢ F)
reaches F} through state j.

It is important at this point to differentiate matrices A4;, defined in (7) and By, defined in (13). Matrix A;
is concerned with the subset that will be reached following a trajectory started in ¢ € Fy, with a;(i,m) being
the probability of reaching any state in F;, from state ¢ € F;. Matrix By, on the other hand, is concerned
with the specific state outside of F} that will be immediately reached following a trajectory started in i € Fy,
with b;(4, j) being the probability of reaching a given state j ¢ F; from i € Fj.

Lemma 1. Let X, k > 0 and Yy, k > 0 be defined according to the partition scheme previously introduced.
In addition, let p; be a normalized subset of the steady state distribution of process Xy, k > 0 over Fj. Then,

Jim P(Xy =iV =1) = (i), Vi € F, (15)
— 00
where p; = [pi(+)] is a row vector of dimension |Fy| such that

wBIA = . (16)

Proof. Let us first have a look at matrix BjA;. From equations (13)-(14), one can see that this product
refers to a regenerative cycle starting and finishing in subset Fj, where the first matrix maps the cycle until
it leaves Fj, whereas the second maps the remaining part of it until the process returns to F;. In other words,
element ba;(i,j), ¢, j € Fy, yields the probability that a trajectory started upon reaching F; through state 4
leaves this subset and then returns to this same subset through state j. Observe that this embedded process
maps the transition between first visited states in F} in two subsequent stays at this subset. Therefore, B; A,
is the transition matrix of process X, k > 0 embedded in subset F;. With some abuse of notation, we call
this embedded process { X : Y3, = 1}.



Now, since process X, k > 0 is ergodic by hypothesis, Xz, & > 0 must also have a single recurrent
class, and all subsets in the partition must be visited infinitely often. Consequently, the embedded process
{Xr : Y& = I} must have at least one positive recurrent state. This implies that there is an invariant
probability vector i = [ (J)], J € Fi of dimension |F}| which solves (16). As a result, the solution to (15)
is the invariant probability that solves (16).

O

Remark 2. [t is worth pointing out that the state space of the chain {)_(k : Ve = 1} induced by By - A is
Fy, which may contain states that are not directly accessible from other subsets F,,, m # . These states will
be transient with respect to process Xy, k > 0, for being not accessible from other subsets, they cannot be
the first visited states in Fy. They are also transient with respect to process { Xy, : Vi, = 1}, for they will be
visited at most once. That happens because, if for some j € Fj

Dij = O,Vi ¢ E, (17)

it must follow that a;(k,j) = 0,Vk ¢ F;. That, in turn, implies that bja;(i,j) must be nil for all i € F,
which signifies that, as far as process { Xy : Yy, =1} is concerned, j is not accessible from any other state in
F,. Therefore, it must be a transient state and p;(j) must be zero.

3. Stationary distributions

In this section we establish the relationship between the steady state probabilities of the original process
Xg, k > 0 and that of the embedded process X, k > 0. To accomplish that, we make use of a suitably
defined regenerative cycle and make use of classical results to derive the steady state probability as a function
of the number of visits to each state during the regenerative cycle.

To define the regenerative cycle, assume that the process starts at subset Fj, with distribution p; ac-
cording to (16). Then, from Lemma 1, it follows that P(Xy = i) = P(X,, = i) = (i), ¢ € Fj, where
k=min{t > 0:Y; =landY; 1 # [}. Consequently, the trajectories leaving and returning to subset F} form
regenerative cycles. Theorem 3 at the end of this section derives the steady state distribution of process
Xg, k > 0, for all states i € I} by counting the number of visits to these states during such a regenerative
cycle. It builds upon an auxiliary result in Lemma 2 that follows.

Lemma 2. Let y; solve (16) and let 1, be a stopping time of process X, k > 0 such that k = min{t > 0 :
Yi =landY;_1 # 1}, and assume P(Xo = j) = w(j), V5 € F;. Then

Epu { :Z_; ]l{Xt—i}} = [ BE (i), Vi ¢ F. (18)

Proof. The trajectories leaving and returning to set Fj; can be divided in two parts, the first comprising
the portion of them within this subset and the second accounting for the sojourn outside of F; prior to the
return to this subset. Let D C S be the subset of states that can be directly accessed from F; and that lie
outside of F; and define 7p as the time to get to subset D for the first time. Then, we can write:

Tr—1 Tp—1 Tr—1
Ew { > ﬂ{Xk—i}} =&y { > ]l{xk_i}} + ) [mBIG)E { > Il{xt_i}erD—j}a
k=0 k=0 JEF t=Tp

for i € S. Assuming that i ¢ F; one can easily see that the first part of the summation above must be zero,
given no state outside of F; can be visited before the process leaves this subset. Consequently, we obtain:

Tl Tr—1
o { Z H{Xk_i}} B Z [ Bi](5)E { Z ]I{Xt:i}|X7'D = ]} )
k=0 J¢F t=7p

for all i ¢ Fy. To conclude the proof it suffices to note that £;(4,7) equals the last term in the preceding
equation. O



The next results shows how one can obtain the solution of (15) from the stationary distribution of the
original process Xg, k > 0.

