
On Scalable Supervisory Control of Multi-Agent Discrete-Event Systems

Yingying Liu, Kai Cai, and Zhiwu Li (January 1, 2019)

Abstract— In this paper we study multi-agent discrete-event
systems where the agents can be divided into several groups,
and within each group the agents have similar or identical
state transition structures. We employ a relabeling map to
generate a ”template structure” for each group, and synthesize
a scalable supervisor whose state size and computational process
are independent of the number of agents. This scalability
allows the supervisor to remain invariant (no recomputation or
reconfiguration needed) if and when there are agents removed
due to failure or added for increasing productivity. The constant
computational effort for synthesizing the scalable supervisor
also makes our method promising for handling large-scale
multi-agent systems. Moreover, based on the scalable supervisor
we design scalable local controllers, one for each component
agent, to establish a purely distributed control architecture.
Three examples are provided to illustrate our proposed scalable
supervisory synthesis and the resulting scalable supervisors as
well as local controllers.

I. INTRODUCTION

Multi-agent systems have found increasing applications in
large-scale engineering practice where tasks are difficult to be
accomplished by a single entity. Examples include multiple
machines in factories, robots in manufacturing cells, and
AGVs in logistic systems [1], [2], [3]. Although not always
the case, multi-agent systems typically can be divided into
several groups, according to different roles, functions, or
capabilities. For instance, machines are grouped to process
different types of workpieces, robots to manufacture different
parts of a product, AGVs to transport items of distinct
sizes, shapes and weights. Agents in the same group often
have similar or even identical state transition structures, i.e.
dynamics. This we shall refer to as a modular characteristic.

In this paper we study multi-agent systems with such
a modular characteristic, and consider individual agents
modeled by discrete-event systems (DES). Given a control
specification, one may in principle apply supervisory control
theory [4], [5], [6] to synthesize a monolithic (i.e. central-
ized) supervisor for the entire multi-agent system. While
the supervisor computed by this method is optimal (i.e.
maximally permissive) and nonblocking, there are two main
problems. First, the state size of the supervisor increases
(exponentially) as the number of agents increases [7]; conse-
quently, the supervisor synthesis will become computation-

Yingying Liu is with School of Electro-Mechanical Engineering, Xidian
University, Xi’an, 710071, China. Kai Cai is with Department of Electrical
& Information Engineering, Osaka City University, Osaka, 558-8585, Japan.
Zhiwu Li is with the Institute of Systems Engineering, Macau University of
Science and Technology, Taipa, Macau, and also with the School of Electro-
Mechanical Engineering, Xidian University, Xi’an, 710071, China. Email
addresses: liu@c.info.eng.osaka-cu.ac.jp (Y.
Liu), kai.cai@eng.osaka-cu.ac.jp (K. Cai),
zhwli@xidian.edu.cn (Z. Li).

ally infeasible for large numbers of agents. Second, whenever
the number of agents changes (increases when more agents
are added into the system to enhance productivity or to
improve redundancy for the sake of reliability; or decreases
when some agents malfunction and are removed from the
system), the supervisor must be recomputed or reconfigured
(e.g. [8], [9]) in order to adapt to the change.

The first problem may be resolved by decentralized and/or
hierarchical supervisory synthesis methods (e.g. [10], [11],
[12], [13]). These methods, however, usually can deal only
with fixed numbers of agents, and thus must also be recom-
puted or reconfigured if and when the agent number changes.

In this paper we solve both problems mentioned above
by exploiting the modular characteristic of multi-agent sys-
tems, and thereby designing a scalable supervisor whose
state number and computational process are independent
of the number of agents. First, owing to similar/identical
transition structures of agents in the same group, we employ
a relabeling map (precise definition given in Section II.A
below) to generate a “template structure” for each group.
The template structures thus generated are independent of the
agent numbers. Then we design a supervisor based on these
template structures, and prove that it is a scalable supervisor
for the multi-agent system under certain sufficient condition.
The controlled behavior of the designed scalable supervisor
need not be optimal, but is nonblocking. Moreover, we show
that the sufficient condition for the scalable supervisor is
efficiently checkable.

While the designed scalable supervisor serves as a central-
ized controller for the multi-agent system, it may sometimes
be natural, and even more desirable, to equip each individual
agent with its own local controller (such that it becomes an
autonomous, intelligent agent). Hence we move on to design
scalable local controllers whose state numbers and compu-
tational process are invariant with respect to the number of
component agents; for this design, we employ the method of
supervisor localization [14], [15], [16]. Directly localizing
the scalable supervisor may be computationally expensive,
inasmuch as the localization method requires computing
the overall plant model. To circumvent this problem, we
localize the supervisor based on the template structures and
thereby derive scalable local controllers without constructing
the underlying plant model. It is proved that the collective
controlled behavior of these local controllers is equivalent to
that achieved by the scalable supervisor.

The contributions of our work are threefold. First, our
designed centralized supervisor has scalability with respect
to the number of agents in the system. This scalability is
a desired feature of a supervisor for multi-agent systems,

1

ar
X

iv
:1

70
4.

08
85

8v
3

 [
cs

.S
Y

]
 3

1
D

ec
 2

01
8

inasmuch as it allows the supervisor to remain invariant
regardless of how many agents are added to or removed
from the system (which may occur frequently due to produc-
tivity/reliability concerns or malfunction/repair). Second, the
local controllers we designed for individual agents have the
same scalability feature, and are guaranteed to collectively
achieve identical controlled behavior as the centralized su-
pervisor does. With the local controllers ‘built-in’, the agents
become autonomous and make their own local decisions;
this is particularly useful in applications like multi-robot
systems. Finally, the computation of the scalable supervisor
and local controllers is based solely on template structures
and is thus independent of agent numbers as well. As a
result, the computation load remains the same even if the
number of agents increases; this is advantageous as compared
to centralized/decentralized supervisory synthesis methods.

We note that [17] also studied multi-agent systems with
a modular characteristic and used group-theoretic tools to
characterize symmetry among agents with similar/identical
structures. Exploiting symmetry, “quotient automata” were
constructed to reduce the state size of the composed system,
based on which supervisors are synthesized. Quotient au-
tomata construction was further employed in [18] to develop
decentralized synthesis and verification algorithms for multi-
agent systems. While the systems considered in [17], [18]
are more general than ours in that agents are allowed to
share events, the state size of the resulting quotient automata
is dependent on the agent numbers and in the worst case
exponential in the number of agents. By contrast, we use the
relabeling map approach and synthesize scalable supervisors
whose state sizes are independent of agent numbers.

We also note that in [19], an automaton-based modeling
framework was presented for multi-agent systems in which
the agents’ dynamics are instantiated from a finite number
of “templates”; a particular product operation enforcing
synchronization on broadcasting or receiving events was
proposed to compose the agent dynamics. Building on [19],
the work in [20] proposed a method that first decomposes
the overall control specification into local ones for individual
agents, and then incrementally synthesizes a supervisor based
on the local specifications. The presented algorithm for
incremental synthesis is (again) dependent on, and in general
exponential in, the number of agents.

By extending the ideas in [19] and [20], the work in [21]
proposed a scalable control design for a type of multi-agent
systems, where an “agent” was not just a plant component,
but indeed a plant of its own including an imposed specifica-
tion. The “agents” were instantiated from a template; for the
template, under certain condition, an algorithm was proposed
to design a supervisor whose instantiation was shown to
work for each “agent”. By contrast, we consider multi-
agent systems where each agent is simply a plant compo-
nent, in particular involving no specification. Moreover, the
centralized/local scalable supervisors we design are distinct
from the supervisor given in [21], because our centralized
supervisor works effectively for the entire system and local
supervisors for individual plant components.

The work most related to ours is reported in [22], [23].
Therein the same type of multi-agent systems is investigated
and relabeling maps are used to generate template structures.
Various properties of the relabeling map are proposed which
characterize relations between the relabeled system and the
original one. Moreover, a supervisor is designed that is
provably independent of agent numbers, when these numbers
exceed a certain threshold value. The design of the supervisor
is, however, based on first computing the synchronous prod-
uct of all agents, which can be computationally expensive.
This can be relieved by using state tree structures [23], but
the computation is still dependent on the agent numbers and
thus the supervisor has to be recomputed or reconfigured
whenever the number of agents changes. By contrast, our
synthesis is based only on the template structures and thus
independent of the agent numbers; furthermore the state size
of our designed supervisor is always independent of the
number of agents, with no threshold value required.

The rest of this paper is organized as follows. Section II
introduces preliminaries and formulates the scalable super-
visory control synthesis problem. Section III solves the
problem by designing a scalable supervisor, and shows that
the sufficient condition for solving the problem is efficiently
verifiable. Section IV designs scalable local controllers for
individual agents, and Section V presents three examples to
illustrate scalable supervisors and local controllers. Finally
Section VI states our conclusions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Let the DES plant to be controlled be modeled by a
generator

G = (Q,Σ, δ, q0, Qm)

where Σ = Σc∪̇Σu is a finite event set that is partitioned into
a controllable event subset and an uncontrollable subset, Q is
the finite state set, q0 ∈ Q the initial state, Qm ⊆ Q the set
of marker states, and δ : Q×Σ→ Q the (partial) transition
function. Extend δ in the usual way such that δ : Q×Σ∗ →
Q. The closed behavior of G is the language

L(G) := {s ∈ Σ∗ | δ(q0, s)!} ⊆ Σ∗

in which the notation δ(q0, s)! means that δ(q0, s) is defined.
The marked behavior of G is

Lm(G) := {s ∈ L(G) | δ(q0, s) ∈ Qm} ⊆ L(G).

