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Abstract

This paper addresses the problem of minimum cost resilient actuation-sensing-communication co-design for

regular descriptor systems while ensuring selective strong structural system’s properties. More specifically, the

problem consists of determining the minimum cost deployment of actuation and sensing technology, as well as

communication between the these, such that decentralized control approaches are viable for an arbitrary realization

of regular descriptor systems satisfying a pre-specified selective structure, i.e., some entries can be zero, nonzero,

or either zero/nonzero. Towards this goal, we rely on strong structural systems theory and extend it to cope with the

selective structure that casts resiliency/robustness properties and uncertainty properties of system’s model. Upon

such framework, we introduce the notion of selective strong structural fixed modes as a characterization of the

feasibility of decentralized control laws. Also, we provide necessary and sufficient conditions for this property

to hold, and show how these conditions can be leveraged to determine the minimum cost resilient placement

of actuation-sensing-communication technology ensuring feasible solutions. In particular, we study the minimum

cost resilient actuation and sensing placement, upon which we construct the solution to our problem. Finally, we

illustrate the applicability the main results of this paper on an electric power grid example.

I. INTRODUCTION

Over the past decade, we have witnessed a steady growth of large-scale systems, and examples include

electric power grid [1], transportation networks [2], biological [3] and social networks [4], and swarms of

multi-agents [5], just to name a few. In fact, it is often necessary to evaluate the control theoretic properties

of such systems, e.g. controllability and observability, which are critical to ensuring the systems’ proper

dynamical evolution [6]. Also, more than often, the large-scale and geographical nature of such systems

entails decentralized data sharing with the actuators. Consequently, the data accessible to each actuator
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must be sufficient to ensure the closed-loop system specifications [7]. The information pattern captures the

information accessibility to actuators and implicitly represents the communication requirements associated

with the decentralized control scheme. It is equally important to note that while dealing with such large-

scale systems, actuation-sensing-communication has to be simultaneously designed to ensure the existence

of decentralized solutions [8]. Also, due to the infrastructure and maintenance costs, it may be desirable to

identify the minimum actuation-sensing-communication required to ensure system specifications. Besides,

as a consequence of the susceptibility of the large-scale systems to component failures, their specifications

often have to address robustness/resilience properties. Therefore, the objective is to ensure that the control

properties hold in the case of actuation-sensing-communication failure, or compromised due to an external

agent, while incurring minimum investment cost.

Furthermore, parametric uncertainties in the system model are inevitable, and even if that is not the

case, assessment of control theoretic properties based on numerical methods is impractical when the

dimension of the system is large [9]. Therefore, in this paper, we aim to characterize the minimum

actuation-sensing-communication for all possible realizations of the linear system plant satisfying a given

structure that captures the interconnections between different assets of the dynamical system. Toward this

goal, we rely on strong structural systems theory [10], which aims to ensure control theoretic properties

for all possible nonzero realizations of a given structure, and we extend this to account for all possible

realizations obeying a given structure that identifies which entries are strictly zero, strictly nonzero, or

possibly zero and nonzero, which we refer to as selective strong structural systems. Notice that it is distinct

from the structural systems properties which only ensure that almost all parameterizations guarantee the

control theoretic properties [11]. Nonetheless, when dealing with interconnected dynamical systems, it may

occur that, in practice, structural properties do not hold, which motivates the need for strong structural

systems theory, whereas the fragility of some interconnections or their small dynamical dependency

prompts the need for a selective strong structural systems approach proposed in this paper. Also, we

intend to use selective strong structural systems in the general context of regular descriptor linear time-

invariant systems, which account for scenarios commonly found across different interconnected systems

with conservation laws, for instance, in an electric power grid [12]. Contrarily to linear time-invariant

systems, there have been proposed a variety of possible definitions for controllability and observability

(see [13]). Therefore, when referring to these concepts, we adopt the definition that is closest to the

one used in linear time-invariant systems, which is commonly associated with the state reachability. For

instance, by controllability we mean R-controllability [14], which is often also referred to as behavoral

controllability [13].

The interplay between structure of the system and its specific parametric descriptions are the scope of



structural [11] and strong structural systems theory [10]. Although a considerable amount of work has

addressed structural systems properties and actuation-sensing-communication co-design (see [15], [16],

[17] and references therein), the same is not true regarding strong structural systems properties. The notion

of strong structural controllability was introduced in [18], and necessary and sufficient conditions for linear

time-invariant systems were provided in [19], [10], as well as for linear time-varying systems in [20];

in particular, the necessary and sufficient conditions for linear time-varying systems can be evaluated

in terms of an auxiliary linear time-invariant system [20]. An interesting and pedagogical example of

the applicability of strong structural systems can be found in [21]. As an alternative to the state space

representation, the strong structural systems theory has also been proposed to study systems properties

in the frequency domain [22]. Whereas the problem of verifying strong structural controllability can be

addressed in linear-time complexity [23], the problem of selecting the minimum number of actuators out

of a possible set of configurations was shown to be in general NP-hard [24], [25]. In [26], a graph-

theoretic characterization of strong structural controllability is provided in the context of leader-follower,

and later extended to account for the study of target controllability, i.e., the controllability of a subset of

state variables [27]. In [28], the authors have introduced new algebraic necessary and sufficient conditions

for strong structural controllability for linear time-invariant systems, and studied the minimum placement

of dedicated actuators, i.e., actuators that manipulate a single state variable. In the present paper, we

extend these results to the case where the sparsest solutions are sought in the context of regular descriptor

systems and selective strong structural systems. Furthermore, we address the minimum cost resilient

actuation-sensing-communication co-design problem, which necessitates the introduction of novel concepts

in strong structural theory, as well as necessary and sufficient conditions to enable the design. Finally,

we notice that the techniques used to address the co-design problem in the context of strong structural

systems are algebraic, and, therefore, quite different from the graph theoretic conditions used in structural

systems theory [29], [15], [16].

The main contributions of this technical note are threefold: (i) we introduce the concept of selective

strong structural fixed modes that ensures the non-existence of fixed modes to any realization of the

system’s descriptor state space representation satisfying a specified structure; (ii) we address the minimum

cost resilient co-design of actuation-sensing-communication that ensures the non-existence of selective

strong structural fixed modes; and in addition, (iii) we address the sparsest actuator (respectively, sensor)

design for descriptor linear time-invariant systems that ensures selective strong structural controllability

(respectively, observability) upon which we build the solution to the co-design problem.

The remainder of the paper is organized as follows: Section II introduces the selective strong structural

notion of decentralized fixed modes for regular linear time-invariant descriptor systems, and, subsequently,



the formal problem statements are presented. Next, Section III begins with the review of concepts in strong

structural system theory and new definitions are provided. Subsequently, based on strong structural theory,

the solutions to the problem statements are presented. Section IV illustrates the application of proposed

solutions on a sixteen dimensional multi-input multi-output model of a 5-bus electric grid. Section V

concludes the paper and further research avenues are discussed.

II. PROBLEM FORMULATION

Consider a dynamical systems modeled, or locally approximated, by a regular descriptor system given

by:

Eẋ (t) = Ax (t) +Bu (t) , (1)

y (t) = Cx (t) , (2)

where the state vector evolution is represented by x (t) ∈ Rn, the input vector u (t) ∈ Rp, and the output

vector y (t) ∈ Rm over time t ∈ R+. In addition, the dynamics by A ∈ Rn×n, the descriptor matrix is denoted

by E ∈ Rn×n such that det(E − λA) /≡ 0 (i.e., det(E − λA) ≠ 0 for almost all λ ∈ C), the input matrix by

B ∈ Rn×p, and the output matrix by C ∈ Rm×n. We refer to the descriptor system in (1)-(2) by the tuple

(E,A,B,C). Additionally, we can think about the system in a closed-loop, where one potential strategy

is to use output feedback under partial information constraints. The availability of the measurements to

each actuator is captured by the notion of information pattern. This can be described by a p ×m binary

matrix K̄ ∈ {0,×}p×m, where an entry K̄i,j = × if the data from sensor j is available to actuator i, and

zero otherwise. In other words, the entry K̄i,j = × denotes the existence of a communication channel from

the j-th sensor to the i-th actuator. Furthermore, one can consider static output feedback, where the input

response is designed as a linear combination of the available measurements from the sensors, i.e.,

u (t) = −Ky (t) , (3)

where K ∈ Rp×m is the feedback gain matrix, whose sparsity is induced by the information pattern, i.e.,

Ki,j = 0 if K̄i,j = 0. The static output feedback can leverage the limited communication and computational

capabilities in large scale dynamical systems [30]. We represent the closed-loop static output feedback

descriptor system (1)-(3), under the information pattern constraint K̄ , by the tuple (E,A,B,C; K̄).

