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a b s t r a c t

This paper is a first attempt at using tools from the theory of hybrid systems to study opinion dynamics
on networks with opinion-dependent connectivity. According to the hybrid framework, our dynamics
are represented by the combination of continuous flow dynamics and discrete jump dynamics. The flow
embodies the attractive forces between the agents and is defined by an ordinary differential equation
whose right-hand side is a Laplacian, whereas the jumps describe the activation or deactivation of the
pairwise interactions between agents. We first reformulate the classical Hegselmann–Krause model in
this framework and thendefine a novel interactionmodel,whichhas the property of being scale-invariant.
We study the stability and convergence properties of both models by a Lyapunov analysis, showing
convergence and clusterization of opinions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Prior expertise in consensus and consensus-seeking dynamics
is leading control scientists to study the evolution of opinions
in social networks, which can be described by similar dynam-
ics. An abundance of mathematical models has been proposed
and studied in social sciences, economics, physics, and applied
mathematics: Friedkin (2015) and Proskurnikov and Tempo (2017)
provide recent surveys that are oriented to the control community.
Indeed, the topic of opinion dynamics has become a popular and
distinct topic in control research, as evidenced by papers like (Ace-
moglu, Como, Fagnani, & Ozdaglar, 2013; Altafini, 2013; Frasca,
Ishii, Ravazzi, & Tempo, 2015; Parsegov, Proskurnikov, Tempo, &
Friedkin, 2017).

Models of opinion dynamics need to explain both agree-
ment and disagreement as potential outcomes of the dynamical
evolution. In some models, this feature is allowed by including
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opinion-dependent limitations in the relative influence between
individuals, that is, in the connectivity of the social network. Gen-
erally speaking, these limitations postulate that individuals do
not influence each other if their opinions are too far apart. The
simplest form of limitation –referred to as ‘‘bounded confidence’’–
is based on a fixed threshold: individuals interact if and only if their
opinions are closer than the threshold. The resulting nonlinear
dynamics has been popularized in the control community by Blon-
del, Hendrickx, and Tsitsiklis (2009), who analyzed the seminal
discrete-time model by Hegselmann and Krause (2002). After-
wards, many variations of this model have been studied, including
continuous-time dynamics (Blondel, Hendrickx, & Tsitsiklis, 2010;
Jabin &Motsch, 2014; Martin & Hendrickx, 2016; Yang, Dimarogo-
nas, &Hu, 2014), heterogeneous thresholds (Mirtabatabaei & Bullo,
2012), continuous distributions of opinions (Canuto, Fagnani, &
Tilli, 2012; Roozbehani, Megretski, & Frazzoli, 2008), and multi-
dimensional opinions (Chazelle & Wang, 2016; Etesami & Başar,
2015; Nedic & Touri, 2012; Wang, Li, Weinan, & Chazelle, 2017).
These dynamics typically induce the clusterization of the opinions,
that is, the population splits into separate groups of individuals
having a common opinion.

In this paper, we study opinion dynamics with opinion-
dependent connectivity that are defined by hybrid dynamical
systems. According to the hybrid framework, our dynamics are
represented by the combination of continuous flow dynamics and
discrete jump dynamics. The flow embodies the attractive forces
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between the agents: it is defined by an ordinary differential equa-
tion whose right-hand side is a scaled Laplacian. At the same
time, the jumps describe the activation or deactivation of the
pairwise interactions between agents. Actually, in this paper we
study two different jump rules. The first rule is based on fixed
thresholds that distinguish between the interactions being present
or not. As such, it defines a dynamics that is a hybrid system
version of the continuous-time dynamics studied in Blondel et al.
(2010) as a variation of the discrete-timeHegselmann–Krause (HK)
model (Hegselmann & Krause, 2002). The original HK model is not
symmetric in the weights of the interactions, leading to some ad-
ditional difficulties in the analysis: this fact has led researchers to
propose symmetrized versions of the HK model that are amenable
to finer study and keep a close similarity with the HK model: this
was done in Blondel et al. (2010) and followed up in Ceragioli and
Frasca (2012), Yang et al. (2014) and Wang et al. (2017). We study
the asymptotic properties of the novel hybrid model, showing
(as expected) convergence to clustered opinions. The second rule,
instead, features adaptive scale-invariant thresholds that activate
the interactions depending only on the relative distances between
the opinions. We also study the asymptotic properties of this
dynamics, showingnot only convergence to clustered opinions, but
also stability of the set of equilibria. This stability property actually
implies that clusterization is uniform in the initial condition: such
uniformity is missing if fixed thresholds are used.

Our dynamics are defined within the hybrid systems frame-
work, which brings two important advantages. Firstly, we are
able to build upon the well-established and comprehensive theory
presented in Goebel, Sanfelice, and Teel (2012). This theory is
useful to guarantee existence and completeness of solutions,which
are tricky for some non-hybrid models: see Blondel et al. (2010),
Ceragioli and Frasca (2012) and Ceragioli and Frasca (2018) for
detailed examples. At the same time, it allows us to prove sta-
bility and attractivity of the equilibria via a transparent Lyapunov
argument. Secondly, the hybrid framework allows for considering
the network topology as an independent (discrete) variable that
interacts with the (continuous) opinion variable. To the best of our
knowledge, previous works simply assume the topology to be a
function of the current opinion, thus not allowing for memory or
hysteresis effects. On the contrary, their inclusion is natural in the
hybrid framework, which thus opens the way to wider opportuni-
ties for modeling opinion dynamics and similar consensus-seeking
systems. As a matter of fact, some other researchers are starting to
apply the hybrid framework (Goebel et al., 2012) to other issues in
multi-agent systems: for instance, consensus problems have been
addressed in Albea, Seuret, and Zaccarian (2016) and De Persis and
Postoyan (2017); Phillips, Li, and Sanfelice (2016).