A string s1 is a prefix of another string s, written s1 ≤ s,
if there exists s2 such that s1s2 = s. The prefix closure of
Lm(G) is

Lm(G) := {s1 ∈ Σ∗ | (∃s ∈ Lm(G))s1 ≤ s}.

We say that G is nonblocking if Lm(G) = L(G).
A language K ⊆ Lm(G) is controllable with respect to

L(G) provided KΣu ∩ L(G) ⊆ K [6]. Let E ⊆ Lm(G)
be a specification language for G, and define the set of all

2

sublaguages of E that are controllable with respect to L(G)
by

C(E) := {K ⊆ E | KΣu ∩ L(G) ⊆ K}.

Then C(E) has a unique supremal element [6]

sup C(E) = ∪{K|K ∈ C(E)}.

For describing a modular structure of plant G, we first
introduce a relabeling map. Let T be a set of new events,
i.e. Σ ∩ T = ∅. Define a relabeling map R : Σ → T such
that for every σ ∈ Σ,

R(σ) = τ, τ ∈ T.

In general R is surjective but need not be injective.
For σ ∈ Σ, let [σ] be the set of events in Σ that have the

same R-image as σ, i.e.

[σ] := {σ′ ∈ Σ|R(σ′) = R(σ)}.

Then Σ = [σ1]∪̇[σ2]∪̇ · · · ∪̇[σk], for some k ≥ 1, and T can
be written as T = {R(σ1), R(σ2), . . . , R(σk)}. We require
that R preserve controllable/uncontrollable status of events in
Σ; namely R(σ) is a controllable event if and only if σ ∈ Σc.
Thus Tc := {R(σ)|σ ∈ Σc}, Tu := {R(σ)|σ ∈ Σu}, and
T = Tc∪̇Tu.

We extend R such that R : Σ∗ → T ∗ according to
(i) R(ε) = ε, where ε denotes the empty string;
(ii) R(σ) = τ , σ ∈ Σ and τ ∈ T ;
(ii) R(sσ) = R(s)R(σ), σ ∈ Σ and s ∈ Σ∗.

Note that R(s) 6= ε for all s ∈ Σ∗ \ {ε}.
Further extend R for languages, i.e. R : Pwr(Σ∗) →

Pwr(T ∗), and define

R(L) = {R(s) ∈ T ∗|s ∈ L}, L ⊆ Σ∗.

The inverse-image function R−1 of R is given by R−1 :
Pwr(T ∗)→ Pwr(Σ∗):

R−1(H) = {s ∈ Σ∗|R(s) ∈ H}, H ⊆ T ∗.

Note that RR−1(H) = H , H ⊆ T ∗ while R−1R(L) ⊇
L, L ⊆ Σ∗. We say that L ⊆ Σ∗ is (G, R)-normal if
R−1R(L) ∩ Lm(G) ⊆ L; this property will turn out to be
important in Section III below. Several useful properties of
R and R−1 are presented in the following lemma, whose
proof is given in Appendix.

Lemma 1: For R : Pwr(Σ∗) → Pwr(T ∗) and R−1 :
Pwr(T ∗)→ Pwr(Σ∗), the following statements are true.

(i) R(L) = R(L), L ⊆ Σ∗.
(ii) R(L1 ∩ L2) ⊆ R(L1) ∩R(L2), L1, L2 ⊆ Σ∗.
(iii) R−1(H) = R−1(H), H ⊆ T ∗.
(iv) R−1(H1∩H2) = R−1(H1)∩R−1(H2), H1, H2 ⊆ T ∗.
We now discuss computation of R, R−1 by generators. Let

R : Σ∗ → T ∗ be a relabeling map and G = (Q,Σ, δ, q0, Qm)
a generator. First, relabel each transition of G to obtain
GT = (Q,T, δT , q0, Qm), where δT : Q×T → Q is defined
by

δT (q1, τ) = q2 iff (∃σ ∈ Σ)R(σ) = τ & δ(q1, σ) = q2.

11 12

2221

G

1 2

21

GT

21

H G′

12,2211,21

Fig. 1. Consider the generator G as displayed and a relabeling map R :
Σ∗ → T ∗ with Σ = {11, 21, 12, 22}, T = {1, 2}, R(11) = R(21) = 1
and R(12) = R(22) = 2. First, relabel each transition of G to obtain GT .
Evidently GT is nondeterministic. Thus apply subset construction on GT

to derive a deterministic generator H. It is easily checked that Lm(H) =
R(Lm(G)) and L(H) = R(L(G)). To inverse-relabel H, replace transition
1 by 11,21 and 2 by 12, 22; thereby one obtains the generator G′. It is
verified that Lm(G′) = R−1(Lm(H)) and L(G′) = R−1(L(H)). Note
that G′ and H have the same number of states. Convention: the initial state
of a generator is labeled by a circle with an entering arrow, while a marker
state is labeled by a circle with an exiting arrow. The same notation will
be used in subsequent figures.

Hence Lm(GT) = R(Lm(G)) and L(GT) = R(L(G)).
However, GT as given above may be nondeterministic [6].
Thus apply subset construction [6] to convert GT into a de-
terministic generator H = (Z, T, ζ, z0, Zm), with Lm(H) =
Lm(GT) and L(H) = L(GT).1 See Fig. 1 for an illustrative
example.

Lemma 2: If G is nonblocking, then the relabeled gener-
ator H is also nonblocking.
Proof. Suppose that G is nonblocking, i.e. Lm(G) = L(G).
Then

R(Lm(G)) = R(L(G))

⇒R(Lm(G)) = R(L(G)) (by Lemma 1(i))

⇒Lm(H) = L(H)

namely H is nonblocking. 2

Conversely, to inverse-relabel H, simply replace each
transition τ(∈ T) of H by those σ(∈ Σ) with R(σ) = τ ; thus
one obtains G′ = (Z,Σ, ζ ′, z0, Zm), where ζ ′ : Z ×Σ→ Z
is defined by

ζ ′(z1, σ) = z2 iff (∃τ ∈ T)R(σ) = τ & ζ(z1, τ) = z2.

It is easily verified that Lm(G′) = R−1Lm(H) and L(G′) =
R−1L(H). Note that G′ as given above is deterministic
(since H is), and has the same number of states as H; namely
inverse-relabeling does not change state numbers. Note that
Lm(G′) ⊇ Lm(G) and L(G′) ⊇ L(G). Refer again to Fig. 1
for illustration. Henceforth we shall write R(G) := H and
R−1(H) := G′.

B. Problem Formulation

Let R : Σ∗ → T ∗ be a relabeling map, and G =
{G1, . . . ,Gk} be a set of generators. We say that G is a

1The worst-case complexity of subset construction is exponential. In the
problem considered in this paper, nevertheless, the generators that need to be
relabeled typically have small state sizes, and hence their relabeled models
may be easily computed. This point will be illustrated by examples given
below.

3

1j1

G11

1j2

i1

i2

BUFFER

G1j (j = 1, 2, 3)

G12

G21

G22

111

121

112

122

211

221

212

222

Hi (i = 1, 2)

Small Factory

G13
131 132

2j1

2j2

G2j (j = 1, 2)

Fig. 2. Consider a small factory consisting of 3 input machines
G11,G12,G13 and 2 output machines G21,G22, linked by a buffer
in the middle. Events 1j1 (j ∈ {1, 2, 3}) and 2j1 (j ∈ {1, 2}) mean
that machine Gij starts to work by taking in a workpiece; events 1j2
and 2j2 mean that Gij finishes work and outputs a workpiece. Let
Σ = Σc∪̇Σu = {111, 121, 131, 211, 221}∪̇{112, 122, 132, 212, 222},
T = {i1, i2 | i ∈ {1, 2}}, and a relabeling map R : Σ∗ → T ∗ with
R(ij1) = i1 ∈ Tc, R(ij2) = i2 ∈ Tu for all i ∈ {1, 2}. Hence,
under R, the plant is divided into 2 similar groups {G11,G12,G13} and
{G21,G22}, with template generators H1 and H2 respectively. It is evident
that Assumptions (A1) and (A2) hold. Convention: the initial state of a
generator is labeled by a circle with an entering arrow, while a marker state
is labeled by a circle with an exiting arrow. The same notation will be used
in subsequent figures.

similar set under R if there is a generator H such that

(∀i ∈ {1, . . . , k})R(Gi) = H. (1)

One may view H as a “template” for G in that each generator
Gi in the set may be relabeled to H.2

In this paper, the plant G is divided into l(> 1) groups
of component agents, each group Gi (i ∈ {1, . . . , l}) being
a similar set of generators under a given relabeling map R,
i.e. Gi = {Gi1, . . . ,Gi ni

} (ni ≥ 1) and there is a generator
Hi such that

(∀j ∈ {1, . . . , ni})R(Gij) = Hi. (2)

Let Gij be defined on Σij and Hi on Ti. Then R(Σij) = Ti
for all j ∈ {1, ..., ni}.