Specifically, the communication design must ensure the existence of feedback gain matrices K ∈ Rp×m,

with the sparsity of information pattern K̄, to change the static output feedback closed-loop modes. The

modes that cannot be changed by such gains are known as fixed modes [31], [32]. Besides, it is well

known that the controllability of the tuple (E,A,B), and the observability of the tuple (E,A,C), are

necessary but not sufficient for existence of a control law based on a static output feedback.



Nonetheless, the efficacy of verifying controllability, observability, or the existence of fixed modes

with respect to the information pattern K̄, is contingent on the numerical accuracy of the parameters in

(E,A,B,C; K̄). Therefore, to deal with such scenarios, we propose to rely on strong structural theory [10].

The strong structural theory enables the investigation of basic control properties based solely on sparsity

pattern of the system plant matrices in (1)-(3). The matrix entries are qualitatively represented as either

nonzero, denoted by ×, or zero. However, in a more general scenario, it may not be known whether

some entries are zero or nonzero. Therefore, a framework capable of accounting for such a scenario

is often desired. Hereafter, we provide such framework which we refer to as selective strong structural

theory. In particular, besides the zero and nonzero entries, we selectively allow some entries to be any real

value, which we denote by ⊗. As a consequence, within this framework, the selective structural matrices

X̄ ∈ {0,×,⊗}a×b define an equivalent class of matrices as

[X̄] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X∈ Ra×b ∶

if X̄ij = 0 thenXij = 0,

if X̄ij = × then Xij ∈ R/ {0} ,
if X̄ij = ⊗ then Xij ∈ R

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

Also, because we consider only regular descriptor systems, we also need to introduce the following

subclass for Ā, Ē ∈ {0,×,⊗}n×n :

([Ē], [Ā])⋆ = {(E,A) ∈ [Ē] × [Ā] ∶ det(A − λE) /≡ 0}.

These equivalent classes are used to represent the descriptor systems in selective strong structural system

theory, i.e., these are represented by the tuple (([Ē] , [Ā])⋆, [B̄] , [C̄] , K̄), which, with some abuse of

notation, we represent as the tuple of selective structural matrices as (Ē, Ā, B̄, C̄ ; K̄).
Now, we introduce some preliminary terminology required to characterize the solutions to the problems

explored in this paper. Let M be a m1 ×m2 matrix, then we refer to m1 and m2 as the height and length

of the matrix, respectively. In addition, we need the following definitions [28].

Definition 1 (Stair matrix): A matrix M ∈ {0,×, ⊗}m1×m2 is said to be a stair matrix if it is of the form

Mm1×m2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
n1

h
×n1

l

0n1

h
×(m2−n1

l
)

S2
n2

h
×n2

l

0n2

1
×(m2−n2

l
)

⋱ ⋱

Sk
nk
h
×nk

l

0nk
h
×(m2−nk

l
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where each ni
h ×n

i
l matrix Si

ni
h
×ni

l

denotes the i-th step (i = 1, . . . , k) such that n
j

l < n
j+1
l (j = 1, . . . , k − 1),

and 0p1×p2 denotes the p1 × p2 zero matrix. In addition, M is in the maximal stair form, if there exist

no permutation matrices PM
r and PM

c such that PM
r MPM

c has more steps and zero matrices with larger

length than those in M . ◇



Notice that the steps in a stair matrix M are ordered from top to bottom by length, i.e., from the smallest

S1
n1

h
×n1

l

to the largest Sk

nk
h
×nk

l

. Now, given a stair matrix, we introduce the notion of step difference.

Definition 2 (Step difference): Given a stair matrix M ∈ {0,×,⊗}m1×m2 with k steps, the i-th step

difference denoted by ∆i can be recursively defined as follows:

(i) ∆1 = S1
n1

h
×n1

l

; and

(ii) ∆i+1 = Si+1
ni+1
h
×ni+1

l

[∶, ni
l
+ 1 ∶ ni+1

l
], for i = 1, . . . , k − 1,

where P [∶, c1 ∶ c2] corresponds to the submatrix of a matrix P comprising all the rows and columns

indexed from c1 to c2. ◇

Simply speaking, from Definition 2, it follows that a step difference ∆i+1 is a result of the ‘difference’

between two adjacent steps Si
ni
h
×ni

l

and Si+1
ni+1
h
×ni+1

l

(i = 1,⋯, k − 1), in the sense that it contains the same

rows of Si+1
ni+1
h
×ni+1

l

but only the columns from ni
l + 1 to ni+1

l , illustrated as follows:

⎡⎢⎢⎢⎢⎢⎣

Si
ni
h
×ni

l

0ni
1
×(m2−ni

l
)

Si+1
ni+1
h
×ni+1

l

∆i+1 0ni+1
1
×(m2−ni+1

l
)

⎤⎥⎥⎥⎥⎥⎦
.

Let Āλ = Ā−λĒ, where Āλ
ij = × if Āij = × and Ēij = 0, Āλ

ij = ⊗ if either Āλ
ij = ⊗ or Ēij ≠ 0, and Āλ

ij = 0

if Āij = 0 and Ēij = 0. In what follows, we will focus on systems that satisfy the following assumption

(see Appendix for further details).

Assumption 1: Each step difference in the stair matrix of Āλ has one column vector such that for all

its parametric choices, the remaining vectors in the step difference admit a parameterization that makes

all vectors proportional to each other. ○

In addition, real world systems often experience unexpected failures of actuators, sensors, communica-

tion links or their combination. Thus, the design of large-scale systems must account for such possible

failures. More specifically, actuation-sensing-communication must be co-designed such that the different

control-theoretic properties hold after occurrence of such adverse events. Despite such considerations, in

real world setups, the deployment of the actuation-sensing-communication infrastructure incurs multitude

expenditures, such as cost of devices, installments, and their maintenance. Consequently, it is often required

to consider the minimum cost actuation-sensing-communication co-design, that guarantees certain degree

of resiliency with respect to actuation-sensing-communication failures. Motivated by the importance of

such problems in practice, together with lack of knowledge of all system’s parameters, we propose to

address the following three different (but related) problems.



▷ Minimum Cost Resilient Actuation Selection Problem

First, we need to introduce the selective strong structural counterpart of controllability, that readily

extends the notion of controllability [14] in strong structural theory as follows.

Definition 3: (Selective Strong Structural Controllability (SSSC)) The tuple (Ē, Ā, B̄) is selective

strong structural controllable if and only if (E,A,B) is controllable for all (E,A) ∈ ([Ē] , [Ā])⋆ and

B ∈ [B̄]. ◇

In addition, different actuators can (potentially) actuate different state variables while incurring different

costs. Subsequently, a heterogenous costs or weights are associated with the actuation of the states, and

can be represented using a weight matrix WB ∈ Rn×p
+ , where the entry WB

ij represents the cost of actuating

the state with index i by the actuator with index j. In other words, the actuation cost depends only on

the state variable actuated and not on the actuator performing the control. Therefore, the first problem we

address in this paper is stated as follows.

