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On the well-posedness in the solution of the disturbance

decoupling by dynamic output feedback with self

bounded and self hidden subspaces

Fabrizio Padula, and Lorenzo Ntogramatzidis

Abstract

This paper studies the disturbance decoupling problem by dynamic output feedback with required

closed-loop stability, in the general case of nonstrictly-proper systems. We will show that the extension

of the geometric solution based on the ideas of self boundedness and self hiddenness, which is the one

shown to maximize the number of assignable eigenvalues of the closed-loop, presents structural differ-

ences with respect to the strictly proper case. The most crucial aspect that emerges in the general case is

the issue of the well-posedness of the feedback interconnection, which obviously has no counterpart in

the strictly proper case. A fundamental property of the feedback interconnection that has so far remained

unnoticed in the literature is investigated in this paper: the well-posedness condition is decoupled from

the remaining solvability conditions. An important consequence of this fact is that the well-posedness

condition written with respect to the supremal output nulling and infimal input containing subspaces

does not need to be modified when we consider the solvability conditions of the problem with internal

stability (where one would expect the well-posedness condition to be expressed in terms of supremal

stabilizability and infimal detectability subspaces), and also when we consider the solution which uses

the dual lattice structures of Basile and Marro.

I. INTRODUCTION

The disturbance decoupling problem (DDP) played a central role in the development of the

geometric approach in systems and control theory. Indeed, from the pioneering papers [1], [16],

it was recognized that geometry is a natural language for this type of problems; consequently,

the solvability conditions of the first disturbance decoupling problems considered in the literature

were expressed by means of inclusions involving certain subspaces.

The basic decoupling problem, consisting of the rejection of a disturbance from the output of a

system by means of a static state-feedback, was solved in [1] and, independently, in [16], via the

introduction of controlled invariant subspaces. These subspaces were then found to be powerful

tools in the understanding of many system-theoretic properties of linear time-invariant (LTI)
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systems and in the solution of several control problems. The disturbance decoupling problem by

static state feedback with the extra requirement of internal stability of the closed-loop was taken

into account in [16] with the introduction of stabilizability subspaces. An alternative solution

to the same problem was suggested by Basile and Marro in [2], relying on the concept of

self bounded controlled invariance, which, unlike the stabilizability subspaces of [16], does not

require eigenspace computation; in other words, the solution with self boundedness remains at

the fundamental level of finite arithmetics.

A key contribution to the understanding of the advantages deriving from the adoption of self

bounded controlled invariant subspaces in the solution of the disturbance decoupling problem by

static state-feedback was given in [9], where it was shown that in the solution of this problem

there is a number of closed-loop eigenvalues that are fixed for any feedback matrix which

solves the decoupling problem; these unassignable eigenvalues are called the fixed poles of the

decoupling problem. It is shown in [9] that choosing a particular self bounded subspace, denoted

by Vm in [3], is the best choice in terms of pole assignment, because it ensures that the maximum

number of eigenvalues of the closed-loop can be freely assigned.

For systems whose state is not accessible, a state-feedback decoupling filter cannot be imple-

mented. This led to the formulation of the disturbance decoupling problem by dynamic output

feedback. The first paper which provided a solution to this problem is [12]. Around the same

time, the same problem with the additional requirement of internal stability was addressed in

[15] and [8]. In [4], an alternative geometric solution was proposed for this problem which uses

self bounded subspaces, as well as their duals, the so-called self hidden subspaces. Again, the

importance of this solution lies in the fact that it does not require eigenspace computation. Even

more importantly, in [6] it was proved that this solution based on the idea of self boundedness

and self hiddenness, is still the best in terms of assignability of the closed-loop dynamics, see

also [5] and [7].

Most of the literature in geometric control has been developed for strictly proper systems,

i.e., for those systems which have zero feedthrough between the input and the output. For a

systematic and well-organized extension of the geometric approach for systems with a possibly

non-zero direct feedthrough term we refer to the monograph [14]. The disturbance decoupling

problem with dynamic output feedback and nonzero feedthrough has been completely solved

in terms of stabilizability and detectability subspaces in [13]. More recently, the approach

based on self boundedness and self hiddenness has been generalized in [10] for the disturbance

decoupling problem with static state-feedback. In [10], the result of [9] on the fixed poles was

also generalized to nonstrictly proper systems.

A significantly more challenging task is the solution of the disturbance decoupling problem by
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dynamic output feedback for nonstrictly proper systems using the concepts of self boundedness

and self hiddenness. An issue of well-posedness arises in the case where the feedthrough

between the control input and the measurement output is non-zero. It was observed in [13]

that the solvability conditions, when dealing with the problem in its full generality, need to

take into account the well-posedness: this results in a condition that cannot be expressed as the

typical subspace inclusion of most control/estimation problems for which a geometric solution

is available. In this paper, we study the role that the well-posedness condition plays in the

disturbance decoupling problem by dynamic output feedback. We prove, in particular, that this

condition is invariant with respect to the stabilizing pair of self bounded and self hidden subspaces

involved in the solution of the disturbance decoupling problem. In other words, we show that the

well-posedness condition is disjoint, and therefore independent, from the remaining solvability

conditions of the decoupling problem. This new property is the key to a full generalization of

the solution of the disturbance decoupling problem by dynamic output feedback, as it shows

that the fundamental requirement of stability does not reduce the set of well-posed feedback

interconnections; therefore, choosing self bounded and self hidden subspaces does not impact on

the solvability of the disturbance decoupling problem by dynamic output feedback. Furthermore,

it also implies that the solution of [13] can be conveniently re-written with a well-posedness

condition for the supremal output nulling and infimal input containing subspaces instead of the

corresponding stabilizability and detectability subspaces.

Notation. Given a vector space X , we denote by 0X the origin of X . The image and the

kernel of matrix A are denoted by im A and ker A, respectively. When A is square, we denote

by σ(A) the spectrum of A. If A : X −→ Y is a linear map and if J ⊆ X , the restriction

of the map A to J is denoted by A |J . If X = Y and J is A-invariant, the eigenstructure

of A restricted to J is denoted by σ (A |J ). If J1 and J2 are A-invariant subspaces and

J1⊆J2, the mapping induced by A on the quotient space J2/J1 is denoted by A |J2/J1,

and its spectrum is denoted by σ (A |J2/J1). Given a map A : X −→X and a subspace S of

X , we denote by 〈A |S 〉 the smallest A-invariant subspace of X containing S and by 〈S |A〉

the largest A-invariant subspace contained in S .

II. PROBLEM STATEMENTS

In what follows, whether the underlying system evolves in continuous or discrete time makes

only minor differences and, accordingly, the time index set of any signal is denoted by T, on

the understanding that this represents either R+ in the continuous time or N in the discrete time.

The symbol Cg denotes either the open left-half complex plane C− in the continuous time or

the open unit disc C◦ in the discrete time. A matrix M ∈Rn×n is said to be asymptotically stable
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if σ(M)⊂Cg. Finally, we say that λ ∈C is stable if λ ∈Cg. The operator D denotes either the

time derivative in the continuous time, i.e., D x(t) = ẋ(t), or the unit time shift in the discrete

time, i.e., D x(t) = x(t +1).

We consider the system Σ governed by

Σ :





D x(t) = Ax(t)+Bu(t)+H w(t)

y(t) = C x(t)+Dy u(t)+Gy w(t)

z(t) = E x(t)+Dz u(t)+Gz w(t),

where, for all t ∈ T, the vector x(t) ∈ X = R
n denotes the state, u(t) ∈ U = R

m is the control

input, w(t) ∈ W = R
q is the disturbance input, y(t) ∈ Y = R

p is the measurement output and

z(t) ∈ Z = R
r is the to-be-controlled output. We consider also the regulator ΣC ruled by

ΣC :

{
D p(t) = Ac p(t)+Bc y(t)

u(t) = Cc p(t)+Dc y(t),

where, for all t ∈ T, the vector p(t) ∈ P = Rs is the state of the regulator. We want to control

the system Σ with the regulator ΣC such that in the closed-loop system the output z does not

depend on the disturbance input w.

We say that the feedback interconnection of system Σ with the regulator ΣC is well posed if

the matrix I−Dy Dc is non-singular, see [14, Chpt. 3]. In such case, the closed-loop system ΣCL

can be written in state-space form as

ΣCL :

{
D x̂(t) = Â x̂(t)+ Ĥ w(t)

z(t) = Ĉ x̂(t)+ Ĝw(t),
(1)

where x̂(t) =
[

x(t)

p(t)

]
is the extended state, and the matrices in (1) are defined by

Â
def
=

[
A+BDcW C BCc +BDcW DyCc

BcW C Ac +BcW DyCc

]
, Ĥ

def
=

[
H +BDcW Gy

BcW Gy

]
,

Ĉ
def
= [ E +Dz DcW C DzCc +Dz DcW DyCc ], Ĝ

def
= Gz +Dz DcW Gy,

where W = (I −Dy Dc)
−1.

The transfer function of the closed-loop system ΣCL is

Gz,w(λ ) = Ĉ (λ I − Â)−1Ĥ + Ĝ,

where λ represents the s variable of the Laplace transform in the continuous time or the z

variable of the Z -transform in the discrete time.

In this paper we are concerned with two problems:
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Problem 1: [DDP BY DYNAMIC OUTPUT FEEDBACK]

Find a compensator ΣC for Σ such that the feedback interconnection of Σ with ΣC is well posed

and the transfer function matrix Gz,w(λ ) of the closed-loop system ΣCL is zero.

Problem 2: [DDP BY DYNAMIC OUTPUT FEEDBACK WITH STABILITY]

Find a compensator ΣC for Σ such that the feedback interconnection of Σ with ΣC is well posed,

the transfer function matrix Gz,w(λ ) of the closed-loop system ΣCL is zero and all the eigenvalues

of Â are in Cg.

III. GEOMETRIC BACKGROUND

Consider a quadruple (A,B,C,D) associated with the non-strictly proper state-space (contin-

uous or discrete-time) system
{

Dx(t) = Ax(t)+Bu(t)

y(t) = C x(t)+Du(t)

We denote by R the reachable subspace of the pair (A,B), which is the smallest A-invariant sub-

space containing the column-space of B, i.e., R = 〈A | imB〉. We denote by Q the unobservable

subspace of the pair (C,A), which is the largest A-invariant subspace contained in the null-space

of C, i.e., Q = 〈kerC |A〉. A subspace V is said to be an (A,B)-controlled invariant subspace

if, for any initial state x0 ∈ V , there exists a control function u such that the state trajectory

generated by the system remains identically on V ; equivalently, V is (A,B)-controlled invariant

if the subspace inclusion AV ⊆V + imB holds. The control function that maintains the trajectory

on V can always be expressed as a static state feedback u(t) = F x(t). The condition of (A,B)-

controlled invariance can be equivalently expressed by saying that there exists a feedback matrix

F such that (A+BF)V ⊆ V . In this case, we say that F is a controlled invariant friend of

V . A subspace V is said to be an (A,B,C,D)-output nulling subspace if, for any initial state

x0 ∈ V , there exists a control function u such that the state trajectory generated by the system
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remains in V and the output remains identically at zero; equivalently, V is (A,B,C,D)-output

nulling if the subspace inclusion
[

A

C

]
V ⊆ (V ⊕0Y )+ im

[
B

D

]

holds. The control function that maintains the trajectory on V can again be expressed as the static

state feedback u(t) = F x(t). The condition of (A,B,C,D)-output nullingness can be equivalently

expressed by saying that there exists a feedback matrix F such that
[

A+BF

C+DF

]
V ⊆ V ⊕0Y .

In this case, we say that F is an output nulling friend of V . It is easy to see that if F is an

(A,B,C,D)-output nulling friend of V , we have also the inclusion (in the complexification of

X )

ker
(
(C+DF)(λ I −A−BF)−1

)
⊇ V (2)

for all λ ∈ C, see [13]. We denote by F(A,B,C,D)(V ) the set of (A,B,C,D)-output nulling friends

of V .