Note that we do not consider the case where G is divided
into only one group (i.e. l = 1), because the control
specifications considered in this paper are imposed between
different groups. Also we shall demonstrate in Section V.C
how to transform the problem where G (naturally) contains
only one group of agents into our setup.

Now we make the following assumptions.
(A1) All component agents are nonblocking and indepen-
dent, i.e. their event sets are pairwise disjoint.3

(A2) The template generators Hi (i ∈ {1, . . . , l}) have
pairwise-disjoint event sets. (This assumption can be re-
garded as being imposed on the relabeling map R, since
the event set Ti of Hi is obtained by relabeling those Σij of

2More generally, one may consider DES isomorphism (e.g. [14]) and
say that G = {G1, . . . ,Gk} is a similar set if R(Gi) and R(Gj) are
isomorphic for all i, j ∈ {1, . . . , k}. For simplicity of presentation we use
the definition in (1), and subsequent development may be readily extended
to the more general case using DES isomorphism.

3Under (A1), Hi (i ∈ {1, . . . , l}) computed from (2) are nonblocking
by Lemma 2.

Gij , j ∈ {1, . . . , ni}.)
As described above, the plant G represents a multi-

agent DES with a modular structure, i.e. containing multiple
groups of similar and independent agents. Although it would
be more general to consider event sharing among agents, this
modular structure is not uncommon in practical multi-agent
systems (e.g. machines in factories, robots in warehouses,
and vehicles at intersections). One example of this type of
modular plant is given in Fig. 2; more examples will be
illustrated in Section V below.

Let Σ (= Σc∪̇Σu) be the event set of plant G, and E ⊆ Σ∗

a specification language that imposes behavioral constraints
on G (thus the specification with respect to the plant is
E ∩ Lm(G)). We make the following assumption on the
specification.

(A3) The specification language E can be represented by
a (nonblocking) generator E (i.e. Lm(E) = E) that satisfies
R−1(R(E)) = E.

This assumption implies that E is (G, R)-normal, i.e.
R−1R(E) ∩ Lm(G) ⊆ E. To check if (A3) holds, first
compute R−1(R(E)) as described in Section 2.1, and then
verify if the result is DES isomorphic (e.g. [1]) to E.

Now with plant G and specification E, the standard
supervisory control design [6] proceeds as follows. First
compute the plant G by synchronous product [6] of all
component agents:

G = ||i∈{1,...,l}Gi, where Gi = ||j∈{1,...,ni}Gij .

Under Assumption (A1), G is nonblocking. Then synthesize
a supervisor SUP (a nonblocking generator) such that4

Lm(SUP) = sup C(E ∩ Lm(G)).

To rule out the trivial case, we assume the following.

(A4) Lm(SUP) 6= ∅ for ni = 1, i ∈ {1, . . . , l}. Denote this
special SUP by SUP1 henceforth, which is the monolithic
supervisor when plant G contains exactly one agent in each
group.

By this synthesis method, the number of states of SUP
increases (exponentially) as the number of agents (ni, i ∈
{1, . . . , l}) increases, and consequently the supervisor syn-
thesis becomes computationally difficult (if not impossible).
In addition, whenever the number ni of agents changes
(e.g. an operating agent malfunctions and is removed from
the system, or a new agent/machine is added to increase
productivity), the supervisor SUP has to be recomputed or
reconfigured.

These two problems may be resolved if one can synthesize
a supervisor whose state size, as well as the computational
effort involved in its synthesis, is independent of the number
ni of agents, by exploiting the modular structure of the plant
G. We will call such a supervisor scalable, where scalability
is with respect to the number of agents in the plant.

4A supervisor is formally defined as a map associating each string in the
closed behavior of G with a control patter, i.e. a subset of enabled events.
The generator supervisor SUP we use is an implementation of such a map.

4

With this motivation, we formulate the following Scalable
Supervisory Control Synthesis Problem (SSCSP):

Design a scalable supervisor SSUP (a nonblocking gen-
erator) such that
(i) The number of states of SSUP and its computation are
independent of the number ni of agents for all i ∈ {1, . . . , l};
(ii) Lm(SSUP) ∩ Lm(G) satisfies Lm(SUP1) ⊆
Lm(SSUP) ∩ Lm(G) ⊆ Lm(SUP).

Condition (ii) requires that Lm(SSUP) ∩ Lm(G) be
controllable with respect to L(G), and be lower-bounded
by the marked behavior of SUP1. It would be ideal to
have Lm(SSUP)∩Lm(G) = Lm(SUP). Inasmuch as this
requirement might be too strong to admit any solution to the
problem, we shall consider (ii) above.

III. SCALABLE SUPERVISORY CONTROL

In this section we design a scalable supervisor to solve the
Scalable Supervisory Control Synthesis Problem (SSCSP),
under a easily-verifiable condition.

Consider the plant G as described in Section II.B. Let Σ(=
Σc∪̇Σu) be the event set of G, and R : Σ→ T a relabeling
map. The procedure of designing a scalable supervisor is
as follows, (P1)-(P4), which involves first synthesizing a
supervisor for ‘relabeled system’ under R and then inverse-
relabeling the supervisor.
(P1) Let ki ∈ {1, ..., ni} denote the number of agents in
group i allowed to work in parallel, and compute Mi :=
R(||j=1,...,ki

Gij). Then compute the relabeled plant M as
the synchronous product of the generators Mi, i.e.

M := ||i∈{1,...,l}Mi. (3)

We call M the relabeled plant under R; it is nonblocking by
Assumptions (A1), (A2). The event set of M is T = Tc∪̇Tu,
where Tc = R(Σc) and Tu = R(Σu). For computational
trackability, one would choose ki to be (much) smaller than
ni. When all ki = 1, we have the special case addressed in
[25]. Note that once ki are fixed, the state sizes of Mi and
M are fixed as well, and independent of the number ni of
agents in group i.
(P2) Compute F := R(E), where E ⊆ Σ∗ is the spec-
ification imposed on G. We call F ⊆ T ∗ the relabeled
specification imposed on H.
(P3) Synthesize a relabeled supervisor RSUP (a nonblocking
generator) such that

Lm(RSUP) = sup C(Lm(H) ∩ F) ⊆ T ∗.

The number of states of RSUP is independent of the number
of agents, since H’s state size is so.
(P4) Inverse-relabel RSUP to derive SSUP, i.e.

SSUP := R−1(RSUP) (4)

with the marked behavior

Lm(SSUP) = R−1Lm(RSUP) ⊆ Σ∗.

By the inverse-relabeling computation introduced in Sec-
tion II.A, SSUP computed in (4) has the same number of

112,122,132

Specification E (= R−1R(E))

211,221

Relabeled specification R(E)

111,121,131
212,222

111,121,131
212,222

Relabeled supervisor RSUP Scalable supervisor SSUP

M1 = R(G11||G12)

21

21

22

M2 = R(G21)

212,222

211,221

212,222

212,222

11 11

12 12

111,121,131

112,122,132

112,122,132

111,121,131

22

11

12

12

22

21

11

22

12

11,22 11,22

112,122,132

211,221

111,121,131
212,222

21

12

11,22

22

21

11

22

22

11

11

12

21

12 12

11

12

111,121,131

111,121,131

111,121,131

111,121,131

112,122,132

112,122,132

112,122,132

112,122,132

211,221

211,221

212,222

212,222

212,222

Fig. 3. Consider the small factory example in Fig. 2, and a specification
that protects the buffer (with two slots) against overflow and underflow. This
specification is represented by E, which satisfies (A3). In (P1), compute the
relabeled plant M = M1‖M2, where M1 = R(G11||G12), M2 =
R(G21) for k1 = 2 and k2 = 1. In (P2), compute the relabeled
specification R(E). In (P3), compute the relabeled supervisor RSUP for
M and R(E). Finally in (P4), compute R−1(RSUP) to derive the
scalable supervisor SSUP. Note that the relabeled plant M and the scalable
supervisor SSUP allow at most two machines in the input group to work
in parallel as k1 = 2.

states as RSUP. It then follows that the state size of SSUP is
independent of the number of agents in plant G.5 Moreover,
it is easily observed that SSUP is nonblocking (since RSUP
is), and its computation does not depend on the number ni
of agents in each group i (∈ {1, . . . , l}). The above design
procedure is demonstrated with an example displayed in
Fig. 3.

he scalable supervisor SSUP has the same number of states
and structure as SUP1 (the monolithic supervisor when plant
G contains exactly one agent in each group). Note, however,
that SSUP is more permissive than SUP1 (having strictly
larger closed and marked behaviors), and is more flexible
in that SSUP imposes no restriction on the order by which
the agents in the same group (input machines or output
machines).

Our main result is the following.
Theorem 1: Consider the plant G as described in Sec-

tion II.B and suppose that Assumptions (A1), (A2), (A3),
and (A4) hold. If Lm(M) is controllable with respect to
R(L(G)), then SSUP in (4) is a scalable supervisor that
solves SSCSP.

Theorem 1 provides a sufficient condition under which

5Note that the state size of SSUP is related to the number of groups that
the plant is divided into, as well as the state size of the generator representing
the relabeled specification F . In this paper we focus on the scalability of
supervisor with respect to the number of agents, and thus assume the above
two factors fixed for each problem we consider. In applications where these
factors may be relevant, different approaches will need to be developed.