Outline. Section 2 describes our hybrid dynamic model, including
the undirected interaction graph and the corresponding Laplacians
that define it. Next, Sections 3 and 4 study the dynamics resulting
from, respectively, fixed and adaptive jump rules. Within both
sections, we first present all relevant results and then provide their
detailed proofs. Illustrative simulations are given in Section 4.3,
before some final comments in Section 5.

2. Hybrid dynamics and Laplacians

Consider n agents indexed in a set i ∈ I = {1, . . . , n}, each of
them holding a time-dependent opinion yi : R≥0 → R. Consider
also a time-varying interaction pattern where for any pair (h, k) ∈

I × I, such that h ̸= k, agents h and k interact if ahk = akh ∈ {0, 1}
is set to 1.We call the binary values ahk edges, and they are defined
for all indices (h, k) taking values in the index set:

E := {(i, j) : i ∈ I, j ∈ I \ {i}}.

Since we are considering symmetric interaction dynamics, namely
ahk = akh for all (h, k) ∈ E , set E above is redundant and it is
convenient to introduce the reduced set

E+
:= {(i, j) : i, j ∈ I, j > i}.

Based on the above reduced index set, we can define vector a ∈

{0, 1}
n(n−1)

2 by

a := (a12, a13, . . . , a1n, a23, . . . , an−2,n−1, an−2,n, an−1,n).

Then, all possible pairwise interactions among the n agents are
described by the elements of a. In the sequel, we will refer to
elements of a interchangeably using the two notations ahk = akh
whose meaning is not ambiguous as long as h ̸= k. Based on
the time-varying edges represented in a, each agent may have
a variable number of active connections with other agents. This
number is usually referred to as the degree of the agent. Actually, in
what follows it will be convenient to count the node itself among
its neighbors, and denote this (augmented) degree of agent i, for
each i ∈ I, as

di := 1 +

∑
j̸=i

aij, (1)

consistently with the approach in Hegselmann and Krause (2002,
eq. (2.3)). Note that with this convention one gets di ≥ 1.

The model proposed in this paper aims at regulating both the
continuous evolution of the agents’ opinions (described by suitable
variations of state y), and the discrete variations in the interaction
pattern (described by instantaneous jumps of state a). Since the
proposedmodel involves both continuous variations and instanta-
neous jumps of the state, we will adopt a hybrid framework for its
description and analysis. More precisely, the overall state x is such
that

x := (y, a) ∈ X := Rn
× {0, 1}

n(n−1)
2 . (2)

Following Goebel et al. (2012), solutions are understood as hybrid
arcs: besides the physical time t also the logical time (or jump
counter) ȷ is taken into account. Consequently, solutions are locally
absolutely continuous maps R≥0 × Z≥0 ∋ (t, ȷ) ↦→ (y, a) ∈ X.

Regarding the dynamics of the overall model, we will consider
the following flow equation for the overall state variable (y, a):⎧⎨⎩ẏi =

∑
j∈I\{i}

ψij(a)(yj − yi) for all i ∈ I

ȧij = 0 for all (i, j) ∈ E+,

(3)

whereψij(a) are suitable functions of the discrete state a such that
ψij(a) ≥ 0 for all a andψij(a) > 0 only if aij = 1. These features are
motivated by the fact that interactions only occur between pairs
(i, j) of agents having an active link (aij = 1).

Following classical approaches in consensus ofmulti-agent sys-
tems, the flow dynamics (3) can be conveniently written in terms
of the following (state-dependent) Laplacian matrix L(a) ∈ Rn×n:

L(a) := {ℓij(a)}(i,j)∈I×I,

where ℓij(a) :=

⎧⎨⎩
−ψij(a), if i ̸= j,
−

∑
j∈I\{i}

ℓij(a), if i = j.

In this paper, we shall consider two choices for the Laplacian,
namely, the standard Laplacian

ψij(a) = aij, (4)

which has been used, e.g., in Blondel et al. (2010), and the normal-
ized Laplacian

ψij(a) =
aij
didj

(5)
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where di is defined in (1). In the latter model, the interaction is
relatively stronger if the two agents have a small number of active
links (small values of di and dj) encompassing the intuition that
a smaller number of peers leads to a more frequent, therefore
stronger, interaction.

Note that according to (3), the undirected interconnection
graph remains constant (ȧij = 0) during flowing of the hybrid solu-
tions. Indeed, the change of topology of the interconnection graph
is captured by a jump of the hybrid solution that leaves the opin-
ions y unchanged and only affects the elements aij of a by the fol-
lowing set of jump rules that must be applied to each (h, k) ∈ E+:⎧⎨⎩y+

i = yi for all i ∈ I
a+

hk = 1 − ahk
a+

ij = aij for all (i, j) ∈ E+
\ {(h, k)}

(y, a) ∈ Dhk. (6)

According to the above equation, a jump (toggle between 0 and
1) of edge ahk is enabled when the state (y, a) belongs to the set

Dhk := Don
hk ∪ Doff

hk , for all (h, k) ∈ E+. (7)

In what follows we shall consider different definitions of the jump
sets Don

hk and Doff
hk . Jump Eqs. (6) should be understood in the sense

that hybrid solutions only experience the change of one edge
(h, k) ∈ E+ across one jump. This does not prevent multiple edges
to be activated or deactivated at the same (physical) time, however
such a simultaneous activation/deactivation is conveniently repre-
sented by multiple jumps of the hybrid solution. This suggestive
description enables studying the qualitative behavior of solutions
by analyzing the change of a Lyapunov function across each single
jump, namely across the change of only one edge ahk under the
condition that (y, a) belongs to Dhk.