It is easy to see that the set of (A,B,C,D)-output nulling subspaces is closed under addition.

Thus, we can define the largest (A,B,C,D)-output nulling subspace V ⋆
(A,B,C,D) (also referred to

as the weakly unobservable subspace), which is the set of all initial states for which a control

function exists that maintains the output identically at zero. The sequence of subspaces (Vi)i∈N

given by




V0 = X

Vi+1 =

[
A

C

]−1(
(Vi ⊕0Y )+ im

[
B

D

])

is monotonically non-increasing and converges to V ⋆
(A,B,C,D) in at most n−1 steps, i.e., V0 ⊃ V1 ⊃

. . .⊃ Vh = Vh+1 = . . . implies V ⋆
(A,B,C,D) = Vh, with h ≤ n−1.

Given an (A,B,C,D)-output nulling subspace V , we can define the (A,B,C,D)-reachability

subspace RV on V as the set of points that can be reached from the origin by means of control

functions that maintain the trajectory on V and the output at zero. Given an output nulling friend

F of V , we can determine RV as

RV = 〈A+BF |V ∩B kerD〉.

The eigenvalues of A+BF , for F that varies in F(A,B,C,D)(V ), can be divided into two multi-

sets: the eigenvalues of the mapping A+BF |V and the eigenvalues of A+BF | X
V . In turn, the

April 27, 2021 DRAFT
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eigenvalues of A+BF |V can be divided into two multi-sets: the eigenvalues of A+BF |RV

are all freely assignable with a suitable choice of F ∈ F(A,B,C,D)(V ), whereas the eigenvalues of

A+BF | V
RV

are independent from F ∈ F(A,B,C,D)(V ). Likewise, the eigenvalues of A+BF | V +R
V

are all freely assignable with a suitable choice of F ∈ F(A,B,C,D)(V ), whereas the eigenvalues of

A+BF | X
V +R are fixed for all F ∈ F(A,B,C,D)(V ). The fixed poles of V can be defined as the

unassignable eigenvalues of A+BF with F ∈ F(A,B,C,D)(V ), i.e.,

σfixed(V )
def

= σ

(
A+BF

∣∣∣ X

V +R

)
⊎σ

(
A+BF

∣∣∣ V

RV

)
.

It is easy to see that σfixed(V ) can be alternatively characterized as

σfixed(V ) = σ

(
A+BF

∣∣∣X
R

)
⊎σ

(
A+BF

∣∣∣ V ∩R

RV

)
, F ∈ F(A,B,C,D)(V ), (3)

see [6], [9]. We say that V is

• internally stabilizable if there exists F ∈ F(A,B,C,D)(V ) such that σ(A+BF |V ) ⊂ Cg, or,

equivalently, if σ(A+BF | V
RV

)⊂ Cg;

• externally stabilizable if there exists F ∈ F(A,B,C,D)(V ) such that σ(A+BF | X
V ) ⊂ Cg, or,

equivalently, if σ
(
A+BF | X

V +R

)
⊂ Cg.

An (A,B,C,D)-output nulling subspace that is internally stabilizable is also referred to as an

(A,B,C,D)-stabilizability output nulling subspace: specifically, an (A,B,C,D)-output nulling sub-

space V is an (A,B,C,D)-stabilizability output nulling subspace if there exists F ∈ F(A,B,C,D)(V )

such that σ(A+BF |V )⊂ Cg. The set of (A,B,C,D)-stabilizability output nulling subspaces is

closed under addition, and thus it admits a maximum, that we denote by V ⋆
(A,B,C,D),g: this subspace

can be interpreted as the set of all initial states for which an input function exists that maintains

the output at zero and the state trajectory converges to the origin.

An (A,B,C,D)-output nulling subspace R for which an output nulling friend F exists such

that the spectrum of A+BF |R is arbitrary is called an (A,B,C,D)-reachability output nulling

subspace. The set of (A,B,C,D)-reachability output nulling subspaces is closed under addition,

and thus it admits a maximum, that we denote by R⋆
(A,B,C,D): there holds

R⋆
(A,B,C,D) ⊆ V ⋆

(A,B,C,D),g ⊆ V ⋆
(A,B,C,D).

The subspace R⋆
(A,B,C,D) is also the output nulling reachability subspace on V ⋆

(A,B,C,D), i.e., R⋆
(A,B,C,D)=

RV ⋆
(A,B,C,D)

. This subspace can be interpreted as the set of all initial states that are reachable from

the origin by control inputs that maintain the output at zero. The spectrum of A+BF |
V ⋆
(A,B,C,D)

R⋆
(A,B,C,D)

is the invariant zero structure of the system, and it is denoted by Z(A,B,C,D).

We say that an (A,B,C,D)-output nulling subspace V is (A,B,C,D)-self bounded if, for any

initial state x0 ∈ V , any control that gives an identically zero output is such that the entire

April 27, 2021 DRAFT
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state trajectory is forced to evolve on V . In terms of subspace inclusions, V is (A,B,C,D)-self

bounded if one of the following equivalent conditions holds:

1) V ⊇ V ⋆
(A,B,C,D)∩B kerD;

2) V ⊇ R⋆
(A,B,C,D).

It follows immediately that R⋆
(A,B,C,D) and V ⋆

(A,B,C,D) are (A,B,C,D)-self bounded subspaces. If V1

and V2 are (A,B,C,D)-self bounded subspaces and V1 ⊆V2, then every (A,B,C,D)-output nulling

friend of V2 is also an (A,B,C,D)-output nulling friend of V1, i.e., F(A,B,C,D)(V2)⊆ F(A,B,C,D)(V1).

In particular, since R⋆
(A,B,C,D) ⊆ V ⋆

(A,B,C,D), every (A,B,C,D)-output nulling friend of V ⋆
(A,B,C,D) is also

an (A,B,C,D)-output nulling friend of R⋆
(A,B,C,D).

Moreover, the intersection of (A,B,C,D)-self bounded subspaces is (A,B,C,D)-self bounded.

Thus, if we define Φ(A,B,C,D) to be the set of (A,B,C,D)-self bounded subspaces, then Φ(A,B,C,D)

admits both a maximum, which is V ⋆
(A,B,C,D), and a minimum, which is R⋆

(A,B,C,D).

Most of the results on conditioned invariance are introduced by duality. We recall that the

dual of a quadruple (A,B,C,D) is the quadruple (A⊤,C⊤,B⊤,D⊤). A subspace S is said to

be a (C,A)-conditioned invariant subspace if the subspace inclusion A(S ∩kerC) ⊆ S holds.

The (C,A)-conditioned invariance condition can be equivalently expressed by saying that there

exists an output-injection matrix G such that (A+GC)S ⊆S . In this case, we say that G is a

conditioned invariant friend of S . A subspace L is (C,A)-conditioned invariant subspace if and

only if L ⊥ is (A⊤,C⊤)-controlled invariant. A subspace S is said to be an (A,B,C,D)-input

containing subspace if the subspace inclusion

[ A B ]
(
(S ⊕U )∩ker[ C D ]

)
⊆ S

holds. A subspace L is (A,B,C,D)-input containing if and only if L ⊥ is (A⊤,C⊤,B⊤,D⊤)-

output nulling. The condition of input containingingness can be equivalently expressed by saying

that there exists an output-injection matrix G such that
[

A+GC

B+GD

]
(S ⊕U )⊆ S .

In this case, we say that G is an (A,B,C,D)-input containing friend of S . It is easy to see that

if G is an (A,B,C,D)-input containing friend of S , we have also

im
(
(λ I −A−GC)−1(B+GD)

)
⊆ S (4)

for all λ ∈ C in the complexification of X , see [13]. We denote by G(A,B,C,D)(S ) the set of

(A,B,C,D)-input containing friends of S . The set of (A,B,C,D)-input containing subspaces is

closed under intersection. Thus, we can define the smallest (A,B,C,D)-input containing subspace

April 27, 2021 DRAFT
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S ⋆
(A,B,C,D) (also referred to as the strongly controllable subspace). The sequence of subspaces

(Si)i∈N given by




S0 = 0X

Si+1 = [ A B ]
(
(Si ⊕U )∩ker[ C D ]

)

is monotonically non-decreasing and converges to S ⋆
(A,B,C,D) in at most n− 1 steps, i.e., S0 ⊂

S1 ⊂ . . .⊂Sh =Sh+1 = . . . implies S ⋆
(A,B,C,D) =Sh, with h ≤ n−1. There holds also S ⋆

(A,B,C,D) =(
V ⋆

(A⊤,C⊤,B⊤,D⊤)

)⊥
.

Given an (A,B,C,D)-input containing subspace S and a corresponding (A,B,C,D)-input

containing friend G, we define the (A,B,C,D)-detectability subspace associated to it as

QS = 〈S +C−1 imD |A+GC〉,

and is the orthogonal complement of the reachability subspace on S ⊥. The eigenvalues of

A+GC, for G ∈ G(A,B,C,D)(S ), can be divided into the eigenvalues of the mapping A+GC |S

and the eigenvalues of A + GC | X
S . In turn, the eigenvalues of A + GC |S can be divided

into two multi-sets: the eigenvalues of A+GC |(S ∩Q) are fixed, whereas the eigenvalues of

A+GC | S
S∩Q all freely assignable with a suitable choice of G ∈ G(A,B,C,D)(S ). Likewise, the

eigenvalues of A+GC | QS
S are fixed, while the eigenvalues of A+GC | X

QS
are freely assignable

with a suitable choice of G ∈G(A,B,C,D)(S ). The fixed poles of S are defined as the unassignable

eigenvalues of A+GC with G ∈G(A,B,C,D)(S ), i.e.,

σfixed(S )
def

= σ

(
A+GC

∣∣∣QS

S

)
⊎σ

(
A+GC

∣∣∣S ∩Q
)
,

or, which is the same, as

σfixed(S ) = σ

(
A+GC

∣∣∣ QS

S +Q

)
⊎σ

(
A+GC

∣∣∣Q
)
, G ∈G(A,B,C,D)(S ).

We say that the (A,B,C,D)-input containing subspace S is

• internally detectable if there exists G ∈ G(A,B,C,D)(S ) such that σ(A+GC |S ) ⊂ Cg, or,

equivalently, if σ(A+GC |S ∩Q) ⊂ Cg;

• externally detectable if there exists G ∈ G(A,B,C,D)(S ) such that σ(A+GC | X
S ) ⊂ Cg, or,

equivalently, if σ(A+GC | QS
S )⊂ Cg.

An (A,B,C,D)-input containing subspace that is externally detectable is also referred to as

an (A,B,C,D)-detectability input containing subspace: specifically, an (A,B,C,D)-input con-

taining subspace S is an (A,B,C,D)-detectability input containing subspace if there exists

G ∈G(A,B,C,D)(S ) such that σ(A+GC | X
S )⊂ Cg.

The set of (A,B,C,D)-detectability input containing subspaces admits a minimum, that we

denote by S ⋆
(A,B,C,D),g: there holds S ⋆

(A,B,C,D),g =
(
V ⋆

(A⊤,C⊤,B⊤,D⊤),g

)⊥
.
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X

Fig. 1. Hasse diagrams of output nulling and input containing subspaces. All the subspaces refer to the quadruple (A,B,C,D),

but the pedix (A,B,C,D) has been dropped for the sake of readability.

An input containing subspace Q for which an (A,B,C,D)-input containing friend G exists

such that the spectrum of A+GC | X
Q is arbitrary is called an (A,B,C,D)-unobservability input

containing subspace. The set of (A,B,C,D)-unobservability input containing subspaces is closed

under intersection, and thus it admits a minimum, that we denote by Q⋆
(A,B,C,D): there holds

S ⋆
(A,B,C,D) ⊆ S ⋆

(A,B,C,D),g ⊆ Q⋆
(A,B,C,D).

