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Abstract

In this paper, the effect on collective opinions of filtering algorithms managed by social network platforms is modeled and investigated. A
stochastic multi-agent model for opinion dynamics is proposed, that accounts for a centralized tuning of the strength of interaction between
individuals. The evolution of each individual opinion is described by a Markov chain, whose transition rates are affected by the opinions
of the neighbors through influence parameters. The properties of this model are studied in a general setting as well as in interesting special
cases. A general result is that the overall model of the social network behaves like a high-dimensional Markov chain, which is viable to
Monte Carlo simulation. Under the assumption of identical agents and unbiased influence, it is shown that the influence intensity affects
the variance, but not the expectation, of the number of individuals sharing a certain opinion. Moreover, a detailed analysis is carried out
for the so-called Peer Assembly, which describes the evolution of binary opinions in a completely connected graph of identical agents. It
is shown that the Peer Assembly can be lumped into a birth-death chain that can be given a complete analytical characterization. Both
analytical results and simulation experiments are used to highlight the emergence of particular collective behaviours, e.g. consensus and
herding, depending on the centralized tuning of the influence parameters.
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1 Introduction

The pervasive spread of digital social networks in everyday’s
life of billions of people has marked a dramatic change both
in the news propagation and opinions formation. Compared
to traditional media (press, TV and radio) operating through
broadcast communication, for the first time in history every-
one can reach a global audience by means of horizontal dif-
fusion processes. In spite of their apparent spontaneous and
democratic nature, these processes are actually governed by
algorithms that filter the potential information presented to
each individual users. A notable example is given by Face-
book, where the News Feed of each user features only a
fraction of the contents posted by her/his contacts. An undis-
closed machine learning algorithm ranks the posts account-
ing for a huge number of factors, including user affinity, user
habits and post recentness, see e.g. [23]. By tuning the al-
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gorithm parameters, the social network company exerts de
facto a content-specific control of one-to-one interactions.

A notable experiment, known as Emotional contagion, was
performed by Facebook itself in 2012 [24]. A massive subset
of unaware users were exposed, during a week, to a change
of emotional content in their News Feed and their emotions
were then compared to those of a control group. Citing the
authors of [24]: “When positive expressions were reduced,
people produced fewer positive posts and more negative
posts; when negative expressions were reduced, the opposite
pattern occurred”. This experiment demonstrated that selec-
tively biasing the intensity of certain interactions can affect
the emotions of Facebook users. A similar manipulation ef-
fect can be conjectured for opinion diffusion across the so-
cial network, just by increasing or decreasing the probabil-
ity that posts in favor of or against a certain opinion will be
displayed.

An example of intervention in a political context occurred
during the 2010 US Congressional elections. A subset of
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some 60 million users were encouraged to vote with a mes-
sage at the top of their News Feed providing indications
to local polling places. Moreover, a counter of how many
Facebook users had already reported voting was displayed
along with profile pictures of friends that had already clicked
the I voted button, [7]. The results suggested that the social
message brought 340,000 additional votes, mostly by social
contagion.

In a recent document released by Facebook [31], the com-
pany raised serious concerns about the threat that malicious
government or non-state actors may exploit the unprece-
dented opportunity of global reach to distort political senti-
ment, e.g. by diffusing fake news or massive disinformation.
The development of algorithms curbing the spread of false
news in the users’ News Feeds is described as one of the
main counteractions. On the other hand, the existence of a
centralized control of interactions between individuals is a
source of worry about the fairness of the confrontation be-
tween conflicting opinions. The invasiveness of Facebook’s
curatorial function on users’ information diets has been high-
lighted by the so-called Argentina experiment, whose results
have been recently published and discussed by the World
Wide Web Foundation 1 . In particular, the algorithms were
shown to give much different exposure to different stories,
making some of them practically invisible to users. These
ethical issues emerged in full evidence during the recent Sen-
ate hearing of Facebook’s CEO Mark Zuckerberg reporting
on data privacy and disinformation on his social network 2 .

In view of all this, there is plenty of motivation for devel-
oping mathematical models of opinion dynamics in social
networks subject to a centralized tuning of the interactions.
In recent years, a number of dynamical models for opinion
evolution in social networks, based on multi-agent systems,
have been proposed. In this framework, each user is repre-
sented as an agent and the social connection is modeled by
a graph. A first classification is between real-valued opin-
ions, typically normalized in the interval [0,1], and discrete
opinions, described by logical variables taking values in a
discrete set. Within the first category, the works [16], [18],
[1] are worth mentioning. In most of these works, following
the original DeGroot [13] and Friedkin-Johnsen [15] mod-
els, the opinion dynamics of each agent is governed by or-
dinary differential equations influenced by the weighted av-
erage of neighbors’ opinions. Different types of agents can
be considered (e.g. stubborn or influenceable) and the emer-
gence of collective behaviors is investigated. Recent lines of
research concern asynchronous interaction [27], the exten-
sion to multi-variate opinions [25] and the possibility for a
subset of agents to drive the overall network to agree on any
desired opinion [5]. The interested reader can refer to the
recent tutorial [26] for a fairly complete overview of these
classical methods.

1 “The Invisible Curation of Content: Facebook’s News Feed and
our Information Diets”, April 2018.
2 “Transcript of Mark Zuckerbergs Senate hearing”, April 10
2018.

In the class of discrete opinion models, Markov chains, see
e.g. [10] are often adopted to describe the behavior of multi-
ple agents, so that the time evolution of opinions is stochastic
in nature. In this class of models, two important contribu-
tions are those in [3] and [2], both defined in a discrete-time
framework. Although the Markov chain model of individual
opinion dynamics is very appealing in view of its flexibility,
the model of the overall social network may soon become
analytically untractable as the number of agents grows. In
the references above this problem has been overcome by as-
suming specific interaction mechanisms such that the com-
plete model can be lumped into a lower dimensional one,
amenable to an analytical treatment. For instance, in [3] the
interaction occurs only between agents sharing the same
opinion, whereas the influence model of [2] assumes at each
discrete-time step each agent is affected just by a single in-
fluencer randomly drawn among its neighbors. An issue so
far not addressed is the presence of a centralized tuning of in-
teractions, which is of particular interest in the management
of social platforms. Another interesting class of stochastic
Markovian models are those used in the social learning liter-
ature to describe the behaviour of economic agents, includ-
ing speculative bubbles, herding and consensus, see e.g. [8],
[21], [14]. A distinctive feature of this stream of research
is the assumption on the existence of a true “state of the
world” that the agents try to learn through observations and
communication. Accordingly, there exist filtering algorithms
operated at individual level. These aspects are not dealt with
in the present paper, where instead filtering occurs at a cen-
tralized level through selective modulation parameters.

