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Abstract

This paper aims to design an asynchronous state feedback controller for Markov jump time-delay systems. The highlight of
this work lies in that the state feedback is quantized by a logarithmic quantizer, and both the controller and quantizer are
asynchronous with the controlled systems. By Lyapunov-Krasovskii functional, a sufficient condition is presented to ensure
that the resulting closed-loop system is stochastically mean square stable with a prescribed H∞ performance index. Finally,
an example is presented to illustrate the effectiveness and new features of proposed design method.
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1 Introduction

In practical control systems, the occurrences of abrup-
t structure or parameter variations produced by exter-
nal causes are inevitable. To facilitate the theoretical re-
search for such kind of systems, a special class of hybrid
systems, named as Markov jump system (MJS), has e-
merged. Conceptually, a MJS is a dynamic system that
varies among a finite or infinite collection of modes or
subsystems, and the variations are governed by aMarkov
process subject to some transition probability matrix. In
the past few decades, study on filtering/estimation and
control/stabilization of MJSs has enjoyed enduring pop-
ularity and a large number of works have been published
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in the literature, see for instance [1, 2, 5, 7, 9, 12, 17, 19–
21,24,26,28,29,34], and the references therein. Special-
ly, the filtering/estimation problem has been addressed
in [1, 9, 24]. Stability and stabilization have been vastly
investigated in [2, 5, 7, 12, 17, 19, 20, 26, 34], e.g., a nov-
el sufficient condition for almost sure stability of MJS
has been proposed in [2], LQ-optimal control and out-
put feedback control have been addressed respectively
in [5] and [12]. MJSs have been widely used in practi-
cal systems. For example, the works in [21, 28, 29] have
investigated the applications of MJSs in DC motor and
DC-DC buck converter.

Since communication network is introduced into control
systems, the control system unavoidably suffers from
communication problems, e.g., packet loss, time delay
and quantization, which may deteriorate the stability
and performance of the system. These new problems in-
troduced by communication network are interesting to
consider. Quantization which maps a continuous quan-
tity into a discrete set at the cost of certain distortion, is
required due to finite transmission rate of the network.
The work [16] has traced the early history of quanti-
zation theory, and elaborated on the fundamentals and
early results concerning quantization. Quantized control
has been one of the most important issues in the area of
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NCSs. The literatures [3, 8, 10] are early works on this
topic. The authors in [10] have shown that the logarith-
mic quantizer is the coarsest quantizer that can quadrat-
ically stabilize a linear discrete time-invariant system
with a single input, which can be explained intuitively
by that, the farther from the equilibrium the state is, the
less precise the control action needs to be. In [14], the
authors have conducted a comprehensive investigation
on quantized feedback control with logarithmic quanti-
zation based on the sector bound approach. Following
this, authors of [32] have considered the quantized sta-
bilization problem for MJSs. When quantization is con-
sidered, another choice is the dynamic quantizer. Dy-
namic quantization has advantages in the dynamical s-
calability of quantization levels, such that the attraction
region can be increased and the steady state limit cycle
can be reduced. However, the dynamic quantization has
some disadvantages as mentioned in [14], such as poor
transient responses and invalidity of capacity results for
practical communication channels.

As mentioned above, there exist problems such as pack-
et loss, time delay in NCSs, which will lead to informa-
tion loss. In MJSs, incomplete information (e.g. the sys-
tem modes) transmission may cause asynchronization
between the original system and controller/filter, which
has not been taken into consideration in many of the
existing works. For instance, the controllers or filters in-
volved in [1, 12, 17, 19–21,26, 34] are either synchronous
or mode-independent. However, it is gratifying to see
that there are increasing concerns about asynchroniza-
tion problem in the past several years [30,31,35]. In [35],
the controlled system and controller are asynchronous
because of the time delay between their modes. In [30],
an asynchronous l2 − l∞ filter has been proposed for s-
tochastic discrete-time MJSs, and the asynchronization
is reflected in the piecewise homogeneous Markov chain
of the filter. Unlike [30], the work in [31] has described
the asynchronization phenomenon as a hidden Markov
model, where the controller’s mode depends only on the
system’s mode through conditional probabilities. As a
matter of fact, the hidden Markov model is not new.
The book [11] has carried out an exhaustive study on
hidden Markov model, which helps lay a solid theoreti-
cal foundation. In [4], hidden Markov model is used to
study network intrusion detection. Based on the hidden
Markov model, authors of [6] have studied feedback con-

trol using an estimate θ̂k instead of the actual system
mode θk as only partial information is available, where

θ̂k depends on θk in terms of certain conditional prob-
ability. Furthermore, the authors of [22, 23, 25, 27] have
conducted extensive studies on filtering and control for
both continuous-time and discrete-time systems under

the same framework of hidden Markov model (θk, θ̂k),

where θ̂k is emitted by a detector. As can be seen, the
hidden Markovmodels in [31] and [6,22,23,25,27] are es-
sentially the same. The only difference is that the asyn-
chronization in [6,22,23,25,27] is induced by the detec-

tor. Despite all this, the asynchronous quantized state
feedback control has not been fully considered, which
motivates us for the current study.

