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Optimal controller/observer gains of discounted-cost LQG

systems

Hildo Bijl a, Thomas B. Schön b

aDelft Center for Systems and Control, Delft University of Technology, The Netherlands

bDepartment of Information Technology, Uppsala University, Sweden

Abstract

The linear-quadratic-Gaussian (LQG) control paradigm is well-known in literature. The strategy of minimizing the cost function
is available, both for the case where the state is known and where it is estimated through an observer. The situation is different
when the cost function has an exponential discount factor, also known as a prescribed degree of stability. In this case, the
optimal control strategy is only available when the state is known. This paper builds on from that result, deriving an optimal
control strategy when working with an estimated state. Expressions for the resulting optimal expected cost are also given.
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1 Introduction

Consider the continuous-time linear system 1

ẋ(t) = Ax(t) +Bu(t) + v(t), (1a)

y(t) = Cx(t) +Du(t) +w(t), (1b)

with x the state, u the input, y the output, v and
w Gaussian white noise with respective intensities V
and W , and A, B, C and D the system matrices. We
assume that the initial state x0 is unknown but dis-
tributed according to a Gaussian with µ0 = E[x0] and
Σ0 = E

[
x0x0

T
]
. Note that Σ0 is not the variance of x0.

Our goal is to control system (1) such as to minimize the
discounted (exponential) quadratic cost function

J(T ) = E

[∫ T

0

e2αt
(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

]
,

(2)

Email addresses: h.j.bijl@tudelft.nl (Hildo Bijl),
thomas.schon@it.uu.se (Thomas B. Schön).
1 From a formal point of view the system notation of (1)
is incorrect, because v(t) and w(t) are not measurable with
nonzero probability. However, since this notation is common
in the control literature, we will stick with it. For methods to
properly deal with stochastic differential equations, see [11].

with J(T ) the expected cost, the real number α the
discount exponent/prescribed degree of stability, and
Q ≥ 0 and R > 0 symmetric weight matrices. In partic-
ular, we will optimize the infinite-time expected cost J ,
with

J = lim
T→∞

J(T ). (3)

Our contribution in this paper is that we derive the op-
timal controller and observer gains for the continuous-
time linear system (1) such that the expected cost J
given in (3) is minimized.

2 Related work

Linear-Quadratic-Gaussian (LQG) systems—linear sys-
tems with a quadratic cost function subject to Gaussian
noise—have been thoroughly investigated in the past.
This was especially true near the 1960s, with for instance
the publication of the Kalman filter [8,7].

The discoveries from the decades afterwards have been
summarized in numerous textbooks. Examples include
the books by [12, Chapter 7], [9, Chapter 5], [6, Chapter
1], [2, Chapters 3, 8], [15, Chapter 6], [17, Chapter 10],
[14, Chapter 9] and [4, Chapter 4]. All these books exam-
ine the non-discounted cost function (with α = 0), save
for [2, Section 3.5] that also considers the discounted cost
function, presenting results from an earlier paper [1].
Here it was shown that discounting the cost function is
equivalent to prescribing a degree of stability.
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The prescribed degree of stability is actually a relevant
problem in that it is a generalization of the regular LQG
paradigm with the non-discounted cost function. There
is also a variety of applications of this idea, such as fault
tolerant flight control [5], spacecraft guidance [10] and
robot manipulators [16]. However, to the best of the
authors’ knowledge there are still fundamental proper-
ties remaining to be established and our contribution in
this paper is to provide one of those. The work [1] ex-
amined the situation where the state is assumed to be
known. If the state can only be observed through noisy
output measurements—a familiar problem for the non-
discounted cost function—then we are not aware of any
work that jointly optimize the controller and the state
estimator. The closest is the work by [13], who strived to
derive a state estimator with minimal mean squared er-
ror, given a prescribed convergence rate. However, that
work ignored the uncertainty in the initial state and did
not examine the problem of jointly optimizing the con-
troller and observer gains. In fact, it was not mentioned
whether the separation principle still holds or not when
using the discounted cost function. Hence, the problem
of jointly optimizing the controller and observer gains,
subject to a discounted cost function and an uncertain
initial state, appears to be an open problem.

3 Brief summary of known theorems

To place our new result in perspective, we briefly ex-
amine some known results first. We start with the non-
discounted case (α = 0) where the state x(t) is known
(i.e., C = I and W = 0). In this case the optimal control
law is given by the following theorem.