6T

5

10

G11

11

20

G12

21

0

H1 = R(G11) = R(G12)

1

0

1

0

1

R(G11||G12)

Fig. 4. Consider a group of 2 machines G11,G12. Let Σ = Σc∪̇Σu,
where Σc = {11, 21} and Σu = {10, 20}. Let T = {0, 1}, and the
relabeling map R : Σ → T with R(11) = R(21) = 1 ∈ Tc, R(10) =
R(20) = 0 ∈ Tu. Under R, H1 = R(G11) = R(G12) and R(G11‖G12)
are displayed. Observe that Lm(H1) is not controllable with respect to
R(L(G11‖G12)): let t = 0 ∈ Lm(H1) and τ = 0 ∈ Tu such that
tτ ∈ R(L(G11‖G12)), but tτ /∈ Lm(H1).

SSUP in (4) is a solution to SSCSP. This condition is
the controllability of Lm(H) with respect to R(L(G)),
i.e. Lm(H)Σu ∩ R(L(G)) ⊆ Lm(H). This means that
the relabeled plant should be controllable with respect to
the relabeling of the original plant G; in other words, the
relabeling operation should not remove uncontrollable events
that are allowed by G. As we shall see below, this condition
is essential in proving the controllability of Lm(SSUP) ∩
Lm(G) with respect to L(G).

For the success of our scalable supervisory control syn-
thesis, it is important to be able to efficiently verify this suf-
ficient condition. At the appearance, however, this condition
seems to require computing G which would be computation-
ally infeasible for large systems. Nevertheless, we have the
following result.

Proposition 1: Consider the plant G as described in Sec-
tion II.B and suppose that Assumptions (A1), (A2) hold. For
each group i ∈ {1, . . . , l} if Lm(Hi) is controllable with
respect to R(L(Gi1‖Gi2)), then Lm(M) is controllable with
respect to R(L(G)).

Proposition 1 asserts that the controllability of Lm(M)
with respect to R(L(G)) may be checked in a modular
fashion: namely it is sufficient to check the controllability of
Lm(Hi) for each group with respect to only two component
agents. As a result, the computational effort of checking the
condition is low.

Note that the condition in Proposition 1, Lm(Hi) being
controllable with respect to R(L(Gi1‖Gi2)), does not always
hold. An example where this condition fails is shown in
Fig. 4.

To prove Proposition 1, we need the following two lem-
mas. For convenience it is assumed that Assumptions (A1),
(A2) hold henceforth in this subsection.

Lemma 3: Let i ∈ {1, . . . , l}. If Lm(Hi) =
(R(Lm(Gi1))) is controllable with respect to
R(L(Gi1‖Gi2)), then R(Lm(Gi1‖Gi2)) is controllable
with respect to R(L(Gi1‖Gi2‖Gi3)).

Proof. Let i ∈ {1, . . . , l}, t ∈ R(Lm(Gi1‖Gi2)), τ ∈ Tu,
and tτ ∈ R(L(Gi1‖Gi2‖Gi3)). We shall show that tτ ∈

R(Lm(Gi1‖Gi2)). By t ∈ R(Lm(Gi1‖Gi2)) we derive

t ∈ R(Lm(Gi1‖Gi2)) = R(L(Gi1‖Gi2))

⇒(∃s ∈ L(Gi1‖Gi2))R(s) = t.

By Assumption (A1), Gi1, Gi2, Gi3 do not share events, the
string s can be divided into two cases:

Case 1: s ∈ L(Gi1) (resp. s ∈ L(Gi2)).
Thus for each σ ∈ Σu with R(σ) = τ , if sσ ∈

L(Gi1‖Gi2‖Gi3), then

either sσ ∈ L(Gi1) if σ is an event of Gi1

or sσ ∈ L(Gi1‖Gi2) if σ is an event of Gi2

or sσ ∈ L(Gi1‖Gi3) if σ is an event of Gi3.

Hence tτ = R(sσ) ∈ R(L(Gi1‖Gi2‖Gi3)) implies

either R(sσ) ∈ R(L(Gi1))

or R(sσ) ∈ R(L(Gi1‖Gi2))

or R(sσ) ∈ R(L(Gi1‖Gi3)) = R(L(Gi1‖Gi2)).

For this case, tτ ∈ R(Lm(Gi1‖Gi2)) always hold.
Case 2: s /∈ L(Gi1) and s ∈ L(Gi1‖Gi2).
Similarly, for each σ ∈ Σu with R(σ) = τ , if sσ ∈

L(Gi1‖Gi2‖Gi3), then

either sσ ∈ L(Gi1‖Gi2) if σ is an event of Gi2 or Gi2

or sσ ∈ L(Gi1‖Gi2‖Gi3) if σ is an event of Gi3.

We have t /∈ R(L(Gi1) as s /∈ L(Gi1). For the latter case,

t ∈ R(L(Gi1‖Gi2), tτ /∈ R(L(Gi1‖Gi2)), tτ ∈ R(L(Gi1‖Gi2‖Gi3)).

Since Gi1, Gi2, and Gi3 have the same state transition
structure and all the events of them are relabeled by the
same relabeling map, there must exist string t′ ∈ T ∗ and
τ ′ ∈ Tu such that

t′ ∈ R(L(Gi1)), t′τ ′ /∈ R(L(Gi1)), t′τ ′ ∈ R(L(Gi1‖Gi2)).

However, R(Lm(Gi1)) is controllable with respect to
R(L(Gi1‖Gi2)). For all τ ′ ∈ Tu if t′ ∈ R(L(Gi1) and
t′τ ′ ∈ R(L(Gi1‖Gi2)), then t′τ ′ ∈ R(L(Gi1) must hold,
which is conflict with Case 2.

Therefore, after all, tτ ∈ R(Lm(Gi1‖Gi2)) as required.2

Applying Lemma 3 inductively, one derives that if
Lm(Hi) is controllable with respect to R(L(Gi1‖Gi2)), then
Lm(Mi) (i ∈ {1, . . . , l}) is controllable with respect to
R(L(||j∈{1,...,ki+1}Gij)).

Lemma 4: Let i ∈ {1, . . . , l}. If Lm(Mi) (i ∈ {1, . . . , l})
is controllable with respect to R(L(||j∈{1,...,ki+1}Gij)), then
Lm(Mi) is controllable with respect to R(L(Gi)).

Proof. Let t ∈ Lm(Mi), τ ∈ Tu, and tτ ∈ R(L(Gi)). We
shall show that tτ ∈ Lm(Mi) = L(Mi). By t ∈ Lm(Mi)
we derive

t ∈ L(Mi) = R(L(||j∈{1,...,ki}Gij))

⇒(∃s ∈ L(||j∈{1,...,ki}Gij))R(s) = t.

By Assumption (A1), agents in the same group do not share
events, the string s must be in ||j∈{1,...,ki}Gij . Thus for each

6

σ ∈ Σu with R(σ) = τ , if sσ ∈ L(Gi), then

either sσ ∈ L(||j∈{1,...,ki}Gij) if σ ∈
⋃

j∈{1,...,ki} Σij

or sσ ∈ L(||j∈{1,...,ki+1}Gij) if σ is an event of Gi,ki+1.

For the former case, tτ = R(sσ) ∈
R(L(||j∈{1,...,ki}Gij)) = L(Mi). For the latter case,
use the controllability of Lm(Mi) with respect to
R(L(||j∈{1,...,ki+1}Gij)) to derive R(sσ) ∈ L(Mi).
Therefore, tτ ∈ L(Mi) is proved. 2

We are now ready to present the proof of Proposition 1.

Proof of Proposition 1. Let t ∈ Lm(M), τ ∈ Tu, and
tτ ∈ R(L(G)). We shall show that tτ ∈ Lm(M) = L(M).
By t ∈ Lm(M) we derive

t ∈ L(M) = L(||i∈{1,...,l}Mi) = L(
⋂

i∈{1,...,l}

P−1i (Mi)),

where Pi : T ∗ → T ∗i . We thus get that Pi(t) ∈
L(Mi). We have tτ ∈ R(L(G)) = R(L(||i∈{1,...,l}Gi)) =
||i∈{1,...,l}R(L(Gi)) (by Assumption (A1)). Hence

tτ ∈ ||i∈{1,...,l}R(L(Gi)) =
⋂

i∈{1,...,l}

P−1i (R(L(Gi))).

Hence, tτ ∈ P−1i (R(L(Gi))), i.e. Pi(tτ) ∈ R(L(Gi)).
Combining Lemmas 3 and 4, it directly follows that

if Lm(Hi) (i ∈ {1, . . . , l}) is controllable with respect
to R(L(Gi1‖Gi2)), then Lm(Mi) is controllable with re-
spect to R(L(Gi)). Therefore, Pi(tτ) ∈ L(Mi), i.e. tτ ∈
P−1i L((Mi)). It is derived that tτ ∈ L(||i∈{1,...,l}Mi) =
L(M). 2

Thus under the easily checkable sufficient condition, The-
orem 1 asserts that SSUP in (4) is a valid scalable supervisor
whose state size is independent of the number of agents in the
plant. The advantages of this scalability are, (i) computation
of SSUP is independent of the number of agents and thus this
method may handle systems with large numbers of agents;
(ii) SSUP does not need to be recomputed or reconfigured if
and when some agents are removed due to failure or added
for increasing productivity.