There holds also Q⋆
(A,B,C,D) =QS ⋆

(A,B,C,D)
. The spectrum A+GC |

Q⋆
(A,B,C,D)

S ⋆
(A,B,C,D)

coincides with the invari-

ant zero structure of the system, so that Z(A,B,C,D) = σ(A+BF |
V ⋆
(A,B,C,D)

R⋆
(A,B,C,D)

) = σ(A+GC |
Q⋆

(A,B,C,D)

S ⋆
(A,B,C,D)

).

Finally, we recall that Q⋆
(A,B,C,D) is the dual of R⋆

(A,B,C,D), i.e., Q⋆
(A,B,C,D) =

(
R⋆

(A⊤,C⊤,B⊤,D⊤)

)⊥
.

We say that an (A,B,C,D)-input containing subspace S is (A,B,C,D)-self hidden if one of

the following equivalent conditions holds:

1) S ⊆ S ⋆
(A,B,C,D)+C−1 imD;

2) S ⊆ Q⋆
(A,B,C,D).

Thus, Q⋆
(A,B,C,D) and S ⋆

(A,B,C,D) are (A,B,C,D)-self hidden subspaces. If S1 and S2 are (A,B,C,D)-

self hidden subspaces and S1 ⊆S2, then every (A,B,C,D)-input containing friend of S1 is also

an (A,B,C,D)-input containing friend of S2, i.e., G(A,B,C,D)(S1) ⊆ G(A,B,C,D)(S2). In particular,
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every (A,B,C,D)-input containing friend of S ⋆
(A,B,C,D) is also an (A,B,C,D)-input containing

friend of Q⋆
(A,B,C,D).

Moreover, the sum of (A,B,C,D)-self hidden subspaces is (A,B,C,D)-self hidden. Thus, if

we define Ψ(A,B,C,D) to be the set of (A,B,C,D)-self hidden subspaces, then Ψ(A,B,C,D) admits both

a maximum, which is Q⋆
(A,B,C,D), and a minimum, which is S ⋆

(A,B,C,D).

We recall also the two well-known identities

R⋆
(A,B,C,D) = V ⋆

(A,B,C,D)∩S ⋆
(A,B,C,D),

Q⋆
(A,B,C,D) = V ⋆

(A,B,C,D)+S ⋆
(A,B,C,D).

IV. DUAL LATTICE STRUCTURES

The following results extend the classic results that relate the concepts of output nullingness

and input containingness, see [3, Chpt. 5].

Lemma 1: Let V be an (A,B,C,D)-output nulling subspace and let S be an (A,B,C,D)-input

containing subspace. Then, S ⊇ B kerD and V ⊆C−1 imD.

Proof: We have

B kerD = [ A B ]
(
(0X ⊕U )∩ker[ C D ]

)
⊆ [ A B ]

(
(S ⊕U )∩ker[ C D ]

)
⊆ S ,

which proves the first. The second can be proved by duality.

Theorem 1: Let V be an (A,B,C,D)-output nulling subspace and let S be an (A,B,C,D)-input

containing subspace. Then:

• V ∩S is an (A,B,C,D)-output nulling subspace;

• V +S is an (A,B,C,D)-input containing subspace.

Proof: We prove the first. Let us consider x ∈ V ∩S . Since x ∈ V , there exist xv ∈ X and

ω ∈ U such that
[

A

C

]
x =

[
xv

0

]
+
[

B

D

]
ω , which can be written as the two equations

Ax = xv +Bω, (5)

C x = Dω. (6)

Since x ∈S , there exist xs ∈X and u ∈U such that [ A B ]
[ x

u

]
= xs and C x+Du = 0, which

can be written as

Ax+Bu = xs, (7)

C x+Du = 0. (8)

Subtracting (5) to (7) gives xs − xv = B(ω −u), and subtracting (6) to (8) gives D(ω −u) = 0,

so that xs − xv ∈ B kerD ⊆ S . It follows that xv ∈ S . From (5-6), it follows that
[

A

C

]
x ∈
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((V ∩S )⊕0Y ) + im
[

B

D

]
, and since x ∈ V ∩S , the subspace V ∩S is (A,B,C,D)-output

nulling. The second can be proved by duality.

We now consider the two quadruples (A,B,E,Dz) and (A, [ B H ],E, [ Dz Gz ]). We denote

by (V̂i)i∈N and (Ṽi)i∈N the two sequences that converge in at most n−1 steps to V ⋆
(A,B,E,Dz)

and

V ⋆
(A,[B H ],E,[Dz Gz ])

, respectively. Similarly, we denote by S ⋆
(A,B,E,Dz)

and S ⋆
(A,[B H ],E,[Dz Gz ])

the corre-

sponding smallest input containing subspaces, and by (Ŝi)i∈N and (S̃i)i∈N the two sequences

that converge in at most n− 1 steps to S ⋆
(A,B,E,Dz)

and S ⋆
(A,[B H ],E,[Dz Gz ])

, respectively. In general,

V ⋆
(A,B,E,Dz)

⊆ V ⋆
(A,[B H ],E,[Dz Gz ])

and S ⋆
(A,B,E,Dz)

⊆ S ⋆
(A,[B H ],E,[Dz Gz ])

; indeed, V̂i ⊆ Ṽi and Ŝi ⊆ S̃i for all

i ∈ N. However, when the inclusion im
[

H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕ 0Z )+ im

[
B

Dz

]
holds true, we have

V̂i = Ṽi for all i ∈ N, [10, Lemma 3]. Even if we still have Ŝi ⊆ S̃i for all i ∈ N, the identity

Ṽi + S̃ j = V̂i + S̃ j = V̂i + Ŝ j holds for all i, j ∈ N, as the following result shows.

Lemma 2: Let im
[

H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+ im

[
B

Dz

]
hold. Then,

V̂i + S̃ j = V̂i + Ŝ j

for all i, j ∈ N.

Proof: We start proving by induction that S̃ j ⊆ V ⋆
(A,B,E,Dz)

+ Ŝ j for all j ∈ N. The statement

is trivially true for j = 0. Suppose that S̃i ⊆ V ⋆
(A,B,E,Dz)

+ Ŝi for a certain i ∈ N, and we prove

that S̃i+1 ⊆ V ⋆
(A,B,E,Dz)

+ Ŝi+1. Let x ∈ S̃i+1. There exist x1 ∈ S̃i, u ∈ U and w ∈ W such that

x = Ax1 +Bu+H w and E x1 +Dz u+Gz w = 0. From im
[

H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+ im

[
B

Dz

]
, we

can find two matrices M and N of suitable sizes such that H =V M+BN and Gz = Dz N, where

V is a basis matrix of V ⋆
(A,B,E,Dz)

. We can rewrite the previous two identities as

x = Ax1 +Bu+(V M+BN)w

and

E x1 +Dz u+(Dz N)w = 0,

i.e.,

x = Ax1 +B(u+N w)+V M w

and

E x1 +Dz (u+N w) = 0.

Since x1 ∈ S̃i ⊆ V ⋆
(A,B,E,Dz)

+Ŝi, from the inductive assumption, we can write x1 = xv+xs, where

xv ∈ V ⋆
(A,B,E,Dz)

and xs ∈ Ŝi, so that

x = Axv +Axs +B(u+N w)+V M w

and

E xv +E xs +Dz (u+N w) = 0.
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Let F ∈ F(A,B,E,Dz)(V
⋆
(A,B,E,Dz)

). Adding and subtracting BF xv in the right hand-side of the first

equation and DF xv in the right hand-side of the second equation gives

x = Axs +B(u+N w−F xv)+(A+BF)xv +V M w,

0 = E xs +Dz (u+N w−F xv)+(E +Dz F)xv.

Clearly, (A+BF)xv+V M w ∈ V ⋆
(A,B,E,Dz)

and (E +Dz F)xv = 0. Defining ω = u+N w−F xv and

ξ = Axs +Bω , since E xs +Dz ω = 0 with xs ∈ Ŝi, it follows that ξ ∈ Ŝi+1. Thus, x ∈ Ŝi+1 +

V ⋆
(A,B,E,Dz)

as required. We have proved that S̃ j ⊆ V ⋆
(A,B,E,Dz)

+Ŝ j for all j ∈N. Clearly, V ⋆
(A,B,E,Dz)

+

S̃ j ⊆ V ⋆
(A,B,E,Dz)

+ Ŝ j for all j ∈ N. Since V ⋆
(A,B,E,Dz)

= V ⋆
(A,[B H ],E,[Dz Gz ])

, we have V ⋆
(A,[B H ],E,[Dz Gz ])

+

S̃ j ⊆ V ⋆
(A,B,E,Dz)

+ Ŝ j for all j ∈ N. Since we showed that V ⋆
(A,[B H ],E,[Dz Gz ])

+ S̃ j ⊇ V ⋆
(A,B,E,Dz)

+ Ŝ j,

we get V ⋆
(A,B,E,Dz)

+ S̃ j = V ⋆
(A,B,E,Dz)

+ Ŝ j for all j ∈ N. Finally, since V̂i ⊇ V ⋆
(A,B,E,Dz)

for all i ∈ N,

then V̂i + S̃ j = V̂i + Ŝ j for all i, j ∈ N.

Following the notation of [3], we denote

Vm
def

= R⋆
(A,[B H ],E,[Dz Gz ])

= V ⋆
(A,[B H ],E,[Dz Gz ])

∩S ⋆
(A,[B H ],E,[Dz Gz ])

= minΦ(A,[B H ],E,[Dz Gz ]).

If im
[

H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+ im

[
B

Dz

]
, then we have Vm = V ⋆

(A,B,E,Dz)
∩S ⋆

(A,[B H ],E,[Dz Gz ])
in view

of Theorem 9.

We now consider the two quadruples (A,H,C,Gy) and
(

A,H,
[

C
E

]
,
[

Gy
Gz

])
. We denote by

(V̌i)i∈N and (V̄i)i∈N the two sequences that converge in at most n− 1 steps to V ⋆
(A,H ,C,Gy)

and

V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]), respectively. Similarly, we denote by (Ši)i∈N and (S̄i)i∈N the two sequences

that converge in at most n− 1 steps to S ⋆
(A,H ,C,Gy)

and S ⋆(
A,H ,[C

E
],
[

Gy
Gz

]), respectively. In general,

V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) ⊆ V ⋆
(A,H ,C,Gy)

and S ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) ⊆ S ⋆
(A,H ,C,Gy)

. When the inclusion ker[ E Gz ] ⊇

(S ⋆⊕W )∩ker[ C Gy ] holds, we have Ši = S̄i for all i ∈ N from the dual of [10, Lemma

3]. The following result can be proved by dualizing the proof of Lemma 2.

Lemma 3: Let ker[ E Gz ]⊇ (S ⋆
(A,H ,C,Gy)

⊕W )∩ker[ C Gy ]. For all i, j ∈ N there holds

V̄i ∩ Š j = V̌i ∩ Š j.

Following the notation of [3], we denote

SM
def

= Q⋆(
A,H ,[C

E
],
[

Gy
Gz

])

= V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])+S ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) = maxΨ(
A,H ,[C

E
],
[

Gy
Gz

]).

If ker[ E Gz ]⊇ (S ⋆
(A,H ,C,Gy)

⊕W )∩ker[ C Gy ], we have SM = V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])+S ⋆
(A,H ,C,Gy)

.

The proof of the following result is straightforward.
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Lemma 4: The following inclusions hold:

• V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) ⊆ V ⋆
(A,B,E,Dz)

⊆ V ⋆
(A,[B H ],E,[Dz Gz ])

;

• S ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) ⊆ S ⋆
(A,H ,C,Gy)

⊆ S ⋆
(A,[B H ],E,[Dz Gz ])

;

• S ⋆
(A,H ,C,Gy)

⊆ V ⋆
(A,B,E,Dz)

⇒ S ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) ⊆ V ⋆
(A,[B H ],E,[Dz Gz ])

.