Theorem 1 Consider system (1), where the state is as-
sumed known. If (A,B) is stabilizable, then the optimal
control law minimizing the expected non-discounted cost
J (i.e., withα = 0) is a linear control lawu(t) = −Fx(t),
where

F = R−1BTX, (4)

and X is the solution to the Riccati equation

ATX +XA+Q−XBR−1BTX = 0. (5)

When V = 0, the corresponding expected cost equals

J = E
[
x0

TXx0

]
= tr (XΣ0) . (6)

When V 6= 0, then J(T ) → ∞, but the steady-state cost
rate equals

lim
T→∞

dJ(T )

dT
= tr (XV ) . (7)

PROOF. See any of the aforementioned books; for ex-
ample [9, Theorem 3.9].

There is another way to look at the Theorem 1, which will
become important in the proof of our main result. We
know from [3, Theorem 3] that, for the above situation,
and for any feedback matrix F , the expected steady-
state cost rate equals

lim
T→∞

dJ(T )

dT
= tr (XV ) , (8)

where X per definition is the unique solution to the Lya-
punov equation

(A−BF )TX +X(A−BF ) +Q+ FTRF = 0. (9)

To minimize the above cost rate, we must find the value
of F minimizing (8). Theorem 1 tells us that the cost
rate (8) is minimized when X satisfies (5) and F sub-
sequently equals (4). This is irrespective of the value of
the positive definite matrix V .

Next, consider the case where there is a discount expo-
nent α 6= 0. Now the solution is given by the following
Theorem. Note that α can be positive (a prescribed de-
gree of stability) or negative (a discount exponent), but
for ease of writing we always call it a discount exponent.

Theorem 2 Consider system (1), where the state is as-
sumed known. DefineAα = A+αI. If (Aα, B) is stabiliz-
able, then the optimal control law minimizing the expected
discounted cost J is a linear control law u(t) = −Fαx(t),
where

Fα = R−1BTXα, (10)

and Xα is the solution to the Riccati equation

ATαXα +XαAα +Q−XαBR
−1BTXα = 0. (11)

The corresponding expected cost (for both zero and
nonzero V ) when α < 0 equals

J = tr

(
Xα

(
Σ0 −

V

2α

))
. (12)

When α ≥ 0, then J(T )→∞ as T →∞.

PROOF. A proof is given by [2, Section 3.5].

When the state is unknown, an observer needs to be
used. The state estimate x̂ of this observer is updated
through

˙̂x(t) = Ax̂(t)+Bu(t)+K (y(t)−Cx̂(t)−Du(t)) , (13)

subject to some initial state estimate x̂(0). If the state
estimation error e(t) is defined as e(t) = x̂(t)−x(t), then
this error (i.e., its variance) can be minimized through
the following Theorem.

2



Theorem 3 Consider system (1). If (A,C) is de-
tectable, then the optimal observer gain minimizing the
steady-state error covariance is

K = ECTW−1, (14)

where E is the optimal steady-state error covariance,
found through

AE + EAT + V − ECTW−1CE = 0. (15)

PROOF. This is the famous Kalman-Bucy filter
from [8]. A proof can also be found in [9, Theorem 4.5].

The above result holds regardless of the value of α, be-
cause it is unrelated to the cost J . If our goal is to op-
timize the cost J subject to α = 0 (the non-discounted
case) then the following Theorem provides the solution.

Theorem 4 Consider system (1). If (A,B) is stabiliz-
able and (A,C) is detectable, then the optimal control law
minimizing the expected non-discounted cost (i.e., with
α = 0) is a linear control law u(t) = −F x̂(t), with F
given by (4), x̂(t) following from (13) and the observer
gain K taken as (14). The resulting expected steady-state
cost rate is given by

lim
T→∞

dJ(T )

dT
= tr

(
XKWKT + EQ

)
= tr

(
XV + EFTRF

)
, (16)

with X the solution of (5) and E the solution of (15).

PROOF. The optimal controller and observer gains
follow from the separation principle. See for instance [9,
Theorem 5.4]. Expressions for the expected steady-state
cost rate can be derived using [3, Theorem 3].