For the example in Fig. 3, it is verified that the sufficient
condition of Theorem 1 are satisfied, and therefore the
derived scalable supervisor SSUP is a solution to SSCSP.

To prove Theorem 1 we need to the following lemmas.
Lemma 5: Consider the plant G as described in Sec-

tion II.B and suppose that Assumptions (A1), (A2) hold.
Then H is nonblocking, and

Lm(H) ⊆ R(Lm(G)).

Lemma 6: Consider the plant G as described in Sec-
tion II.B and suppose that Assumptions (A1), (A2) hold.
Then SSUP and G are nonconflicting, i.e.

Lm(SSUP) ∩ Lm(G) = Lm(SSUP) ∩ Lm(G).

The proofs of the above Lemmas are referred to Appendix.
Now we are ready to provide the proof of Theorem 1.

Proof of Theorem 1. That the number of states of SSUP
and its computation are independent of the number ni of
agents for all i ∈ {1, . . . , l} has been asserted following
(P4) of designing SSUP. Hence to prove that SSUP is a
scalable supervisor that solves SSCSP, we will show that
Lm(SUP1) ⊆ Lm(SSUP) ∩ Lm(G) ⊆ Lm(SUP).

First we prove that Lm(SUP1) ⊆ Lm(SSUP)∩Lm(G).
Let s ∈ Lm(SUP1). Then s ∈ ||i∈[1,l]Lm(Gi1) ⊆
Lm(G). Also it is observed from (P1)-(P3) of designing
SSUP that R(Lm(SUP1)) = Lm(RSUP). Hence R(s) ∈
Lm(RSUP) and s ∈ R−1(Lm(RSUP)) = Lm(SSUP).
Therefore s ∈ Lm(SSUP) ∩ Lm(G), and Lm(SUP1) ⊆
Lm(SSUP) ∩ Lm(G) is proved.

It remains to show that Lm(SSUP) ∩ Lm(G) ⊆
Lm(SUP) = sup C(E ∩ Lm(G)). For this we will prove
that (i) Lm(SSUP)∩Lm(G) is controllable with respect to
L(G), and (ii) Lm(SSUP)∩Lm(G) ⊆ E∩Lm(G). For (i)
let s ∈ Lm(SSUP) ∩ Lm(G), σ ∈ Σu, sσ ∈ L(G). Then

s ∈ Lm(SSUP) ∩ Lm(G)

⇒(∃t)st ∈ Lm(SSUP)

⇒st ∈ R−1Lm(RSUP) (by (P4))
⇒R(st) ∈ Lm(RSUP) ⊆ Lm(M)

⇒R(s) ∈ Lm(RSUP) & R(s) ∈ Lm(M).

Since sσ ∈ L(G), we have R(s)R(σ) ∈ R(L(G)) where
R(σ) ∈ Tu (since σ ∈ Σu). It then follows from the
controllability of Lm(M) with respect to R(L(G)) that
R(s)R(σ) ∈ Lm(M) = L(M) (M is nonblocking by
Lemma 5). Now use the controllability of Lm(RSUP) with
respect to L(M) to derive R(s)R(σ) ∈ Lm(RSUP), and
in turn

sσ ∈ R−1R(sσ) ⊆ R−1Lm(RSUP)

⇒sσ ∈ R−1Lm(RSUP) = Lm(SSUP).

In the derivation above, we have used Lemma 1(iii). In
addition, since sσ ∈ L(G) = Lm(G) (G is nonblocking
by Assumption (A1)), we have

sσ ∈ Lm(SSUP) ∩ Lm(G)

Under Assumptions (A1), (A2), it follows from
Lemma 6 that SSUP and G are nonconflicting, i.e.
Lm(SSUP) ∩ Lm(G) = Lm(SSUP) ∩ Lm(G). Hence
sσ ∈ Lm(SSUP) ∩ Lm(G), which proves (i).

For (ii) let s ∈ Lm(SSUP) ∩ Lm(G). Then

s ∈ R−1Lm(RSUP) ∩ Lm(G)

⇒s ∈ Lm(G) & R(s) ∈ Lm(RSUP) ⊆ F = R(E)

⇒s ∈ Lm(G) & s ∈ R−1R(s) ⊆ R−1R(E).

Since E is (G, R)-normal, i.e. R−1R(E)∩Lm(G) ⊆ E, we
derive s ∈ E ∩Lm(G), which proves (ii). The proof is now
complete. 2

From the proof above, note that if R(Lm(SUP)) ⊆
Lm(RSUP), then we derive Lm(SUP) ⊆
R−1R(Lm(SUP)) ∩ Lm(G) ⊆ R−1(Lm(RSUP)) ∩

7

Lm(G) = Lm(SSUP) ∩ Lm(G). This leads to the
following.

Corollary 1: Consider the plant G as described in Section
II.B and suppose that Assumptions (A1), (A2), (A3) hold.
If the specification E ⊆ Σ∗ is (G, R)-normal, Lm(M) is
controllable with respect to R(L(G)), and R(Lm(SUP)) ⊆
Lm(RSUP), then SSUP in (3) is the least restrictive
scalable supervisor that solves SSCSP (i.e. Lm(SSUP) ∩
Lm(G) = Lm(SUP)).

Although the least restrictive scalable solution in Corol-
lary 1 is of theoretical interest, the additional condition
R(Lm(SUP)) ⊆ Lm(RSUP) may be too strong and its
verification requires computing the monolithic supervisor
SUP which itself is infeasible for large multi-agent systems.

Alternatively, one may explore the threshold of ki (the
number of agents in group i that are allowed to work in
parallel) to achieve the least restrictive controlled behavior.
For the small factory example in Figs. 1 and 2, the threshold
for both k1 and k2 is 2, the buffer size. More generally,
for a small factory consists of n1 input machines, n2 output
machines, and a buffer of size b (≤ n1, n2), the threshold
for both k1 and k2 is b. A thorough study on the threshold
of ki that achieves the least restrictive controlled behavior
will be pursued in our future work.

Remark 1: In Theorem 1, the condition that Lm(M) is
controllable with respect to R(L(G)) rules out the case
where agent models start with an uncontrollable event. To
address this case, one approach is to replace the relabeled
plant M in (P1) by M := R(G); the rest (P2)-(P4) remain
the same. Suppose that the specification E ⊆ Lm(G) is
controllable with respect to L(G). Then it is verified that
R(E) is controllable with respect to R(L(G)) = L(M)
(under Assumptions (A1), (A2), (A3)), (A4). Hence the re-
sulting Lm(SSUP) = R−1R(E). Therefore, assuming E is
(G, R)-normal (as in Theorem 1), we derive Lm(SSUP)∩
Lm(G) = R−1R(E) ∩ Lm(G) = E = Lm(SUP). The
above reasoning leads to the following.

Corollary 2: Consider the plant G as described in Section
II.B and suppose that Assumptions (A1), (A2), (A3), (A4)
hold. Also suppose that the relabeled plant M in (P1) is
M := R(G). If the specification E ⊆ Lm(G) is controllable
with respect to L(G), then SSUP in (3) solves SSCSP (with
Lm(SSUP) ∩ Lm(G) = Lm(SUP)).

Although Corollary 2 allows agents to start with an un-
controllable event, the assumption that M = R(G) requires
computing the plant model G which is infeasible for large
multi-agent systems. A special case where the conditions in
Corollary 2 hold is when the specification E = Lm(G).
For the more general case where E is not controllable with
respect to L(G), we shall postpone the investigation to our
future work.

IV. EXTENSIONS FOR IMPROVING PERMISSIVENESS

The preceding section presented a synthesis procedure
for a scalable supervisor, and provided efficiently checkable
condition under which the scalable supervisor is a solution
to SSCSP. In this section, we present an extension to the

previous synthesis procedure in order to improve behavioral
permissiveness while maintaining scalability. The improved
permissiveness comes with the cost of increased computa-
tional cost, which demonstrates a tradeoff relation between
scalability (state size of supervisor and its computation) and
permissiveness.

The extension to improve behavioral permissiveness is to
‘refine’ the relabeling map R in such a way that each group
of agents is further divided into subgroups.

Recall from Section II that the relabeling map R : Σ→ T
is assumed to satisfy the following. For an agent Gij in group
i ∈ {1, . . . , l} (and j ∈ {1, . . . , ni}), defined over the event
set Σij , there holds R(Σij) = Ti; the sets Ti (i ∈ {1, . . . , l})
are pairwise disjoint and T = ∪̇i∈{1,...,l}Ti. Now consider
the following ‘refinement’ of R. Let T ′i be a set disjoint from
Ti, and define a new relabeling map R′ by

R′(Σij) = Ti, j ∈ [1, bni
2
c]

R′(Σij) = T ′i , j ∈ [bni
2
c+ 1, ni].

Thus R′ relabels the events of the first half agents in each
group i to Ti, and the second half to T ′i . Denote by T ′ :=
∪̇i∈{1,...,l}T ′i ; then R′ : Σ→ T ∪̇T ′ further divides the agents
in each group i into two subgroups corresponding to Ti and
T ′i , respectively. Extension that divides a group into three or
more subgroups follows similarly. Under the new relabeling
map R′, there are two distinct template generators for each
group i:

R′(Gij) = Hi, j ∈ [1, bni
2
c]

R′(Gij) = H′i, j ∈ [bni
2
c+ 1, ni].