Herein, a new continuous-time model is proposed that de-
scribes the stochastic evolution of opinion dynamics within
a network of Markov agents whose reciprocal influences
are modulated in a centralized way. The influence mecha-
nism is essentially borrowed from the multi-agent Marko-
vian networks studied in [12] and [6]. In this paper we as-
sume that the opinion of each agent is modeled by a finite-
state continuous-time Markov chain with transition rates de-
pendent on the opinion of the neighboring agents. To be
precise, we assume a linear emulative influence mechanism
where the transition rates towards a certain opinion linearly
depend on the fraction of neighbors sharing that particu-
lar opinion. Notably, we provide an exact analysis of the
stochastic model, rather than a mean field approximation,
like that in [6] where the transition rates were assumed to be
influenced by the probability of neighbors’ opinions. Sim-
ilar mean-field approximations have also been used in the
context of SIS (Susceptible-Infected-Susceptible) epidemic
models, see e.g. [29]. As a further difference with respect
to our work, the model of [29] deals with two-state Markov
chains where only the transition rate to the ill state is af-
fected by neighbors. Our model covers a much wider range
of scenarios, the number of states being arbitrary and all
transition rates influenceable by interaction.

In order to describe a controlled social network, tunable in-
fluence parameters are introduced. Each influence parame-
ter can enhance or curb the spread of a specific opinion.
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The use of identical influence parameters accelerates opin-
ion dynamics in an unbiased way. Conversely, a bias can be
induced by the adoption of unbalanced parameters, up to the
limit case of unilateral promotion of a single opinion. The
model is believed to be simple yet flexible enough to ac-
count for a variety of possible situations, regarding both the
model of the single agent and the centralized manipulation
of opinions diffusion.

The purpose of this paper is twofold: first of all, the new gen-
eral framework is proposed and its basic properties are es-
tablished. In particular, it is shown that the overall social net-
work is a high dimensional Markov chain (hereafter called
Master Markov model). Second, some analytical properties
of the model are investigated under particular assumptions.
For identical agents and unbiased influence, we prove that,
independently of the network topology, the probability distri-
bution of the opinion of any agent converges towards a com-
mon consensus distribution, which is notably not affected
by the value of the influence parameter. In the special case
of identical agents, binary opinions and complete network
topology (dubbed Peer Assembly in the sequel), the Mas-
ter Markov model can be lumped into a birth-death Markov
chain, thus dramatically simplifying the analysis. In partic-
ular, under the additional assumption of unbiased influence,
explicit expressions for expectation and variance of the frac-
tion of agents in one opinion are provided. The emergence
of some interesting collective behaviors is also discussed.
For instance, an increase of the influence strength parame-
ter, though ineffective with respect to the average fraction
of agents in a certain opinion, does increase the volatility of
this fraction. Moreover, very large values of the influence
parameters eventually trigger a herding phenomenon, giving
rise to massive opinion waves.

The paper is organized as follows. After having introduced
some notation (Section II), the model of interacting Marko-
vian agents is presented in Section III. Section IV is devoted
to show that the model is amenable to marginalization when
the agents share the same model and the influence is unbi-
ased. Section V presents a detailed analysis of the so-called
Peer Assembly model in both cases of unbiased and biased
influence. Finally, the case of general network topologies
is illustrated in Section VI by means of some simulation
examples. The paper ends with some concluding remarks
(Section VII).

2 Notation

A square matrix A = [ai j] is said to be Metzler if its off-
diagonal entries are nonnegative, namely ai j ≥ 0 for every
i 6= j.

An n×n Metzler matrix A, with n > 1, is reducible if there
exists a permutation matrix P such that

P′AP =

[

A11 A12

0 A22

]

,

where A11 is a k×k matrix, 1 ≤ k ≤ n−1. A Metzler matrix
that is not reducible is called irreducible, see Chapter 2 of
[4].

The vector 1n is the n-dimensional column vector with all
entries equal to 1. The suffix n will be omitted when the
vector size is clear from the context. The symbol⊗ stands for
the Kronecker product. Given a discrete set N , the symbol
|N | denotes its cardinality.

Let σ(A) denote the spectrum of a Metzler matrix A. It is
known that max{Re(λ ) : λ ∈ σ(A)} is always an eigenvalue
of A, called the Perron-Frobenius eigenvalue and denoted
by λF , and that the corresponding eigenspace, when A is ir-
reducible, is generated by a positive eigenvector, vF , with
1′vF = 1, called Frobenius eigenvector [4], Chapter 2. The
set of probability vectors, i.e. vectors with nonnegative en-
tries that sum up to 1 will be indicated as P .

The symbols E[v] and Var[v] denote the expectation and
variance of the random variable v. Given a random event E ,
IE represents the indicator function of the event, namely
IE = 1 if E occurs, IE = 0 otherwise. Pr{E } will be used
to denote the probability of the event E and Pr{E |F} is the
conditional probability of E given the event F .

3 A model of interacting Markovian agents

The interaction in a social network can be described through
an undirected graph G = (N ,E ), with a finite set of nodes
N = {1,2, . . . ,N} representing the individuals (agents) and
edges E ⊆ N ×N associated to reciprocal influences. An
edge connecting node r to node s means that the two agents
influence each other. The set of neighbors of node r will be

denoted by N [r] = {s ∈ N : (r,s) ∈ E }.

3.1 Stand-alone model

At a given time, each individual in the network has an
opinion belonging to a finite set M = {1,2, . . . ,M}. Let

σ [r](t) ∈ M , r ∈ N , t ∈ R, be the state of the r-th individ-
ual at time t. It is assumed that, when isolated, the change in
the opinion of the individual r evolves according to a finite-
state continuous-time time-homogeneousMarkov chain with

transition rate matrix Q[r] ∈R
M×M . The entries of matrix Q[r]

are denoted as q
[r]
i j and represent the transition rates between

opinions. To be more precise, when i 6= j, it results that

Pr{σ [r](t + dt) = j|σ [r](t) = i}= q
[r]
i j dt + o(dt) (1)

with qi j ≥ 0. The diagonal entries of Q[r] are defined as

q
[r]
ii =−

M

∑
j=1, j 6=i

q
[r]
i j

3



so that Q[r] is a Metzler matrix satisfying Q[r]1 = 0.

As is well known, a Markov chain can be described by the
probability of being in a certain state i at time t. Precisely,

define π
[r]
i (t) = Pr{σ [r](t) = i} and let

π [r](t) = [ π
[r]
1 (t) . . . π

[r]
M (t) ]′

be the probability distribution vector at time t. It is well
known that, given an initial probability distribution

π [r](0) = [ π
[r]
01 . . . π

[r]
0M

]′

where π
[r]
0i := Pr{σ [r](0) = i}, the time evolution of the prob-

ability distribution π [r](t) from the zero initial time instant
obeys the differential equation

π̇ [r](t) = Q[r]′π [r](t) (2)

If the transition rate matrix is irreducible (see, e.g. Chapter

3 of [10]), then σ [r](·) is ergodic. Therefore, for any initial

π [r](0)∈P , π [r](t) converges, as t →∞, to a strictly positive

stationary probability vector π̄ [r] ∈ P which is the unique

unit-sum Frobenius left eigenvector of Q[r] associated with
the Perron-Frobenius null eigenvalue, see Chapter 2 of [4].

In the sequel, it is assumed that the matrix Q[r] is irreducible,
∀r ∈ N . Roughly speaking, this assumption implies that,
on any finite time interval, each agent can move from any
opinon to any other with nonzero probability.