This paper is concerned with the asynchronous control
problem for time-delay MJSs following the framework
in [31]. This paper distinguishes itself with the existing
works [6, 22, 23, 25, 27, 31] by considering quantizing the
state feedback through a logarithmic quantizer before
input to the controlled system. Both the controller and
quantizer are asynchronous with the controlled system.
Hence, there are two hidden Markov models with re-
spect to controller and quantizer respectively. It is worth
mentioning that, in [6, 22, 23, 25, 27], the controller or
filter obtains systems’ mode information through a de-
tector, whereas in the present paper, the controlled sys-
tem will transmit mode information actively to the con-
troller and quantizer. Besides, time-varying time delay
in state is taken into consideration in our work. By ap-
plying Lyapunov-Krasovskii functional, a sufficient con-
dition is obtained, which guarantees that the closed-loop
system is stochastically mean square stable and has a
prescribed H∞ noise attenuation performance. Further-
more, the control gain is parameterized by settling the
nonlinearity in the sufficient condition. Finally, a nu-
merical example illustrates that the proposed method is
correct and effective, and also validates some heuristic
conjectures.

Notation: The notations used throughout this paper are
fairly standard. Rn and Rm×n denote the n-dimensional
Euclidean space and the set of all m × n real matrices,
respectively. N+ is the set of positive integers. l2[0,∞)
denotes the space of square summable infinite sequence.
The notation X > Y (X > Y ), where X and Y are
symmetric matrices, means that X − Y is positive defi-
nite (positive semidefinite). I and 0 represent the iden-
tity matrix and zero matrix, respectively. || · || denotes
the Euclidean norm of a vector and its induced norm of
a matrix. (·)T and E(·) denote the transpose operator
and expectation operator, respectively. diag{·} denotes
a block diagonal matrix. For an arbitrary matrix B and
two symmetric matrices A and C, in the symmetric ma-
trix





A B

∗ C





where “∗” denotes the term that is induced by symme-
try. All matrices in this paper are assumed to have com-
patible dimensions for algebraic operations.
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2 Preliminaries

This paper focuses on the following MJS with time-
variant delay:

S :























x(k + 1) = A(θk)x(k) +Ad(θk)x(k − d(k))

+B1(θk)u(k) +B2(θk)w(k)

y(k) = C(θk)x(k) + Cd(θk)x(k − d(k))

+D1(θk)u(k) +D2(θk)w(k)

x(k0) = ς(k0), k0 = −d2,−d2 + 1, · · · ,−1, 0
(1)

where x(k) ∈ Rnx denotes system state and ς(k0) is
the initial state. It is assumed that all the state values
are available. y(k) ∈ Rny is the controlled output from
the system. u(k) ∈ Rm and w(k) ∈ Rnw are control
and deterministic disturbance inputs respectively, and
w(k) ∈ l2[0,∞). Note that time-variant delay d(k) is in-
troduced in (1) considering that time delay is ubiquitous
in practical engineering systems and is always a source
of instability [13], d(k) ∈ N+ is bounded by positive inte-
gers d1 and d2, and d1 < d2. The remaining matrices in
the system are real and known a priori. The transitions
of system S are in the control of the Markov parameter
θk ∈ N (N = {1, 2, · · · , n}), which are subject to tran-
sition probability matrix Θ = [πij ] with πij given by

Pr{θk+1 = j|θk = i} = πij , (2)

and there exist constraints πij ∈ [0, 1] and
∑n

j=1
πij = 1

for ∀i, j ∈ N .