The jump dynamics is then conveniently written by compactly
representing (6) by the update laws:[
y+

a+

]
= ghk(y, a), (y, a) ∈ Dhk, ∀(h, k) ∈ E+, (8)

which can be grouped together into a set-valuedmap enabling any
of the allowable jumps:[
y+

a+

]
∈ G(y, a) :=

⋃
(h,k): (y,a)∈Dhk

ghk(y, a), (y, a) ∈ D, (9)

where D :=
⋃

(h,k)∈E+Dhk is the (overall) jump set of the hybrid
dynamics. With this definition, it is readily seen that dynamics (3)
can be compactly written as the flow equation:[
ẏ
ȧ

]
= f (y, a) :=

[
−L(a)y

0

]
, (y, a) ∈ C, (10)

where flow set C :=
⋂

(h,k)∈E+X \ Dhk is defined as the closed
complement of the jump set D with respect to the overall state
spaceX introduced in (2). Note that this selection of C ensures that
solutions to the overall dynamics (9), (10) cannot flow if the state
belongs to the interior of any of the sets introduced in (7). However
solutions may flow or jump if the state belongs to the boundary of
some of these sets (and not to the interior of any other, of course).

According to Goebel et al. (2012), the hybrid dynamics under
consideration is well-posed if the data of the hybrid system satisfy
the so-called ‘‘hybrid basic conditions’’ (Goebel et al., 2012, Ass.
6.5). The well posedness property enables a large number of rel-
evant fundamental tools (such as the hybrid invariance principle
and intrinsic robustness properties of asymptotic stability) that we
exploit in our proofs. To ensure the fact that dynamics (9)–(10)
with Laplacian (4) or (5) satisfies these hybrid basic conditions, it is
enough to select the jump sets Don

hk and Doff
hk in (6) as closed subsets

of the state space, as clarified at the beginning of Section 3.2.
Our convergence results rely on the stability theory for hybrid

systems reported inGoebel et al. (2012). In particular, they focus on

the stability properties of the following closed but not necessarily
bounded set:

A := {(y, a) : aij(yi − yj)2 = 0,∀(i, j) ∈ E+
}. (11)

This set contains points of the state space with the following
property: if two nodes interact, then they agree with each other, or
equivalently, if two nodes disagree, then they do not interact. The
results that we present in the next sections focus on the following
stability and convergence properties.

Definition 1. Given the closed set A ⊂ X, define as |x|A =

|(y, a)|A := inf(z,a)∈A|y − z| the distance of point x from set A.
SetA is globally attractive for (9)–(10) if all complete solutions x to
(9)–(10) satisfy limt+ȷ→∞|x(t, ȷ)|A = 0. Set A is uniformly globally
asymptotically stable (UGAS) for (9)–(10) if it is:

• (LyapS). Lyapunov stable, that is, for each ϵ > 0 there exists
δ > 0 such that all solutions x to (9)–(10), satisfy

|x(0, 0)|A ≤ δ ⇒ |x(t, ȷ)|A ≤ ϵ,∀(t, ȷ) ∈ dom x; (12)

• (LagS). Lagrange Stable, that is, for each δ > 0 there exists
ϵ > 0 such that all solutions x to (9)–(10), satisfy (12); and

• (UGA). Uniformly Globally Attractive, that is, for each pair
(r, ϵ) there exists T such that, for all solutions x to (9)–(10),
|x(0, 0)|A ≤ r implies |x(t, ȷ)|A ≤ ϵ for all (t, ȷ) ∈ dom x such
that t + ȷ ≥ T .

3. Fixed thresholds

3.1. Proposed model and its properties

The first definition of jump sets that we consider is

Don
hk :={ahk = 0} ∩ {(yh − yk)2 ≤ R2

− ε} (13a)

Doff
hk :={ahk = 1} ∩ {(yh − yk)2 ≥ R2

+ ε}, (13b)

where R and ε are positive scalars and ε is (much) smaller than
R. In combination with the jumps induced by these jump sets we
consider the flow induced by the standard Laplacian (4). This defi-
nition returns us the opinion dynamicsmodel studied in Blondel et
al. (2010), modified by the addition of a hysteresis slack regulated
by the parameter ε.

The convergence properties of these dynamics are summarized
in the following statement, dealing with global attractivity of A,
namely the property that all complete solutions converge to A.

Theorem 1. Set A in (11) is globally attractive for dynamics (9)–(10)
with Laplacian (4) or (5) and jump sets (13). Moreover, all solutions
perform at most a finite number of jumps and converge to a point
(y∗, a∗) ∈ A such that y∗

i = y∗

j if a∗

ij = 1 and |y∗

i − y∗

j |
2

≥ R2
− ε if

a∗

ij = 0.

This result proves convergence to an opinion profile where
any two individuals agree if they communicate with each other.
Consequently, opinions asymptotically cluster at a certain number
of stable values, which depend in a complex way on the initial
conditions. Such a clustering is a typical outcome of opinion mod-
els with bounded confidence. In order to prove this result, we
proceed in two main steps. First, we establish that solutions are
well behaved in a suitable sense, and then perform a Lyapunov
convergence analysis. The proposition given below ensures that
these solutions arewell behaved in terms of providing an evolution
that is persistent in the ordinary time direction t , namely, solutions
will be defined for arbitrarily large ordinary times. Such properties
are important for hybridmodels where solutionsmay prematurely
terminate due to the impossibility to flow or jump. This situation
does not occur in our model for any initial condition starting in X,
as established below.
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Proposition 2. Dynamics (9)–(10) with Laplacian (4) or (5) and
jump set (13) is such that

(i) solutions are bounded andmaximal solutions are complete; and
(ii) solutions enjoy a semiglobal average dwell time property: more

precisely, for each compact set K of initial conditions, there exist
Nd ∈ Z>0 and Td ∈ R>0 such that any pair of jump times tk,
tk+Nd of any solution starting in K satisfy tk+Nd − tk ≥ Td.

The Lyapunov analysis will be based on the following function

V1(y, a) :=
1
2
y⊤y, (14)

which enjoys the useful properties established in the next lemma
(whose proof is immediate).

Lemma 3. Consider function V1 in (14) and dynamics (9)–(10) with
Laplacian (4) or (5) and jump set (13). The following hold:

⟨∇V1(x), f (x)⟩ = −y⊤L(a)y ≤ 0, ∀x ∈ C, (15)
V1(g) − V1(x) = 0 ∀x ∈ D, ∀g ∈ G(x) (16)

and inequality (15) is strict outside set A.