Consider the following extension of (P1):
(P1′): Compute the relabeled plant H′ as the synchronous

product of the generators Hi||H′i, i.e.

H′ := ||i∈{1,...,l}(Hi||H′i). (5)

As so constructed, H′ allows at most two agents in the same
group to work in parallel. Proceed with the same (P2)-(P4)
as in Section III, and denote the resulting supervisor by
SSUP′. The state size of SSUP′ and its computation do
not depend on the number of component agents, but depend
on (5) and the number of groups. We have the following
result.

Proposition 2: Consider the plant G as described in Sec-
tion II.B and suppose that Assumptions (A1), (A2), (A3),
and (A4) hold. If Lm(H′) is controllable with respect to
R′(L(G)), then SSUP′ is a scalable supervisor that solves
SSCSP.

The proof of Proposition 2 is similar to that of Theorem
1, by replacing R, H and SSUP by R′, H′ and SSUP′

throughout. The condition of Proposition 2 is efficiently
checkable, due analogously to Propositions 1 and 2.

Note that the improved permissiveness comes at a cost
of increased computation effort. The more subgroups are
divided by ‘refining’ the relabeling map, the more agents
in the same group are allowed to work in parallel in the

8

relabeled plant H′, and the more computational cost for
deriving SSUP′. In Section VI. A below, we shall illustrate
the method presented in this section by an example.

V. SCALABLE DISTRIBUTED CONTROL

So far we have synthesized a scalable supervisor SSUP
that effectively controls the entire multi-agent system, i.e.
SSUP is a centralized controller. For the type of system
considered in this paper which consists of many independent
agents, however, it is also natural to design a distributed
control architecture where each individual agent acquires its
own local controller (thereby becoming autonomous)6.

Generally speaking, a distributed control architecture is
advantageous in reducing (global) communication load, since
local controllers typically need to interact only with their
(nearest) neighbors. A distributed architecture might also
be more fault-tolerant, as partial failure of local controllers
or the corresponding agents would unlikely to overhaul the
whole system.

For these potential benefits, we aim in this section to
design for the multi-agent system a distributed control archi-
tecture. In particular, we aim to design local controllers that
have the same scalability as the centralized SSUP; namely
their state sizes and computation are independent of the
number of agents in the system. Thus when some agents
break down and/or new agents are added in, there is no need
of recomputing or reconfiguring these local controllers.

Let us now formulate the following Scalable Distributed
Control Synthesis Problem (SDCSP):

Design a set of scalable local controllers SLOCij (a non-
blocking generator), one for each agent Gij (i ∈ {1, ..., l},
j ∈ {1, ..., ni}) such that
(i) The number of states and computation of SLOCij are
independent of the number ni of agents for all i ∈ {1, . . . , l};
(ii) the set of SLOCij is (collectively) control equivalent to
the scalable supervisor SSUP with respect to plant G, i.e. ⋂

i∈{1,...,l}
j∈{1,...,ni}

Lm(SLOCij)

 ∩ Lm(G) = Lm(SSUP) ∩ Lm(G).

(5)

To solve SDCSP, we employ a known technique called
supervisor localization [14], [15], [16], which works to de-
compose an arbitrary supervisor into a set of local controllers
whose collective behavior is equivalent to that supervisor.
Since we have synthesized SSUP, the scalable supervisor,
a straightforward approach would be to apply supervisor
localization to decompose the associated controlled behav-
ior Lm(SSUP) ∩ Lm(G).7 This approach would require,
however, the computation of G which is infeasible for

6In the centralized architecture, the communication from SSUP to the
agents is typically done via event broadcasting. On the other hand, in a
distributed architecture, the communication between local controllers of the
agents is naturally pairwise.

7Note that it is incorrect to localize Lm(SSUP), because Lm(SSUP) is
in general not controllable with respect to L(G).

large systems and cause the resulting local controllers non-
scalable.

Instead we propose the following procedure for designing
scalable local controllers SLOCij , for i ∈ {1, ..., l} and j ∈
{1, ..., ni}.
(Q1) Apply supervisor localization to decompose the re-
labeled supervisor RSUP into relabeled local controllers
RLOCi, i ∈ {1, ..., l}, such that [16] ⋂

i∈{1,...,l}

Lm(RLOCi)

 ∩ Lm(H) = Lm(RSUP).

(Q2) Compute trim(RLOCi‖Hi), where trim(·) operation
removes blocking states (if any) of the argument generator.
(Q3) Inverse-relabel trim(RLOCi‖Hi) to obtain SLOCij

(j ∈ {1, ..., ni}), i.e.

SLOCij := R−1(trim((RLOCi‖Hi))). (6)

Notice that the computations involved in the above pro-
cedure are independent of the number ni (i ∈ {1, ..., l}) of
agents. In (Q1), computing RLOCi by localization requires
computing RSUP and H (in (P1) and (P3) respectively), both
of which are independent of ni. In (Q2), for the synchronous
product both RLOCi and Hi are independent of ni, while
trim may only reduce some states. Finally in (Q3), inverse-
relabeling does not change the number of states. Therefore
the state number of the resulting scalable local controller
SLOCij and its computation are independent of the number
ni (i ∈ {1, ..., l}) of agents.

The synchronous product in (Q2) is indeed crucial to
ensure the correctness of the resulting local controllers. If
we did not compute this synchronous product and set the
local controllers to be R−1(trim(RLOCi)), then such local
controllers cannot even guarantee that the controlled behavior
satisfies the imposed specification, as will be demonstrated
in Section V.A below.

On the other hand, the synchronous product in (Q2) may
produce blocking states; such an example is provided in
Section V.B. Thus the trim operation is needed to ensure
that the resulting SLOCij is a nonblocking generator.

In addition, note that SLOCij are the same for all j ∈
{1, ..., ni}. This means that every agent Gij in the same
group Gi obtains the same local controller, although each
local controller will be dedicated to enabling/disabling only
the controllable events originated from its associated agent.

The main result of this section is the following.
Theorem 2: The set of SLOCij (i ∈ {1, ..., l}, j ∈
{1, ..., ni}) as in (6) is a set of scalable local controllers
that solves SDCSP.

Proof: That the number of states of SLOCij and its
computation are independent of the number ni of agents for
all i ∈ {1, . . . , l}, j ∈ {1, ..., ni} has been asserted following
(Q3) of designing SLOCij . Hence to prove that the set of
SLOCij is a set of scalable local controllers that solves
SDCSP, we will show (5).

9

From (Q1) we have ⋂
i∈{1,...,l}

Lm(RLOCi)

 ∩ Lm(H) = Lm(RSUP)

⇒

 ⋂
i∈{1,...,l}

Lm(RLOCi)

 ∩
(
‖i∈{1,...,l}Lm(Hi)

)
= Lm(RSUP)

⇒
⋂

i∈{1,...,l}

(Lm(RLOCi)‖Lm(Hi)) = Lm(RSUP)

⇒
⋂

i∈{1,...,l}

Lm(trim(RLOCi‖Hi)) = Lm(RSUP)

Inverse-relabeling both sides and applying Lemma 1(iv), we
derive

R−1

 ⋂
i∈{1,...,l}

Lm(trim(RLOCi‖Hi))

 = R−1(Lm(RSUP))

⇒
⋂

i∈{1,...,l}

R−1(Lm(trim(RLOCi‖Hi))) = R−1(Lm(RSUP))

⇒
⋂

i∈{1,...,l}

Lm(R−1(trim(RLOCi‖Hi))) = R−1(Lm(RSUP))

Finally it follows from (6) and (P4) that ⋂
i∈{1,...,l}

j∈{1,...,ni}

Lm(SLOCij)

 = Lm(SSUP)

⇒

 ⋂
i∈{1,...,l}

j∈{1,...,ni}

Lm(SLOCij)

 ∩ Lm(G) = Lm(SSUP) ∩ Lm(G).

That is, (5) is established. 2

VI. ILLUSTRATING EXAMPLES

In this section, we provide three examples to illustrate our
proposed scalable supervisory synthesis as well as distributed
control. The first example is the extension of the small
factory example (studied in Figs. 2, 3) to arbitrary numbers of
input and output machines. The second example is a transfer
line system, where we illustrate how to deal with more
than one specification. The last example is called mutual
exclusion, where the plant naturally contains only one group
of agents; we demonstrate how to fit this type of multi-agent
systems into our setting and apply our method to derive
scalable supervisors and local controllers.

A. Small Factory

This example has already been presented in Figs. 2 and
3, with 3 input machines and 2 output machines. Here we
consider the general case where there are n input machines
and m output machines, for arbitrary n,m ≥ 1.

To improve permissiveness of SSUP, we employ the
method presented in Section IV. Define a new relabeling map

H′
i = R(Gi1||Gi2) (i = 1, 2)

i1 i1

i2 i2

Fig. 5. H′i using method in Subsection IV.A.