3.2 Interaction model

We suppose that the interaction within the social network
affects the individual behavior making it different from the
stand-alone model of Section 3.1. Hence, at time t the tran-
sition rate matrix Q[r] is replaced by

Q̃[r]
(

{σ [k](t),k ∈ N
[r]}
)

(3)

i.e. the transition rates are influenced by the neighbors’
states. Therefore, the single agent, conditional on the states
of its neighbors, behaves as an inhomogeneous Markov
chain. This model will be dubbed as the atomic interaction
model.

In the following, we will focus on the special case where

Q̃[r] = Q[r]+A[r](t) (4)

where, for i 6= j,

a
[r]
i j (t) =

λ j

|N [r]|
∑

k∈N [r]

Iσ [k](t)= j
(5)

Iσ [k](t)= j
=

{

1, σ [k](t) = j

0, otherwise
(6)

and the elements a
[r]
ii (t) are such that A[r](t)1 = 0. In this

case, the model describes an emulative behavior, namely the
instantaneous transition rates to opinion j undergo an in-
crease which is proportional to the number of neighbors that
share opinion j. In the sequel, such an interaction model
will be dubbed as linear emulative. The parameter λ j re-
flects the influence strength intensity, that might be different
for different opinions. The term unbiased influence will be
used to indicate the case λi = λ , ∀i ∈M . In other cases, the
parameter λ j may represent a tuning knob used by the net-
work manager to strengthen (or weaken) the circulation of
opinion j within the network, thus exerting a biased influ-
ence. For instance, in Facebook this tuning may result from
interventions deployed to curb the spread of fake news.

Remark 1 Note that the atomic interaction model is char-
acterized by transition rate matrices for each agent which
depend on the state of the neighbors. As such, these are
random matrices and the overall network is described by a
state-dependent Markov process. This modeling approach is
usually referred to as Stochastic Automata Network, see e.g
[28] and related literature. In general, the rigorous proba-
bilistic analysis of both the transient and steady-state prop-
erties of the model is rather difficult. However, if one is in-
terested in an approximate evaluation of the opinion dynam-
ics, the model is amenable for Monte Carlo distributed sim-
ulation, with time-discretization. Precisely, for each agent,
the transition probabilities in the interval [t, t+dt] are com-
puted given the state at time t of its neighbors. At time t+dt
the transition probabilities are updated and the simulation is
iterated. In alternative to discretization, one can resort to a
Gillespie-type simulation algorithm, see Chapter 4 of [19].

3.3 Master Markov model

Based on the atomic interaction model previously described,
a model for the entire network of agents is now introduced.
First, consider the case of a network with N non-interacting
agents. Each agent r is described by a Markov chain with

transition rate matrix Q[r] and all chains are statistically in-
dependent. Let

Σ(t) =
[

σ [1](t) σ [2](t) · · · σ [N](t)
]′
∈ M

N

be the state of the network and π(t)=⊗N
r=1π [r](t) denote the

probability distribution of Σ(t). The entries of vector π(t)
represent the probability at time t of a given configuration
of the opinions in the network. Simple computation shows
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that, in view of independence, π(t) satisfies the differential
equation

π̇(t) = Q′
0π(t)

with

Q0 =
N

∑
r=1

IMr−1 ⊗Q[r]⊗ IMN−r

Hence, the network itself is a homogeneous Markov chain
whose state is the Cartesian product of the agents’ states and
has dimension MN . Since the agents’ states evolve as inde-
pendent ergodic processes, the joint process Σ(·) is ergodic
as well. This in turn implies that Q0 is an irreducible matrix,
see e.g. [10], Chapter 3.

Now suppose that the network is formed by interacting
agents, with a mutual influence mechanism described as in
Section 3.2 by means of eq. (3).

Proposition 1 Let Σ(t)∈M N be the state at time t of a net-
work composed by N Markovian agents interacting accord-
ing to eq. (3). Then the process Σ(t) is a time-homogeneous
Markov chain.

Indeed, given the knowledge of Σ(t) at a certain t, the prob-
ability distribution of Σ(t + dt) conditional on the past up
to time t does coincide with the probability distribution of
Σ(t + dt) given Σ(t), so that the Markov property holds.
Moreover, the transition rates do not depend on time.

When the interaction model is linear emulative, see eqs.
(4)-(6), the dynamics of the probability distribution π(t) is
described by

π̇(t) = (Q0 +A0)
′π(t) (7)

with a suitable definition of the matrix A0, where A01 = 0.
This matrix takes into account both the network topology
and the fact that simultaneous opinion jumps of two or
more agents are not allowed (the probability of simultane-
ous jumps in dt is of order o(dt)). Moreover, if Q0 is irre-
ducible, so is the matrix Q0 +A0. This implies asymptotic
stationarity and ergodicity of the Markovian process Σ(t).
In particular, for any π(0),

lim
t→∞

π(t) = π̄

where π̄ is the unique steady state probability distribution.

Example 1 As an example, consider a network composed by
three agents (N = 3) jumping between two opinions (M = 2).

Moreover, the interaction graph is complete, i.e. N [r] =
N /r, ∀r, and the interaction is linear emulative with pa-
rameters λ1, λ2. In this case the matrix A0 is given by















0 0 0 0 0 0 0 0
λ1 −(λ1+λ2) 0 λ2/2 0 λ2/2 0 0

λ1 0 −(λ1+λ2) λ2/2 0 0 λ2/2 0

0 λ1/2 λ1/2 −(λ1+λ2) 0 0 0 λ2

λ1 0 0 0 −(λ1+λ2) λ2/2 λ2/2 0

0 λ1/2 0 0 λ1/2 −(λ1+λ2) 0 λ2

0 0 λ1/2 0 λ1/2 0 −(λ1+λ2) λ2

0 0 0 0 0 0 0 0















Note that the first and the last rows are zero because they cor-
respond to transitions starting from either Σ(t) = [1 1 1]′ or
Σ(t)= [2 2 2]′, none of which has an emulative incentive. The
off-diagonal nonzero entries of the second row corresponds
to transitions starting from Σ(t) = [1 1 2]′. The emulative in-
crement of the transition probability to Σ(t+dt) = [1 1 1]′ is
λ1dt since the third agent emulates the opinion σ = 1 of the
first two. The emulative increment of the transition proba-
bility to Σ(t+dt) = [1 2 2]′ is λ2dt/2 since the second agent
changes its opinion to σ = 2 in accordance with the third
agent only. All other off-diagonal entries of matrix A0 can
be explained with similar arguments.

The state of the master Markov model is of dimension MN ,
which soon renders its use prohibitive for the evaluation of
the probability distribution as the number N of nodes in-
creases. Nevertheless, in view of ergodicity, stochastic sim-
ulation is a viable way to assess the stationary properties of
the process. In fact, by the ergodic law of large numbers,
any statistics of interest, e.g. the steady state probability dis-
tribution π̄ or the steady state marginal distribution of agent

r, π̄ [r], can be estimated from a sufficiently long sequence
of simulated samples. Details on a possible simulation al-
gorithm are given in [19].