The relevance of the properties in Lemma 3 is that function V1
can never grow along the solutions, indeed the first Eq. (15) char-
acterizes its derivative along the continuousmotion, while Eq. (16)
characterizes its behavior across links activation/deactivation.
Function V1 will be useful to establish convergence properties of
solutions but cannot be used to establish stability.

Remark 1 (Instability of A). Even though Theorem 1 establishes
global convergence to set A, we must observe that such a conver-
gence is not uniform. Indeed, the set A, although attractive, is not
strongly forward invariant1 and therefore is unstable. Instability
is evident if one takes an initial condition (y, a) ∈ A such that
aij = 0 and (yi − yj)2 = R2

− ε for some (i, j). From this point
there is a solution that never jumps and remains constant (in A)
for all (t, ȷ) ∈ R≥0 × {0}. There are however infinitely many other
solutions that coincide with this one for an arbitrarily long time
T and then jump to aij(T , 1) = 1, which is outside A because
aij(T , 1)(yi(T , 1) − yj(T , 1))2 = R2

− ε, thereby proving insta-
bility. Note that these solutions approach A asymptotically after
having jumped, because of the global convergence established in
Theorem1. Nevertheless, this convergence is non-uniformbecause
time T can be arbitrarily large.

3.2. Proofs

For the proof of Proposition 2 we exploit below the fact that
the dynamics satisfies the hybrid basic assumptions of Goebel et
al. (2012, Ass. 6.5), which, among other things, has useful ramifica-
tions in terms of sequential compactness of solutions. These basic
assumptions hold because map f in (10) is a continuous function
(therefore it is trivially locally bounded, convex and outer semi-
continuous), the flow and jump sets C and D are closed subsets of
the state-space because Don

hk and Doff
hk in (13) are closed, and map G

in (9) has a graph corresponding to the union of the (closed) graphs
of functions ghk.

Proof of Proposition 2. Proof of item (i). Boundedness is guar-
anteed because the largest (respectively, lowest) component
in y is monotonically non-increasing (non-decreasing) during
flows. Completeness follows from applying (Goebel et al., 2012,

1 Strong forward invariance ofAmeans that all solutions starting inA remain in
A for all times.

Prop. 6.10). In particular, we first note that the viability condition
(VC) reported inGoebel et al. (2012, page 124) applies becauseC∪D
covers the whole space and the boundary of C belongs to set D, so
that anypoint inC\Dbelongs to the interior ofC , where the tangent
cone is the whole space (so that the intersection in Goebel et al.
(2012, Prop. 6.10, condition (VC)) is certainly non-empty). Since
(VC) holds, then all solutions satisfy either condition (a), (b) or (c)
of Goebel et al. (2012, Prop. 6.10). Condition (c) never happens
because G(D) ⊂ C ∪ D. Condition (b) never happens because
solutions remain bounded. The only possibility is then condition
(a), establishing completeness of maximal solutions. From now on,
when referring to solutions, we shall in general intend maximal
solutions.

Proof of item (ii). We will show that the boundedness of solu-
tions and finiteness of ε imply that the same edge cannot switch
too often. Indeed, assume that ahk = 0 and a+

hk = 1 at a certain
time (thk0 , ȷ

hk
0 ). Then, at that time (yh(thk0 , ȷ

hk
0 )−yk(thk0 , ȷ

hk
0 ))2 = R2

−ε.
Furthermore, in order to switch back to zero, it must be at a later
time (thk1 , ȷ

hk
1 ) true that (yh(thk1 , ȷ

hk
1 ) − yk(thk1 , ȷ

hk
1 ))2 = R2

+ ε =

(yh(thk0 , ȷ
hk
0 ) − yk(thk0 , ȷ

hk
0 ))2 + 2ε. Since solutions are bounded, then

the flow is such that, when using (4), we have that

|ẏi| ≤

⏐⏐⏐ ∑
j∈I\{i}

aij(yj − yi)
⏐⏐⏐ ≤ max

j∈I
|yi − yj|max

j∈I
dj

is bounded by a constant K > 0 that depends on the initial
condition only (namely on the size of set K), while when using (5)
a parallel straightforward bound can be derived. Hence, also using
the fact that y is constant across jumps, thk1 − thk0 ≥ Td := ε/(2K 2).
Since the number of edges in E+ are Nd :=

n(n−1)
2 , then the thesis

follows from suitably concatenating the bounds above. ⋄

The proof of Theorem 1 involves twomain steps. First, we apply
an Invariance Principle to conclude that solutions converge to the
setA. Later, an ad hoc argument is used to verify that solutions stop
switching after a certain time: this fact then implies the desired
convergence.

Proof of Theorem 1. We apply (Goebel et al., 2012 Corollary
8.7(b)) with the Lyapunov function V1. First, observe that since
solutions are bounded and complete, they are also precompact.
By Lemma 3, the growth of V1 is bounded by the nonnegative
functions uc(y, a) := −y⊤L(a)y and ud = 0, respectively in C and
in D. By Proposition 2, jumps are well-spaced and we can thus
apply (Goebel et al., 2012 Corollary 8.7(b)) and conclude that for
each solution there exists a constant r such that the solution con-
verges to the largest weakly invariant subset of V−1

1 (r) ∩ u−1(0) ⊂

u−1(0) = A (indeed, the set u−1(0) is defined as the set where
uc(y, a) := −y⊤L(a)y is equal to zero, and this clearly coincides
with A), which proves global attractivity.