P1 Given selective structural matrices Ē, Ā ∈ {0,×, ⊗}n×n, a maximum of k actuator failures, and actuation

cost structure WB ∈ Rn×(k+1)n
+ , determine B̄∗ that solves the following problem

min
B̄∈{0,×}n×(k+1)n

∥B̄∥
WB

(4)

s.t. (Ē, Ā, B̄ (IB)) is SSSC, for all IB ⊂ N , I ′B ⊂ N ,

with IB = N/I ′B, and ∣I ′B ∣ ≤ k,

where ∥B̄∥
WB
= 1T (B̄ ⊙WB)1 where B̄⊙WB is defined as [B̄ ⊙WB]

ij
=WB

ij if B̄ij = × and 0 otherwise.

In addition, 1 represents the ones vector with appropriate dimensions, the structural matrix B̄ (IB) is the

subset of columns corresponding to the actuators with indices in IB, N = {1,2,3, . . . , (k + 1)n} and I ′B
contains the indices of the columns representing actuators that have malfunctioned. ◇

In the minimum cost resilient actuator selection problem, notice that the entries in the selective structural

matrix B̄ are restricted to nonzero × and zero 0, since any real entry ⊗ does not allow for posing of

a well-defined cost objective in the problem. In addition, we consider an n × (k + 1)n structural matrix

B̄ to allow a feasible solution to the problem P1, since the concatenation of selective structural pattern

of (k + 1) identity matrices is granted to achieve feasibility, so that at least the solution to the problem

exists. Further, we notice that B̄∗ may contain zero-columns, and its nonzero columns will be associated

with the effective actuators that are considered in the design procedure.

▷ Minimum Cost Resilient Sensing Selection Problem

Similar to the previous problem, we formalize the minimum cost resilient sensing selection problem,

for which we need the following definition.



Definition 4: (Selective Strong Structural Observability (SSSO)) The tuple (Ē, Ā, C̄) is selective strong

structural observable if and only if (E,A,C) is observable for all (E,A) ∈ ([Ē] , [Ā])⋆ and C ∈ [C̄]. ◇
In addition, we define the sensing cost matrix WC ∈ Rm×n

+ , in which the entry WC
ij represents the cost

of measuring the j-th state variable by the sensor with index i. In other words, the sensing cost depends

only on the state variable measured and not on the sensor performing the measurement. Subsequently, the

second problem we address is posed as follows.

P2 Given selective structural matrices Ē, Ā ∈ {0,×, ⊗}n×n, a maximum of k sensor failures, and sensing

cost structure WC ∈ R(k+1)n×n+ , determine C̄∗ that solves the following problem

min
C̄∈{0,×}(k+1)n×n

∥C̄∥
WC

(5)

s.t. (Ē, Ā, C̄ (IC)) is SSSO, for all IC ⊂ N , I ′C ⊂ N ,

with IC = N/I ′C, and ∣I ′C ∣ ≤ k,

where C̄ (IC) is the subset of rows corresponding to the sensors with indices in IC , and I ′C contains the

indices of the rows representing sensors that have malfunctioned. ◇

▷ Minimum Cost Resilient Actuation-Sensing-Communication Selection Problem

Lastly, we introduce the notion of fixed modes in the context of the selective strong structural systems

theory for regular descriptor systems, which we refer to as selective strong structural fixed modes, which

readily extends the characterization in [32].

Definition 5: (Selective Strong Structural Fixed Modes (SSSFM)) A regular descriptor system with

a given selective structural pattern (Ē, Ā, B̄, C̄ ; K̄) has a SSSFM λ ∈ C (with respect to the information

pattern K̄), if there exists (E,A) ∈ ([Ē] , [Ā])⋆, B ∈ [B̄], C ∈ [C̄] and K satisfies the information pattern

K̄, such that rank (λE −A −BKC) < n. ◇

Additionally, to setup the communication cost that may capture, for instance, the cost of optic fiber to

connect the sensors to the actuators, we define the cost matrix WK ∈ Rp×m
+ , where WK

ij represents the cost

of establishing a communication channel from the j-th sensor to the i-th actuator. Subsequently, the last

problem addressed in this paper is the minimum cost resilient co-design of actuator-sensor-communication

described as follows.

P3 Given selective structural patterns Ē, Ā ∈ {0,×, ⊗}n×n, a maximum of k failures in each of actuators,

sensors and communication, and actuation-sensing-communication cost structure WB ∈ Rn×(k+1)n
+ , WC ∈



R
(k+1)n×n
+ and WK ∈ R(k+1)n×(k+1)n+ respectively, determine (B̄∗, C̄∗, K̄∗) that solve

min
B̄∈{0,×}n×(k+1)n

C̄∈{0,×}(k+1)n×n

K̄∈{0,×}(k+1)n×(k+1)n

∥B̄∥
WB
+ ∥C̄∥

WC
+ ∥K̄∥

WK
(6)

s.t. (Ē, Ā, B̄ (IB) , C̄ (IC) , K̄ (K)) have no SSSFM, for all IB, IC , I ′B, I ′C ⊂ N ,

and K, K′ ⊂ N ×N ,with IB = N/I ′B,IC = N/I ′C, K = (N ×N)/K′,
and ∣I ′B ∣ + ∣I ′C ∣ + ∣K′∣ ≤ k,

where the structural matrix K̄ (K) is a matrix with indices of nonzero entries contained in the set K, and

the set K′ contains the indices of the entries representing malfunctioned communication link. ◇

III. SELECTIVE STRONG STRUCTURAL MINIMUM COST RESILIENT CO-DESIGN FRAMEWORK

To characterize the solutions to the problems P1, P2, and P3, we proceed as follows. First, we introduce

some core definitions and structures used to explicitly provide the solutions to the proposed problems.

Secondly, we provide the solutions to P1, P2, and P3, under the assumptions that no resiliency is required,

and the actuation-sensing-communication cost is homogenous, which we denote by P0
1 , P0

2 , and P0
3

respectively, and which solutions are characterized in Theorem 3, Theorem 4 and Theorem 5, respec-

tively. Next, we consider the problems obtained by taking into account the resiliency requirements in

P1, P2, and P3 (under homogenous cost assumptions), which we denote by Pr
1 , Pr

2 , and Pr
3 respec-

tively, which solutions are provided in Theorem 6, Corollary 2 and Theorem 7, respectively. Lastly,

the homogenous cost assumption in Pr
1 , Pr

2 , and Pr
3 is waived, and the characterization of the general

solutions to P1, P2, and P3 is provided in Theorem 8, Corollary 3 and Theorem 9, respectively.

First, we make use of the following characterization of step differences.

Definition 6 (Pivot and Normal Form): Given a stair matrix, a pivot is a nonzero entry in the left-top

most entry of a step difference. A step difference ∆i
i+1 of a stair matrix M is normalizable if there exist

two permutation matrices P∆
r and P∆

c such that P∆
r ∆i

i+1P
∆
c has a pivot. Furthermore, we say that a step

difference is in its normal form if it has a pivot. ◇

Moreover, we can order (and label) the pivots by the induced order of the steps. Specifically, we say that

two pivots k1 and k2 are consecutive, if there exists no other pivot k′ such that k1 < k′ < k2. Furthermore,

the notion of pivot will be crucial to characterize the different solutions to our problems.

Also, we require the notion of a ramp matrix, that will enable us to characterize the feasibility space

of our problems.

Definition 7 (Ramp Structure): A ramp structure is a stair matrix M ∈ {0,×,⊗}m1×m2 that contains a

selective structural matrix S ∈ {0,×,⊗}n×n, where n = min{m1,m2}, and with n step differences with

pivots. ◇



Remark 1: From Definition 7, it follows that the ramp structure M contains an n × n dimensional

lower-triangular sub-matrix with nonzero entries in its diagonal, formed by the partially ordered columns

(or rows) of M . ◇

First, we provide a feasibility characterization of P0
1 , i.e., a necessary and sufficient condition to ensure

SSSC.