We attempt to design amode-dependent controller using
quantized state feedback law for S which is described as
follows:

C : v(k) = K(λk)x(k), (3)

Q : u(k) = Q(ξk, v(k)), (4)

where v(k) ∈ Rm is the unquantized feedback law with
control gain K(λk). Subsequently, u(k) is obtained by
quantizing v(k) through quantizer Q(·, ·) which is com-
posed ofmmode-dependent logarithmic quantizers, i.e.,

Q(ξk, v(k)) =
[

f1(ξk, v1(k)) · · · fm(ξk, vm(k))
]T

. (5)

The variables λk and ξk denote received mode informa-
tion from the controlled system. Due to unreliable trans-
mission, λk and ξk are not identical to θk. Without loss
of generality, assume that they take values in the same
finite set N as θk does. On one hand, λk and ξk exert
influence on the variations of C and Q among different
modes, on the other hand, they are affected by the mod-
e of system S through conditional probability matrices
Ω = [ωip] and Σ = [σiq ], i, p, q ∈ N . The conditional
probability ωip (or σiq) implies the possibility that the
controller C runs in mode p (or the quantizer Q in mode

q) given the mode information i of system S, i.e.,

Pr{λk = p|θk = i} = ωip, Pr{ξk = q|θk = i} = σiq .
(6)

It is quite clear that ωip ∈ [0, 1],
∑n

p=1
ωip = 1 and

σiq ∈ [0, 1],
∑n

q=1
σiq = 1, ∀i, p, q ∈ N . It should be

noted that we are able to obtain the conditional prob-
ability matrices Ω and Σ by Monte Carlo method in
real applications. We should mention that, usually, a
mode-dependent controller or quantizer depends on the
original system’s mode directly, e.g. [33]. However, the
meaning of “mode-dependent” in this paper is slightly
different from the common usage. The controller C and
quantizerQ depend on θk indirectly through conditional
probabilities (6).

Remark 1 Note that the jumps of controller C are
under the control of Markov parameter λk directly and
influenced by Markov parameter θk (subject to transi-
tion probability matrix Θ) indirectly through conditional
probability matrix Ω. Hence a hidden Markov model
(θk, λk, Θ,Ω) is formed, which describes the asynchro-
nization between S and C well. Similarly, the asyn-
chronization between S and Q is described by a hidden
Markov model (θk, ξk, Θ,Σ).

Remark 2 Note that similar to the discussions
in [22, 23, 31] concerning hidden-Markov-model-based
asynchronization description, taking different values in
(θk, λk, Θ,Ω), our results will reduce to the following
three special cases:

(1) Synchronous case: in this case, Ω = I, the system
and the controller will achieve perfect synchroniza-
tion.

(2) Clustering case: in this case, the Markov parameter
θk is grouped into several clusters, and in each clus-
ter, the conditional probability for λk depends only
on which cluster θk belongs to. One extreme case is
that there is only one cluster and then the condi-
tional probability matrix Ω has identical rows. This
point has been elaborated in [22,23].

(3) Mode-independent case: in this case, λk ∈ {1},Ω =
[1 · · · 1]T, the mode information θk plays no role,
which is equivalent to the only one cluster case men-
tioned in (2).

For notational brevity, subscripts i, j, p, q will be here-
inafter employed to replace these Markov parameters θk,
θk+1, λk and ξk in system S, controller C and quantizer
Q, for example, A(θk) is abbreviated as Ai.

A mode-dependent logarithmic quantizer fq(a) (q ∈ N )
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is defined as follows:

fq(a) =



















rql,
1

1+δq
rql < a ≤ 1

1−δq
rql

0, a = 0

−fq(−a), a < 0

(7)

where the scalar a is the input of the quantizer, rql =
ρlqr0 are the outputs, l = 0,±1,±2, · · · , and 0 < ρq <
1, r0 > 0. Without loss of generality, r0 is invariant
for all q ∈ N , i.e., r0 is mode-independent [10]. The
parameters δq and ρq are related with each other by

δq =
1− ρq
1 + ρq

. (8)

As to logarithmic quantizer, two important facts should
be recalled, one of them is the quantization density which
can be calculated by the formula −2/ln(ρq). Therefore
we can compare the coarseness of logarithmic quantizers
by observing the values of ρq or δq, the smaller ρq or
bigger δq is, the coarser the quantizer is. Another fact
is that the quantizer (7) is bounded by a sector with
(1+δq)a and (1−δq)a as its boundaries, which is specified
in [14]. As a result, the quantization error is bounded by
−δqa ≤ fq(a)− a ≤ δqa, which can be written as

fq(a)− a = ∆qa, ∆q ∈ [−δq, δq]. (9)

Notice that, for ∀q ∈ N , the quantizer fq(a) is time
invariant, and hence (9) holds for all k. By means of (5)
and (9), we can obtain that

Qq(v(k)) = (I +Hq(k))v(k), (10)

where

Hq(k) = diag{∆1q(k), · · · ,∆mq(k)} (11)

with ∆sq(k) ∈ [−δsq, δsq], s = 1, 2, · · · ,m. Combining
system S, controller C, quantizer Q and (10), we obtain
the dynamics of the closed-loop system as follows:

Scl :















x(k + 1) =Ā(θkλkξk, k)x(k) +Adix(k − d(k))

+B2iw(k)

y(k) =C̄(θkλkξk, k)x(k) + Cdix(k − d(k))

+D2iw(k)
(12)

where

Ā(θkλkξk, k) = Ai +B1i(I +Hq(k))Kp,

C̄(θkλkξk, k) = Ci +D1i(I +Hq(k))Kp.