Let us nowprove the second part of the theorem. Let us consider
a solution (y, a) with components y and a, defined on a domain
E := dom y = dom a. If we denote the infinity-norm distance of
the continuous component y from the attractor by

|(y, a)|∞,A := inf{|y − z|∞ for some (z, a) ∈ A},

then the convergence toA established above entails that selecting
δ :=

1
2

√
R2 − ε, there exists T > 0 such that for all (t, ȷ) ∈ E with

t + ȷ > T , |(y(t, ȷ), a(t, ȷ))|∞,A < δ. We claim that the solution can-
not jump for all such (t, ȷ) in its domain. If, by contradiction, edge
ahk is added, then immediately before the jump one would need to
have |yh−yk| ≥

√
R2 − ε, which implies that immediately after the

jump (when a+

hk = 1) it would be |(y+, a+)|∞,A ≥
√
R2 − ε > δ,

leading to a contradiction. Similarly, if an edge ahk is removed, this
would mean that at the jump (and then immediately before the
jump), one would have |yh − yk| ≥

√
R2 + ε and ahk = 1, which

implies |(y, a)|∞,A ≥
√
R2 + ε > δ, leading to a contradiction
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again. Hence, solutions stop jumping after a finite (hybrid) time.
From item (ii) of Proposition 2, only a finite number of jumps
may occur. After this finite time, standard arguments (along the
lines of Ceragioli and Frasca (2012, Theorem 4), for instance) show
that the pure flow dynamics, which evolves according to a fixed
graph, asymptotically converges to a point that exhibits consensus
between every pair of agents that are connected. Instead, two
agents i, j that are disconnected (aij = 0) must be at least R2

− ε

apart (namely, |yi−yj| ≥ R2
−ε), for otherwise the dynamicswould

force them to jump to aij = 1. ⋄

4. Adaptive thresholds

4.1. Proposed model and its properties

The definition of jump set (13) is based on a fixed threshold
R. In this section, we want to modify this definition and replace
the fixed threshold with adaptive thresholds that depend on the
relative distances between the nodes. To this goal, we propose the
following definition.

Don
hk := {ahk = 0} ∩

{(
1 +

η2

dhdk

)
(yh − yk)2 ≤ −ε

+

∑
ℓ̸=k,h

(
d+

k ahℓ
dhdℓ

(yh − yℓ)2 +
d+

h akℓ
dkdℓ

(yk − yℓ)2
)
,

where d+

h = dh + 1, d+

k = dk + 1
}

(17a)

Doff
hk := {ahk = 1} ∩

{(
1 −

η2

dhdk

)
(yh − yk)2 ≥ ε

+

∑
ℓ̸=k,h

(
dkahℓ
d+

h dℓ
(yh − yℓ)2 +

dhakℓ
d+

k dℓ
(yk − yℓ)2

)
,

where d+

h = dh − 1, d+

k = dk − 1
}
. (17b)

The rationale for this apparently involved definition is the follow-
ing. In both sets the quantities d+

k and d+

h represent the degrees
that one would see if jump (h, k) were to take place. Then, a
new connection between h and k is established when the distance
|yh − yk| is small compared to a weighted average of the distances
between h (or k) and their current neighbors. On the contrary, a
connection is dropped when the two individuals are too far apart,
compared with their distance to their other neighbors. Note that
the forms (17) require agents h and k to be aware of the degrees of
their neighbors. Comparing sets (17) with sets (13) of the classical
HK model, one clearly sees that the homogeneous (of degree 2)
terms on the second line of each definition essentially replace the
fixed threshold R appearing in (13) by an alternative formulation
that does not depend on scaling. On the other hand, due to the
absence of the tuning knob given by R in (13), we reinsert here
the design parameter η ≥ 0 that influences the connectivity:
larger values of η inhibit both the creating and the breaking of
the edges, in a weighted fashion that accounts for the degrees of
the nodes. Due to this fact, the average degree of the nodes at
the steady state is typically not far from the value of η (see the
trends reported in Fig. 3). The (small) positive parameter ε has the
same role as in (13). We observe that, should ε be set to zero, the
dynamicswould be invariant to translation and scaling of the initial
condition: more precisely, scaling by a non-zero factor K merely
multiplies the Laplacian (3) by K . Since instead ε is positive but
small, we may say that adaptive jumps (17) render the dynamics
approximately scaling invariant. Choosing ε = 0 would make the
dynamics scaling invariant but would lead to Zeno behavior.

Let us now consider the dynamics that combines the jumps
induced by jump map (9), jump sets (17) with the flow dynamics
(10) induced by the normalized Laplacian (5), and provide the
following convergence result.

Theorem 4. All solutions to (9)–(10) with Laplacian (5) and jump
sets (17) perform a finite number of jumps and then converge to a
constant state (y∗, a∗) such that y∗

i = y∗

j if a∗

ij = 1.

Similarly to the previous section, we first establish that solu-
tions are well behaved and then perform our stability analysis. To
these goals, consider the Lyapunov-like function

V2(y, a) :=
1
2
y⊤L(a)y = −

1
4

∑
(i,j)∈E

ℓij(yi − yj)2 (18)

=
1
4

∑
(i,j)∈E

aij
didj

(yi − yj)2.

Given our definition of Laplacian, function V2 is the counterpart of
the classical disagreement function

∑
i,jaij(yi − yj)2, also known as

Dirichlet form (Fagnani & Frasca, 2017, Prop. 1.9) and Levin, Peres,
andWilmer (2009, Lemma 13.11). Observe that the quadratic form
V2 is always nonnegative. Moreover, using the second line of the
expression in (18) and the strict positivity of di in (1), it is apparent
that the set where V2 is equal to zero coincides with the set A
defined in (11), namely, {(y, a) : V2(y, a) = 0} = A. In particular,
following up to the discussion of the properties of setA at the end
of Section 2, V2 is strictly positive as long as any two interacting
agents have different opinions. The next lemma establishes useful
properties of function V2.