Lemma 5: Let S ⋆
(A,H ,C,Gy)

⊆V ⋆
(A,B,E,Dz)

. Then, the subspace Vm+SM is (A, [ B H ],E, [ Dz Gz ])-

self bounded, and the subspace Vm ∩SM is
(

A,H,
[

C

E

]
,
[

Gy

Gz

])
-self hidden.

Proof: We find

Vm + SM = (V ⋆
(A,[B H ],E,[Dz Gz ])

∩S ⋆
(A,[B H ],E,[Dz Gz ])

)

+(S ⋆(
A,H ,[C

E
],
[

Gy
Gz

])+V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]))

=
(
(V ⋆

(A,[B H ],E,[Dz Gz ])
∩S ⋆

(A,[B H ],E,[Dz Gz ])
)+S ⋆(

A,H ,[C
E
],
[

Gy
Gz

])
)

+V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])

=
[
(V ⋆

(A,[B H ],E,[Dz Gz ])
+S ⋆(

A,H ,[C
E
],
[

Gy
Gz

]))∩ (S ⋆
(A,[B H ],E,[Dz Gz ])

+S ⋆(
A,H ,[C

E
],
[

Gy
Gz

]))
]
+V ⋆(

A,H ,[C
E
],
[

Gy
Gz

])

= (V ⋆
(A,[B H ],E,[Dz Gz ])

∩S ⋆
(A,[B H ],E,[Dz Gz ])

)+V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])

= Vm +V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]), (9)

in view of the modular rule [14, p. 16] and Lemma 4. We show that Vm+SM is (A, [ B H ],E, [ Dz Gz ])-

output nulling. The inclusion


A

C

E


V ⋆(

A,H ,[C
E
],
[

Gy
Gz

]) ⊆ (V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])⊕0Y ⊕Z )+ im




H

Gy

Gz




implies
[

A

E

]
V ⋆(

A,H ,[C
E
],
[

Gy
Gz

])⊆ (V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])⊕0Z )+im
[

H

Gz

]
, which in turn leads to

[
A

E

]
V ⋆(

A,H ,[C
E
],
[

Gy
Gz

])⊆

(V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])⊕0Z )+ im
[

B H

Dz Gz

]
. Adding this to

[
A

E

]
Vm ⊆ (Vm⊕0Z )+ im

[
B H

Dz Gz

]
(since Vm ∈

Φ(A,[B H ],E,[Dz Gz ]) yields
[

A

E

]
(Vm +V ⋆(

A,H ,[C
E
],
[

Gy
Gz

]))

⊆
(
(Vm +V ⋆(

A,H ,[C
E
],
[

Gy
Gz

]))⊕0Z

)
+ im

[
B H

Dz Gz

]
. (10)

Thus, Vm+SM is (A, [ B H ],E, [ Dz Gz ])-output nulling. The fact that Vm+V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) is

self bounded follows immediately from the inclusion Vm+V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])⊇Vm ⊇V ⋆
(A,[B H ],E,[Dz Gz ])

∩

[ B H ] ker[ Dz Gz ]. The second statement follows by duality.
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Corollary 1: Let S ⋆
(A,H ,C,Gy)

⊆ V ⋆
(A,B,E,Dz)

. The following results hold:

• If im
[

H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+ im

[
B

Dz

]
, then Vm +SM is (A,B,E,Dz)-self bounded.

• If ker [ E Gz ]⊇ (S ⋆
(A,H ,C,Gy)

⊕W )∩ker [ C Gy ], then Vm∩SM is (A,H,C,Gy)-self hidden.

Proof: Recall that im
[

H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+ im

[
B

Dz

]
implies im

[
H

Gz

]
⊆ (Vm⊕0Z )+ im

[
B

Dz

]

from Theorem 9. Using this inclusion into (10) we obtain
[

A

E

]
(Vm+V ⋆(

A,H ,[C
E
],
[

Gy
Gz

]))

⊆
(
(Vm+V ⋆(

A,H ,[C
E
],
[

Gy
Gz

]))⊕0Z

)
+ im

[
B H

Dz Gz

]

=
(
(Vm+V ⋆(

A,H ,[C
E
],
[

Gy
Gz

]))⊕0Z

)
+ im

[
B

Dz

]
+ im

[
H

Gz

]

⊆
(
(Vm+V ⋆(

A,H ,[C
E
],
[

Gy
Gz

]))⊕0Z

)
+ im

[
B

Dz

]
+(Vm ⊕0Z )

=
(
(Vm+V ⋆(

A,H ,[C
E
],
[

Gy
Gz

]))⊕0Z

)
+ im

[
B

Dz

]
.

We also need to prove that Vm +SM ⊇ V ⋆
(A,B,E,Dz)

∩ B kerDz: this follows from Vm +SM ⊇

V ⋆
(A,B,E,Dz)

∩ [ B H ] ker[ Dz Gz ]. The second can be proved by duality.

V. PROBLEM SOLUTION

We begin by first presenting the following result, see [13, Lemma 3.2]. The proof can be

carried out along the same lines of the proof of [14, Lemma 6.3]. The next few preliminary

results involve integers n1,n2,m, p ∈ N \ {0}, a field F, a subspace M of F
n2 and a subspace

N of Fn1 . We also consider the matrices Ã ∈ F
n1×n2 , B̃ ∈ F

n1×m and C̃ ∈ F
p×n2 .

Lemma 6: There holds ÃM ⊆ N + im B̃ and Ã(M ∩kerC̃)⊆ N if and only if there exists

K ∈ Rm×p such that (Ã+ B̃KC̃)M ⊆ N .

Lemma 7: Let V be an (A,B,E,Dz)-output nulling subspace and let S be an (A,H,C,Gy)-

input containing subspace. If

(a) im

[
H

Gz

]
⊆ (V ⊕0Z )+ im

[
B

Dz

]
,

(b) ker [ E Gz ]⊇ (S ⊕W )∩ker [ C Gy ],

(c) S ⊆ V ,

then there exists an output feedback matrix K such that
[

A+BKC H +BK Gy

E +Dz KC Gz +Dz K Gy

]
(S ⊕W )⊆ V ⊕0Z . (11)
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Conversely, if K exists such that (11) holds, then (a-b) hold.

Proof: We prove that if (a-c) hold, then K exists such that (11) holds. Since V is (A,B,E,Dz)-

output nulling, we have
[

A

E

]
V ⊆ V ⊕0Z + im

[
B

Dz

]
. Combining this inclusion with (a) yields[

A H

E Gz

]
(V ⊕W )⊆ V ⊕0Z + im

[
B

Dz

]
. From (c), we also have

[
A H

E Gz

]
(S ⊕W )⊆ V ⊕0Z + im

[
B

Dz

]
. (12)

Similarly, since S is (A,H,C,Gy)-input containing, we have [ A H ]
(
S ⊕W ∩ker[ C Gy ]

)
⊆

S . Taking (b) into account gives
[

A H

E Gz

] (
S ⊕W ∩ker[ C Gy ]

)
⊆S ⊕0Z . Again, from (c)

we obtain [
A H

E Gz

] (
S ⊕W ∩ker[ C Gy ]

)
⊆ V ⊕0Z . (13)

We can now apply Lemma 6 considering the two inclusions (12) and (13), i.e., by considering

Ã→
[

A H

E Gz

]
, B̃→

[
B

Dz

]
, C̃ → [ C Gy ], as well as the subspaces M =S ⊕W and N =V ⊕0Z .

Thus, there exists K ∈ Rp×m such that([
A H

E Gz

]
+

[
B

Dz

]
K [ C Gy ]

)
(S ⊕W )⊆ V ⊕0Z ,

which is exactly (11). We now prove the converse. Let K be such that (11) holds. Let S be a

basis matrix of S and V be a basis matrix of V . We can re-write (11) as[
A+BKC H +BK Gy

E +Dz KC Gz +Dz K Gy

][
S 0

0 I

]
=

[
V

0

]
X (14)

for some matrix X of suitable size, which gives the two equations H +BK Gy =V X and Gz +

Dz K Gy = 0. These can be rewritten together as
[

H

Gz

]
=
[

V

0

]
X +

[
B

Dz

]
(−K Gy), so that (a) holds.

From (14) we also find

[ E Gz ]

[
S 0

0 I

]
+Dz K [ C Dy ]

[
S 0

0 I

]
= 0. (15)

Let
[ x

y

]
∈S ⊕W ∩ker[ C Dy ]. Then there exists η such that

[ x
y

]
=
[

S 0

0 I

]
η . Multiplying (15)

by η , since
[ x

y

]
∈ ker[ C Dy ], we find [ E Gz ]

[ x
y

]
= 0, so that (b) holds.

Example 5.1: The existence of a matrix K satisfying (11) for an (A,B,E,Dz)-output nulling

subspace V and an (A,H,C,Gy)-input containing subspace S does not imply the condition

S ⊆ V . Consider for example

A =

[
0 0 0

0 0 0

0 −1 1

]
, B =

[
−1 0

1 0

0 0

]
, H =

[
1

−1

0

]
,

C =
[

1 1 0

0 1 0

]
, Dy =

[
0 0

0 0

]
, Gy =

[
−1

0

]
,

E = [ 1 0 0 ] , Dz = [0 1 ], Gz = 1,
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with the subspaces V = span
{[

1
0
0

]
,
[

0
0
1

]}
and S = span

{[
0
2
7

]}
. One can easily verify that

K =
[

1 −1

1 −1

]
satisfies (11), and that V and S are, respectively, (A,B,E,Dz)-output nulling and

(A,H,C,Gy)-input containing; in addition, V satisfies (a) and S satisfies (b) of Lemma 7.

However, clearly (c) is not satisfied in this case.

The following result contains the generalization of a fundamental property to the case where all

the feedthrough matrices are allowed to be nonzero. The major technical difficulty is the fact that

in this case, the well-posedness needs to be taken into account. In other words, while showing

that the conditions of the following theorem are sufficient for the existence of a decoupling filter

only requires more convoluted matrix manipulations with respect to the strictly proper case, the

necessity needs to be addressed more carefully.

Theorem 2: Problem 1 is solvable if and only if there exist an (A,B,E,Dz)-output nulling

subspace V , an (A,H,C,Gy)-input containing subspace S and a matrix K ∈ Rm×p such that

(i) im

[
H

Gz

]
⊆ (V ⊕0Z )+ im

[
B

Dz

]
;

(ii) ker [ E Gz ]⊇ (S ⊕W )∩ker [ C Gy ];

(iii) S ⊆ V ;

(iv) I +K Dy is non-singular, and K satisfies
[

A+BKC H +BK Gy

E +Dz KC Gz +Dz K Gy

]
(S ⊕W )⊆ V ⊕0Z . (16)

Proof: (If). We define the compensator matrices as

Ac = A+GC+(B+GDy)(I+K Dy)
−1(F −KC),

Bc = (B+GDy)(I +K Dy)
−1K −G,

Cc = (I +K Dy)
−1(F −KC),

Dc = (I +K Dy)
−1 K.

(17)

where F ∈ F(A,B,E,Dz)(V ), so that
[

A+BF

E+Dz F

]
V ⊆ V ⊕ 0Z , and where G ∈ G(A,H ,C,Gy)(S ), so that

[ A+GC H +GGy ](S ⊕W )⊆S . Using these matrices in (1) and using the matrix inversion

lemma1, after some lengthy but standard matrix manipulations we obtain

Â =

[
A+BKC B(F −KC)
(BK −G)C A+GC+BF −BKC

]
, Ĥ =

[
H +BK Gy

(BK−G)Gy

]
,

Ĉ = [ E +Dz KC Dz (F −KC) ], Ĝ = Gz +Dz K Gy.