In the following, Ā(θkλkξk, k) and C̄(θkλkξk, k) will be
denoted as Āipq(k) and C̄ipq(k) respectively.

Next, some definitions will be introduced, which are es-
sential for the derivation of our main results in this pa-
per.

Definition 1 [18] The closed-loop system Scl with
w(k) ≡ 0 is said to be stochastically mean square sta-
ble, if for any initial condition (x(k0), θ0), the following
condition holds

E{
∞
∑

k=0

‖ x(k) ‖2| x(k0), θ0} < ∞. (13)

Definition 2 [18] The closed-loop system Scl with
w(k) ∈ l2[0,∞) is said to have an H∞ noise attenuation
performance γ, if under zero initial state, the following
condition is satisfied:

∞
∑

k=0

E{‖ y(k) ‖2} < γ2

∞
∑

k=0

‖ w(k) ‖2, (14)

where γ is a positive scalar.

Given the above, the objective of this paper is to develop
a possible scheme of quantized state feedback law (i.e. C
and Q) with given logarithmic quantizer Q for system S

in the hope that the resulting closed-loop system Scl is
stochastically mean square stable and has a prescribed
H∞ noise attenuation performance γ.

Remark 3 Note that the quantized feedback control has
been addressed in [32], whereas our work is quite different
from [32] mainly in the following three points:

(1) Time delay in state is considered in our work.
(2) With the controller designed in our work, the closed-

loop system is not only stochastically mean square
stable, but also has a prescribed H∞ performance
which was not considered in [32].

(3) Most importantly, the asynchronization is described
in different ways in [32] and our work. In [32],
the controller/quantizer are synchronous with the
controlled system, but controller and quantizer are
synchronous with each other, hence in this point,
our framework is more general. Besides, in [32] the
asynchronization is described by conditional proba-
bility Pr{θk = i, λk+1 = p2|λk = p1} which implies
that the controlled system’s mode of time instant k
and the controller/quantizer’s mode of time instan-
t k + 1 jointly depend on the controller/quantizer’s
mode of time instant k. However, in our framework,
the modes of the controller or quantizer depend on
the mode of controlled system, which is described by
(6).

3 Main Results

This sectionwill firstly present a sufficient condition con-
cerning stochastic mean square stability with an H∞
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noise attenuation performance γ, and then propose a de-
sign approach of an asynchronous quantized controller.

Theorem 1 The closed-loop system Scl is stochastically
mean square stable with an H∞ noise attenuation per-
formance γ, if there exist a matrix Kp ∈ Rm×nx , posi-
tive definite matrices Pi ∈ Rnx , R ∈ Rnx , Fipq ∈ Rnx ,
and a positive definite diagonal matrix Wiq ∈ Rm, for
∀i, p, q ∈ N , such that the following conditions hold:

n
∑

p=1

n
∑

q=1

ωipσiqFipq < Pi, (15)











Φipq K T
p GiΛqWiq

* −Wiq 0

* * −Wiq











< 0, (16)

where

Φipq =























−P̃−1

i 0 Ā∗
ip Adi B2i

* −I C̄∗
ip Cdi D2i

* * dR − Fipq 0 0

* * * −R 0

* * * ∗ −γ2I























,

Ā∗
ip = Ai +B1iKp, C̄

∗
ip = Ci +D1iKp,

Kp =
[

0 0 Kp 0 0
]

, Gi =
[

BT
1i DT

1i 0 0 0
]T

,

Λq = diag{δ1q, δ2q, · · · , δmq},

P̃i =

n
∑

j=1

πijPj , d = d2 − d1 + 1,

where these variables, all the system matrices in S and
transition probability matrix Θ, conditional probability
matrices Ω, Σ, quantization parameters Λq, boundaries
of time delay d1 and d2 are all pre-given.