Lemma 5. Consider function V2 in (18) and dynamics (9)–(10)
with Laplacian (5) and jump set (17). There exist positive scalars
c1, c2, cF , cJ such that the following hold:

c1|x|2A ≤ V2(x) ≤ c2|x|2A, ∀x ∈ C ∪ D, (19)
⟨∇V2(x), f (x)⟩ ≤ −cFV2(x), ∀x ∈ C, (20)
V2(g) − V2(x) ≤ −cJε, ∀x ∈ D, ∀g ∈ G(x). (21)

Relation (21) entails that any switching will reduce the
Lyapunov function by a constant amount. The combination of (20)
and (21) together with (uniform) positive definiteness of V2 imply
that V2 is a strict Lyapunov function for A. This also implies the
existence of a classKL bound for the solutions, whichmay be used
to establish bounds on the speed of convergence. Such a bound
can be obtained by first integrating and summing (20) and (21) to
obtain V (x(t, ȷ)) ≤ V (x(0, 0)) along any solution x, and then using
(19), (21) and the previous bound to get, for any x(0, 0) ̸∈ A,

V2(x(t, ȷ + 1)) ≤ V (x(t, ȷ)) − cJε
|x(0, 0)|A
|x(0, 0)|A

≤ V (x(t, ȷ)) −
cJε

|x(0, 0)|A

V (x(0, 0))
c2

(22)

≤

(
1 −

cJε
c2|x(0, 0)|A

)
V (x(t, ȷ)),

which clearly shows that solutions can never jump if |x(0, 0)|A ≤
cJ ε
c2
, otherwise V2 would become negative. Using (20) and (22) we

may then integrate and sum V along solutions to get V (x(t, ȷ)) ≤

ecF t
(
1 − min

{
1, cJ ε

c2|x(0,0)|A

})ȷ
V (x(0, 0)), and then from (19)weob-

tain the following KLL bound (Cai, Teel, & Goebel, 2007):

|x(t, ȷ)|A ≤ β(|x(0, 0)|A, t, ȷ) (23)

:=

√
c2
c1

e−
cF
2 t
(
1 − min

{
1,

cJε
c2|x(0, 0)|A

}) ȷ
2

|x(0, 0)|A.

A class KL bound β̄ satisfying |x(t, ȷ)|A ≤ β̄(|x(0, 0)|A, t + ȷ) can
also be obtained using β̄(r, s) := supt+ȷ=sβ(r, t, ȷ). Bound (23)
depends on c1, c2, cF and cJ and these quantities unfortunately
depend on global quantities related to the (time-varying) connec-
tivity graph, which are hardly known explicitly. With the help of
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Lemma 5, we can establish the following result on the long-time
behavior of solutions.

Proposition 6. For system (9)–(10)with Laplacian (5) and jump sets
(17), the following hold:

(i) all maximal solutions are complete;
(ii) allmaximal solutions performa finite number of jumps (possibly

none) and then flow forever.

Note that a consequence of item (ii) is thatmatrix L(a) converges
in finite time to a constant value, representing an asymptotic
clustering of the set of agents.

Wemay then state the following result that is a straightforward
consequence of Goebel et al. (2012, Thm 3.18) and Lemma 5.

Theorem 7. The closed set A in (11) is uniformly globally asymp-
totically stable for dynamics (9)–(10) with Laplacian (5) and jump
sets (17).

Note that Theorem 7 not only establishes attractivity of A,
which is required for proving Theorem 4, but also establishes its
stability. That appears to be an interesting property pertaining the
proposed model. This contrasts the lack of stability of A when the
jump set is (13), as discussed in Section 3 (see Remark 1).

4.2. Proofs

Similar to the discussion at the beginning of Section 3.2, we
exploit below the fact that the dynamics satisfies the hybrid basic
assumptions of Goebel et al. (2012, Ass. 6.5). This fact once again
follows from the properties of sets Don

hk and Doff
hk in (17), which are

closed subsets of the state space.

Proof of Proposition 6. Proof of item (i). First note that basic
existence of solutions applies to system (9), (10) due to the state-
ment of Goebel et al. (2012, Prop. 6.10). In particular, we first
note that the viability condition (VC) reported in Goebel et al.
(2012, page 124) applies because C ∪ D covers the whole space
and the boundary of C belongs to set D, so that any point in C \ D
belongs to the interior of C , where the tangent cone is the whole
space (so that the intersection in Goebel et al. (2012, Prop. 6.10,
condition (VC)) is certainly non-empty). Since (VC) holds, then all
solutions satisfy either condition (a), (b) or (c) of Goebel et al. (2012,
Prop. 6.10). Condition (c) never happens because G(D) ⊂ C ∪ D.
Condition (b) never happens because solutions remain bounded:
indeed, the largest (smallest) component of y is non-increasing
(non-decreasing) during dynamics (3). The only possibility is then
condition (a), establishing completeness of maximal solutions.

Proof of item (ii). This item trivially follows from Lemma 5 and
the fact that there is a constant decrease of function V2 across each
jump. Since V2 never increases along solutions and is a positive
function, then the initial value of V2 (clearly dependent on the
initial condition) imposes a hard bound on the maximum number
of jumps that the issuing solutions can perform. ⋄

Proof of Lemma 5. Consider function V2 defined in (18) and
perform the eigenvalue decomposition of the normalized Laplacian
L(a) = UT (a)∆(a)U(a), where U(a) is an orthogonal matrix and
the positive semidefinite matrix ∆(a) has an upper left diagonal
positive definite matrix and the rest of it is zero. Due to the specific
pattern of matrix ∆(a) and the shape of set A in (11), one obtains
(this can be proven, e.g., following the proof technique in Dal Col,
Tarbouriech, Zaccarian, and Kieffer (2015, Lemma 1)) that for each
possible selection of a ∈ {0, 1}

n(n−1)
2 there exist positive scalars

c̄1(a) and c̄2(a) such that

c̄1(a)|x|2A ≤ yTUT (a)∆(a)U(a)y ≤ c̄2(a)|x|2A,

where |x|A = |(y, a)|A = inf(z,a)∈A|y− z| denotes the distance of x
from A as introduced in Definition 1. Since the set {0, 1}

n(n−1)
2 has

a finite number of elements, we obtain (19) with

c1 := min
ā∈{0,1}

n(n−1)
2

c̄1(ā) and c2 := max
ā∈{0,1}

n(n−1)
2

c̄2(ā),

which are positive because they arise from a minimum/maximum
of positive functions over a finite set.