4 Optimizing the discounted cost function

In this section we derive the main result: the optimal
controller/observer gains minimizing the discounted cost
function, subject to an unknown state. It is important to
realize that ‘optimal’ here only means that the expected
discounted cost (2) is minimized. There is no guarantee
that the steady-state error variance, or any other quan-
tity, is still at a minimum.

Theorem 5 Consider system (1). If (Aα, B) is stabiliz-
able and (Aα, C) is detectable, then the optimal control
law minimizing the expected discounted cost J is a linear
control law u(t) = −Fαx̂(t), with Fα given by (10) and

Xα given by (11). Identically to (13), x̂(t) is provided by
the observer

˙̂x(t) = Ax̂(t)+Bu(t)+Kα (y(t)−Cx̂(t)−Du(t)) , (17)

where x̂0 is set to µ0, the observer gain Kα is given by

Kα = EαC
TW−1 (18)

and Eα is the solution to the Riccati equation

AαEα + EαA
T
α +

(
V − 2α

(
Σ0 − µ0µ0

T
))

−EαCTW−1CEα = 0. (19)

The corresponding expected cost for α < 0 equals

J =
1

−2α
tr
(
XαKαWKT

α + EαQ
)

+ µ0
TXαµ0

=
1

−2α
tr
(
XαV + EαF

T
α RFα

)
+ tr (XαΣ0) . (20)

When α ≥ 0, then J(T )→∞ as T →∞.

PROOF. To start, we write the joint dynamics of the
system and its observer as[
ẋ(t)

ė(t)

]
=

[
A−BFα −BFα

0 A−KαC

][
x(t)

e(t)

]
+

[
v(t)

Kαw(t)− v(t)

]
= Ãx̃(t) + ṽ(t), (21)

and the total expected cost as

J(T ) = E

[∫ T

0

e2αtx̃T (t)Q̃x̃(t) dt

]
. (22)

Note that the tilde-notation used above denotes proper-
ties of the joint dynamics. We have already defined Ã,
x̃(t) and ṽ(t) as above. The variance Ṽ of ṽ, the mean

and variance of x̂0 and the weight matrix Q̃ satisfy

Ṽ =

[
V −V
−V KαWKT

α + V

]
, (23a)

µ̃0 = E [x̃0] = E

[
x0

e0

]
=

[
µ0

0

]
, (23b)

Σ̃0 = E
[
x̃0x̃0

T
]

=

[
µ0µ0

T µ0µ0
T − Σ0

µ0µ0
T − Σ0 Σ0 − µ0µ0

T

]
,(23c)

Q̃ =

[
Q+ FTα RFα FTα RFα

FTα RFα FTα RFα

]
. (23d)
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Our goal is to choose Fα and Kα so as to minimize the
expected cost J . This cost, according to [3, Theorem 2],
equals

J = tr

(
X̃α

(
Σ̃0 −

Ṽ

2α

))
, (24)

where X̃α per definition is the unique solution to

ÃTαX̃α + X̃αÃα + Q̃ = 0, (25)

and where Ãα is defined as Ã+αI. Expression (24) holds
for any Fα and Kα, which implies that we need to find
the Fα and Kα that minimize it. Note that we cannot
directly solve this by applying Theorem 1, because this
time Ṽ is not constant: it depends on Kα. We need a
different method.

First, we expand our matrix equations into elements.
This turns (25) into the following three equations,

(Aα −BFα)
T
X̃11
α + X̃11

α (Aα −BFα)

+
(
Q+ FTα RFα

)
= 0, (26a)

(Aα −BFα)
T
X̃12
α − X̃11

α BFα

+X̃12
α (Aα −KαC) + FTα RFα = 0, (26b)

(Aα −KαC)
T
X̃22
α − FTα BT X̃12

α

−X̃21
α BFα + X̃22

α (Aα −KαC) + FTα RFα = 0. (26c)

There is a fourth expression, but it is identical to (26b)
— to be precise, it is its transpose — so it is not worth
mentioning. Similarly we can expand (24) as

J = tr

(
X̃11
α

(
Σ0 −

V

2α

)
− X̃12

α

(
Σ0 − µ0µ0

T − V

2α

)
− X̃21

α

(
Σ0 − µ0µ0

T − V

2α

)
+X̃22

α

(
Σ0 − µ0µ0

T − V

2α
− KαWKT

α

2α

))
. (27)

It is difficult to jointly optimize Fα and Kα to minimize
the above cost. The key here is to first assume a certain
value for Fα and then find the value ofKα that is optimal
for this particular value of Fα. To be precise, we assume
that Fα is given by (10).