Theorem 1: (Selective Strong Structural Controllability) Consider the selective structural matrices

Ē, Ā, B̄ ∈ {0,×,⊗}n×n. The tuple (Ē, Ā, B̄) is SSSC if there exist permutation matrices Pr and Pc such

that Pr [Āλ B̄]Pc is a ramp structure. ◇

Let In ∈ {0,×}n×n be a structural representation of an n×n identity matrix, i.e., all diagonal entries are

nonzero and the off-diagonal entries are zero. Then, every column of the structural matrix In is associated

with a dedicated actuator, and Icn (I) ∈ {0,×}n×∣I∣ denotes a subset of columns in In with indices in the

set I . In fact, we allow the set I to be multi-index in the sense that it might contain more than once a

given index. Subsequently, an input structural matrix constructed using dedicated actuators, with labels in

the set I ⊆ {1,2,3, . . . , n}, is represented by B̄ = [ Icn (I) 0n×((k+1)n−∣I∣) ] (up to permutation), and it is

referred to as dedicated solution. Therefore, if an index in I is repeated, then it corresponds to different

dedicated actuators controlling the same state variable.

Now, consider the design objective in P0
1 , under the additional restriction of dedicated actuators, i.e.,

B̄ can have at most one non-zero entry in each column. Then, the problem reduces to that of determing

the smallest set of labels I ⊆ {1,2,3, . . . , n} to ensure that the concatenated matrix [ Āλ B̄ ] can be

permuted to contain a ramp structure; hence, yielding SSSC by invoking Theorem 1. Specifically, we

obtain the following characterization of dedicated solutions to P0
1 .

Theorem 2: Let Ē, Ā ∈ {0,×,⊗}n×n be selective structural matrices, and M̄ = PrĀλPc be a stair matrix

with normalizable step differences in the normal form with k′ pivots, where Āλ = Ā − λĒ and λ ∈ C,

Pr and Pc permutation matrices with appropriate dimensions, and I = {1, . . . , n} the index set. Then,

B̄∗
Πr(M̄)

= [P −1r Icn(I ∖Πr(M̄)) 0n×((k+1)n−∣I∖Πr(M̄)∣)] is a dedicated solution to P0
1 , where Πr(M̄) = ⋃k′

i=1 p
i
r

and pir denote the index of the row in M̄ associated with the i-th pivot. ◇

Intuitively, Theorem 2 states that one needs to add canonical columns (to be associated with dedi-

cated actuators) such that M̄ has the columns without the step pivots are ‘replaced’ and, subsequently,

[Āλ
S P −1r B̄∗

Π(M̄)
] can be permuted to a ramp matrix. Furthermore, multiple solutions are possible de-

pending on the set of pivots Π(M̄) induced by M̄ , as we emphasize in the following remark.

Remark 2: There are as many possible solutions as the possible combinations of pivots across different

step differences. In particular, notice that a reduced number of steps differences with pivots increase the

number of possible pivots for the corresponding step difference. On the other hand, if there are as many step



differences as the number of rows of Āλ, then the solution is unique and has as many dedicated actuators

as the steps that do not have pivots. Lastly, observe that whereas under the homogenous cost restriction,

any solution incurs in the same cost, the same is not true when such cost assumption is waived. In fact,

when characterizing the solution to P1,P2 and P3, we will leverage this insight to consider a specific

collection of pivots. ◇

In fact, in the next solution we show that all solutions to P0
1 need to be dedicated solutions.

Theorem 3: Given Ē, Ā ∈ {0,×,⊗}n×n, B̄∗ is a solution to P0
1 if and only if B̄∗ is a sparsest dedicated

solution attaining SSSC. ◇

In what follows, and similar to the duality between controllability and observability in linear time-invariant

descriptor systems, one can obtain the following result.

Lemma 1: The tuple (Ē, Ā, C̄) is SSSO if and only if (Ē⊺, Ā⊺, C̄⊺) is SSSC. ◇

By invoking Lemma 1, the solution to P0
2 can be characterized as follows.

Theorem 4: The structural matrix C̄∗ is a solution to P0
2 with Ē, Ā ∈ {0,×,⊗}n×n, and with homogeneous

sensing cost WC , if and only if (C̄∗)⊺ is a solution to P0
1 with Ē⊺ and Ā⊺, and with homogeneous actuation

cost WB = (WC)⊺. ◇

Simply speaking, from Theorem 4 and Theorem 3, it follows that the solution to P0
2 , with homogeneous

sensing cost and no sensing failures, consists of dedicated sensors, i.e., sensors that measure exactly one

state variable. In fact, the dedicated solution to P0
2 can be described as follows.

Corollary 1: Let Ē, Ā ∈ {0,×,⊗}n×n be selective structural matrices, and M̄ = PrĀλPc be a stair matrix

with normalizable step differences in the normal form with k′ pivots, where Āλ = Ā − λĒ and λ ∈ C,

Pr and Pc permutation matrices with appropriate dimensions, and I = {1, . . . , n} the index set. Then,

B̄∗
Πc(M̄)

= [Icn(I ∖Πc(M̄))P −1c 0n×((k+1)n−∣I∖Πc(M̄)∣)] is a dedicated solution to P0
2 , where Πc(M̄) = ⋃k′

i=1 p
i
c

and pic denote the index of the column in M̄ associated with the i-th pivot. ◇

Therefore, from Theorem 2 and Corollary 1, the number of dedicated actuators and sensors to ensure

SSSC and SSSO, respectively, has to be the same, as formally described in the next result.

Lemma 2: Given solutions B̄∗ = [ Icn (I) 0n×((k+1)n−∣I∣) ] and C̄∗ = [ (Irn(J ))⊺ 0
⊺
((k+1)n−∣J ∣)×n

]
⊺

(both up to permutations) to P0
1 and P0

2 , respectively, then ∣I∣ = ∣J ∣. ◇

To obtain solution to P0
3 , notice that the design of the information pattern will be influenced by the

selection of the actuators and the sensors that are the solution to P0
1 and P0

2 . Specifically, this relationship

is captured by the following result.

Proposition 1: Let P = {1,2,3, . . . , p} denote the labels of the actuators, M = {1,2,3, . . . ,m} denote

the labels of the sensors, and Ji (K̄) contain labels of all possible sensors fed to the actuator i with respect

to the information pattern K̄. The tuple (Ē, Ā, B̄, C̄; K̄) has a SSSFM (with respect to the information



pattern K̄) if and only if there exists (E,A) ∈ ([Ē] , [Ā])⋆, B ∈ [B̄], C ∈ [C̄] and K ∈ [K̄] and a subset

of actuators I ⊆ P and subset of sensors J (I , K̄) ⊂M, described by

J (I , K̄) = ⋃
i∈P/I

Ji (K̄), (7)

i.e., it contains the labels of those sensors that are not fed to the actuators with labels in the set I , such

that following condition holds:

rank

⎡⎢⎢⎢⎢⎢⎣

A − λE B (I)
C (J (I , K̄)) 0

⎤⎥⎥⎥⎥⎥⎦
< n, λ ∈ C, (8)

where 0 is a zero matrix with appropriate dimensions. ◇

Furthermore, Proposition 1 only holds if both SSSC and SSSO are verified. In other words, SSSC and

SSSO are required to attain feasibility of P0
3 , as formalized in the following result.

Lemma 3: A system (Ē, Ā, B̄, C̄ ; K̄) has no selective strong structural fixed modes only if (Ē, Ā, B̄)
is SSSC and (Ē, Ā, C̄) is SSSO. ◇

Hitherto, we characterized the (dedicated) solutions to P0
1 and P0

2 , and also proved that SSSC and

SSSO are necessary conditions for (Ē, Ā, B̄, C̄ ; K̄) to not have SSSFM. Furthermore, from Lemma 2,

the number of dedicated actuators and sensors, i.e., the cardinalities of the sets I and J are the same.

Besides, these are associated with a particular collection of pivots (see Theorem 2 and Corollary 1).