Proof. We will firstly deduce several inequalities from
(15) and (16) to carry forward the proof. From (15) it is
easy to know

Fi ,

n
∑

p=1

n
∑

q=1

ωipσiqFipq − Pi < 0. (17)

Using Schur Complement to (16), we have

Φipq + K
T
p W−1

iq Kp +GiΛqWiqΛqG
T
i < 0. (18)

Considering (11) with ∆sq(k) ∈ [−δsq, δsq], s =
1, 2, · · · ,m, and noting Wiq is a positive definite diago-
nal matrix,

Φipq + K
T
p W−1

iq Kp +GiHq(k)WiqHq(k)G
T
i < 0 (19)

holds. By means of Lemma 1 in [15], it leads to from (19)

Φipq + K
T
p Hq(k)G

T
i +GiHq(k)Kp < 0, (20)

namely,























−P̃−1

i 0 Āipq(k) Adi B2i

* −I C̄ipp(k) Cdi D2i

* * dR− Fipq 0 0

* * * −R 0

* * * ∗ −γ2I























< 0, (21)

which implies











−P̃−1

i Āipq(k) Adi

* dR− Fipq 0

* * −R











< 0 (22)

holds. Then, by applying Schur Complement operations
to (21) and (22), respectively, we obtain that

{

Φ†
ipq , C − D

T
ipqG

−1

i Dipq < F̂ipq ,

Φ∗
ipq , A + B

T
ipqP̃iBipq < F̃ipq ,

(23)

where

A = diag{dR,−R}, Bipq =
[

Āipq(k) Adi

]

,

C = diag{dR,−R,−γ2I}, Dipq =





Āipq(k) Adi B2i

C̄ipq(k) Cdi D2i



 ,

Gi = diag{−P̃−1

i ,−I},
F̃ipq = diag{Fipq, 0}, F̂ipq = diag{Fipq, 0, 0}.

Next, we introduce the following Lyapunov-Krasovskii
functional:

V (k) =
2

∑

t=1

Vt(k), (24)

where

V1(k) = xT(k)Pθkx(k),

V2(k) =

−d1+1
∑

β=−d2+1

k−1
∑

α=k−1+β

xT(α)Rx(α).

Letting∇V (k) be the forward difference of V (k), we will
figure out E{∇V (k)} which is composed of two parts,
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E{∇V1(k)} and E{∇V2(k)}. We readily find that

E{∇V1(k)} =E{V1(k + 1)− V1(k)|x(k), θk = i}
=E{xT(k + 1)P̃ix(k + 1)} − xT(k)Pix(k).

(25)

We introduce notations ζ1(k) = [xT(k) xT(k − d(k))]T

and ζ(k) = [ζT1 (k) w
T(k)]T. On the basis of system Scl,

we have

E{xT(k + 1)P̃ix(k + 1)}

=E

{ n
∑

p=1

n
∑

q=1

ωipσiqζ
T(k)





BT
ipq

BT
2i



 P̃i

[

Bipq B2i

]

ζ(k)

}

.

(26)

On the other hand,

E{∇V2(k)} = E{V2(k + 1)− V2(k)}

=E

{

−d1+1
∑

β=−d2+1

k
∑

α=k+β

xT(α)Rx(α)

−
−d1+1
∑

β=−d2+1

k−1
∑

α=k−1+β

xT(α)Rx(α)

}

=E

{

−d1+1
∑

β=−d2+1

{xT(k)Rx(k)

− xT(k − 1 + β)Rx(k − 1 + β)}
}

.

(27)

We can obtain that

−d1+1
∑

β=−d2+1

xT(k)Rx(k) = xT(k)dRx(k) (28)

and

−d1+1
∑

β=−d2+1

xT(k − 1 + β)Rx(k − 1 + β)

=

k−d1
∑

β=k−d2

xT(β)Rx(β)

≥xT(k − d(k))Rx(k − d(k)).

(29)

Then the following inequality holds

E{∇V2(k)}
≤E{xT(k)dRx(k) − xT(k − d(k))Rx(k − d(k))}
=E{ζT1 (k)A ζ1(k)}.

(30)

Noting thatw(k) ≡ 0 in the definition of stochasticmean
square stability, we combine (25), (26), (30) and then

obtain that

E{∇V (k)} = E{∇V1(k)}+ E{∇V2(k)}

≤E
{

n
∑

p=1

n
∑

q=1

ωipσiqζ
T
1 (k)Φ

∗
ipqζ1(k)− xT(k)Pix(k)

}

<E
{

ζT1 (k)
(

n
∑

p=1

n
∑

q=1

ωipσiqF̃ipq

)

ζ1(k)− xT(k)Pix(k)
}

=E
{

xT(k)Fix(k)
}

≤φE{xT(k)x(k)},
(31)

where ’<’ holds as a result of (23), φ denotes the largest
eigenvalue of Fi, for all i ∈ N , and (17) implies that
φ < 0, then

E
{

∞
∑

0

xT(k)x(k)
}

<
1

φ
E
{

∞
∑

0

∇V (k)
}

=
1

φ
E{V (∞)− V (0)} ≤ − 1

φ
E{V (0)} < ∞

(32)

which is consistent with (13) in Definition 1, thus the
stochastic mean square stability is proved.