By observing that π̄ if the left Frobenius eigenvector of the
large dimension matrix Q0 +A0, one may devise alternative
distributed algorithms that exploit the sparsity of the matrix,
similarly to what has been done for PageRank computation
in [20].

4 Marginalization of the linear emulative model

In the special case of the linear emulative model with iden-

tical agents (Q[r] = Q) and unbiased influence, i.e. with
λi = λ ,∀i∈M , it is possible to work out a NM-dimensional
dynamic linear system describing the propagation of the

marginal distributions π
[r]
j (t) of all agents. Remarkably, ir-

respective of the network topology, the agents reach asymp-
totically a probabilistic consensus π̃ , coincident with the
stand-alone steady state distribution According to our no-

tation, denote with π
[r]
j (t) the probability that agent r has

opinion j at time t.

Theorem 2 For the unbiased influence linear emulative
model with an arbitrary network topology, it holds that

π
[r]
j (t), t ≥ 0, is the solution of the following linear differen-

tial equation:

π̇
[r]
j (t) =

M

∑
i=1

qi jπ
[r]
i (t)+λ









∑
k∈N [r]

π
[k]
j (t)

|N [r]|
−π

[r]
j (t)









(8)

Proof: For simplicity, we use the abridged notation I r
j (t)
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for the indicator function Iσ [r](t)= j
in (6). Moreover define

∆i(r, t) =
λi

|N [r]|
∑

k∈N [r]

I
k

i (t)

Then, considering the agent r and recalling ∑i6= j q ji =−q j j,
we have that, ∀ j ∈ M ,

E[I r
j (t + dt)|Σ(t)] = I

r
j (t)

[

1− dt ∑
i6= j

(q ji +∆i(r, t))

]

+
(

1−I
r
j (t)
)

dt

(

∑
i6= j

qi jI
r

i (t)+∆ j(r, t)

)

=I
r
j (t)−I

r
j (t)dt

(

−q j j +∑
i6= j

qi jI
r

i (t)+∑
i

∆i(r, t)

)

+dt

(

∑
i6= j

qi jI
r

i (t)+∆ j(r, t)

)

By observing that ∑i I
k

i (t) = 1,∀k, I r
j (t)I

r
i (t) = 0,∀r, for

i 6= j and λi = λ ,∀i, we obtain that

E[I r
j (t + dt)|Σ(t)] = I

r
j (t)−λI

r
j (t)dt

+dt

(

∑
i

qi jI
r

i (t)+
λ

|N [r]|
∑

k∈N [r]

I
k
j (t)

)

By taking the expectation and noticing that E[I r
j (t)] =

π
[r]
j (t), the differential equation (8) directly follows. ✷

Note that, if the initial distribution probabilities of all agents’

opinions are equal (π
[r]
j (0) does not depend on r for all j),

then the term between brackets in (8) is null for all times and
(8) boils down to the stand-alone time-evolution described
by (2). The next theorem shows that the steady-state proba-
bilities of the stand-alone case are recovered asymptotically
even when the initial probability distributions of the agents’
opinions are different.

Theorem 3 For the unbiased influence linear emulative
model with an arbitrary network topology, the probability

distributions of the agents’ opinions π [r](t) reach asymptot-
ically a steady-state consensus represented by the steady-
state stand-alone distribution π̃ , independently of the initial
probability distribution.

Proof: Since the matrix Q0 +A0 is irreducible, the master
Markov model is ergodic. Then, the solution π(t) of (7)
asymptotically tends to a unique steady state probability

distribution π̄ . In turn, the marginal distribution π [r](t) of

each agent converges to a unique steady-state value π̃ [r] for

any initial condition. This means that π̃
[r]
j , j ∈ M , r ∈ N

specify an equilibrium point of the system of differential

equations (8). On the other hand, it is easy to verify that
the steady-state stand-alone distribution π̃ is an equilibrium
point of (8). This concludes the proof. ✷

Remark 4 The marginalized model (8) can be interpreted
as an extension to continuous-time and generalization of
the so-called Influence model presented in [2]. As a main
difference, we assume here that each agent is simultaneously
influenced by all its neighbors, whereas in [2] the interaction
mechanism is based on the selection of a single randomly
chosen influencing agent at each time step. Thanks to this last
assumption, the marginalization of the underlying master
model is always guaranteed. However, in that model it seems
impossible to treat the case of biased influence.

5 A special case: the Peer Assembly

The Master Markov Model of the previous section, although
of high dimension (MN), can be studied with standard tools
of finite-state Markov chains. However the analysis of the
effects of the interaction parameters λ j may soon become
intractable as the state dimension grows, unless the anal-
ysis is restricted to special cases. In this section, we con-
sider a social network composed by N identical individuals
with binary opinions (M = 2), interconnected by a complete
graph (each individual communicates with all others) and
sharing the same stand-alone irreducible 2×2 transition rate
matrix Q = [qi j] (the attitude of agents to opinion changes
when isolated is identical for all individuals). In view of ir-
reducibility, qi j 6= 0, i 6= j. It is also assumed that the initial
opinions of each agent are independent and identically dis-
tributed random variables. Moreover linear emulative inter-
action is assumed, as described by eqs. (4)-(6), namely the
increment of the transition rate of each agent towards a cer-
tain opinion is linearly influenced by the number of neigh-
bors that share that opinion. This model will be referred to
as the Peer Assembly (PA) model.

Due the intrinsic indistinguishability of the agents, this
model can be lumped into a birth-death Markov process,
see Chapter 6 of [22] for a discussion on lumpability of
Markov models and Section 7.4 of [11] for classical birth-
death Markov processes. The state of this process is the
number n1(t) ∈ {0,1, . . . ,N} of individuals having opinion

1 at time t, namely n1(t) = ∑N
r=1 Iσ [r](t)=1

. Note that, since

the opinion is binary, the number n2(t) of individuals hav-
ing opinion 2 at time t is n2(t) = N − n1(t). Obviously, the
cardinality of the state space of the PA model is N +1, dra-
matically reducing the original cardinality 2N of the Master
Markov model. The PA model is well suited to describe
the time evolution of the opinion share, a notable example
being the case of election polls.

Definition 1 A birth-death chain is a continuous-time
Markov chain with tridiagonal transition rate matrix
Ψ = [ψi, j]. The birth rates are the upper diagonal entries
µ j = ψ j, j+1, j ≥ 1, while the death rates are the lower
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diagonal entries ν j = ψ j+2, j+1, j ≥ 0. The (nonpositive)
diagonal entries are such that the entries of each row sum
to zero.

In our case, µ jdt = Pr{n1(t + dt) = j|n1(t) = j− 1} is the
probability that the number of the individuals with opinion
1 increases from j − 1 to j in the interval dt. Likewise,
ν jdt = Pr{n1(t + dt) = j|n1(t) = j + 1} is the probability
that the number of the individuals with opinion 1 decreases
from j+ 1 to j in the interval dt.