Next, we leverage these insights to provide the pairing between sensors and actuators that ensure that

(Ē, Ā, B̄, C̄; K̄) has no SSSFM.

Now, we need to introduce the notion of index-mates that plays a key role in describing the solutions

to P0
3 (as well as Pr

3 and P3).

Definition 8 (Index-mates): Consider a stair matrix M̄ ∈ {0,×,⊗}n×n, where all the step differences are

in its normal form. Also, let Irn(I) and Icn(J ) be such that M̄1 = [M̄ Icn(I)] and M2 = [M̄⊺ (Irn(J ))⊺]⊺
contain ramp matrices. Furthermore, let these ramp matrices be denoted by M̄1(I ′) and M̄2(J ′), where

I ′ ⊂ I and J ′ ⊂ J , containing the columns and rows containing the pivots of M̄ , respectively, as well as

the column Icn(I ′) and rows Icr(J ′), respectively. Then the diagonal entries corresponding to pivots are

the same for M̄1(I ′) and M̄2(J ′), whereas for the remaining diagonal entries there exist an index i ∈ I ′
and j ∈ J ′ associated with the same diagonal entry, and we refer to (i, j) as index-mates. ◇

Subsequently, let I = {i1, i2, i3, . . . , ip} and J = {j1, j2, j3, . . . , jp} define the indices of the effective

actuators and effective sensors associated with B̄∗ and C̄∗ that are the solutions to P0
1 and P0

2 , respectively.

Also, consider Āλ = Ā − λĒ be a stair matrix where all the step differences are in its normal form. If

(iα, jβ) are index-mates when there exist permutations Pc and Pr of appropriate dimensions, such that

⎡⎢⎢⎢⎢⎢⎣
Pr

⎡⎢⎢⎢⎢⎢⎣

Āλ B̄ (I)
C̄ (J ) 0

⎤⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎦ij
=
⎡⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎣

Āλ B̄ (I)
C̄ (J ) 0

⎤⎥⎥⎥⎥⎥⎦
Pc

⎤⎥⎥⎥⎥⎥⎦ij
, (9)



where the pair of indices (i, j) corresponds to the location of the diagonal entry in a step difference of

the stair matrix Āλ, with the exception of the indices of the pivots. Intuitively, we are using a dedicated

actuator indexed by iα and dedicated sensor indexed by jβ to form the ramp matrix required to ensure

both SSSC and SSSO.

As mentioned, the index-mates enable us to characterize the solution to P0
3 as follows.

Theorem 5: The tuple (B̄∗, C̄∗, K̄∗) is a solution to P0
3 if and only if

(i) B̄∗ = [ Icn (I) 0n×((k+1)n−∣I∣) ] is a solution to P0
1 and C̄∗ = [ (Irn(J ))⊺ 0

⊺
((k+1)n−∣J ∣)×n

]
⊺

is a

solution to P0
2 (both up to permutations);

(ii) K̄∗iα,jβ = ×, if the pair (iα, jβ) ∈ I ′×J ′ are index-mates, and zero otherwise, where I ′ = {i1, i2, i3, . . . , ip}
and J ′ = {j1, j2, j3, . . . , jp} are the indices of the effective actuators associated with B̄∗ and effective

sensors associated with C̄∗, respectively. ◇

To achieve robustness to k actuator-sensor-communicati- on failures, a possible approach to achieve

feasibility for Pr
1 , Pr

2 , and Pr
3 is that of considering k+1 sparsest solutions to P0

1 , P0
2 , and P0

3 . Notably,

such strategy results in optimal solutions in strong structural theory, which contrast to the solutions to

similar problems under the requirement of (not strong) structural systems theory conditions (see, for

instance, [33], [34]).

Theorem 6: Let {B̄∗i = [Icn(Ii) 0n×((k+1)n−∣Ii ∣)]}k+1i=1 be a collection of solutions to P0
1 . The solution to Pr

1

is given by B̄∗ = [Icn(⋃k+1
i=1 Ii) 0n×((k+1)n−#)] (up to permutation of the columns), where # =

k+1

∑
i=1
∣Ii∣. ◇

Once again, invoking duality (see Theorem 4), we obtain the following result.

Corollary 2: Let {C̄∗i = [(Irn(Ji))⊺ 0⊺((k+1)n−∣Ji∣)×n
]⊺}k+1i=1 be a collection of solutions to P0

2 . The solution

to Pr
2 is given by C̄∗ = [(Irn(⋃k+1

i=1 Ji))
⊺
0
⊺
((k+1)n−#)×n

]⊺ (up to permutation of the rows), where # =
k+1

∑
i=1
∣Ji∣. ◇

Finally, the solution to Pr
3 can be described as follows.

Theorem 7: The tuple (B̄∗, C̄∗, K̄∗) is a solution to Pr
3 if and only if

(i) B̄∗ and C̄∗ are solutions to Pr
1 and Pr

2 , respectively; and

(ii) K̄∗iα,jβ = ×, when (iα, jβ) ∈ I ′ × J ′ are index-mates, where I ′ = {i1, i2, i3, . . . , ip′} and J ′ =
{j1, j2, j3, . . . , jp′} are the indices of the effective actuators and the effective sensors, respectively,

and zero otherwise. ◇

Now, recall Remark 2 where we emphasized that specific selection of pivots in the normalized stair

matrix leads to different dedicated solutions, and overall actuation cost. In particular, following the different

constructions provided up to this point, the dedicated actuators required complement the existence of the

pivots to form a ramp matrix. Therefore, suppose that each entry [Āλ]i,j is associated with cost [WB]i,j ,
then we can say that a pivot has the cost associated with an entry in the actuation cost matrix. Hence,



we can associate a collection of pivots with an overall cost. Therefore, it follows that the selected pivots

should incur in the maximum actuation cost, which implies that the collection of dedicated actuators will

incur in the minimum cumulative actuation cost. We formalize these observations in the following result,

where we provide the characterization of the solutions to P1.

Theorem 8: Let {B̄∗i = [Icn(Ii) 0n×((k+1)n−∣Ii∣)]}k+1i=1 be a collection of solutions to P0
1 (up to permutation

of the columns), constructed as in Theorem 2, where the sum of the pivots’ cost described by WB is

maximized. Then B̄∗ = [Icn(⋃k+1
i=1 Ii) 0n×((k+1)n−#)] is a solution to P1 (up to permutation of the columns),

where # =
k+1

∑
i=1
∣Ii∣. ◇

Similarly, invoking duality and Theorem 8, and associating the cost of the pivots with the sensing cost

matrix, we obtain the following result.

Corollary 3: Let {C̄∗i = [(Irn(Ji))⊺ 0
⊺
((k+1)n−∣Ji∣)×n

]⊺}k+1i=1 be a collection of solutions to P0
2 (up to

permutation of the rows), which solutions were computed using duality and Theorem 2, where the sum of

the pivots’ cost described by WC is maximized. Then C̄∗ = [(Irn(⋃k+1
i=1 Ji))

⊺
0
⊺
((k+1)n−#)×n

]⊺ is a solution

to P2 (up to permutation of the rows), where # =
k+1

∑
i=1
∣Ji∣. ◇

In order to construct the solution to P3, we consider the solutions to P0
3 and determine one that incurs in

the minimum actuation-sensing-communication cost. Now, notice that since the solutions to P0
3 establish

a one-to-one correspondence between dedicated sensors and actuators through a single communication

channel, one can associate a cost with index-mates (i, j) that comprises the cost of actuating the state

variable controlled by the dedicated actuator i, the cost of sensing the state variable measured by the

dedicated sensor j, and the communication from dedicated sensor j to dedicated actuator j. Therefore,

the different index-mates have a cost associated with (WB,WC ,WK), and it follows that the solution

to P3 consists of determining the solutions to P0
3 that incur minimum actuation-sensing-communication

(or, equivalently, the index-mates) cost. Specifically, the minimum cost solutions to P3 are constructed as

we formally state in the following theorem.