Next we will pay attention toH∞ noise attenuation per-
formance, therefore we investigate the following perfor-
mance index under zero initial condition:

J =

∞
∑

k=0

E{yT(k)y(k)− γ2wT(k)w(k)}

≤
∞
∑

k=0

E{yT(k)y(k)− γ2wT(k)w(k) +∇V (k)}

≤
∞
∑

k=0

E
{

n
∑

p=1

n
∑

q=1

ωipσiqζ
T(k)Φ†

ipqζ(k) − xT(k)Pix(k)
}

(33)

where (25), (26) and (30) contribute to the second “≤”.
In a similar line with (31), we get

J <

∞
∑

k=0

E
{

xT(k)Fix(k)
}

< 0, (34)

which implies that (14) is satisfied. Thus the proof is
completed. 2

Remark 4 A sufficient condition concerning stochastic
mean square stability with an H∞ noise attenuation per-
formance γ is derived for system Scl in Theorem 1. Us-
ing the similar technique as in [23, 27, 31], we introduce
the matrix Fipq, thus (16) is separated from conditional
probabilities ωip and σiq. Otherwise, the matrix dimen-
sion will be high and even grow higher with the increase
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of number of elements in the set N when linearizing this
matrix inequality. Hence, the introduction of Fipq will fa-
cilitate the controller design.

However, in view of the complexity of condition (15) and
(16), we are incapable to parameterize the controller gain
Kp directly by Theorem 1, which motives us to present
the following result.

Theorem 2 The closed-loop system Scl is stochastical-
ly mean square stable with an H∞ noise attenuation
performance γ, if there exist a positive scalar γ̄, matri-
ces K̄p ∈ Rm×nx , L ∈ Rnx , positive definite matrices
P̄i ∈ Rnx , R̄ ∈ Rnx , F̄ipq ∈ Rnx , and a positive definite
diagonal matrix Wiq ∈ Rm, for ∀i, p, q ∈ N , such that
the following conditions hold:





−P̄i Γi

* Ξi



 < 0, (35)











Uipq Vipq Wipq

* −I 0

* * P











< 0, (36)

where

Γi =
[√

µi11P̄i · · · √µipqP̄i · · · √µinnP̄i

]

,

Ξi = diag{−F̄i11, · · · ,−F̄ipq, · · · ,−F̄inn}, µipq = ωipσiq ,

Uipq =























dR̄+ F̄ipq − LT − L 0 0 K̄T
p 0

* −R̄ 0 0 0

* * −γ̄I 0 0

* * * −Wiq 0

* * * * −Wiq























,

Vipq =
[

CiL+D1iK̄p CdiL D2i 0 D1iΛqWiq

]T

,

Wipq =
[√

πi1Z
T
ipq

√
πi2Z

T
ipq · · · √πinZ

T
ipq

]

,

Zipq =
[

AiL+B1iK̄p AdiL B2i 0 B1iΛqWiq

]

,

P = diag{−P̄1,−P̄2, · · · ,−P̄n},

where these variables, all the system matrices in S and
transition probability matrix Θ, conditional probability
matrices Ω, Σ, quantization parameters Λq, boundaries
of time delay d1 and d2 are all pre-given. Moreover, if the
LMIs (35) and (36) are feasible, then the controller gain
can be parameterized as

Kp = K̄pL
−1. (37)

Proof. To begin with, we denote

P̄i = P−1

i , F̄ipq =F−1

ipq , γ̄ = γ2,

R̄ = LTRL, K̄p = KpL,
(38)

where L is a slack matrix, and it is invertible, which is
guaranteed by (36). By performing a congruence trans-
formation to (35) using diag{Pi, I, · · · , I}, the following
matrix inequality holds





−Pi Γ̄i

* Ξi



 < 0, (39)

where Γ̄i =
[√

µi11I · · · √µipqI · · · √µinnI
]

. By using

Schur Complement, it can be seen that (39) is equivalent
to (15).