Proposition 2 For the PA model, the number n1(t) of indi-
viduals sharing opinion 1 at time t evolves as a finite-state
irreducible birth-death chain with

µ j =

(

q21 +λ1
j− 1

N − 1

)

(N − j+ 1), 1 ≤ j ≤ N (9)

ν j =

(

q12 +λ2
N − ( j+ 1)

N − 1

)

( j+ 1), 0 ≤ j ≤ N − 1 (10)

Proof: Assume that, at time t, n1(t) = j − 1. In order to
have n1(t + dt) = j it is necessary that one out of the N −
j+ 1 agents having opinion 2 switches to opinion 1 in the
time interval dt. For each of those agents, the probability
of switching is (q21 + λ1( j − 1)/(N − 1))dt. This proves
formula (9). The formula (9) for ν j follows from similar
arguments. ✷

Let p(t)= [p0(t) p1(t) · · · pN(t)]
′ denote the probability dis-

tribution of n1(t), i.e. pi(t) = Pr{n1(t) = i}. It is well known
that

ṗ(t) = Ψ′p(t) (11)

It is interesting to obtain the steady state distribution p̄,
which is reached asymptotically in time, thanks to ergodic-
ity (implied by irreducibility of the Markov chain). To this
purpose, it is known, see e.g. [11], that

p̄i = p̄0

(

µ1µ2 · · ·µi

ν0ν1 · · ·νi−1

)

, i = 1,2, . . .N (12)

p̄0 =

(

1+
N

∑
i=1

µ1µ2 · · ·µi

ν0ν1 · · ·νi−1

)−1

(13)

From the knowledge of the steady state distribution p̄i, i =
0, . . . ,N, it is possible to compute all relevant moments. For
instance, the stationary expected value and variance of n1/N,
i.e. the fraction of individuals with opinion 1, are respec-
tively given by

E[n1/N] =

(

N

∑
i=0

ip̄i

)

/N (14)

Var[n1/N] =
1

N2

(

E[n2
1]−E[n1]

2
)

(15)

where E[n2
1] = ∑N

i=0 i2 p̄i. These indices are particularly in-
teresting for opinion polls. More precisely, assume that an

opinion poll aimed at estimating n1/N is carried out at a
given time t interviewing a random subset of the N agents.
The confidence interval of this poll should account for two
sources of variability, one related to finite sampling and the
other depending on Var[n1/N].

Example 2 Consider the toy example in which the popula-
tion consists of N = 3 agents. By plugging (9),(10),(12),(13)
into (14), a direct computation shows that

E[n1/N] =
q21 (φ(q,λ1)+ q12(λ2 −λ1))

qφ(q,λ1)+ q12

(

3q(λ2 −λ1)+ (λ 2
2 −λ 2

1 )
)

where

q = q12 + q21, φ(q,λ1) = 2q2 + 3qλ1+λ 2
1

When the agents are isolated (λ1 = λ2 = 0) it turns out
that E[n1/N] = q21/q, as expected since it corresponds of
the probability that a single agent has opinion 1. When the
agents interact and the influence strength intensity is unbi-
ased (λ1 = λ2 = λ ) the expected value coincides with that of
the isolated case, in accordance with Theorem 3. This means
that the expected percentage of opinions is not affected by
the interaction. In the next subsection we will investigate on
the probability distribution of the opinions for an arbitrary
size of the peer assembly.

5.1 Unbiased influence

Consider the model of the Peer Assembly with equal influ-
ence intensity, i.e. λ1 = λ2 = λ , that will be hereafter re-
ferred to as Unbiased Influence Peer Assembly (UIPA).

When the individuals are not interacting (λ = 0), the network
consists of N identical independent Markovian agents. The
probability distribution of each agent obeys the differential
equation (2) with

Q[r] = Q =

[

−q12 q12

q21 −q21

]

,∀r

The steady state probability distribution common to all
agents is therefore

π̃ =

[

π̃1

π̃2

]

=

[

q21

q12

]

1

q12 + q21

Since this distribution is Bernoulli-like, its variance is easily
computed as σ̃2 = π̃1(1− π̃1). The steady-state mean and
variance of n1/N are therefore E[n1/N] = π̃1 and, in view

of independence, Var[n1/N] = σ̃2/N.

Let us now extend the analysis to describe also interacting
agents (λ ≥ 0) both in the transient and in steady-state.
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Transient analysis

For what concerns the time evolution of the probability dis-
tribution of each agent, the following result directly follows
from application of Theorem 2 and the assumption that the
agents are indistinguishable at the initial time.

Proposition 3 For the UIPA model, it holds that, for each
agent r,

π̇
[r]
1 (t) =−(λ + q12 + q21)π

[r]
1 (t)+

λ

N − 1
∑
k 6=r

π
[k]
1 (t)+ q21

=−(q12 + q21)π̃1(t)+ q21

As already observed after Theorem 2, this marginal probabil-
ity evolution coincides with the stand-alone one, irrespective
of the value of λ . In turn, we have that E[n1(t)] = Nπ̃1(t).

Now, we consider the time evolution of the joint distribu-
tion of the opinions of a generic couple of agents, say r and
s. Note that, in view of the PA assumption, all couples are
equivalent. It will be shown that, differently from the univari-
ate marginal probability of a single agent, this marginal joint
distribution is affected by the value of the influence intensity

λ . For short, denote by π
[rs]
i j (t) = E[Iσ [r](t)=i

Iσ [s](t)= j
] the

probability that agent r has opinion i and agent s has opin-
ion j at time t. The following result, whose proof is given
in the Appendix, holds.

Theorem 5 Consider the UIPA model. Then for each couple
of agents r, s, it results that

[

π̇
[rs]
11 (t)

π̇
[rs]
22 (t)

]

=−

(

2

[

q12 0

0 q21

]

+

[

q21 +
λ

N−1

q12 +
λ

N−1

]

[

1 1

]

)[

π
[rs]
11 (t)

π
[rs]
22 (t)

]

+

[

q21 +
λ

N−1

q12 +
λ

N−1

]

(16)

Moreover

π
[rs]
12 (t) = π

[rs]
21 (t) =

1

2

(

1−π
[rs]
11 (t)−π

[rs]
22 (t)

)

(17)

This result is remarkable because, as in the case of the in-
dividual marginal distribution, also the bivariate distribution
of two agents’ opinions can be propagated without requir-
ing higher order joint distributions involving three or more
agents.

Steady-state analysis

First recall that, in view of Theorem 3, the steady state
expectation of the frequency of opinion 1 is

E[n1/N] = q21/(q12 + q21) = π̃1 (18)

for any influence intensity λ ≥ 0 and any network size N.
This is interesting as it shows that the expectation of opin-
ion frequencies coincides with that of the non-interacting
case, irrespective of the influence intensities, when unbiased.
However, the value of λ affects the variance, as shown in
the next theorem that addresses the steady state situation.
The proof can be found in the Appendix.