Theorem 2. Suppose that py is the solution of (16) and let Ty, be a stopping time of process Xy, k > 0 such
that k = min{t > 0:Y; =landYi—1 # 1}, then for dll j € F; we have:

Z 7(i)pis

i¢F

S #) > ps

igFl EGFZ

p(g) = ,J €, (19)

where 7 : S — (0,1) is the stationary distribution of process X, k > 0.

Proof. Bearing in mind equation (14), the equation (16), which holds by hypothesis, can also be expressed
as:
= uBER,.

Hence, the j — th component of vector y; can be written as:

(i) =Y BB (i)pi;-

’L’%Fl

Te—1

Now, from Lemma 2, we have that [ B E; (i) = &, <Z ll{Xt_i}>, for i ¢ F;. Hence, it follows that
t=0

T—1
@) =Y Eu (Z H{Xt—i}> Pij
t=0

’L’%Fl

Recall that, by hypothesis, Eq. (16) holds and y; is the stationary distribution of process { X}, : Y3 = 1}.
Then, [9, Eq. (19)] implies:

T —1
5m (Z Il{Xt_i}> = gm [Tk]ﬂ'(i), 1€ 8.

t=0

To see that, it suffices to define k¥ =1, k}x =0, Vj # i, and Y = F} in the notation of Forestier and Varaiya
[9]. By doing so, the expression above is a direct application of Eq. (19) in that reference.
Hence, we must have

() = Eulm] Y w(i)pij-

i¢F

By noting that Z pi(j) = 1 we are spared the need to directly evaluate £, [7%] in the preceding expression,
JEF
and that leads to Eq. (19), which concludes the proof. O

We just found the distribution of process Xy, k > 0 from that of the original process X, k > 0. The
next result goes in the opposite direction, to derive the distribution of the former from that of the latter,
making use of the stationary distribution of the master process Y, k > 0.

Theorem 3. Let w: S — (0,1) be the stationary distribution of process Xy, k > 0, and wy : Sy — (0,1) be
the stationary distribution of process Yy, k > 0. The following expression holds,

N B () .
7(i) = m~ﬂy(l),l€ﬂ, (20)

where e is a vector of ones with appropriate dimension and ; is the solution of (15) in Fj.

8



Proof. Let us set up a regenerative cycle of length 73, such that ¥ = min{¢t > 0 : Y; = landY;—; # [},
with X € F; and distributed according to p;, which solves (16). The discussion in Section 2.1 yields
that the numerator in (20) is the expected number of visits to state i before leaving F; when gy is the
initial distribution in Fj. Accordingly, the denominator gives the expected sojourn time in F; under initial
distribution ;.

Since X, k > 0 does not return to F; before period 7, it holds that:

: k(@) .
P(X., =iV, =1) = L0 e Ry,
( & Z| k ) [ Ere 1e
Employing the total probability theorem and taking into account the fact that {(X,, € F;)N(Yy ¢ 1)} =0,
we find ()
. Hi Lo\t .
P(X, =i)= Y piy, — 1y e B
(X7, = 1) nEc (Y =1),i€ F
Eq. (20) follows by noting that 7 is a regenerative cycle and klim PY,=1)=ny(). O
—00

4. Tterative evaluation of the stationary distribution

This section builds upon the technical results in the last couple of sections to propose an iterative
algorithm to find the stationary distribution of the original Markov chain by means of a decomposition
algorithm. Such a proposal will exploit the correspondence between the stationary distributions of the
original process and that of the master process Y, k > 0, established in the last section.

By hypothesis, process X, £ > 0 is ergodic, which means it possesses a unique stationary distribution.
A well known algorithm to iteratively find this distribution is:

g1 = Tk P, (21)

where 7y : S — (0,1) is an arbitrary probability distribution disposed in a row vector [e.g., 4, 11]. The
calculations are a function of the cardinality of the state space S, which renders the procedure inefficient
as the cardinality increases. The subsequent algorithm addresses this issue to find an equivalent set of
equations in reduced dimension.

Algorithm 1 (Decomposed stationary distribution).