1Given matrices P,Q,R,S of conformable sizes such that P, R and P +QRS are invertible, there holds (P+QRS)−1 =

P−1 −P−1 Q(R−1 +SP−1 Q)−1 SP−1.
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Defining e = x− p, we obtain
[

Dx(t)
De(t)

]
=

[
A+BF B(KC−F)

0 A+GC

][
x(t)
e(t)

]
+

[
H +BK Gy

H +GGy

]
w(t),

z(t) = [ E +DzF Dz(KC−F) ]

[
x(t)
e(t)

]
+
(
Gz +DzKGy

)
w(t).

We now show that the transfer function Gz,w(λ ) is zero:

Gz,w(λ ) = [ E +DzF Dz(KC−F) ]

[
λ I−A−BF −B(KC−F)

0 λ I −A−GC

]−1[
H +BKGy

H +GGy

]
+Gz +Dz K Gy

= (E +DzF)(λ I−A−BF)−1(H +BKGy)

+(E +DzF)((λ I −A−BF))−1(BKC−BF)(λ I−A−GC)−1(H +GGy)

+Dz(KC−F)(λ I −A−GC)−1(H +GGy)+Gz+DzKGy

= (E +DzF)(λ I−A−BF)−1(H +BKGy)

+(E +DzF)(λ I−A−BF)−1(λ I −A−BF)(λ I−A−GC)−1(H +GGy)

−(E +DzF)(λ I−A−BF)−1(λ I −A−BKC)(λ I−A−GC)−1(H +GGy)

+Dz(KC−F)(λ I −A−GC)−1(H +GGy)+Gz+DzKGy

= (E +DzF)(λ I−A−BF)−1(H +BKGy)+E(λ I−A−GC)−1(H +GGy)

−(E +DzF)(λ I−A−BF)−1(λ I −A−BKC)(λ I−A−GC)−1(H +GGy)

+DzKC(λ I−A−GC)−1(H +GGy)+Gz+DzKGy

= (E +DzF)(λ I−A−BF)−1(H +BKGy)︸ ︷︷ ︸
T1(λ )

+(E +DzKC)(λ I−A−GC)−1(H +GGy)︸ ︷︷ ︸
T2(λ )

−(E +DzF)(λ I −A−BF)−1(λ I −A−BKC)(λ I−A−GC)−1(H +GGy)︸ ︷︷ ︸
T3(λ )

+Gz +DzKGy︸ ︷︷ ︸
T4

,

where we have used the identity BKC−BF = (λ I −A−BF)− (λ I −A−BK C). Now, (16)

is equivalent to

(A+BKC)S ⊆ V , (18)

(E +Dz KC)S = 0Z , (19)

im(H +BK Gy)⊆ V , (20)

Gz +Dz K Gy = 0. (21)

Eq. (20), together with the inclusion

ker
(
(E +Dz F)(λ I −A−BF)−1

)
⊇ V , (22)
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see (2), yields im(E+Dz F)(λ I−A−BF)−1(H+BK Gy)⊆ (E+Dz F)(λ I−A−BF)−1 V = 0Z ,

which proves that T1(λ ) is zero. Similarly, (19) with

im
(
(λ I −A−GC)−1(H +GGy)

)
⊆ S , (23)

see (4), yields (E +Dz KC)(λ I −A−GC)−1(H +GGy)⊆ (E +Dz KC)S = 0Z , so that T2(λ )

is zero. From (18) and S ⊆ V we find (λ I−A−BK C)S ⊆ V . Using this with (22) and (23)

gives

(E +DzF)(λ I−A−BF)−1(λ I −A−BKC)(λ I−A−GC)−1(H +GGy)

⊆ (E +Dz F)(λ I −A−BF)−1 (λ I −A−BKC)S ⊆ (E +Dz F)(λ I −A−BF)−1 V = 0Z .

Thus, T3(λ ) is zero. Finally, from (21) we find T4 =Gz+Dz K Gy = 0. It follows that Gz,w(λ )= 0.

(Only if). Let Ac, Bc, Cc and Dc exist such that I−Dy Dc is non-singular and Gz,w(λ ) = 0. This

implies that Ĝ = 0, and there exists an Â-invariant subspace Î such that imĤ ⊆ Î ⊆ kerĈ, see

[14, Thm. 4.6]. We start proving that V = p(Î ) is (A,B,E,Dz)-output nulling, where p denotes

the projection on X (see Appendix A). Let x ∈ V . There exists p ∈ P such that
[ x

p

]
∈ Î .

Since Î is Â-invariant, we have Â
[ x

p

]
∈ Î , i.e.

[
Ax+BDcW C x+BCc p+BDcW DyCc p

BcW C x+Ac p+BcW DyCc p

]
∈ Î ,

which implies Ax+BDc W C x+BCc p+BDcW DyCc p ∈ p(Î ). On the other hand, since Î ⊆

kerĈ, we have also Ĉ
[ x

p

]
= E x+Dz DcW C x+Dz Cc p+Dz DcW DyCc p = 0Z . We can write

these two equations together as
[

A

E

]
x+

[
B

Dz

]
(
DcW C x+Cc p+DcW DyCc p

)
∈ p(Î )⊕0Z ,

so that
[

A

E

]
x∈ p(Î )⊕0Z + im

[
B

Dz

]
. Thus V = p(Î ) is (A,B,E,Dz)-output nulling as required.

Now we prove that S = i(Î ) is (A,H,C,Gy)-input containing, where i denotes the intersection

(see Appendix A). Let
[ x

w

]
∈ S ⊕W ∩ ker[ C Gy ]. We need to prove that [ A H ]

[ x
w

]
∈

S . Since x ∈ S = i(Î ), we obtain
[ x

0

]
∈ Î , and since Î is Â-invariant, we find Â

[ x

0

]
=[

Ax+BDc W C x

BcW C x

]
∈ Î . Since Î ⊆ imĤ, we can write Ĥ w ∈ Î , i.e.,

[
H+BDcW Gy

BcW Gy

]
w ∈ Î . From

the last two relations we find
[

Ax+BDcW C x+H w+BDcW Gy w

BcW C x+BcW Gy w

]
∈ Î .

Since
[ x

w

]
∈ ker[ C Gy ], the latter can be simplified to

[
Ax+H w

0

]
∈ Î , i.e., [ A H ]

[ x
w

]
∈

i(Î ) = S , as required.
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Now our aim is to show that (i-iii) are satisfied. Since Î ⊇ imĤ, it follows that p(Î ) ⊇

p(imĤ), see Lemma 8, which can be rewritten as V ⊇ im
(
H + BDcW Gy

)
. This inclusion

together with Ĝ= 0 leads to V ⊇ im(H+BΦ) and Gz+Dz Φ = 0, where Φ =DcW Gy. Denoting

by V a basis matrix of V , in view of the these equations there exists a matrix X such that

H +BΦ = V X and Gz +Dz Φ = 0, i.e.,
[

H

Gz

]
=
[

V

0

]
X +

[
B

Dz

]
Φ, so that (i) is satisfied. Since

Ĉ Î = 0Z , then
(
E+Dz DcW C

)
i(Î ) = 0Z , see Lemma 9. Since Ĝ = 0 then

(
E+ΨC

)
S = 0Z

and Gz +ΨGy = 0. Let Q be a full row-rank matrix such that kerQ = S ; we obtain kerQ ⊆

ker
(
E +ΨC

)
, so that a matrix K of suitable size exists such that ΘQ = E +ΨC. Thus E +

ΨC = ΘQ and Gz +ΨGy = 0, i.e., [ E Gz ] = Θ [ Q 0 ]−Ψ [ C Gy ], which another way

of writing ker[ E Gz ] ⊇ ker[ Q 0 ]∩ ker[ C Gy ]. Since ker[ Q 0 ] = S ⊕W , we obtain

ker[ E Gz ]⊇ (S ⊕W )∩ker[ C Gy ]. We have proved (i-ii). The proof of (iii) follows from

i(Î )⊆ p(Î ).

From Lemma 7 there exists K ∈ Rm×p such that (11) holds. We show that one of such K is

also such that I+K Dy is non-singular. Let K =DcW . From the matrix inversion lemma, I+K Dy

is non-singular. It remains to prove that K satisfies (11). Rewriting (11) using K = DcW gives
[

A+BDcW C H +BDcW Gy

E +Dz DcW C Gz +Dz DcW Gy

]
(S ⊕W )⊆ V ⊕0Z .

Let
[ v

w

]
∈ S ⊕W . We want to prove that

[
Av+BDcW C v+H w+BDcW Gy w

E v+Dz DcW C v+Gz w+Dz DcW Gy w

]
∈ V ⊕0Z . (24)

Since v∈S = i(Î ), we have
[ v

0

]
∈ Î . Since Î is Â-invariant, we find Â

[ v

0

]
=
[

Av+BDcW C v

E v+Dz DcW C v

]
∈

Î . It follows that Av+BDcW C v ∈ p(Î ) = V . Moreover, since imĤ ⊆ Î , we have
[

H w+BDcW Gy w

BcWGy w

]
∈ Î .

In particular, H w+BDc W Gy w ∈ p(Î ) = V . We have proved that, in (24), there holds Av+

BDcW C v+H w+ BDcW Gy w ∈ p(Î ) = V . Since the system is disturbance decoupled, the

feedthrough Gz+Dz DcW Gy is zero. Hence, it remains to show that E v+Dz DcW C v = 0. This

follows from the fact that Ĉ Î = 0, so that Ĉ
[ v

0

]
= 0, which gives E v+Dz DcW C v = 0.

Remark 1: The statement of Theorem 2 involves conditions that are not independent. Indeed,

Lemma 7 showed the relationship between (i-iii) and condition (11) in (iv). Thus, if the necessity

and the sufficiency statements are kept separate, some of the conditions in the statement of

Theorem 2 are absorbed into the others. However, we prefer this way of presenting this result,

because it displays the symmetry between the two implications of the statement.
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Remark 2: The well-posedness condition on the invertibility of the matrix I+K Dy is essential

in the nonstrictly proper case. Indeed, there are cases where the entire set of all possible K

matrices satisfying (11) renders I +K Dy singular. Consider for example

A =

[
0 0 0

0 0 0

−1 0 0

]
, B =

[
0 0

−1 0

0 −1

]
, H =

[
1 0

0 1

1 0

]
,

C =
[
−1 0 0

0 1 1

]
, Dy =

[
1 0

0 −1

]
, Gy =

[
0 0

−1 −1

]
,

E = [0 0 1 ] , Dz = [−1 0 ] , Gz = [ 0 0 ] , S = span

{[
1

−1

1

]}
,

and V = R3. Subspace V is (A,B,E,Dz)-output nulling and S is (A,H,C,Gy)-input-input

containing, and they satisfy (i-iii) of Theorem 2. Thus, a matrix K exists that satisfies (11). One

can easily see that the set of all matrices K for which (11) is fulfilled is given by K =
[
−1 0

α β

]
,

where α,β are free parameters. Clearly, I+K Dy =
[

0 0

α −β

]
, which is singular for every choice

of α,β .

Remark 3: The if part of the proof of Theorem 2 offers a compensator structure which

involves a feedback matrix K such that (11) is satisfied, an (A,B,E,Dz)-ouput-nulling friend

F of V and an (A,H,C,Gy)-input containing friend G of S . This, however, does not constitute

a parameterization of all the decoupling filters. Consider for example a system described by the

matrices

A =
[

1 0

0 1

]
, B =

[
−1

0

]
, H =

[
1

0

]
, C = [ 1 0 ] ,

Dy = Gy = 1, E = [0 −1 ] , Dz = Gz = 0.

One can verify that the compensator described by Ac =
[

0 0

0 0

]
, Bc =

[
0

10

]
, Cc = [0 3 ] , Dc = 6

solves the disturbance decoupling problem. Inverting the last three equations of (17) we obtain

K = Dc (I −Dy Dc)
−1 =−6/5

F = (I −Dc Dy)
−1Cc +KC = [ −6/5 −3/5 ]

G = (I −Dc Dy)
−1(BDc−Bc) =

[
6/5

2

]
.