Theorem 6 For the UIPA network of size N, the steady state
variance of the frequency of opinion 1 for given influence
intensity λ ≥ 0 is

Var[n1/N] =
σ̃2

N

(

1+
λ (N − 1)

λ +(q12 + q21)(N − 1)

)

(19)

where

σ̃2 =
q12q21

(q12 + q21)2
(20)

The formula (19) of Theorem 6 reveals that, for a fixed λ ,
the variance of the frequency n1/N tends to zero as the size
N of the network goes to ∞. Hence, the ergodic distribution
of n1/N becomes deterministic for large networks. This is
a consequence of the completeness of the interaction graph
and the fact that the total influence on each agent linearly
depends on the fraction of neighbors’ opinions, and this
fraction converges to its expectation in view of the ergodic
law of large numbers.

As for the case of a network with fixed size N, the variance
(19) is an increasing function of the influence intensity λ .
It varies monotonically from the variance σ̃2/N of the non-

interacting case to a value coinciding with the variance σ̃2

of the opinion of a single isolated agent. The asymptotic
value with λ → ∞ reflects a sort of synchronization of the
network producing a herd behaviour, with all agents chang-
ing their opinions unanimously as one. Rather interestingly,
the herding phenomenon was observed in previous studies
on social learning, by using quite different models and as-
sumptions, see e.g. [8], [17].

5.2 Biased influence

When λ1 6= λ2 there is an asymmetry in the influence in-
tensity. If λ1 > λ2, each agent exerts more influence on its
neighbors when its opinion is 1. It is expected that, compared
to the non-interacting network, the distribution is affected
in favor of the more influential opinion, increasing the aver-
age of n1(t). An analytical study of the effect of λ1 and λ2

on the opinion dynamics becomes more difficult since the
marginalization results cannot be applied. Nevertheless, the
transient can be studied from the numerical solution of (11),
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Figure 1. Effect of the unilateral promotion on the steady-state
distribution of n1 for a PA composed of N = 100 agents with
q12 = q21 = 1. The curves correspond to different values of the
intensity parameter λ1, while λ2 is kept equal to zero.
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Figure 2. Effect of the unilateral promotion on the mean and the
variance of n1/N for a PA composed of N = 100 agents with
q12 = q21 = 1 for different values of λ1. The red dashed curves in
the left panel correspond to the 2.5 and 97.5 percentiles.

while the steady-state moments can be computed from the
steady-state distribution specified by (12), (13).

A special important case occurs when one the two inten-
sity parameters is zero, say λ2 = 0. In this unilateral promo-
tion case, the social influence of opinion 1 can be enhanced
through the tuning knob λ1, while agents with opinion 2 do
not interact in the network. It is expected that increasing λ1

pushes the probability distribution of n1 to the right, with a
limit deterministic distribution concentrated in n1 = N, that
corresponds to an unanimous consensus on opinion 1. This is
confirmed by the plots of the steady-state distribution com-
puted for a PA of N = 100 agents with q12 = q21 = 1 and
different values of λ1 from eqs. (12), (13), reported in Figure
1. The mean and variance of n1/N against λ1 are shown in
Figure 2. It can be noticed that the mean rises rapidly with
λ1 and approaches 1 asymptotically, while the profile of the
variance is not monotonic and decays to zero more slowly.

The situation becomes more complex when both the inten-
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Figure 3. Mean and variance of n1/N for a PA of N = 100 agents
with q12 = q21 = 1, as functions of λ2, when λ1 assumes three
fixed values.

sity parameters λ1 and λ2 are different from zero. In partic-
ular, Figure 3 displays the mean and variance of n1/N for
a PA of N = 100 agents with q12 = q21 = 1, as functions of
λ2, when λ1 assumes three fixed values. A remarkable fea-
ture is the peak of the variance when the two intensities are
close to each other.

6 Simulation examples

In this section we present and discuss several simulations
in order to illustrate the previous theoretical results as well
as explore opinion behaviors under assumptions for which
analytical results are not yet available

6.1 Peer Assembly with unbiased influence

In order to demonstrate some properties of the PA, we car-
ried out simulations with N = 100 agents and unbiased in-
fluence with different values of λ , namely λ = 0 (noninter-
acting network), λ = 2 and λ = 10. The entries of the stand-
alone transition rate matrix of each agent are q12 = q21 = 1,
corresponding to steady-state probability π̃1 = π̃2 = 0.5 and
variance σ̃2 = 0.25.

The theoretical steady-state values for E[n1/N] and
Var[n1/N] given in (18) and (19) are reported in Table 1.
Recall that the value of λ only affects the variance. Con-
versely, the mean, both in the transient and in steady-state
is not influenced by the value of λ , see Proposition 3 and
Theorem 6.

λ = 0 λ = 2 λ = 10

E[n1/N] 0.5 0.5 0.5

Var[n1/N] 0.0025 0.0050 0.0144

Table 1
Steady-state mean and variance of an UIPA model with N = 100,
q12 = q21 = 1, and different values of λ .

The simulation were performed using the birth-death chain
starting from three different initial distributions p(0): (i) bi-
nomial, (ii) uniform and (iii) deterministic. The binomial
distribution corresponds to the probability of having k agents
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among N in opinion 1 under the mutual independence as-
sumption. The uniform distribution assumes that the proba-
bility of k agents having opinion 1 is constant for all k. The
deterministic distribution assumes that no agent has opinion
1 with probability 1.

By combining the three initial distributions and the three val-
ues of λ , 9 scenarios were simulated, drawing 5 realizations
of n1(t)/N for each one. The results are displayed in Figure
4, where the realizations are plotted along with the theo-
retical mean and the 2.5 and 97.5 percentiles. In each row,
the initial distribution is the same and the value of λ varies.
While the time profile of the mean is unchanged, the width
of the 95% interval gets larger as the intensity influence in-
creases, leading to increased variability of the sample paths.
For a fixed value of λ each column shows the different tran-
sient behaviour caused by the three initializations. In view of
ergodicity, the steady-state distribution is always the same,
which reflects on the steady-state mean and percentiles.
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Figure 4. Simulations of the UIPA model with N = 100,
q12 = q21 = 1, different values of λ and different initial distribu-
tions. For each scenario 5 realizations are displayed. The red lines
indicate the theoretical time profile of the mean value (solid) and
the 2.5 and 97.5 percentiles (dashed).

A second set of simulations was performed to illustrate the
herd behaviour of the social network when the parameter
λ is large. For an UIPA of N = 20 agents, three scenarios
are depicted in Figure 5, showing the effect of different
values of λ , namely λ = 10,20,200. It is assumed that the
initial distribution p(0) is binomial and coincides with the
steady-state distribution in the non-interacting case. The red
curves represent the theoretical mean and the 2.5 and 97.5
percentiles. A single realization is plotted for each λ . The
three lower panels display the steady-state distribution p̄i of
the number of agents sharing opinion 1.

For the smallest λ (left panel), the steady-state distribution,

though different from the binomial, is still unimodal. As λ
increases this distribution becomes almost uniform (middle
panel) and eventually converges towards a bimodal distri-
bution concentrated in the extreme points (right panel). As
predicted by (19), the steady-state variance is monotonically
increasing with λ . This is also reflected in the increased vari-
ability of the realizations. In particular, the realization with
λ = 200 exhibits a herd behaviour, with significant dwelling
times in the two extreme situations where the agents are
unanimous.
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Figure 5. Simulations of the UIPA model with N = 20,
q12 = q21 = 1, different values of λ and initial binomial distri-
bution. For each scenario a single realization is displayed in the
upper panels. The red lines indicate the theoretical time profile of
the mean value (solid) and the 2.5 and 97.5 percentiles (dashed).
The lower panels show the corresponding steady-state distribu-
tion of the number of agents sharing opinion 1. For λ = 200, the
emergence of the herd behaviour can be observed.