111, .., 1n1 ∗ ∗∗ 212,...,2m2111, ..., 1n1 ∗ ∗∗ 111, .., 1n1 111, ..., 1n1 ∗ ∗

∗ ∗∗

∗

∗

∗∗ ∗∗

∗∗

∗∗

∗ = 112, ..., 1n2 ∗∗ = 211, ..., 2m1

111, .., 1n1

111, .., 1n1

111, .., 1n1

111, .., 1n1 111, .., 1n1

212,...,2m2

212,...,2m2

212,...,2m2 212,...,2m2 212,...,2m2

212,...,2m2
212,...,2m2

212,...,2m2

212,...,2m2

212,...,2m2

212,...,2m2

Fig. 6. Small Factory: maximally permissive and scalable supervisor
SSUP′ derived using methods in Section IV.

as follows:

R′(1j1) = 11, R′(1j2) = 12, for j ∈ [1, bn
2
c]

R′(1j1) = 11′, R′(1j2) = 12′, for j ∈ [bn
2
c+ 1, n]

R′(2j1) = 21, R′(2j2) = 22, for j ∈ [1, bm
2
c]

R′(2j1) = 21′, R′(2j2) = 22′, for j ∈ [bm
2
c+ 1,m].

Accordingly there are two distinct template generators for
each of the two groups:

R′(G1j) = H1, j ∈ [1, bn
2
c]

R′(G1j) = H′1, j ∈ [bn
2
c+ 1, n]

R′(G2j) = H2, j ∈ [1, bm
2
c]

R′(G2j) = H′2, j ∈ [bm
2
c+ 1,m].

Compute the relabeled plant H′ := (H1||H′1)||(H2||H′2).
Proceeding with the same (P2)-(P4) as in Section III, we
derive again the SSUP′ in Fig. 6. Therefore, the method in
Section IV lead to a more permissive scalable supervisor (at
the cost of increased computational effort), in this particular
example maximally permissive.

B. Transfer Line

The second example we present is a transfer line system,
adapted from [6]. In this example, we demonstrate how
to deal with the case where the overall specification is
composed from two independent ones. As displayed in

10

1i1

G11

1i2

B1

G1i (i ∈ {1, . . . , n})

G1n

G21

G2m

111

1n1

112

1n2

211

2m1

G2j (j ∈ {1, . . . ,m})

B2

G31212

2m2

311

3k1

310

3k0

312

3k2

G3l (l ∈ {1, . . . , k})

2j1

2j2

3l1

3l0, 3l2

Transfer Line

G3k

Fig. 7. Transfer line: system configuration and component agents. Event
1i1 (i ∈ {1, ..., n}) means that G1i starts to work by taking in a workpiece,
and 1i2 means that G1i finishes work and deposits a workpiece to buffer
B1; event 2j1 (j ∈ {1, ...,m}) means that G2j starts to work by taking
in a workpiece, and 2j2 means that G2j finishes work and deposits a
workpiece to buffer B2; event 3l1 (l ∈ {1, ..., k}) means that G3l starts to
work by testing a workpiece, 3l0 means that G3l detects a fault and sends
the faulty workpiece back to buffer B1, and 3l2 means that G3l detects no
fault and output the successfully processed workpiece.

Fig. 7, transfer line consists of machines (G11, . . . ,G1n;
G21, . . . ,G2m) and test units (G31, . . . ,G3k), linked by two
buffers B1 and B2 both with capacities 1. The generators of
the agents are shown in Fig. 7. Based on their different roles,
the machines are divided into 3 groups:

G1 = {G11, . . . ,G1n}
G2 = {G21, . . . ,G2m}
G3 = {G31, . . . ,G3k}.

Let the relabeling map R be given by

R(1i1) = 11, R(1i2) = 12, i ∈ {1, . . . , n}
R(2j1) = 21, R(2j2) = 22, j ∈ {1, . . . ,m}
R(3l0) = 30, R(3l1) = 31, R(3l2) = 32, l ∈ {1, . . . , k}

where odd-number events are controllable and even-number
events are uncontrollable. It is easily observed that Assump-
tions (A1), (A2) hold.

The specification is to avoid underflow and overflow of
buffers B1 and B2, which is enforced by the two generators
E1 and E2 in Fig. 8. Thus the overall specification E is
E = Lm(E1)∩Lm(E2), which can be verified to satisfy As-
sumption (A3). It is also verified that Assumption (A4) holds.
In addition, it is checked that Lm(Hi) := Lm(R(Gi1))
(i = 1, 2, 3) is controllable with respect to R(L(Gi1||Gi2)).
By Proposition 1, we have that Lm(M) is controllable with
respect to R(L(G)). Therefore the sufficient condition of
Theorem 1 is satisfied.

By the procedure (P1)-(P4) with k1 = 2, k2 = 3, k3 = 1,
we design a scalable supervisor SSUP, displayed in Fig. 8.
The state size of SSUP and its computation are independent
of the agent numbers n,m, k. Moreover, the controlled be-
havior of SSUP is in fact equivalent to that of the monolithic
supervisor SUP, i.e. Lm(SSUP) ∩ Lm(G) = Lm(SUP),
for arbitrary fixed values of n,m, k. This is owing to that
both buffers have only one slot, and thus the restriction due
to relabeling is already enforced by the monolithic supervisor
in order to satisfy the specification.

112, . . . , 1n2

312, . . . , 3k2

310, . . . , 3k0

212, . . . , 2m2

211, . . . , 2m1111, . . . , 1n1

311, . . . , 3k1

112, . . . , 1n2

E1

211, . . . , 2m1

* * ** **

212, . . . , 2m2

E2

311, . . . , 3k1

312, . . . , 3k2

SSUP

∗ = {111, . . . , 1n1, 212, . . . , 2m2, 310, . . . , 3k0, 311, . . . , 3k1}

∗∗ = {111, . . . , 1n1, 112, . . . , 1n2, 211, . . . , 2m1, 310, . . . , 3k0, 312, . . . , 3k2}

Fig. 8. Transfer line: specification generators E1, E2, and scalable
supervisor SSUP

SLOC1i i ∈ {1, ..., n} SLOC2j j ∈ {1, ...,m}

112, . . . , 1n2
312, . . . , 3k2

211, . . . , 2m1

212, . . . , 2m2

111, . . . , 1n1

310, . . . , 3k0

311, . . . , 3k1

SLOC3l l ∈ {1, ..., k}

11

RLOC11||M1

1230

RLOC21||H2

12, 32

21

22

RLOC31||H3

12, 32
0 1

2

3

0

1

2

3 4

5
30

12

11

3012

12

0 1

2

3 4

5

4

31

0

1

23

310, . . . , 3k0

112, . . . , 1n2 112, . . . , 1n2
310, . . . , 3k0

112, . . . , 1n2

112, . . . , 1n2

111, . . . , 1n1

22

21

22

0 2

41

3
31

32 12

30

5

30

0 2

41

3

5

310, . . . , 3k0

112, . . . , 1n2

211, . . . , 2m1

311, . . . , 3k1

312, . . . , 3k2

212, . . . , 2m2

212, . . . , 2m2
310, . . . , 3k0

112, . . . , 1n2

211, . . . , 2m1

2112

Fig. 9. Transfer line: scalable local controllers (SLOC1i for machine G1i,
i ∈ {1, ..., n}; SLOC2i for machine G2j , j ∈ {1, ...,m}; SLOC3i for
test unit G3l, l ∈ {1, ..., k})

Scalable distributed control. Following the procedure
(Q1)-(Q3) in Section 4, we compute the scalable local
controllers for the individual agents. In (Q2), certain syn-
chronous products turn out to be blocking, as displayed in
Fig. 9 (upper part). Hence the trim operation in (Q2) is
important to ensure that the resulting local controllers are
nonblocking. In Fig. 9 (lower part), SLOC1i (6 states) is for
the machine G1i, i ∈ {1, ..., n}; SLOC2j (4 states) for the
machine G2j , j ∈ {1, ...,m}; and SLOC3i (6 states) for the
test unit G3l, l ∈ {1, ..., k}. It is verified that the desired
control equivalence between the set of local controllers and
the supervisor SSUP in Fig. 8 is satisfied, i.e. the condition
(ii) of SDCSP holds.

The control logic of the scalable local controllers is as
follows. First for SLOC1i (i ∈ {1, ..., n}), which controls
only the event 1i1 of machine G1i, observe that event 1i1
is disabled at states 1, 2, and 4 to protect buffer B1 against
overflow, while it is disabled at states 5 due to the restriction
of relabeling. As mentioned above, relabeling allows parallel
operations of two machines in group one.

Next for SLOC2j (j ∈ {1, ...,m}), which is responsible

11

1i1

1i2

G1i (i ∈ {1, . . . ,m}) G2j (j ∈ {1, . . . , k})

2j1

2j2

211, . . . , 2k1

212, . . . , 2k2

111, . . . , 1m1

112, . . . , 1m2

E

Fig. 10. Mutual exclusion: component agents and specification. Event 1i1
(i ∈ {1, ...,m}) means that G1i starts using the resource, 1i2 means that
G1i finishes using the resource; event 2j1 (j ∈ {1, ..., k}) means that G2j

starts using the resource, 2j2 means that G2j finishes using the resource.

only for event 2j1 of machine G2j , observe that event 2j1
is disabled at states 0, 2 and 3. This is to protect buffer B1
against underflow and buffer B2 against overflow.

Finally for SLOC3l (l ∈ {1, ..., k}), which is responsible
only for event 3l1 of test unit G3l, observe that event 3l1 is
disabled at states 0, 1, 3, 4 and 5. This is to protect buffer
B2 against underflow and buffer B1 against overflow.