On the other hand, due to the fact that

(F̄ipq − L)TF̄−1

ipq (F̄ipq − L) ≥ 0, (40)

namely,

−LTF̄−1

ipqL ≤ F̄ipq − LT − L, (41)

then (36) implies











Ūipq Vipq Wipq

* −I 0

* * P











< 0 (42)

holds, where

Ūipq =























dR̄ − LTF̄−1

ipqL 0 0 K̄T
p 0

* −R̄ 0 0 0

* * −γ̄I 0 0

* * * −Wiq 0

* * * * −Wiq























.

Denote L = diag{(LT)−1, (LT)−1, I, I, I, I, I, · · · , I},
pre- and post-multiply (42) by L and L T respectively,
we have











Xipq Y †T
ipq Yipq

* −I 0

* * P











< 0, (43)
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where

Xipq =























dR− Fipq 0 0 KT
p 0

* −R 0 0 0

* * −γ2I 0 0

* * * −Wiq 0

* * * * −Wiq























,

Y †
ipq =

[

Ci +D1iKp Cdi D2i 0 D1iΛqWiq

]

,

Yipq =
[√

πi1Y
∗T
ipq

√
πi2Y

∗T
ipq · · · √πinY

∗T
ipq

]

,

Y ∗
ipq =

[

Ai +B1iKp Adi B2i 0 B1iΛqWiq

]

.

By applying Schur Complement to (43), we obtain (16),
and the proof is completed. 2

Remark 5 The parameter γ denotes the H∞ perfor-
mance index of the resulting closed-loop system Scl, the
smaller γ is, the better the performance is. By means of
LMI toolbox in Matlab, the optimized γ, denoted as γ∗,
can be obtained by minimizing γ̄ subject to (35) and (36),
then γ∗ =

√
γ̄min.

4 Numerical Example

In this section, our design method will be supported by a
numerical simulation, where a 2-mode MJS of the form
S is considered, and corresponding parameters are as
follows:

A1 =





1.45 1

0.1 0.6



 , Ad1 =





0.1 −0.2

0.1 0.15



 , B11 =





1 0.1

0.1 0.1



 ,

A2 =





0.1 0.6

0.8 −1.1



 , Ad2 =





0.1 −0.2

0 0.1



 , B12 =





0.5 0.8

0.2 0.1



 ,

C1 =
[

1.6 0.2
]

, Cd1 =
[

0.1 0.2
]

, D11 =
[

0.1 1
]

,

C2 =
[

1 1.5
]

, Cd2 =
[

1 0.5
]

, D12 =
[

0.9 0.5
]

,

B21 =





0.1

0.05



 , B22 =





0.1

0.02



 , D21 = 0.2, D22 = 0.4.

The transition probability matrix Θ and conditional
probability matrices Ω, Σ are chosen as

Θ =





0.9 0.1

0.36 0.64



 , Ω =





0.6 0.4

0.8 0.2



 , Σ =





0.75 0.25

0.9 0.1



 ,

respectively. The time delay takes value 1 or 2 randomly,
which implies d = 2. The error bounds of the logarithmic

quantizer are

Λ1 =





0.1 0

0 0.1



 , Λ2 =





0.18 0

0 0.18



 .

Then by Theorem 2, one can readily obtain the opti-
mized H∞ performance γ∗ = 1.6312 and the following
control gain

K1 =





−1.3865 −0.2973

1.7847 −2.9033



 , K2 =





−1.3926 −0.2950

1.7004 −2.8702



 .

Based on the parameters mentioned above, we further
perform some simulations to show the closed-loop sta-
bility, taking initial condition x(k0) = [0.28 0.17]T, k0 =
−2,−1, 0, θ0 = 2 and disturbance input w(k) =
0.9ksin(k). It is not difficult to find out that the open-
loop system is unstable. Then, a Monte Carlo simulation
is carried out with the proposed quantized controller.
The simulation results are illustrated in Fig.1, which
are state, output and control input trajectories of 1000
repeated simulations (in grey) and their mean values
(in full blue line). It can be observed that, when the
controller in Theorem 2 is applied, the state and output
gradually tend to the equilibrium point, i.e., the closed-
loop system becomes stable. Thus the effectiveness of
the quantized controller in Theorem 2 is self-evident.
Furthermore, to show the H∞ performance, we repeat
the Monte Carlo simulation under zero initial condition
and then figure out the ratio

γy/w ,

√

limk→∞

∑

k E{‖ y(k) ‖2}
limk→∞

∑

k ‖ w(k) ‖2

which is displayed in Fig.2. Compared with the upper
bound γ∗ = 1.6312 calculated by Theorem 2, the ratio
mentioned above is smaller, which shows the proposed
controller design method is correct though the upper
bound γ∗ is conservative to some extent. Additionally,
we simulate the case of mode-independent controller by
letting λk ∈ {1} andΩ = [1 1]T according to Remark 2, a
worseH∞ performance γ∗ = 1.6458 is obtained, though
this conventional controller is also able to stabilize the
system.