6.2 Peer Assembly with biased influence

We now consider the case of a PA with biased influence. In
particular, we simulated the effect of a gradual stepwise in-
crease of λ2 from 0 to 40 when λ1 is kept constant and equal
to 20, see Figure 6. The increase of λ2 produces a majority
reversal from opinion 1 to opinion 2. Remarkably, this en-
tails an intermediate turbulent phase where the variance is
significantly higher than at start or arrival.

In order to appreciate the dynamic effect of stepwise changes
of both influence intensities, a further simulation experiment
was designed according to the following setup. The total
time interval [0,10] is partitioned in four segments T1 =
[0 1], T2 = [1 4], T3 = [4 7], T4 = [7 10]. As for
the intensities, it was assumed that λ1 = λ2 = 0, for t ∈
T1; λ1 = 20,λ2 = 0, for t ∈ T2; λ1 = λ2 = 20, for t ∈ T3;
λ1 = 16,λ2 = 20, for t ∈ T4. In other words, starting from
a non interacting network during T1, the social network is
first subject to a unilateral promotion in favor of opinion
1 during T2. Then, by switching λ2 to the same value as
λ1, an UIPA configuration is maintained during T3. Finally,
in T4 the influence is biased in favor of opinion 2. Figure
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Figure 6. Simulations of the PA model with N = 100 agents,
q12 = q21 = 1, λ1 = 20 and a stepwise pattern of the intensity
parameter λ2. Three realizations are displayed along with the time
profiles of the mean (red solid) and the 2.5 and 97.5 percentiles
(red dashed).

7 displays the theoretical mean of n1/N (red) along with
the 95% confidence limits (red dashed) and 3 Monte Carlo
realizations. It is worth noting the changes of the mean as
well as the width of the confidence band. In particular, in
T1 and T3 the steady-state mean is the same (since λ1 = λ2

in both intervals) but the variance is much larger when the
intensities are nonzero. It is also remarkable that in T4, a
ratio λ1/λ2 = 0.8 definitely moves the average in favor of
opinion 2.
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Figure 7. Simulations of the PA model with N = 100 agents,
q12 = q21 = 1, and a stepwise pattern of the intensity parameters
λ1 and λ2. Three realizations are displayed along with the time
profiles of the mean (red solid) and the 2.5 and 97.5 percentiles
(red dashed).

6.3 Network with general topology

The previous simulations regarded the special case of bi-
nary opinions and a complete interaction graph. While the
extension to more than two opinions could be worked out
through multi-dimensional birth and death chains, substan-
tial analytical difficulties arise when the topology of the so-

cial network departs from the complete graph. Nevertheless,
one can still resort to the Markov Master model of Section
3.3 and carry out Monte Carlo simulation studies.

For illustrative purposes, we discuss the effect of different
network topologies for a two-opinion model with N = 100
individuals, all having stand-alone transition rate matrix de-
fined by q12 = q21 = 1. As for the influence, both the unbi-
ased and biased cases are considered.

The considered topologies are: (a) non-interacting, (b) com-
plete (Peer Assembly), (c) small-world, (d) star. The small-
world topology is obtained according to the model intro-
duced in [30] letting k = 1 and p = 0.2. In the star topol-
ogy, a central agent is connected to N −1 peripheral agents,
which do not communicate with each other.

The unbiased influence case with λ1 = λ2 = 10 is considered
first. In Figure 8, for each topology we report a single Monte
Carlo simulation of n1/N (left column), and the estimate
of the steady-state distribution of n1/N computed from 10
replications of the Monte Carlo simulation (right column).
Moreover the sample estimates of the steady-state mean and
variance of n1/N are reported in Table 2.

(a) (b) (c) (d)

E[n1/N] 0.4978 0.4943 0.5111 0.5053

Var[n1/N] 0.0025 0.0135 0.0099 0.1322

Table 2
Estimated steady-state mean and variance for different topologies
and unbiased influence.
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Figure 8. Simulations and steady state distributions of n1/N with
N = 100 agents, q12 = q21 = 1, λ1 = λ2 = 10 and different topolo-
gies: (a) noninteracting, (b) complete, (c) smallworld, (d) star.

In accordance with Theorem 3, it appears that the expecta-
tion of n1/N is not affected by the topology: in fact all the
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sample means are close to 0.5. The steady-state variance in-
stead depends on the topology. It is the smallest in the non-
interacting case. Indeed, the distribution of n1 is binomial
and Var[n1]/N2 = σ̃2/N = 0.0025. When the graph is com-
plete the sample variance increases, yielding a value in good
agreement with the theoretical value derived from eq. (19)
for the UIPA model (Var[n1/N] = 0.012). The decreased
connectivity of the smallworld topology explains why the
sample variance of case (c) is slightly smaller. Finally, the
star topology triggers large opinions waves giving rise to a
bimodal distribution of n1/N, that justifies the large value
of the sample variance in case (d).

Figure 9 and Table 3 correspond to the biased case with
λ1 = 1 and λ2 = 0, i.e. unilateral promotion. For the sake of
comparison, the non-interacting case (a) is also displayed in
Figure 9.

From the estimates of the mean, the possible effect of the
topology on the expectation of n1/N is hardly appreciated.
Whether or not this is due to a general topology-free invari-
ance property is an open question that would deserve fur-
ther investigation. On the contrary, the topology affects the
variance. In particular, for the star topology the variance is
larger and the steady-state distribution is flatter.

(b) (c) (d)

E[n1/N] 0.6167 0.6085 0.6152

Var[n1/N] 0.0024 0.0026 0.0060

Table 3
Estimated steady-state mean and variance for different topologies
and biased influence.
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Figure 9. Simulations and steady state distributions of n1/N with
N = 100 agents, q12 = q21 = 1, λ1 = 1,λ2 = 0 and different topolo-
gies: (a) noninteracting, (b) complete, (c) smallworld, (d) star.

7 Discussion and concluding remarks

A major contribution of the present work is the proposal
of a stochastic multi-agent model for opinion dynamics that
explicitly accounts for a centralized tuning of the strength of
interaction between individuals within a social network. The
aim is to gain insight on the effects of filtering algorithms
managed by social network platforms.

The proposed model, consisting of Markovian agents, is very
flexible and can be easily adapted to describe a variety of
situations, including different topologies and the presence of
heterogeneous agents. In this respect, it is important to note
that the overall model preserves the Markov chain structure,
thus being viable for Monte Carlo simulation.

There are special cases that can be studied analytically in or-
der to highlight the emergence of particular behaviours. One
such case is the so-called Peer Assembly that assumes binary
opinions, identical agents, and a complete graph. Thanks to
lumpability into a birth-death chain, we have been able to
obtain closed formulas for the evolution of the opinions dis-
tribution.