Theorem 9: Let B̄∗ and C̄∗ be the solutions to Pr
1 and Pr

2 , respectively, obtained by permuting Āλ to a

normal form with largest sum of pivots’ cost described by WB+WC+WK . Then the tuple (B̄∗, C̄∗, K̄∗) is

a solution to P3, where K̄∗iα,jβ = × for the collection of index-mates (iα, jβ) ∈ I ′×J ′ that incur the minimum

overall cost associated with (WB,WC ,WK), with I ′ = {i1, i2, i3, . . . , ip′} and J ′ = {j1, j2, j3, . . . , jp′}
denoting the indices of the effective actuators and effective sensors respectively, and zero otherwise. ◇

IV. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the use of the main results regarding the minimum cost resilient actuation-

sensing-communication co-design in the context of the electric power grid. Specifically, we consider a

5-bus example in [28], whose dynamics is approximated by a 16-th order multi-input multi-output linear



time invariant system (i.e., a particular case of descriptor systems), and which state variables description

can be found in Table I in [28].

A normalized stair matrix M̄λ
5bus

is given as follows

3 2 1 12 6 5 4 13 9 8 7 10 14 15 11 16

2
3
1
5
6
4
8
9
12
13
7
10
14
15
11
16

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× ⊗
⊗ 0 ×
× × ⊗ ×
0 0 0 0 × ⊗
0 0 0 0 ⊗ 0 ×
0 0 0 0 × × ⊗ ×
0 0 0 0 0 0 0 0 × ⊗
0 0 0 0 0 0 0 0 ⊗ 0 ×
0 0 × ⊗ 0 0 × 0 0 0 0 ×
0 0 × 0 0 0 × ⊗ 0 0 × ×
0 0 0 0 0 0 0 0 0 0 ⊗ 0 ×
0 0 0 0 0 0 0 0 0 0 0 ⊗ 0 ×
0 0 0 0 0 0 × 0 0 0 × 0 ⊗ 0 ×
0 0 × 0 0 0 × 0 0 0 0 × 0 ⊗ ×
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⊗ ×
0 0 0 0 0 0 0 0 0 0 × × 0 0 × ⊗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the row and the column indices labelled in M̄λ
5bus

correspond to the row and the column indices in

Āλ
5bus

before permutations, respectively. Simply speaking, they correspond to the state variables indices to

be considered for the actuation-sensing-communicaton design.

Notice that M̄λ
5bus

contains 13 pivots. Therefore, as prescribed by Theorem 2, it requires three dedicated

actuators, and the possible collection of state variables that can be controlled by dedicated actuators are

indexed by I1 = {12,14,16}, I2 = {13,14,16}, I3 = {12,15,16}, or I4 = {13,15,16} (notice the row

indices highlighted in red). As stated in Theorem 3, these dedicated solutions are also the solution to P0
1 .

In contrast, the solution to the P0
2 is unique, and consists in measuring by three dedicated sensors the

variables indexed by J = {2,5,8}.
Subsequently, suppose that the actuation cost associated with the possible actuation schemes in mono-

tonic, i.e., actuating state variable i is less than that of actuating state variable j for j > i, whereas the

measuring cost is finite and different for all state variables. Furthermore, assume that we want to ensure

that the system is robust with respect to one failure, that is k = 1 in P1, P2, and P3.

Subsequently, by invoking Theorem 6, it follows that the largest combination of pivots leads to the

set of actuated state variables described by the indices in I1, so these should be actuated twice. By

invoking Corollary 2, due to the uniqueness of solution to P0
2 , it follows that the state variables described

by J need to be measured twice. Therefore, we construct the matrices B̄5bus
= [Ic16(I) 016×26] and

C̄5bus
= [(Ir16(J ))⊺ 0

⊺
26×16]⊺, where I = {12,14,16,12,14,16} and J = {2,5,8,2,5,8}. Furthermore,

the indices of effective actuators and sensors is given by I ′ = {1, . . . ,6} and J ′ = {1, . . . ,6}, respectively.

Finally, by invoking Theorem 9, we obtain the information pattern K̄5bus
∈ {0,×}32×32 has nonzero

entries corresponding to the index-mates {(1,2) , (4,5) , (2,3) , (5,6) , (3,1) , (6,4)} that incur minimum

actuation-sensing-communication cost. Then, (B̄5bus
, C̄5bus

, K̄5bus
) is a solution to P3.



V. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we introduced the selective strong structural systems framework and used it to address the

problem of minimum cost resilient actuation-sensing-communication co-design for descriptor systems. We

argue that such setup is ideal for coping with several scenarios where uncertainty in the system’s modeling

is present, and guarantees are required for any possible scenario. Furthermore, we introduced the notion of

selective strong structural fixed modes as a characterization of the feasibility of decentralized control laws

and provided necessary and sufficient conditions for this property to hold. Also, we showed how these

conditions could be leveraged to determine the minimum cost resilient placement of actuation-sensing-

communication technology such that decentralized control through static output feedback is possible, and

unveiled the connection with closely related problems of minimum cost resilient actuation and sensing

placement while achieving selective strong structural controllability and observability, respectively.

Future research will address the design when diverse cost structures are considered to be associated

with collection of actuators/sensors that can actuate/measure several state variables at the same time, i.e.,

the possible structure of the input and output matrices is restricted. Also, we aim to exploit the proposed

problems’ structure to derive efficient algorithms to attain the proposed designs.

APPENDIX

Proof of Theorem 1: Assume that for the selective structural matrices Ē, Ā, B̄ ∈ {0,×,⊗}n×n, there

exist permutation matrices Pr and Pc such that Pr [Āλ B̄]Pc is a ramp structure. Then, it contains

n × n dimensional lower-triangular sub-matrix with non-zero entries in its diagonal, which implies that

rank [ A − λE B ] = n, λ ∈ C. Thus, by invoking the controllability criteria for regular descriptor

systems (see Theorem 7 in [14]), it follows that (E,A,B) is controllable; since, the above holds for all

numerical realizations of (Ē, Ā, B̄), we conclude that (Ē, Ā, B̄), is SSSC. ∎

Proof of Theorem 2: For Ē, Ā ∈ {0,×,⊗}n×n, let M̄ = PrĀλPc be a stair matrix with step differences in

the normal form, where Āλ = Ā − λĒ, λ ∈ C, Pr and Pc are the permutation matrices with appropriate

dimensions. Furthermore, let pir and pic denote the row and the column indices of the i-th pivot in M̄ ,

respectively, with i = 1, . . . , k′. In addition, let M̄pic
represent the column in M̄ containing i-th pivot.

Consider B̄∗
Πr(M̄)

= [P −1r Icn(I ∖Πr(M̄)) 0n×((k+1)n−∣I∖Πr(M̄)∣)], then there exists P ′c , such that

M̄P ′c = [M̄p1c
I
c
n (J (p1c , p2c))M̄p2c

M̄p2c
I
c
n(J (p2c , p3c))M̄p3c

. . . M̄pk
′−1

c
I
c
n(J (pk

′−1
c , pk

′

c ))M̄pk
′

c
M̄−

0n×((k+1)n−∣I∣)] ,

where J (pi−1c , pic) = {j ∈ N ∶ pi−1c < j < pic} and M̄− denotes the columns of M̄ without pivots. Then the

matrix [Ā − λĒ B̄] can be permuted to a ramp structure M̄ , and by invoking Theorem 1, (Ē, Ā, B̄) is

SSSC. Finally, B̄ contains minimum number of nonzero columns with unique row indices in I ∖Πr(M̄)



necessary to ensure the ramp structure of M̄ as consequence of Assumption 1, which implies that B̄ is

a sparsest dedicated solution to P0
1 . ∎

Proof of Theorem 3: Suppose B̄ is a solution to P0
1 and assume that B̄ is not a sparsest dedicated

solution. Then, it follows that B̄ contains at least one column B̄i with more than one non-zero entry.