In our work, the asynchronization phenomenon is de-
scribed by hidden Markov models, the key point of this
model lies in the conditional probability matrix which
can reflect the asynchronization level. Next we will an-
alyze the effect of hidden Markov feature on the H∞

performance of closed-loop system by simulations with
varying conditional probability matrices Ω and Σ. For
the considered 2-mode MJS, Ω and Σ can be written as
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follows:

Ω =





ω11 1− ω11

ω21 1− ω21



 , Σ =





1− σ12 σ12

1− σ22 σ22



 .

Before proceeding, we make some reasonable conjectures
first:

(1) The H∞ performance γ∗ will keep invariant if the
columns of Ω are exchanged, because the con-
troller is designable, namely, we can determine the
controller gains and can also allocate mode to ev-
ery controller gain according to certain guidelines.
Thus, the system can achieve the same performance
by exchanging K1 and K2.

(2) The performance of the closed-loop system will im-
prove with the increasing of synchronization level
between the controlled system and controller.

(3) The closed-loop system has the worst H∞ perfor-
mance when ω11 = ω21. In this case, the rows of Ω
are identical, which leads to just one cluster case
or mode-independent case as specified in Remark 2
and [22,23], then the controlled system fails to pro-
vide useful mode information for controller design.

(4) The closed-loop system will have betterH∞ perfor-
mance with smaller σ12 and σ22, as smaller σ12 and
σ22 mean that the quantizer is more likely to run in
mode 1. By comparing Λ1 and Λ2, we can find that
the quantizer will produce smaller quantization er-
rors when running in mode 1 according to (9).

Next, we perform some simulations to validate the con-
jectures mentioned above. Letting Σ keep constant and
Ω vary, we solve LMIs (35) and (36), and the corre-
sponding γ∗ are recorded in Fig.3. The figure is centered
with ω11 = 0.5 and ω21 = 0.5, and γ∗ distributes like
a parabola at the direction ω11 + ω21 = 1, which ver-
ifies conjecture 1) and 2) respectively. We can observe
the worst H∞ performance γ∗ at the position ω11 = ω21

which illustrates conjecture 3) is right. Note that the
worst H∞ performance γ∗ = 1.6458 equals to that in
the case when a mode-independent controller is used,
which implies that a mode-independent controller would
suffice when ω11 = ω21, otherwise, a mode-dependent
controller is preferable. Similarly, by changing Σ, we get
Fig.4, which convincingly demonstrates conjecture 4) is
correct.

Note that the works [25, 27], especially [22], have pro-
vided a detailed discussion on the relationship between
H2 performance and the detector’s probability matrix.
Though our discussion mentioned above is similar with
that in [22], there are some differences, mainly in the
following two aspects: Firstly, the work in [22] provided
a similar figure as Fig.3 to show the influence of detec-
tion accuracy on H2 performance, and stated that this
figure is symmetric with respect to the line ω11 = ω21

(ρ2 = 1 − ρ1 in [22]), but did not tell the reason there-
in. However, it is not the case in our work. We find that
Fig.3 is centered with ω11 = 0.5 and ω21 = 0.5. And the
reason has been analyzed in conjecture 1). Secondly, in
our work, the influence of the synchronization level be-
tween the controlled system and quantizer is presented
in Fig.4 and further discussed in conjecture 4).

Fig. 1. A Monte Carlo simulation of 1000 repetitions: system
state, output and control input
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Fig. 2. Comparisons between γ∗ and the ratio γy/w
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Fig. 4. H∞ performance with varying Σ
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5 Conclusion

The study on asynchronous control has been carried out
for time-delay MJSs in the present paper. In the closed-
loop system, the control input is the quantized state
feedback through a logarithmic quantizer. Moreover, the
asynchronizations between the controlled system and
controller/quantizer are taken into consideration, and
described by hidden Markov models. Under this frame-
work, a sufficient condition has been derived such that
the resulting closed-loop system is not only stochastical-
ly mean square stable but also has a prescribedH∞ noise
attenuation performance. Then the nonlinearity of the
matrix inequalities in the sufficient condition is further
handled such that the control gain can be easily figured
out with the help of Matlab. Finally, the correctness and
effectiveness of the design method is demonstrated by a
numerical example.
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