Let us now prove inequality (20). To this end, consider again
the eigenvalue decomposition L(a) = U(a)T∆(a)U(a) and denote
by δi(a) ≥ 0, i = 1, . . . , n the non-negative diagonal entries of
∆(a). Consider the following candidate selection of cF in (20):

cF := min
a∈{0,1}

n(n−1)
2

min
{i:δi(a)>0}

δi(a), (24)

which is clearly positive because it is the minimum over a finite
set of positive numbers, and satisfies2 ∆2(a) = diag{δ2i (a)} ≥

cF diag{δi(a)} (which is trivially true where δi(a) = 0 and follows
from (24) where δi(a) > 0). For this choice of cF we have the
following useful property (where we used U(a)UT (a) = I):

L(a)2 =UT (a)∆2(a)U(a) (25)

≥UT (a)cF∆(a)U(a) = cF L(a).

Using relation (25), we may now prove (20) by exploiting the fact
that a remains constant along flow and Eq. (10), to get

⟨∇V2(x), f (x)⟩ = −yT L(a)L(a)y ≤ −cFV2(x). (26)

Let us now prove the jump inequality (21) and, to this end, we
consider the alternative expression for V2 in (18) and the fact that
across jump dynamics (9), only one of the functions ghk(y, a) is
evaluated, thereby corresponding to y+

= y (no change) of y and
a+

ij = aij for all (i, j) ∈ E+
\ {(h, k)}. Then only two cases need to

be addressed: the case where ahk = 0 and (y, a) ∈ Don
hk (called case

‘‘on’’ below) and the case where ahk = 1 and (y, a) ∈ Doff
hk (called

case ‘‘off’’ below). We address those two cases separately.

Case ‘‘on’’. By definition (17a), since (y, a) ∈ Don
hk , we have that

ahk = akh = 0, a+

hk = a+

kh = 1, d+

h = dh + 1, and d+

k = dk + 1, while
all other state variables and scalars di, i ̸∈ {h, k} remain unchanged.
Then, using the last expression in (18), we get

4V2(g) − 4V2(x) =

=

∑
(i,j)∈E

a+

ij

d+

i d
+

j
(yi − yj)2 −

∑
(i,j)∈E

aij
didj

(yi − yj)2

=

∑
(i,j)∈E

(
a+

ij

d+

i d
+

j
−

aij
didj

)
(yi − yj)2

= 2
( =1

a+

hk

d+

h d
+

k
−

=0
ahk
dhdk

)
(yh − yk)2

+ 2
∑
ℓ̸=k,h

(
aℓh
d+

h dℓ
−

aℓh
dhdℓ

)
(yh − yℓ)2

+ 2
∑
ℓ̸=h,k

(
aℓk
d+

k dℓ
−

aℓk
dkdℓ

)
(yk − yℓ)2

=
2

d+

h d
+

k
(yh − yk)2 + 2

∑
ℓ̸=k,h

(
dh − (dh + 1)
(dh + 1)dh

)
aℓh
dℓ

(yh − yℓ)2

2 By writing A ≤ B when A and B are symmetric matrices we mean that B − A is
positive semidefinite.
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+ 2
∑
ℓ̸=h,k

(
dk − (dk + 1)
(dk + 1)dk

)
aℓk
dℓ

(yk − yℓ)2

=
2

d+

h d
+

k

(
(yh − yk)2 −

d+

k

dh

∑
ℓ̸=k,h

aℓh
dℓ

(yh − yℓ)2

−
d+

h

dk

∑
ℓ̸=h,k

aℓk
dℓ

(yk − yℓ)2
)

≤ −
2

d+

h d
+

k

(
ε +

η2

dhdk
(yh − yk)2

)
≤ −4cJε,

where in the next to last line we used the inequality in (17a) and
in the last line we used the selection cJ := (2n2)−1, together with
di ≤ n for all i. The above inequality clearly proves (21) for case
‘‘on’’.

Case ‘‘off’’. By definition (17b), since (y, a) ∈ Doff
hk , we have that

ahk = akh = 1, a+

hk = a+

kh = 0, d+

h = dh − 1, and d+

k = dk − 1, while
all other state variables and scalars di, i ̸∈ {h, k} remain unchanged.
Then, using the last expression in (18), we get similar derivations
to the previous case:

4V2(g) − 4V2(x) =

∑
(i,j)∈E

(
a+

ij

d+

i d
+

j
−

aij
didj

)
(yi − yj)2

= 2
( =0

a+

hk

d+

h d
+

k
−

=1
ahk
dhdk

)
(yh − yk)2

+ 2
∑
ℓ̸=k,h

(
aℓh
d+

h dℓ
−

aℓh
dhdℓ

)
(yh − yℓ)2

+ 2
∑
ℓ̸=h,k

(
aℓk
d+

k dℓ
−

aℓk
dkdℓ

)
(yk − yℓ)2

= −
2

dhdk
(yh − yk)2 + 2

∑
ℓ̸=k,h

(
dh − (dh − 1)
(dh − 1)dh

)
aℓh
dℓ

(yh − yℓ)2

+ 2
∑
ℓ̸=h,k

(
dk − (dk − 1)
(dk − 1)dk

)
aℓk
dℓ

(yk − yℓ)2

= −
2

dhdk

(
(yh − yk)2 −

d+

k

dh

∑
ℓ̸=k,h

aℓh
dℓ

(yh − yℓ)2

−
d+

h

dk

∑
ℓ̸=h,k

aℓk
dℓ

(yk − yℓ)2
)

≤ −
2

dhdk

(
ε +

η2

dhdk
(yh − yk)2

)
≤ −4cJε,

where in the next to last line we used the inequality in (17b) and
in the last line we used the selection cJ := (2n2)−1. The above
inequality clearly proves (21) for case ‘‘off’’ and completes the
proof. ⋄

We are now ready to prove Theorem 4 using these results.