However, when using these values in the first of (17) we obtain A + GC + (B +GDy)(I +

K Dy)
−1(F −KC) = 1

5

[
11 3

10 35

]
, which does not coincide with Ac.2 Hence, the decoupling filter

proposed here does not fall in the category of those obtainable as in the proof of Theorem 2.

Nevertheless, it is still true that a compensator in the desired form can always be found. Indeed,

2Note also that matrix G is not an input containing friend of S .
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any (1×1) matrix K satisfies (11). For example, choosing K = 1/2 and the friends F = [ 1 0 ]

and G = 0, we obtain

Ac,1 = A+GC+(B+GDy)(I+KDy)
−1(F −KC) =

[
2/3 0

0 1

]
,

Bc,1 = (B+GDy)(I+KDy)
−1K −G =−

[
1/3

0

]
,

Cc,1 = (I +KDy)
−1(F −KC) = [ 1

3
0 ],

Dc,1 = (I +KDy)
−1 K = 1/3.

In other words, if there exists a compensator that solves the decoupling problem, it may not

be obtainable in the way described in the proof of Theorem 2. However, we know that we can

always find S and V as the intersection and projection of an invariant for the extended system

contained in kerĈ and containing imĤ and matrix K, and determining the friends of V and

S we can construct an alternative compensator that may not be the one we had originally. It

is now possible to better appreciate the role of condition (iv) in Theorem 2, which guarantees

that, even if the parameterization of the decoupling filters is not exhaustive, every controller is

associated to at least one feasible matrix K.

The solvability conditions of Theorem 2 can be also stated in terms of V ⋆
(A,B,E,Dz)

and S ⋆
(A,H ,C,Gy)

.

Corollary 2: Problem 1 is solvable if and only if there exist a matrix K ∈ Rm×p such that

(i) im

[
H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+ im

[
B

Dz

]
;

(ii) ker [ E Gz ]⊇ (S ⋆
(A,H ,C,Gy)

⊕W )∩ker [ C Gy ];

(iii) S ⋆
(A,H ,C,Gy)

⊆ V ⋆
(A,B,E,Dz)

;

(iv) I +K Dy is non-singular, and K satisfies[
A+BKC H +BKGy

E +DzKGy Gz +DzKGy

]
(S ⋆

(A,H,C,Gy)
⊕W )⊆ V ⋆

(A,B,E,Dz)
⊕ 0Z . (25)

Proof: The sufficiency is obvious from Theorem 2. Let us prove the necessity. Let the problem

be solvable. In view of Theorem 2, there exist two subspaces V and S and a matrix K satisfying

all the conditions in its statement. We find

im

[
H

Gz

]
⊆ (V ⊕0Z )+ im

[
B

Dz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+ im

[
B

Dz

]
,

ker [ E Gz ]⊇ (S ⊕W )∩ker [ C Gy ]⊇ (S ⋆
(A,H ,C,Gy)

⊕W )∩ker [ C Gy ],

S ⋆
(A,H ,C,Gy)

⊆ S ⊆ V ⊆ V ⋆
(A,B,E,Dz)

,

and[
A+BKC H +BK Gy

E +Dz KC Gz +Dz K Gy

]
(S ⋆

(A,H ,C,Gy)
⊕W ) ⊆

[
A+BKC H +BK Gy

E +Dz KC Gz +Dz K Gy

]
(S ⊕W )⊆ V ⊕0Z

⊆ V ⋆
(A,B,E,Dz)

⊕0Z .
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VI. SOLUTION OF PROBLEM 2

We now consider Problem 2. Two necessary solvability conditions are the asymptotic stabiliz-

ability of the pair (A,B) and the asymptotic detectability of the pair (C,A) [14, Thm. 3.40]. These

are, therefore, standing assumptions for this section. The following result provides a solution

to Problem 2 in terms of the largest (A,B,E,Dz)-stabilizability subspace and of the smallest

(A,H,C,Gy)-detectability subspace, see [13, Thm. 4.1].

Theorem 3: Problem 2 is solvable if and only if there exist a matrix K ∈ R
m×p such that

(i) im

[
H

Gz

]
⊆ (V ⋆

(A,B,E,Dz),g
⊕0Z )+ im

[
B

Dz

]
;

(ii) ker [ E Gz ]⊇ (S ⋆
(A,H ,C,Gy),g

⊕W )∩ker [ C Gy ];

(iii) S ⋆
(A,H ,C,Gy),g

⊆ V ⋆
(A,B,E,Dz),g

;

(iv) I +K Dy is non-singular, and K satisfies
[

A+BKC H +BKGy

E +DzKGy Gz +DzKGy

]
(S ⋆

(A,H,C,Gy),g
⊕W )⊆ V ⋆

(A,B,E,Dz),g
⊕ 0Z .

An immediate consequence is the following result.

Corollary 3: Problem 2 is solvable if and only if there exist an (A,B,E,Dz)-stabilizability

output nulling subspace V and an (A,H,C,Gy)-detectability input containing subspace S and

a matrix K ∈ R
m×p such that

(i) im

[
H

Gz

]
⊆ V ⊕0Z + im

[
B

Dz

]
;

(ii) [ E Gz ]
(
S ⊕W ∩ker[ C Gy ]

)
= 0Z ;

(iii) S ⊆ V ;

(iv) I +K Dy is non-singular, and K satisfies[
A+BKC H +BKGy

E +DzKGy Gz +DzKGy

]
(S ⊕W )⊆ V ⊕ 0Z . (26)

Proof: (Only if). It follows directly from Theorem 3, by taking V = V ⋆
(A,B,E,Dz),g

and S =

S ⋆
(A,H ,C,Gy),g

.

(If). Since V is internally stabilizable, in view of the stabilizability of the pair (A,B), V is also

externally stabilizable; thus, there exists an output nulling friend F of V such that A+BF is

asymptotically stable. Likewise, since S is externally detectable, the detectability of the pair

(C,A) ensures that S is also internally detectable; it follows that there exists an input containing

friend G of S such that A+GC is asymptotically stable. We can therefore follow the same

steps of the proof of Theorem 2, and we obtain that a matrix K exists such that (26) holds.

Defining the compensator matrices in the same way as in the proof of Theorem 2, we obtain
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that the eigenvalues of the closed-loop system are σ(A+BF)⊎σ(A+GC), and Gz,w(λ ) is zero.

We now generalize the solvability stated in terms of self bounded and self hidden subspaces,

namely Vm+SM in place of S ⋆
(A,H ,C,Gy)

and Vm in place of V ⋆
(A,B,E,Dz)

. The first and more important

step, which arises in the nonstrictly proper case, is to prove that the well-posedness condition

does not change if we choose these self bounded and self hidden subspaces instead of S ⋆
(A,H ,C,Gy)

and V ⋆
(A,B,E,Dz)

.

Theorem 4: Let Problem 1 be solvable. The set of matrices K that satisfy (25) coincides with

the set of matrices K that satisfy
[

A+BKC H +BKGy

E +DzKGy Gz +DzKGy

]
(SM ⊕W )⊆ (SM +Vm)⊕0Z . (27)

Proof: Since S ⋆
(A,H ,C,Gy)

⊆SM and V ⋆
(A,B,E,Dz)

⊇SM +Vm, if K satisfies (27), it also satisfies (25)

since[
A+BKC H +BKGy

E +DzKGy Gz +DzKGy

]
(S ⋆

(A,H ,C,Gy)
⊕W )⊆

[
A+BKC H +BKGy

E +DzKGy Gz +DzKGy

]
(SM ⊕W )

⊆ (SM +Vm)⊕0Z ⊆ V ⋆
(A,B,E,Dz)

⊕0Z .

We now prove that if K satisfies (25), it also satisfies (27). Let K be such that (25) holds.

Proving that K also satisfies (27) amounts to proving the four inclusions

(A+BKC)SM ⊆ SM +Vm, (28)

im(H +BK Gy)⊆ SM +Vm, (29)

(E +Dz K Gy)SM = 0, (30)

Gz +Dz K Gz = 0. (31)

Note that (31) trivially holds because K solves Problem 1 (see proof of Theorem 2). Consider

(30). We show that (E +Dz K Gy)S
⋆
(A,H ,C,Gy)

= 0Z implies (E +Dz K Gy)SM = 0Z . Recall that

SM = S ⋆(
A,H ,[C

E
],
[

Gy

Gz

])+V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]) = S ⋆
(A,H ,C,Gy)

+V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]),

where the last equality follows from the fact that Problem 1 is solved. From (E+Dz K Gy)S
⋆
(A,H ,C,Gy)

=

0 and Lemma 1

(E +Dz K Gy)SM = (E +Dz K Gy)V
⋆(
A,H ,[C

E
],
[

Gy
Gz

]) ⊆ (E +Dz K Gy)

([
C
E

]−1

im

[
Gy

Gz

])
.

We prove that

(E +Dz K Gy)



[

C

E

]−1

im

[
Gy

Gz

]
= 0,
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i.e.,
[

C

E

]−1

im
[

Gy

Gz

]
⊆ ker(E +Dz K Gy). Let x be a vector of the left hand-side, so that

[
C

E

]
x ∈

im
[

Gy

Gz

]
, so that there exists w such that C x = Gy w and E x = Gz w. Thus,

(E +Dz K Gy)x = Gz w+Dz K Gy w = (Gz+Dz K Gz)w = 0,

as required. Consider (29). We need to prove that im(H +BK Gy) ⊆ V ⋆
(A,B,E,Dz)

implies im(H +

BK Gy) ⊆ SM +Vm. Using the last inclusion SM +Vm ⊇ V ⋆
(A,B,E,Dz)

∩ [ B H ] ker[ Dz Gz ] in

the proof of Corollary 1, we only need to prove that im(H +BK Gy)⊆ [ B H ] ker[ Dz Gz ].

Let x ∈ im(H +BK Gy). There exists w such that x = (H +BK Gy)w. Let g = K Gy w, so that

x = H w+Bg and from (iv) we also have Gz+Dz K Gz = 0. Multiplying this by w gives Gz w+

Dz g = 0. Therefore, x = [ B H ]
[ g

w

]
, where Gz w+Dz g = 0. Thus x ∈ [ B H ] ker[ Dz Gz ]

as required. We now prove (28). We have to prove that (A+BKC)S ⋆
(A,H ,C,Gy)

⊆ V ⋆
(A,B,E,Dz)

implies

(A+BKC)SM ⊆ SM +Vm. Recall again that, since Problem 1 is solved,

SM = V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])+S ⋆(
A,H ,[C

E
],
[

Gy

Gz

]) = V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])+S ⋆
(A,H ,C,Gy)

and

SM +Vm = Vm +V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])

from the proof of Lemma 5. Thus

SM +Vm

=
(
S ⋆

(A,[B H ],E,[Dz Gz ])
∩V ⋆

(A,[B H ],E,[Dz Gz ])

)
+V ⋆(

A,H ,[C
E
],
[

Gy

Gz

])

= (S ⋆
(A,[B H ],E,[Dz Gz ])

+V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]))∩V ⋆
(A,[B H ],E,[Dz Gz ])

= (S ⋆
(A,[B H ],E,[Dz Gz ])

+V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]))∩V ⋆
(A,B,E,Dz)

.

Using these, we need to show that

(A+BKC)(V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])+S ⋆
(A,H ,C,Gy))

⊆ (S ⋆
(A,[B H ],E,[Dz Gz ])

+V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]))∩V ⋆
(A,B,E,Dz)

.