1. Select a partition {F, ..., F,} for S. For eachl =1, ...,n, define arbitrary probabilities uf (§)Vj € Fy, adding
up to one'. Set k =0 and an arbitrary tolerance e.
2. For each l € {1, 2, ...,n} make hi(l) = ui Ere, where E; is evaluated using Eq. (6) and e is a column vector

of ones with appropriate dimension.
3. Solve 1y Q = Ty. Make

=S iR my () = 2D A0

h
4. For each i € S, evaluate 7" (i) according to (20).
5. For each 1 € {1, 2, ...n} and j € Fy, apply (19) to assess uy " ().
6. If
||,uf+1—,uf|| <e€, VZE {17 27 sy TL},

stop. Otherwise, return to Step 2.
7. Foralli € S, 7(i) < =" (3).

! Preferably set pu(j) =0, for all j € F} for which (17) holds, for these states will be transient (see Remark 2).



As defined in Section 2.2, process Y, k > 0 is a semi-Markov process with an embedded Markov chain
with transition matrix (). Since matrix ) features no self transitions, the departure times of each partition
are the transition times of the semi-Markov process. Step 3 of Algorithm 1 makes use of these times to
find the steady state probabilities of process Yy, k > 0 [e.g., 22, Chapter 11], see also Remark 1. These
probabilities yield the fraction of time the process stays at each subset Fj, and are combined with the number
of steps the process spends at each state ¢ € S to obtain a new estimate of the steady state probability of
the original process X, £ > 0, in Step 4. Such an estimate is then employed in Step 5 to derive a new
estimate of the initial distributions of process X, k > 0. Convergence is then tested in Step 6.

We must now prove that Algorithm 1 converges and that its output is the stationary distribution of
X, k > 0. This is accomplished in the next theorem.

Theorem 4. Let w: S — (0,1) be the output of Algorithm 1. Then,
P =m, (22)
where P is the transition matriz of process Xi, k > 0.

Proof. Eq. (19) provides an explicit way to evaluate the BjA; as defined in Eq. (16), without an explicit
calculation of the ByA;. This is demonstrated in Theorem 2. Hence, it follows that Step 5 of Algorithm 1
evaluates:

/Lf“ = /J,fBl/L.

One can easily see that this is the iteration in (21) with j; = 7 and P = P. Since we are dealing with a
finite chain, it converges to the solution of (16) [e.g., 4, 11]. Consequently, Theorem 3 implies that Step 4
yields, upon convergence, the steady state distribution of X, & > 0. O

5. Choice of the partition scheme

This section investigates the computational effort in Algorithm 1, with a view at finding an efficient
configuration of the partition scheme.

Theorem 5. Assume the set F is partitioned into n subsets of the same cardinality, and suppose that for
the set:
Vi={i¢ Fipy >0} jeh (23)

we have |V;| < % Then, the optimal number of subsets within the partition in terms of computation effort

should obey:
n o /|5,
where S is the state space of X, k > 0.

Proof. Let ¢ be the computation effort in a single iteration of Algorithm 1. Then,

2
cox |S]+ 151

n

+nd. (24)

The first term corresponds to the effort in Steps 2 and 4 of Algorithm 1. Step 2 makes n matrix

5]

calculations, each with — multiplications, resulting in |S| operations; the same applies to Step 4. Hypothesis
n

2
(23) implies that each update in Step 5 requires (%) operations; as we update n states, the total effort
is proportional do the second term in the preceding equation. Finally, Step 3 performs a n—dimensional
matrix inversion, which demands n® operations.

To conclude the proof, it is straightforward that a division into |.S| groups is equivalent to not decomposing
the state space. If that is the case, one has to directly solve #P = 7w, which requires computations of the
order of |S|3. That is the upper bound at the extreme points. Now, assume n > \/m , then the order of the
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computations in the third term of the equation above will surpass |S |% On the other hand, if n < /|5,
the order of the computations in the second term will exceed |S |% To conclude the proof, it suffices to see
that n = /[S] results in computations of the order of |$|2 in both terms. O

Remark 3. Observe, in Theorem 5, that the computational effort ¢ should be interpreted as an order of
magnitude rather than an exact value. With that in mind, the result of the theorem gives an order of
magnitude of the ideal number of clusters in the partition.

It is worth pointing out that Theorem 5 is devised under the sparsity hypothesis in (23). The problem of
identifying the best partition scheme under general conditions remains open and will be a subject of future
research.

6. Numerical simulations

We performed some experiments to illustrate the computational effort in Algorithm 1. We generated
random transition matrices for the Markov chain and limited the number of neighbour states to 200 in each
simulation, i.e., for each state i € S there are 200 states j € S such that p;; > 0 and these states, as well
as the transition probabilities, are randomly selected in each experiment; each probability is drawn from
a uniform distribution and then the rows of the transition matrix are normalised to add up to one. For
each experiment, we ran Algorithm 1 30 times, each time employed a new randomly generated chain of the
same dimension. The computational times of Steps 2-5 were measured and averaged for a large number of
possible partition schemes. For each partition scheme, the states were grouped in sets of equal cardinality,
ordered according to the proximity of the state labels. For an illustrative toy example we refer to [3, Section
V.