Proof of Theorem 4. The fact that all solutions perform a finite
number of jumps and then flow forever has been established in
Proposition 6. As a consequence, substate a (which only changes
across jumps) converges in finite time to a value a∗. Moreover,
Theorem 7 establishes UGAS, which involves uniform convergence
to the set A. It remains to show that each solution actually con-
verges to a point (y∗, a∗) ∈ A. After convergence to a∗, the flow
reads ẏ = −L(a∗)y. If two nodes h, k are connected in the graph
associated to L(a∗), that is, if they belong to the same ‘‘cluster’’,
then |yh − yk| converges to zero. Equivalently, we may say that
every yh and the average of its cluster converge to each other. At the

same time, the flow preserves the average of ywithin each cluster,
implying that y converges asymptotically to a constant value y∗, as
to be proven. ⋄

Remark 2. The symmetry aij = aji brings the opportunity to
exploit the results byHendrickx and Tsitsiklis (2013) for Laplacian-
based consensus-seeking systems that satisfy an assumption of
symmetry (or, more generally, of cut-balance) in the interactions.
Nevertheless, here we have preferred to prove convergence di-
rectly from an explicit Lyapunov argument. This choice has several
reasons. Firstly, before being able to exploit cut-balance, one needs
to verify by other means the basic properties of the solutions such
as existence and completeness. Secondly, we prefer to provide a
more self-contained and thusmore transparent analysis,which has
the advantage of guaranteeing additional natural properties of the
system, for instance on the stability of the equilibria.

4.3. Simulations

We have used the Matlab/Simulink Hybrid Equations Toolbox
by Sanfelice, Copp, and Nanez (2013) to simulate dynamics (9)–
(10) with adaptive jump sets (17) in order to illustrate our main
results and provide some empirical observations about the role
of the parameters. The definition of our system naturally involves
as parameters the connectivity parameter η and the hysteresis
parameter ε. Furthermore, each solution depends on the associated
initial conditions. In the simulations that we present here, the
initial conditions are randomly generated in the following way:
the components of y are independent uniform random variables
in the interval [0, 1] and the initial topology is an Erdős–Rényi
random graph where each pair of nodes is connected by an edge
with probability p.

Simulations corroborate our convergence result, showing that
opinions separate into distinct clusters that asymptotically con-
verge to consensus. The number and location of the clusters de-
pend on the parameters and on the initial condition in a complex
way. The initial topology plays the important role of ‘‘seeding’’ the
interactions: if the initial topology is empty (p = 0), then the
topology stays empty and the opinions y do not evolve. Besides
this extreme case, lower values of p induce more fragmented limit
opinions, whereas if the initial topology is well connected (p is
large), then the evolution typically leads to a smaller number of
clusters. Fig. 1 gives an example of the complex relation between
initial and final conditions. The initial topology has four connected
components, namely one ‘‘giant component’’ and three isolated
nodes. During the evolution, the large connected component splits
into different clusters. Note that isolated nearby nodes may fail to
get connected and that the final set of edges is not a subset of the
initial one.

The parameter ε determines a hysteresis zone around the
(adaptive) radius: consequently, a larger valuemakes the topology
evolution more conservative and increases the relevance of the
initial conditions. However, in our perspective ε essentially consti-
tutes a technical regularization term: for this reason we have set it
to a very small value (0.01 or 0.001) inmost of our trials. This choice
is consistent with the spirit of having a dynamics that is invariant
to scaling: indeed, in the simulations that we present here, η is
chosen to be strictly positive. The invariance property is confirmed
by simulations: as expected from the scaling-invariance pointed
out just before Theorem 4, when the initial conditions have been
multiplied by factors 10, 100 and 1000, the responses experienced
with these scaled initial conditions are indistinguishable from the
ones reported in Fig. 1. Only when η = 0, then ε has a more
prominent role of design parameter that controls the sensitivity
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Fig. 1. Simulated evolution of the state y (left) and initial/final topologies (right) with n = 25, η = 3, ε = 0.01, and p = 0.1. For the sake of visualization, nodes are sorted
from bottom to top in the left plot and clockwise in the right plot: this choice makes clusters apparent in the final topology.

of the link activation and deactivation mechanisms. A more ex-
tended discussion on this special case is given in our preliminary
paper (Frasca, Tarbouriech, & Zaccarian, 2016).

The most important parameter for the qualitative properties of
the limit configuration is η: if η is small, say smaller than or close to
2, clusterization is very limited, whereas larger values of η produce
more intense clusterization (that is, fewer and larger cluster). Some
examples are given in Fig. 2.More precisely, the parameter η seems
to influence the degree of the nodes in the final graph: in our
simulations, the average degree grows approximately linearly in
η. This relation is shown in Fig. 3 and may lead to interesting use
of the proposed techniques for automatic clusterization of data,
where the scale invariance of our model may turn out to be useful

Fig. 2. Simulated evolutions of the state y with n = 25 and ε = 0.001, starting
from a randomly generated initial condition with 3 connected components. The
parameters η are chosen in {1, 3, 6} and the resulting dynamics respectively lead
to 11, 7 and 2 connected components in the final graph.

Fig. 3. Five examples of the growth of the average node degree as a function of η,
with n = 20 and ε = 0.001. For each curve, the initial conditions are kept the same
across all values of η.

whenever the scaling of the data is difficult to be determined a
priori.

5. Conclusion

This paper has looked at Laplacian-based opinion dynam-
ics with opinion-dependent connectivity from the perspective
of hybrid systems. We have first reformulated the classical
Hegselmann–Krause model and then defined a novel scale-
invariant model. The latter model allows for an intuitive Lyapunov
analysis and enjoys strong stability properties that are not avail-
able for the former one.While the specific form of interactions that
we have defined might not be of immediate relevance in social
sciences, we believe that describing opinion dynamics by hybrid
systems opens wide and potentially fruitful perspectives. Firstly, it
permits to undergo precise analyses of stability and convergence
of the dynamics. Secondly, it has the potential to model a variety
of interaction phenomena, possibly featuring history-dependent
interaction patterns that involve delays, hysteresis, decision vari-
ables, and asymmetric interactions. Future studies will involve
developing theorems on properties of models with empirical evi-
dence thatmay emerge from intuitive definitions of jump/flow sets
along the lines of the results reported here.
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