This reduces to the four inclusions

(a) (A+BKC)V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]) ⊆ S ⋆
(A,[B H ],E,[Dz Gz ])

+V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])

(b) (A+BKC)V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) ⊆ V ⋆
(A,B,E,Dz)

(c) (A+BKC)S ⋆
(A,H ,C,Gy)

⊆ S ⋆
(A,[B H ],E,[Dz Gz ])

+V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])

(d) (A+BKC)S ⋆
(A,H ,C,Gy)

⊆ V ⋆
(A,B,E,Dz)

.
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Clearly (d) is satisfied because Problem 1 is solvable. We prove (b). The subspace V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])

satisfies 


A

C

E


V ⋆(

A,H ,[C
E
],
[

Gy
Gz

]) ⊆

(
V ⋆(

A,H ,[C
E
],
[

Gy
Gz

])⊕0Y ⊕0Z

)
+ im




H

Gy

Gz


 .

Let Ṽ be a basis matrix of V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]), so the latter inclusion ensures in particular the existence

of matrices Ξ and Θ of suitable sizes such that CṼ = Gy Θ and AṼ = Ṽ X +H Θ. It follows that

(A+BKC)Ṽ = Ṽ X +(H +BK Gy)Θ, so that

(A+BKC)V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]) ⊆ V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])+ im(H +BK Gy).

The inclusion V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]) ⊆ V ⋆
(A,B,E,Dz)

holds from Lemma 4, together with im(H +BK Gy) ⊆

V ⋆
(A,B,E,Dz)

, so that (A+BKC)V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])⊆V ⋆
(A,B,E,Dz)

. Now we prove (a). We have already shown

that im(H +BK Gy) ⊆ [ B H ] ker[ Dz Gz ]. Since S ⋆
(A,[B H ],E,[Dz Gz ])

⊇ [ B H ] ker[ Dz Gz ]

we have im(H+BK Gy)⊆S ⋆
(A,[B H ],E,[Dz Gz ])

. Adding to both member of this inclusion the subspace

V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) gives

V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])+ im(H +BKGy)⊆ V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])+S ⋆
(A,[B H ],E,[Dz Gz ])

.

We have also shown that

(A+BKC)V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]) ⊆ V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])+ im(H +BK Gy),

which readily gives

(A+BKC)V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) ⊆ V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])+S ⋆
(A,[B H ],E,[Dz Gz ])

.

Finally, we prove (c). We show in particular that

(A+BKC)S ⋆
(A,H ,C,Gy)

⊆ S ⋆
(A,[B H ],E,[Dz Gz ])

. (32)

The inclusion (b) can be written as3

(A⊤+C⊤K⊤B⊤)S ⋆
(A⊤,E⊤ ,B⊤,D⊤

z )
⊆ S ⋆

(A⊤,[C⊤ E⊤ ],H⊤,[G⊤
y G⊤

z ])
. (33)

and (33) is equivalent to (32). From (32), it is trivial to see that (b) holds as well.

Theorem 5: Problem 2 is solvable if and only if there exist a matrix K ∈ Rm×p such that

(A) im

[
H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+ im

[
B

Dz

]
;

3Recall that, if A ∈Rm×n, U is a subspace of Rn and H is a subspace of Rm, then AU ⊆H is equivalent to A⊤H ⊥ ⊆U ⊥.
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(B) ker[ E Gz ]⊇
(
(S ⋆

(A,H ,C,Gy)
⊕W )∩ker[ C Gy ]

)
;

(C) S ⋆
(A,H ,C,Gy)

⊆ V ⋆
(A,B,E,Dz)

;

(D) Vm +SM is an internally stabilizable (A,B,E,Dz)-output nulling subspace;

(E) SM is an externally detectable (A,H,C,Gy)-input containing subspace;

(F) I +K Dy is non-singular, and K satisfies[
A+BKC H +BKGy

E +DzKGy Gz +DzKGy

]
(S ⋆

(A,H,C,Gy)
⊕W )⊆ V ⋆

(A,B,E,Dz)
⊕ 0Z . (34)

Proof: (If) In view of Corollary 1, the subspace Vm +SM is (A,B,E,Dz)-output nulling,

while SM is obviously (A,H,C,Gy)-input containing. Since, from (D)-(E), Vm +SM is an

internally stabilizable (A,B,E,Dz)-output nulling subspace and SM is an externally detectable

(A,H,C,Gy)-input containing subspace, we can chose as (A,B,E,Dz)-stabilizability output nulling

subspace the subspace V =Vm+SM and as (A,H,C,Gy)-detectability input containing subspace

the subspace S = SM. We show that the condition of Corollary 3 are satisfied with this choice

of S and V . Condition (iii) is true by construction. Theorem 4 guarantees that condition (iv) is

also satisfied. Finally, in view of Lemma 7, the existence of a matrix K satisfying (iv) implies

that also conditions (i) and (ii) hold.

(Only if). We assume that Problem 2 is solvable. In view of Corollary 3, there exist an

(A,B,E,Dz)-stabilizability output nulling subspace V and an (A,H,C,Gy)-detectability input

containing subspace S such that conditions (i-iv) in Corollary 3 hold. Since S ⋆
(A,H ,C,Gy)

⊆ S

(minimality), V ⊆ V ⋆
(A,B,E,Dz)

(maximality), and S ⊆ V , we find that (A),(B), (C) and (F) are

satisfied. Now we prove (D) and (E). To this end, we show that there exists an internally stabi-

lizable (A,B,E,Dz)-self bounded subspace V̄ such that Vm ⊆ V̄ ⊆ Vm +SM and an externally

detectable (A,H,C,Gy)-self hidden subspace S̄ such that Vm∩SM ⊆ S̄ ⊆SM . Indeed, consider

V̄
def
=
(
V ∩ (Vm+SM)

)
+Vm = (V +Vm)∩ (Vm+SM),

S̄
def
=
(
S +(Vm∩SM)

)
∩SM = (S ∩SM)+(Vm∩SM).

Since im
[

H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+im

[
B

Dz

]
, from Corollary 1 the subspace Vm+SM is (A,B,E,Dz)-

self bounded. Moreover, since ker [ E Gz ] ⊇ (S ⋆
(A,H ,C,Gy)

⊕W )∩ ker [ C Gy ], then Vm ∩SM

is (A,B,C,Gy)-self hidden. From [10, Thm. 2], Vm is an internally stabilizable (A,B,E,Dz)-

output nulling subspace, and, dually, SM is an externally detectable (A,H,C,Gy)-input containing

subspace, so that (i) is proved. Since both V and Vm are (A,B,E,Dz)-output nulling subspaces,

so is also their sum V +Vm. Moreover, V +Vm is also (A,B,E,Dz)-self bounded; it follows

that the intersection V̄ = (V +Vm)∩ (Vm+SM) is (A,B,E,Dz)-self bounded. Since V +Vm is

(A,B,E,Dz)-self bounded and contains V̄ , which is also (A,B,E,Dz)-self bounded, an output

nulling friend F of V + Vm is also an output nulling friend of V̄ . Since we can choose

F so that V +Vm is internally stabilized, the same F stabilizes V̄ internally, i.e., V̄ is an

April 27, 2021 DRAFT



28

internally stabilizable (A,B,E,Dz)-output nulling subspace. Dually, since both S and SM are

externally detectable (A,H,C,Gy)-input containing subspaces, their intersection S ∩SM is

also externally detectable. Moreover, S ∩SM is also (A,H,C,Gy)-self hidden; thus, their sum

S̄ = (S ∩SM)+ (Vm ∩SM) is (A,H,C,Gy)-self hidden. Since S ∩SM is (A,H,C,Gy)-self

hidden and contained in S̄ , which is also (A,H,C,Gy)-self hidden, an input containing friend G

of S ∩SM is also an input containing friend of S̄ . Since we can choose G so that S ∩SM is

externally detected, the same G renders S̄ detected externally, so that S̄ is externally detectable.

From Theorem 9, im
[

H

Gz

]
⊆ (V ⋆

(A,B,E,Dz)
⊕0Z )+ im

[
B

Dz

]
implies im

[
H

Gz

]
⊆ (Vm⊕0Z )+ im

[
B

Dz

]
,

and from its dual ker [ E Gz ]⊇ (S ⋆
(A,H ,C,Gy)

⊕W )∩ker [ C Gy ] implies ker [ E Gz ]⊇ (SM ⊕

W )∩ ker [ C Gy ]. It follows that im
[

H

Gz

]
⊆ (Vm ⊕ 0Z )+ im

[
B

Dz

]
⊆ (V̄ ⊕ 0Z )+ im

[
B

Dz

]
and

ker [ E Gz ]⊇ (SM ⊕W )∩ker [ C Gy ]⊇ (S̄ ⊕W )∩ker [ C Gy ]. Finally, from S ⊆ V we

also have the following obvious inclusions

S ∩SM ⊆ S ⊆ V ⊆ V +Vm,

S ∩SM ⊆ SM ⊆ SM +Vm,

which imply that S ∩SM is contained in the intersection (V +Vm)∩ (SM +Vm) = V̄ ; likewise

SM ∩Vm ⊆ Vm ⊆ V +Vm

SM ∩Vm ⊆ Vm ⊆ Vm +SM

imply that SM ∩Vm is contained in the intersection V̄ = (V +Vm)∩ (SM +Vm). Their sum

S̄ = (S ∩SM)+(SM ∩Vm) is therefore also contained in V̄ . Thus, S̄ ⊆ V̄ .

We already observed that SM is externally detectable. We now prove that Vm+SM is internally

stabilizable. We use the change of coordinate given by a matrix T = [ T1 T2 T3 T4 ] such

that imT1 = Vm∩SM , im[ T1 T2 ] = Vm, im[ T1 T3 ] =SM , im[ T1 T2 T3 ] =SM +Vm. We

now show that it is always possible to choose T3 in such a way that imT3 ⊆C−1 imGy. To this

end, we prove that im[ T1 T3 ] =C−1 imGy + imT1, which means that it is always possible to

choose T3 in such a way that imT3 ⊆C−1 imGy. We have by definition

SM = Q⋆(
A,H ,[C

E
],
[

Gy
Gz

])

= V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])+S ⋆(
A,H ,[C

E
],
[

Gy

Gz

])

= V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])+S ⋆
(A,H ,C,Gy)

,
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where the equality S ⋆(
A,H ,[C

E
],
[

Gy

Gz

]) = S ⋆
(A,H ,C,Gy)

is a consequence of Theorem 14. In view of

Lemma 1 we have V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])⊆
[

C

E

]−1

im
[

Gy

Gz

]
⊆C−1 imGy, which implies SM ⊆C−1 imGy+

S ⋆
(A,H ,C,Gy)

. We find

Vm ∩SM = R⋆
(A,[B H ],E,[Dz Gz ]

∩
(
V ⋆(

A,H ,[C
E
],
[

Gy

Gz

])+S ⋆(
A,H ,[C

E
],
[

Gy

Gz

])
)

=
(
V ⋆

(A,[B H ],E,[Dz Gz ]
∩S ⋆

(A,[B H ],E,[Dz Gz ]

)
∩
(
V ⋆(

A,H ,[C
E
],
[

Gy

Gz

])+S ⋆
(A,H ,C,Gy)

)

=
(
V ⋆

(A,B,E,Dz)
∩S ⋆

(A,[B H ],E,[Dz Gz ]

)
∩
(
V ⋆(

A,H ,[C
E
],
[

Gy
Gz

])+S ⋆
(A,H ,C,Gy)

)
, (35)

where we used Theorem 9 and, again, Theorem 14. From

V ⋆(
A,H ,[C

E
],
[

Gy

Gz

]) ⊆ V ⋆
(A,H ,E,Gz)

⊆ V ⋆
(A,[B H ],E,[Dz Gz ])

= V ⋆
(A,B,E,Dz)

,

where the equality comes from Theorem 9, and since S ⋆
(A,H ,C,Gy)

⊆V ⋆
(A,B,E,Dz)

, we find V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])+

S ⋆
(A,H ,C,Gy)

⊆ V ⋆
(A,B,E,Dz)

. We use this in (35) and obtain

Vm∩SM = S ⋆
(A,[B H ],E,[Dz Gz ]

∩ (V ⋆(
A,H ,[C

E
],
[

Gy
Gz

])+S ⋆
(A,H ,C,Gy)

). (36)

Consider the other inclusion (together with Theorem 14) S ⋆
(A,H ,C,Gy)

=S ⋆(
A,H ,[C

E
],
[

Gy

Gz

])⊆S ⋆
(A,H ,E,Gz)

⊆

S ⋆
(A,[B H ],E,[Dz Gz ])

. We can use the modular rule on (36) to obtain

Vm∩SM = S ⋆
(A,H ,C,Gy)

+(S ⋆
(A,[B H ],E,[Dz Gz ]

∩V ⋆(
A,H ,[C

E
],
[

Gy

Gz

])), (37)

where S ⋆
(A,[B H ],E,[Dz Gz ]

∩V ⋆(
A,H ,[C

E
],
[

Gy
Gz

]) ⊆C−1 imGy. Adding C−1 imGy to both sides of (37) yields

(Vm ∩SM)+C−1 imGy = S ⋆
(A,H ,C,Gy)

+C−1 imGy. Thus,

im[ T1 T3 ] = SM ⊆C−1 imGy +S ⋆
(A,H ,C,Gy)

= C−1 imGy +(Vm ∩SM) =C−1 imGy + imT1,

so that it is always possible to choose T3 in such a way that imT3 ⊆C−1 imGy.