Since (Ē, Ā, B̄) is SSSC, then by Theorem 1 the matrix [Ā − λĒ B̄] can be permuted to a ramp matrix

M̄ , for every λ ∈ C. The ramp structure property is preserved if each non-zero entry below the pivot in

B̄i (with its entries reordered in M̄ ) is replaced with a zero. Therefore, the column B̄i can be replaced

with a sparsest column B̄
′i with exactly one non-zero entry, resulting in selective structural matrix B̄′

such that the tuple (Ē, Ā, B̄′) is SSSC. It follows that B̄′ being sparser than B̄ incurs lower actuation

cost (under homogenous actuation cost assumption), which contradicts the hypothesis that B̄ is a solution

to P0
1 . Hence, B̄ is a feasible solution to P0

1 if it is also the sparsest dedicated solution for the tuple

(Ē, Ā, B̄) to be SSSC. Now assume that B̄ is a sparsest dedicated solution for the tuple (Ē, Ā, B̄) to be

SSSC. Then, by invoking Theorem 2, B̄ is a solution to P0
1 . ∎

Proof of Lemma 1: Suppose the tuple (Ē⊺, Ā⊺, C̄⊺) is SSSC. Then, by Definition 3 and the control-

lability criteria for regular descriptor systems (Theorem 7 in [14]) the rank [A⊺ − λE⊺ C⊺] = n for all

(E,A) ∈ ([Ē] , [Ā])⋆, C ∈ [C̄] and λ ∈ C. This is equivalent to rank [A⊺ − λE⊺ C⊺]⊺ = n, so by invoking

Definiton 4, it follows that (Ē, Ā, C̄) is SSSO. ∎

Proof of Proposition 1: Consider a numerical realization (E,A,B,C; K̄), where (E,A) ∈ ([Ē] , [Ā])⋆,
B ∈ [B̄] and C ∈ [C̄]. Then, from [32], (E,A,B,C; K̄) has a fixed mode with respect to (w.r.t.) the

information pattern K̄, if and only if there exist I ⊆ P and J (I , K̄) ⊆M, such that the following holds

rank

⎡⎢⎢⎢⎢⎢⎣

A − λE B (I)
C (J (I , K̄)) 0

⎤⎥⎥⎥⎥⎥⎦
< n.

This criterion is equivalent to that presented in Definition 5, and it implies that (Ē, Ā, B̄, C̄; K̄) has a

SSSFM w.r.t. the information pattern K̄. ∎

Proof of Lemma 3: Let the sets I and J contain the labels of the effective actuators in B̄ and the

effective sensors in C̄, respectively. Now, consider a scenario where the information pattern matrix K̄ is

full, i.e., the sensor measurements are available to all the actuators. By invoking Proposition 1 for the

case when the none of the actuators with labels in I are fed the measurements from the sensor with

labels in J , it follows that J (I , K̄) = J by (7). Therefore, the rank condition in (8) is the same as

the observability criterion, and by invoking Definition 4 it follows that (Ē, Ā, B̄, C̄ ; K̄) does not have

selective strong structural fixed modes only if (Ē, Ā, C̄) is SSSO. Similarly, for a scenario where the

information pattern matrix K̄ is full, consider a case when measurements from all the sensors with labels

in J are fed to the actuators with labels in I , implying that J (I , K̄) = ∅ by (7). Then (8) results in

the controllability criteria, and by invoking Definition 3, it follows that (Ē, Ā, B̄, C̄; K̄) does not have



SSSFM only if (Ē, Ā, B̄) is SSSC. ∎

Proof of Theorem 5: Suppose the system (B̄, C̄, K̄) is a solution to P0
3 , implying that it incurs minimal

actuation-sensing-communication cost (under homogeneous cost assumption) for the system (Ē, Ā, B̄, C̄ ; K̄)
to not have SSSFM, where Ē, Ā ∈ {0,×,⊗}n×n. Then, by Lemma 3, this is possible only if the tuples

(Ē, Ā, B̄) and (Ē, Ā, C̄) are SSSC and SSSO, respectively. Furthermore, let the stair matrix M̄ =

Pr [Ā − λĒ]Pc contain step differences in normal form with k′ pivots, where Pr, Pc are the permu-

tation matrices with appropriate dimensions. By invoking Theorem 2, B̄ must contain at least p =

n − k′ nonzero columns (with exactly one nonzero entry in each) for (Ē, Ā, B̄) to be SSSC, i.e., B̄ =

[ Icn (I) 0n×((k+1)n−∣I∣) ] where ∣I∣ = p. Hence, B̄ is also a solution to P0
1 (by Theorem 3). Similarly

by invoking Lemma 2 and Theorem 4, C̄ = [ (Irn(J ))⊺ 0
⊺
((k+1)n−∣J ∣)×n

]
⊺

, is a solution to P0
2 (up to

permutation of rows), where ∣J ∣ = p.

Next, we show that ∥K̄∥0 = p. Assume without loss of generality ∥K̄∥
0
= p − 1, implying that there are

p − 1 communication channels between the sensors and the actuators. By invoking Proposition 1 w.r.t.

the information pattern K̄, consider the case when none of the actuators with labels in I are fed the

measurements from the sensors with labels in J . Then, by (7), J (I , K̄) = J ∖ {jβ}, and jβ ∈ J denotes

the label of the sensor that remains non utilized, that always exist since only p−1 communication channels

exist. Thus, there exist (E,A) ∈ ([Ē] , [Ā])⋆, C ∈ [C̄ (J (I , K̄))], such that the condition in (8) holds,

i.e., rank [A⊺ − λE⊺ C⊺]⊺ < n where λ ∈ C. This implies that the tuple (Ē, Ā, B̄, C̄ ; K̄) has SSSFM and

(B̄, C̄, K̄) is not a solution to P0
3 , which is a contradiction. Hence, the condition ∥K̄∥

0
= p is necessary

for feasibility, and it is also optimal, since we are using minimum number of dedicated actuators and

dedicated sensors. This implies that to feed the measurements from p dedicated sensors to p dedicated

actuators, where K̄iα,jβ = × for the index-mates (iα, jβ), where (iα, jβ) ∈ I ×J . Now, suppose there exist

a sensor with index jβ ∈ J that does not have an index mate in the set I . Then, by Proposition 1, consider

the scenario when I = ∅, which implies J (I , K̄) = J ∖ {jβ} by (7), and it follows that the condition

in (8) holds. This implies that (Ē, Ā, B̄, C̄; K̄) has a SSSFM, which contradicts the hypothesis. Hence,

corresponding to a sensor with index jβ , there always exists an actuator with index iα ∈ I , such that the

pair (iα, jβ) are index-mates.

Finally, we notice that the reverse implication immediately holds by reusing the same arguments

presented about regarding the feasibility and optimality. ∎

Proof of Theorem 6: Assume that B̄ = [Icn(⋃k+1
i=1 Ii) 0n×((k+1)n−#)] is a solution to Pr

1 , where {B̄i =

[Icn(Ii) 0n×((k+1)n−∣Ii∣)]}k+1i=1 is a collection of solutions to P0
1 and # =

k+1

∑
i=1
∣Ii∣. By Theorem 3, it follows that

B̄i are sparsest dedicated solution for the tuple (Ē, Ā, B̄i) to be SSSC, and therefore, ∣I1∣ = ∣I2∣ . . . ∣Ik+1∣ = p
(by Theorem 2). The nonzero columns in B̄i (with exactly one nonzero entry each) provide p pivots so



that the matrix [Ā − λĒ B̄i] can be permuted to a ramp structure M̄i, where λ ∈ C. Let the dedicated

actuator be represented by the nonzero column B̄j
i , associated with the j-th pivot, where j ∈ {1, . . . , p}.