The numerical experiments were performed in a personal computer with a 3.0 GHz Intel Processor Core
2 Duo processor and 4GB of RAM memory, running Ubuntu Linux 16.04.2. For all numerical experiments
the tolerance € in Step 6 of Algorithm 1 was set to 10~

State Space Size, [S| = 2000
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Figure 2: Number of subsets versus computational time
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Figures 2 and 3 depict the computational time for Markov chains with state space cardinality of 2.000
and 5.000, respectively. The computational times for Steps 2-5 are individually measured and featured in
each figure. One can see in Figure 2 that the total computational time varies slightly for schemes with up
to 45 states, then it starts to rapidly increase. Note also that Step 4 - the disaggregation step - increases
with the number of subsets. This is mainly due to the memory management process, i.e. the process of
loading and unloading the matrices of each subset that are used in the calculations. On the other hand,
the aggregation step - Step 5 - is more robust with regards to the number of subsets. Observe also that
the results are consistent with the results in Theorem 5, whereby the optimal number of subsets would be
around /2000 = 44.

State Space Size, |[S| = 5000
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Figure 3: Number of subsets versus computational time

Figure 3 shows that, for a cardinality of 5000 the fastest results comes for a partition scheme with 20
subsets. Increasing the number of subsets, the results present only slight variations up to a cardinality of 60,
which is slightly smaller than the optimal cardinality of approximately 70 according to Theorem 5. Observe
also that Step 4 presents a more stable behaviour in this example. That is because the memory handling
time becomes less significant once the overall execution time increases about one order of magnitude with
respect to the previous example.

The results illustrate the theoretical results in the paper and suggest that the proposed algorithm tends
to work better with a fairly small number of subsets. That is an interesting result that may be applied in
further studies to extend the results to Markov decision processes, which also feature an optimisation step
and which are particularly sensitive to the cardinality of the state space.

6.1. Comparison to standard time aggregation

To further analyse the proposed approach, we compare the performance of the proposed algorithm with
standard time aggregation, making use of the same set of experiments introduced in the previous section.
This is performed by noting that standard time aggregation can be seen as a partition scheme with two
subsets. For the sake of simplicity, we divide the state space into two subsets of the same cardinality.

Table 1 shows the numerical results of the comparison. There, the times for n = 2 refer to standard time
aggregation, whereas the times for n* refer to the optimal partition scheme in the proposed approach. To
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Table 1: Computational Time (s)

ST = 2000 ST = 5000
n=2|n"=20] n=2 [ n*=25
Step 2 | 0.0041 [ 0.0006 | 0.0220 | 0.0017
Step 3 | 0.0004 [ 0.0004 | 0.0005 | 0.0006
Step 4 | 0.0074 | 0.0014 | 0.0424 | 0.0031
Step 5 | 0.0067 | 0.0048 | 0.0390 | 0.0292

| Total [ 0.0186 | 0.0071 [ 0.1040 | 0.0346 |

Steps

be able to perform a meaningful comparison, the aggregation is performed over both subsets with a view to
attain the steady state probabilities of all states in the Markov chain. Observe that the proposed method is
significantly faster than standard time aggregation in both examples.

7. Concluding remarks

This paper introduces a new algorithm for the evaluation of the steady state probability of finite state
space ergodic Markov chains. The algorithm makes use of a partition scheme which results in two distinct
processes: one master semi-Markov process that models the transitions between the subsets of the partition
and a set of auxiliary embedded Markov processes that register the first state visited at each sojourn within
a given subset of the partition.

The normalised steady distributions within each subset in the partition can be obtained by adequately
combining the steady state distribution of the auxiliary process with the expected number of visits to each
state in the partition in an outbound trajectory within the subset. Then, by combining the normalised
distributions with the stationary distribution of the master semi-Markov process, one is able to recover the
stationary distribution of the original Markov chain.

The algorithm, which is shown to converge to the stationary distribution of the original process, enables
the decision maker to find it by performing decentralised calculations within subsets of reduced dimension.
Moreover, a single calculation of the outbound trajectories is needed, reducing the computational burden.
Further studies should investigate the application of the results for policy evaluation in the policy iteration
algorithm.

There are many issues to be considered in future research. One important issue is the choice of the
partition scheme, which could be further investigated both in the absence of sparsity conditions and for
particular structures of the Markov chain. Another research direction includes establishing bounds on the
convergence rate of the proposed approach, possibly as a function of the number of subsets in the partition
scheme.
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