Recall that Vm+SM is (A,B,E,Dz)-output nulling, see Lemma 5; if we denote by R⋆
Vm+SM

the

output nulling reachability subspace on Vm+SM , there holds (SM +Vm)∩B kerDz =R⋆
Vm+SM

∩

B kerDz. Again, since Vm+SM is (A,B,E,Dz)-output nulling, the subspace R⋆
Vm+SM

is contained

in R⋆
(A,B,E,Dz)

, which in turn is contained in Vm. Thus, im[ T1 T2 T3 ]∩B kerDz = im[ T1 T2 ]∩

B kerDz. Then, we can also choose T4 so that im[ T1 T2 T4 ] ⊇ B kerDz. Let A1 = T−1 AT ,
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B1 = T−1 B, H1 = T−1 H, C1 = C T , E1 = E T . Taking F1 to be an (A,B,E,Dz)-output nulling

friend of SM +Vm, we obtain

A1 +B1 F1 =




⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
0 0 A33 A34 +B32 F24

0 0 0 ⋆


 .

Since Vm ⊆ V̄ ⊆ SM +Vm, we can write V̄ = im[ T1 T2 ] +T3 X for a certain matrix X . In

the new basis, we can write

V̄ = im




I 0 0

0 I 0

0 0 X

0 0 0



.

Since V̄ is (A1 +B1 F1)-invariant, there exists a matrix M partitioned comformably such that



⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
0 0 A33 ⋆
0 0 0 A44 +B41F14 +B42F24







I 0 0

0 I 0

0 0 X

0 0 0


=




I 0 0

0 I 0

0 0 X

0 0 0







M11 M12 M13

M21 M22 M23

M31 M32 M33




︸ ︷︷ ︸
M

,

from which we find A33 X = X M33. Hence, imX is A3,3-invariant, and since V̄ is internally

stabilizable, then imX is an internally stable A3,3-invariant.

Similarly, choosing a friend G of Vm ∩SM we obtain

A1 +G1C1 =




⋆ ⋆ A13 +G11 C13 ⋆

0 ⋆ 0 ⋆

0 ⋆ A33 ⋆

0 ⋆ 0 ⋆


 .

Since SM∩Vm ⊆ S̄ ⊆SM , we can write S̄ = imT1+T3Y for a certain matrix Y . Since S̄ ⊆ V̄ ,

then T3Y ⊆ T3 X ; thus imY ⊆ imX . In the new basis, we can write

S̄ = im




I 0

0 0

0 Y

0 0



.

From the (A1+G1C1)-invariance of S̄ , there exists a matrix N partitioned comformably such that




⋆ ⋆ A13 +G11 C13 ⋆
0 ⋆ 0 ⋆
0 ⋆ A33 ⋆
0 ⋆ 0 ⋆







I 0

0 0

0 Y

0 0


=




I 0

0 0

0 Y

0 0




[
N11 N12

N21 N22

]

︸ ︷︷ ︸
N

,
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which yields A33Y = Y N22. Hence, imY is A33-invariant, and it is externally stabilizable since

S̄ is externally detectable. Now consider a further change of basis for A33 given by T̃ =

[ T̃1 T̃2 T̃3 ], where T̃1 is a basis for imY , and [ T̃1 T̃2 ] is a basis for imX . Then

T̃−1 A33 T̃ =




A1
33 ⋆ ⋆

0 A2
33 ⋆

0 0 A3
33


 .

Since imX is internally stabilizable, A1
33 and A2

33 are stable; Since imY is externally stabilizable,

A2
33 and A3

33 are stable. It follows that A33 is stable, so that SM +Vm is internally stabilizable.

CONCLUDING REMARKS

In this paper, we have developed a geometric solution to the disturbance decoupling by

dynamic output feedback for systems which are not necessarily strictly proper, using the notions

of self boundedness and self hiddenness. The building blocks of this solution do not require

eigenspace computations that are at the basis of a solution involving stabilizability and de-

tectability subspaces: the solution given here remains in the realm of finite arithmetics. The

crucial issue in the extension of the classical theory to the nonstrictly proper case is the well-

posedness of the closed-loop, which has to be handled separately from the other solvability

conditions. Importantly, in this paper we have showed that checking this condition for the pair of

subspaces V ⋆
(A,B,E,Dz),g

and S ⋆
(A,H ,C,Gy),g

, or for the pair of subspaces Vm+SM and SM , is equivalent

to checking the same condition for the pair of subspaces V ⋆
(A,B,E,Dz)

and S ⋆
(A,H ,C,Gy)

.
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APPENDIX A: PROJECTION AND INTERSECTION

Consider two vector spaces X and P . Let S be a subspace of X ⊕P . The linear operators

p, i are defined as

p(S )
def
=
{

x ∈ X
∣∣∣∃ p ∈ P :

[ x
p

]
∈ S

}

i(S )
def

=
{

x ∈ X
∣∣∣
[ x

0

]
∈ S

}
,

where p(S ) is referred to as the projection of S on X and i(S ) is the intersection of S

with X . It is easy to see that p(S ) and i(S ) are subspaces of X . Both operators preserve

addition and intersection, and p(W ⊥) =
(
i(W )

)⊥
, see [3, Prop. 5.1.3].

Lemma 8: Let W ⊇ im
[

H1

H2

]
. Then, p(W )⊇ imH1.

Lemma 9: Let W ⊆ ker[ C1 C2 ]. Then, i(W )⊆ kerC1.

APPENDIX B

In this Appendix, we recall some fundamental geometric results for a quadruple (A,B,C,D).

These are restatements or dualizations of the results in [6, Appx. A] and [10, Lemma 3], see

also [11, Sec. 5]. We begin by studying the inclusion imL ⊆ V ⋆
(A,B,C,D).

Theorem 6: [10, Lem. 3] Let imL ⊆ V ⋆
(A,B,C,D). The following results hold:

i) V ⋆
(A,B,C,D) = V ⋆

(A,[B L ],C,[D 0 ]);

ii) Φ(A,[B L ],C,[D 0 ]) ⊆ Φ(A,B,C,D);

iii) imL ⊆ V ∀V ∈ Φ(A, [B L ],C, [D 0 ]).

Theorem 7: [6, Prop. A.1] imL ⊆ V ⋆
(A,B,C,D) if and only if imL ⊆ R⋆

(A,[B L ],C,[D 0 ]).
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Theorem 8: [6, Prop. A.3] If imL ⊆ V ⋆
(A,B,C,D), the subspace R⋆

(A,[B L ],C,[D 0 ]) is the smallest of all

the (A,B,C,D)-self bounded subspaces V satisfying imL ⊆ V .

The following three results are a generalization of the last three: they are concerned with a

geometric condition in the form im
[

L1

L2

]
⊆ (V ⋆

(A,B,C,D)⊕0Y )+ im
[

B

D

]
which arises in the solution

of the decoupling of a measurable disturbance.

Theorem 9: Let im
[

L1

L2

]
⊆ (V ⋆

(A,B,C,D)⊕0Y )+ im
[

B

D

]
. The following results hold:

i) V ⋆
(A,B,C,D) = V ⋆

(A,[B L1 ],C,[D L2 ]);

ii) Φ(A,[B L1 ],C,[D L2 ]) ⊆ Φ(A,B,C,D);

iii) im
[

L1

L2

]
⊆ V ⊕0Y + im

[
B

D

]
∀V ∈ Φ(A,[B L1 ],C,[D L2 ]).

Theorem 10: im
[

L1

L2

]
⊆ (V ⋆

(A,B,C,D)⊕0Y )+ im
[

B

D

]
if and only if im

[
L1

L2

]
⊆ (R⋆

(A,[B L1 ],C,[D L2 ])⊕

0Y )+ im
[

B

D

]
.

Theorem 11: If im
[

L1

L2

]
⊆ (V ⋆

(A,B,C,D)⊕0Y )+ im
[

B

D

]
, the subspace R⋆

(A,[B L1 ],C,[D L2 ]) is the smallest

of all the (A,B,C,D)-self bounded subspaces V satisfying im
[

L1

L2

]
⊆ (V ⊕0Y )+ im

[
B

D

]
.

We now dualize all the previous results. The first three involve an inclusion S ⋆
(A,B,C,D) ⊆ kerM,

for some matrix M.

Theorem 12: Let S ⋆
(A,B,C,D) ⊆ kerM. The following hold:

i) S ⋆
(A,B,C,D) = S ⋆

(A,B,[C
M ],[

D
0 ])

;

ii) Ψ(A,B,[C
M ],[

D
0 ])

⊆ Ψ(A,B,C,D);

iii) S ⊆ kerM ∀S ∈ Ψ(A,B,[C
M ],[

D
0 ])

.

Theorem 13: S ⋆
(A,B,C,D) ⊆ kerM iff Q⋆

(A,B,[C
M ],[

D
0 ])

⊆ kerM.

Theorem 14: If S ⋆
(A,B,C,D) ⊆ kerM, the subspace Q⋆

(A,B,[C
M ],[

D
0 ])

is the largest of all the (A,B,C,D)-

self hidden subspaces S satisfying S ⊆ kerM.

Finally, we consider the generalization (S ⋆
(A,B,C,D)⊕U )∩ker[ C D ]⊆ ker[ M1 M2 ] of the

condition S ⋆
(A,B,C,D) ⊆ kerM.

Theorem 15: Let (S ⋆
(A,B,C,D)⊕U )∩ker[ C D ]⊆ ker[ M1 M2 ]. The following results hold:

i) S ⋆
(A,B,C,D) = S ⋆(

A,B,
[

C
M2

]
,
[

D
M2

]);

ii) Ψ(
A,B,

[
C

M1

]
,
[

D
M2

]) ⊆ Ψ(A,B,C,D);

iii) (S ⊕U )∩ker[ C D ]⊆ ker[ M1 M2 ] ∀S ∈ Ψ(
A,B,

[
C

M1

]
,
[

D
M2

]).

Theorem 16: (S ⋆
(A,B,C,D)⊕U )∩ker[ C D ]⊆ ker[ M1 M2 ] iff (Q⋆(

A,B,
[

C
M1

]
,
[

D
M2

])⊕U )∩ker[ C D ]⊆

ker[ M1 M2 ].

Theorem 17: If (S ⋆
(A,B,C,D)⊕U )∩ker[ C D ]⊆ ker[ M1 M2 ], the subspace Q⋆(

A,B,
[

C
M1

]
,
[

D
M2

]) is

the largest of all the (A,B,C,D)-self hidden subspaces S satisfying (S ⊕U )∩ker[ C D ]⊆

ker[ M1 M2 ].
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