In order to permute [Ā − λĒ B̄] to a ramp structure M̄ , B̄ contains a set of k + 1 dedicated actuators

{B̄j
i }k+1i=1 . In other words, the dedicated actuators {B̄j

i }k+1i=1 provide k+1 pivots (with the same row indices)

in M̄ . Without loss of generality, consider a case of k actuator failures represented by the set of columns

{B̄j
i }ki=1. Then the functioning actuator B̄

j

k+1 in B̄, representing the column associated with the j-th pivot,

preserves the ramp structure of M̄ , thereby ensuring the SSSC property of the tuple (Ē, Ā, B̄) after k

actuator failures (by Theorem 1). Hence, B̄ = [Icn(⋃k+1
i=1 Ii) 0n×((k+1)n−#)] is necessary to ensure feasibility.

In fact, we need a minimum of k + 1 nonzero columns for each of the column in M̄ without a pivot, to

ensure robustness w.r.t. k actuator failures. Hence, the solution B̄ is also optimal. ∎

Proof of Theorem 7: Assume the tuple (B̄, C̄, K̄) is a solution to Pr
3 , implying that it incurs minimal

actuation-sensing-communication cost (under homogeneous cost assumption) for the system (Ē, Ā, B̄, C̄ ; K̄)
to not have SSSFM, where Ē, Ā ∈ {0,×,⊗}n×n. Furthermore, this property is robust w.r.t. a total of

k failed actuators, sensors and communication links. Consider a case of k actuator failures. Then, by

Lemma 3, the SSSC property of (Ē, Ā, B̄) must hold under k failed actuators for (Ē, Ā, B̄, C̄ ; K̄) to

not have SSSFM. Hence, by similar reasoning provided in the proof of Theorem 6, B̄ is a solution

to Pr
1 . Similarly, by Corollary 2, it follows that C̄ is a solution to Pr

2 . Furthermore, there exist k + 1

pairs of index-mates (iα, jβ), such that iα and iβ denote the indices of the effective dedicated actuator

and sensor, that enable the matrices [Ā − λĒ B̄] (Theorem 2) and [Ā⊺ − λĒ⊺ C̄⊺]⊺ (Theorem 4), to be

permutable to ramp structures, as described after Definition 8. Now consider the information pattern

K̄iα,jβ = ×, when (iα, jβ) ∈ I ×J are index-mates, where I and J are the sets containing the indices of

the effective actuators and effective sensors in B̄ and C̄, respectively, and zero otherwise. Now, consider

the failure of k communication links corresponding to the k pairs of index-mates (iα, jβ), associated with

effective dedicated actuators/sensors that control/ the same state variable. Then, by similar reasoning in

the proof of Theorem 5, the only functioning communication link between the pair (iα, jβ) will ensure

that the tuple (Ē, Ā, B̄, C̄ ; K̄) does not have SSSFM. Therefore, to ensure feasibility, k+1 communication

channels must be established between the k + 1 pairs of the index-mates (iα, jβ) for each of the pivot.

Furthermore, K̄ is also optimal, since each pair of index-mates requires exactly one communication link.

Hence, (B̄, C̄, K̄) ensures the robustness of the SSSFM property of the system (Ē, Ā, B̄, C̄; K̄) w.r.t. k

failures of actuation-sensing-communication channels. ∎

Proof of Theorem 8: Let the stair matrix M̄ = PrĀλPc contain k′ normalizable step differences {∆s}k′s=1,
where Āλ = Ā − λĒ, Pr and Pc are the permutation matrices with appropriate dimensions, and ∆s ∈

{0,×,⊗}ms
1
×ms

2 . Consider the submatrix WB
s ∈ R

ms
1
×ms

2 of PrWBPc, whose indices are the same w.r.t.



M̄ . For the given collection of step differences {∆s}k′s=1, select as a pivot the entry that corresponds

to the maximum value WB
s [psr, psc] in the submatrix WB

s , where psr and psc denote its row and column

indices (w.r.t. Āλ). Let the row and column indices in WB
s be {psr, rs1, . . . , rsms

1
−1} and {psc, cs1, . . . , csms

2
−1},

respectively. By selecting an entry WB
s [rsj , γs

j ] in the row WB
s [rsj , ∶] (since the cost of actuating a state

does not depend on the actuator used), where j ∈ {1, . . . ,ms
1 − 1} and γs

j ∈ {cs1, . . . , csms
2
−1, p

s
c}, results

in B̄i = [Icn(Ii) 0n×((k+1)n−∣Ii∣)] (up to permutations of columns) which is in the feasibility space of

the solutions to P0
1 . It follows that B̄i will incur minimum actuation cost

k′

∑
s=1

ms
1
−1

∑
j=1

WB
s [rsj , γs

j ], where

Ii = ⋃k′

s=1{rs1, . . . , rsms
1
−1}, or Ii = {1, . . . , n}∖ (⋃k′

s=1 p
s
r). As a consequence, consider all possible sequence

of collection of the step differences, and select the one with the maximum sum of the pivots’ cost described

by WB. In addition, robustness can be ensured by following the same reasoning as that presented in the

proof of Theorem 6. ∎

Proof of Theorem 9: Proof follows similar steps as in Theorem 8. The solution to P3 requires selection

of pivots which will maximize actuation-sensing-communication cost w.r.t. the sub matrix Ws of PrWPc

whose indices are the same w.r.t. M̄ , where W =WB +WC +WK and Ws ∈ R
ms

1
×ms

2 . In addition, due to

the uniqueness of the cost associated with the index mates, one has to determine the smallest subcollection

of these that incur in the minimum cost, which exists among the possible alternatives due to the choice

of pivots incurring in the maximum cost. Finally, the robustness can be achieved by invoking the same

reasoning as that presented in the proof of Theorem 7. ∎

APPENDIX

Assumption 1 plays an important role in proving the necessity of Theorem 1. Specifically, in the latter

we can read “The necessity of the proposed criterion follows similar arguments to those presented in

proof of Theorem 1 in [28].” It turns out that this argument states the existence of a set of parameters

for which the vectors in the step difference are linearly dependent. Nonetheless, this should be “for all

possible parameters of one vector in the step difference, the remaining vectors in the step difference admit

a parameterization that makes all vectors proportional to each other.”

To illustrate how Assumption 1 would lead to the optimal number of dedicated inputs, consider

Āλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

× ⊗ ⊗

⊗ ⊗ ⊗

⊗ ⊗ ⊗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and by invoking Theorem 2 we need

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

× 0

0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,



such that there exist a ramp matrix for [Āλ B̄] given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊗ ⊗ × 0 0

⊗ ⊗ ⊗ × 0

⊗ ⊗ ⊗ 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

since otherwise it is easy to see that having all ⊗ set to zero will still ensure the rank to be equal to three.

Now, let us consider one scenario where Assumption 1 does not hold. Suppose we have the following

system

Āλ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊗ 0 ×

× ⊗ 0

× × ⊗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

×

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then the system is selective strong structural controllable (SSSC) since

rank

⎛
⎜⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊗ 0 × ×

× ⊗ 0 0

× × ⊗ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟
⎠
= 3

for all possible choices of parameters, but [Āλ B̄] is not a ramp matrix. If we invoked Theorem 2, the

conclusion would be

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

× 0

0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ensures (Āλ, B̄) to be SSSC since [Āλ B̄] is a ramp matrix, i.e.,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⊗ 0 × 0 0

× ⊗ 0 × 0

× × ⊗ 0 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consequently, if Assumption 1 is not fulfilled, the solutions to the proposed problems are suboptimal

(see corrigendum issued for [35], i.e., the published version of this manuscript). Lastly, it is important to

remark that the IEEE 5-bus system explored in this paper satisfies Assumption 1, and therefore, the design

and the solution obtained is optimal. Lastly, the problem of obtaining the minimum number of dedicated

inputs to ensure SSSC is NP-hard [25], [26], whereas under Assumption 1 it reduces to obtaining a ramp

structure which can be done in polynomial-time [28]. Therefore, it would be interesting to explore other

assumptions that allow solutions to the proposed problems in polynomial time.
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