A key marginalization result (Theorems 2 and 3) has been
worked out for arbitrary graph topology and number of opin-
ions, provided that the agents are indistinguishable and the
influence is unbiased. Through marginalization, it has been
demonstrated that the influence strength does not affect the
expected number of agents sharing a certain opinion, but
does affect the variance, which is associated with opinion
fluctuations. This might suggest tuning strategies of the in-
fluence parameters in order to artificially freeze or excite the
variability of opinions. For instance, imagine that Facebook
tunes the News Feed algorithm during a political election
campaign so as to decrease the probability that a generic user
is exposed to friends’ posts with political content (whatever
its orientation). This is equivalent to decreasing the value of
the parameter λ in an unbiased context. Our model predicts
no change in the mean number of individuals sharing a cer-
tain opinion, but a decrease of the variance, which prevents
the occurrence of large random deviations from the mean.
Hence, the decreased exposure to political posts would play
in favor of the leading party, whose supremacy would be
more hardly challenged.

Conversely, a biased influence eases the spread of some opin-
ions to the detriment of the others. For instance, algorithmic
curbing of fake news might produce such an effect. Filter-
ing the news according to the authoritativeness of the source
could spoil opinions supported by independent blogs and
nongovernmentalorganizations against those broadcasted by
mainstream media.

A possible interesting research development is the analysis
and design of feedback control policies aimed at driving the
collective opinion to a desired target. Although centralized
control may evoke worrisome scenarios, this kind of inter-
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vention could also be used to break “filter bubbles” [9] in
order to foster diversity of perspectives among the users.

Appendix

Proof of Theorem 5

Proof: Consider a generic pair (r,s) of agents. First of all,
note that (17) immediately follows from the observation that
the two agents are indistinguishable as a consequence of the
assumption on the initial probabilities and the joint proba-
bilities sum up to one.

Now, recall that the symbol Σ(t) stands for the state of the
Master Markov model. Note that all states Σ(t) having k
entries equal to 1, 0 ≤ k ≤ N, share the same probability,
here denoted by ρk(t). By standard combinatorial calculus,

it follows that Pr{n1(t) = k} = ρk(t)
(

N
k

)

. So:

π
[rs]
11 (t + dt) = Pr{σ [r](t + dt) = 1,σ [s](t + dt) = 1}

=
N

∑
k=2

(

1− 2dt

(

q12 +λ
N − k

N − 1

))

ρk(t)

(

N − 2

k− 2

)

+2
N

∑
k=2

dt

(

q21 +λ
k− 1

N − 1

)

ρk−1(t)

(

N − 2

k− 2

)

Hence

π
[rs]
11 (t + dt) =

N

∑
k=2

ρk(t)

(

N − 2

k− 2

)

+2dt
N

∑
k=2

(

q21 +λ
k− 1

N − 1

)

ρk−1(t)

(

N − 2

k− 2

)

−2dt
N

∑
k=2

(

q12 +λ
N − k

N − 1

)

ρk(t)

(

N − 2

k− 2

)

Observing that

N

∑
k=2

ρk(t)

(

N − 2

k− 2

)

= π
[rs]
11 (t)

N

∑
k=2

ρk−1(t)

(

N − 2

k− 2

)

= π
[rs]
12 (t)

we obtain

π
[rs]
11 (t + dt) = π

[rs]
11 (t)+ 2dt

(

−q12π
[rs]
11 (t)+ q21π

[rs]
12 (t)

)

+
2λ dt

N − 1

N

∑
k=2

((k− 1)ρk−1(t)− (N − k)ρk(t))

(

N − 2

k− 2

)

Note that

N

∑
k=2

((k− 1)ρk−1(t)− (N − k)ρk(t))

(

N − 2

k− 2

)

= π
[rs]
12 (t)− (N − 2)π

[rs]
11 (t)

+
N

∑
k=2

(k− 2)(ρk−1(t)+ρk(t))

(

N − 2

k− 2

)

(21)

Now, consider the term

η(t) =
N

∑
k=2

(k− 2)(ρk−1(t)+ρk(t))

(

N − 2

k− 2

)

By observing that

(k+ 1)

(

N − 2

k+ 1

)

= (N − 2)

(

N − 3

k

)

it follows that

η(t) =
N−3

∑
k=0

(k+ 1)(ρk+2(t)+ρk+3(t))

(

N − 2

k+ 1

)

= (N − 2)
N−3

∑
k=0

(ρk+2(t)+ρk+3(t))

(

N − 3

k

)

= (N − 2)
N−3

∑
k=0

ρk+2(t)

(

N − 3

k

)

+(N − 2)
N−2

∑
k=1

ρk+2(t)

(

N − 3

k− 1

)

= (N − 2)(ρ2(t)+ρN(t))

+(N − 2)
N−3

∑
k=1

ρk+2(t)

((

N − 3

k

)

+

(

N − 3

k− 1

))

Noting that

(

N − 3

k

)

+

(

N − 3

k− 1

)

=

(

N − 2

k

)

the previous expression becomes

η(t) = (N − 2)

(

ρ2(t)+ρN(t)+
N−3

∑
k=1

ρk+2(t)

(

N − 2

k

)

)

= (N − 2)
N−2

∑
k=0

ρk+2(t)

(

N − 2

k

)

= (N − 2)
N

∑
k=2

ρk(t)

(

N − 2

k− 2

)

= (N − 2)π
[rs]
11 (t)

Then, recalling (21), (17) and taking the limit for dt tending
to zero, the first row of eq. (16) is demonstrated. As for the
second row, it follows from symmetry by simply exchanging
the indices. ✷
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Proof of Theorem 6

Proof: First of all note that

Var[n1] = E





(

N

∑
r=1

Iσ [r]=1]

)2


− (E[n1])
2

= Nπ̃1 +N(N − 1)π̃11−N2π̃2
1 (22)

where π̃1 is given by (18) and π̃11 is the steady-state limit of
π11(t) satisfying eq. (16) (which exists in view of ergodicity).
From (16) at the equilibrium we obtain that

π̃11 =
[

1 0

]

(D+ bc′)−1b

with

D = 2

[

q12 0

0 q21

]

, b =

[

q21 +
λ

N−1

q12 +
λ

N−1

]

, c =

[

1

1

]

By observing that (D + bc′)−1b = D−1b/(1+ c′D−1b), it
results that

π̃11 =
1

(1+ c′D−1b)

[

1 0

]

D−1b

=
q21 (λ + q21(N − 1))

(q12 + q21)(λ +(q12+ q21)(N − 1))

Now, by replacing π̃1 and π̃11 in (22) and dividing by N2,
the result directly follows. ✷

References

[1] D. Acemoglu, G. Como, F. Fagnani, A. Ozdaglar, “Opinion

fluctuations and disagreement in social networks”, Mathematics of

Operations Research, vol. 38, n. 1, 1-27, 2013.

[2] C. Asavathiratham, S. Roy, B. Lesieutre and G. Verghese, “The

influence model”, IEEE Control Systems Magazine, vol. 21, n. 6,

52-64, 2001.
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