It is interesting to note that this value for Fα happens
to optimize the first term of (27),

J11 = tr

(
X̃11
α

(
Σ0 −

V

2α

))
. (28)

After all, from (26a) we see that X̃11
α solely depends

on Fα and not on Kα. The problem of optimizing Fα
now turns out to be equivalent to the problem solved
by Theorem 2. (Also see the note after Theorem 1.) It

follows that the value of Fα minimizing J11 equals (10),

and that X̃11
α from (26a) equals the solution Xα of (11).

For this assumed value of Fα, the other equations greatly
simplify. If we insert (10) into (26b), we directly find

that X̃12
α = 0. This tells us that the separation principle

still holds for this situation, albeit in an adjusted form.
At the same time (26c) reduces to

(Aα −KαC)
T
X̃22
α + X̃22

α (Aα −KαC) + FTα RFα = 0.
(29)

Our goal is to find the value of Kα minimizing the last
term from (27). That is, we want to minimize

J22 = tr

(
X̃22
α

(
Σ0 − µ0µ0

T − V

2α
− KαWKT

α

2α

))
.

(30)
According to [3, Theorem 16], we can rewrite this as

J22 = tr

((
−Eα

2α

)
FTα RFα

)
, (31)

where the term
(
−Eα

2α

)
per definition satisfies

(Aα −KαC)

(
−Eα

2α

)
+

(
−Eα

2α

)
(Aα −KαC)

T

+

(
Σ0 − µ0µ0

T − V

2α

)
− KαWKT

α

2α
= 0. (32)

From this, we can directly find the value of Kα mini-
mizing (31), and hence minimizing the total expected
cost J . According to the principle described right after
Theorem 1, it equals (18).

To summarize, we have assumed that Fα was given
by (10) and subsequently found that the optimal value
for Kα equals (18). Of course this does not necessar-
ily mean that this combination of Fα and Kα jointly
optimizes the expected cost J . We need one more step.

For this step, we have to reverse the process: first we as-
sume that Kα equals (18) and subsequently we optimize
the cost J for Fα. When doing so, we do have to use
a different system notation. Instead of considering the
joint dynamics of x and e in (21), we consider the joint
dynamics of x̂ and e. Additionally, instead of optimizing
the cost J written as (24), we first use [3, Theorem 16]
to rewrite the expression. If we follow these steps, then
in an identical way we find that the optimal value of Fα
equals (10).

To conclude, if we choose Fα as (10) then the optimalKα

equals (18), and vice versa if we choose Kα as (18) then
the optimal Fα equals (10). This proves that our combi-
nation of (Fα,Kα) is at least a local solution to the op-
timization problem. However, because the optimization
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problem is convex in both Fα and Kα, it must also be
the global optimum. Hence, we conclude that the com-
bination of Fα and Kα minimizes the expected cost J .

The only thing left to prove is the cost expression (20).
The second line from this equation follows directly
from (28) and (31): just add J11 and J22. The first line
follows in the same way, if you redo the full derivation
with the joint state of x̂ and e, as described above. That
concludes this proof.

This theorem shows how to optimally trade off between
compensating for process noise (V ), for measurement
noise (W ) and for uncertainty in the initial state (Σ0 −
µ0µ0

T ). None of the previously derived theorems had
to include all these three parameters in their trade-off,
which is what makes this new result significant.

Due to the separation principle, the stability of the con-
trolled system is similar to when we applied Theorem 2.
The eigenvalues of the closed-loop system are all guar-
anteed to be smaller than −α [2, Section 3.5]. Hence, if
α > 0, stability is guaranteed.

5 Conclusions and recommendations

Through Theorem 5 it is now possible to find the op-
timal controller and observer gains of an LQG system
with discounted cost. This paper also serves as a focused
overview of this part of control engineering.

Future work on this subject can look into replacing the
discount exponent α by a discount matrix, investigate
the effect of a finite time window T on the optimal con-
troller/observer parameters, or examine time-varying
systems, similarly to [13], to see whether the same
results are still applicable.
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