C. Mutual Exclusion

In this last example, mutual exclusion, we demonstrate
how to transform the problem into our setup and apply our
scalable supervisory synthesis. There are n(> 1) agents that
compete to use a single resource; the specification is to
prevent the resource being simultaneously used by more than
one agent.

For this problem, it is natural to treat all agents as just one
group. However, our approach would then relabel every agent
to a single template model, to which the mutual exclusion
specification could not be imposed (mutual exclusion spec-
ifies requirement between different agents). Thus in order
to apply our synthesis method, we (artificially) separate the
agents into two groups, with m and k agents respectively,
such that n = m+ k. Namely

G1 = {G11, . . . ,G1m}
G2 = {G21, . . . ,G2k}.

The generators of the agents separated into two groups and
the specification are displayed in Fig. 10.

Let the relabeling map R be given by

R(1i1) = 11, R(1i2) = 12, i ∈ {1, . . . ,m}
R(2j1) = 21, R(2j2) = 22, j ∈ {1, . . . , k}

where odd-number events are controllable and even-number
events are uncontrollable. It is readily checked that As-
sumptions (A1), (A2) hold. Moreover, it is verified that
Hi := Lm(R(Gi1)) (i = 1, 2) is controllable with respect
to R(L(Gi1||Gi2)), and R−1R(E) = E; hence the sufficient
condition of Theorem 1 is satisfied.

By the procedure (P1)-(P4) with k1 = 1, k2 = 1, we
design a scalable supervisor SSUP, displayed in Fig. 11.

211, . . . , 2k1

212, . . . , 2k2

111, . . . , 1m1

112, . . . , 1m2

SSUP

Fig. 11. Mutual exclusion: scalable supervisor SSUP

Note that SSUP is identical to the specification E, and the
state size of SSUP and its computation are independent of the
agent numbers m, k (hence the total number n). Moreover,
the controlled behavior of SSUP is equivalent to that of the
monolithic supervisor SUP, i.e. Lm(SSUP) ∩ Lm(G) =
Lm(SUP), for any fixed value of n. This is because there
is only a single resource, and no matter how many agents are
in the system, the resource can be used by only one agent
at any given time. Thus the restriction due to relabeling has
already been imposed by the mutual exclusion specification
and enforced by the monolithic supervisor SUP.

Scalable distributed control. Following the procedure
(Q1)-(Q3) in Section IV, we compute the scalable local con-
trollers for the individual agents. Specifically, as displayed in
Fig. 12, SLOC1i (4 states) is for the first-group agent G1i,
i ∈ {1, ...,m}; while SLOC2j (4 states) is for the second-
group agent G2j , j ∈ {1, ..., k}. It is verified that the desired
control equivalence between the set of local controllers and
the supervisor SSUP in Fig. 11 is satisfied, i.e. (5) holds.

The control logic of the scalable local controllers is as
follows. First for SLOC1i (i ∈ {1, ...,m}), which controls
only the event 1i1 of the first-group agent G1i, observe that
event 1i1 is disabled at states 1, 2, and 3. At all these states,
the resource is being used by some agent; hence by mutual
exclusion event 1i1 must be disabled.

It is worth noting that if the sequence 1i1.2j1 (j ∈
{1, ..., k}) occurred, which is allowed by SLOC1i, the mu-
tual exclusion specification would be violated. Indeed 2j1
must be disabled after the occurrence of 1i1. However, since
the local controller SLOC1i is responsible only for event
1i1, the correct disablement of 2j1 (j ∈ {1, ..., k}) is left
for another dedicated local controller SLOC2j . As we can
see in SLOC2j , event 2j1 is disabled at states 1, 2, and 3. In
particular, at state 1 (i.e. after 1i1 occurs) event 2j1 is cor-
rectly disabled to guarantee mutual exclusion (as expected).
Therefore, while each local controller enables/disables only
its locally-owned events, together they achieve correct global
controlled behavior.

VII. CONCLUSIONS

We have studied multi-agent discrete-event systems that
can be divided into several groups of independent and similar
agents. We have employed a relabeling map to generate
template structures, based on which scalable supervisors are
designed whose state sizes and computational process are
independent of the number of agents. We have presented a
sufficient condition for the validity of the designed scalable

12

211, . . . , 2k1

212, . . . , 2k2

111, . . . , 1m1

112, . . . , 1m2

SLOC1i i ∈ {1, ...,m}

211, . . . , 2k1

212, . . . , 2k2

211, . . . , 2k1

212, . . . , 2k2

111, . . . , 1m1

112, . . . , 1m2

111, . . . , 1m1

112, . . . , 1m2

SLOC2j j ∈ {1, ..., k}

0

0

1

1

2

2

3

3

Fig. 12. Scalable local controllers for mutual exclusion: SLOC1i1

and SLOC2j1 are the scalable local controllers of event 1i1 and 2j1
respectively; R−1(RLOC11) and R−1(RLOC21) are obtained by inverse
relabeling the local controllers of event 11 and 21; LOC1i1 and LOC2j1

are calculated by scalable supervisor SSUP and plant G.

supervisors, and shown that this condition may be verified
with low computational effort. Moreover, based on the scal-
able supervisor we have designed scalable local controllers,
one for each component agent. Three examples have been
provided to illustrate our proposed synthesis methods.

In future research, we aim to find conditions under which
scalable supervisors may be designed to achieve controlled
behavior identical to the monolithic supervisor. We also aim
to search for new designs of scalable supervisors when the
sufficient condition of Theorem 1 fails to hold. Additionally
we are interested in investigating, in the context of scalable
supervisory control, the issue of partial observation.

REFERENCES

[1] Elmaraghy, H. (2005). Flexible and reconfigurable manufacturing
systems paradigms, Int. J. Flexible Manufacturing Systems, vol. 17,
no. 4, pp. 261-276.

[2] Wu, N. and Zhou, M. (2007). Deadlock resolution in automated
manufacturing systems with robots, IEEE Trans. Automation Science
and Engineering, vol. 4, no. 3, pp. 474-480.

[3] Wurman, P., D’Andrea, R., and Mountz, M. (2008). Coordinating
hundreds of cooperative, autonomous vehicles in warehouses, AI
Magazine, vol. 29, no. 1, pp. 9-19.

[4] Ramadge, P. J. and Wonham, W. M. (1987). Supervisory control of
a class of discrete event processes, SIAM J. Control Optim., vol. 25,
no. 1, pp. 206-230.

[5] Wonham, W. M. and Ramadge, P. J. (1987). On the supremal
controllable sublanguage of a given language, SIAM J. Control
Optim., vol. 25, no. 3, pp. 637-659.

[6] Wonham, W. M. (2016). Supervisory Control of Discrete-event
Systems. Syst. Control Group, ECE Dept, Univ. Toronto, Toronto,
ON, Canada.

[7] Gohari, P. and Wonham, W. M. (2000). On the complexity of
supervisory control design in the RW framework, IEEE Trans. Syst.,
Man, Cybern., vol. 30, no. 5, pp. 643-652.

[8] Kumar, R. and Takai, S. (2012). A framework for control-
reconfiguration following fault-detection in discrete event systems,
in Proc. 8th IFAC Symp. Fault Detection, Supervision and Safety of
Technical Processes, pp. 848-853.

[9] Nooruldeen, A. and Schmidt, K. (2015). State attraction under lan-
guage specification for the reconfiguration of discrete event systems,
IEEE Trans. Autom. Control, vol. 60, no. 6, pp. 1630-1634.

[10] Wong, K. C. and Wonham, W. M. (1996). Hierarchical control of
discrete-event systems, Discrete Event Dyna. Syst.: Theory Appl.,
vol. 6, no. 3, pp. 241-273.

[11] Wong, K. C. and Lee, S. (2002). Structural decentralized control of
concurrent discrete-event systems, Eur. J. Control, vol. 8, pp. 477-
491.

[12] Feng, L. and Wonham, W. M. (2008). Supervisory control architec-
ture for discrete-event systems, IEEE Trans. Autom. Control, vol. 53,
no. 6, pp. 1449-1461.

[13] Schmidt, K., Moor, T., and Perk, S. (2008). Nonblocking hierarchical
control of decentralized discrete event systems, IEEE Trans. Autom.
Control, vol. 53, no. 10, pp. 2252-2265.

[14] Cai, K. and Wonham, W. M. (2010). Supervisor localization: a top-
down approach to distributed control of discrete-event systems. IEEE
Trans. Autom. Control, vol. 55, no. 3, pp. 605-618.

[15] Cai, K. and Wonham, W. M. (2015). New results on supervisor
localization, with case studies, Discrete Event Dynamic Systems, vol.
25, no. 1-2, pp. 203-226.

[16] Cai, K. and Wonham, W. M. (2016). Supervisor localization: a top-
down approach to distributed control of discrete-event systems. Lec-
ture Notes in Control and Information Sciences, vol. 459, Springer.

[17] Eyzell, J. M. and Cury, J. E. R. (2001). Exploiting symmetry in the
synthesis of supervisors for discrete event systems. IEEE Trans. on
Automatic Control, vol. 46, no. 9, pp. 1500-1505.

[18] Rohloff, K. and Lafortune, S. (2006). The verification and control
of interacting similar discrete event systems. SIAM J. on Control
Optim., vol. 45, no. 2, pp. 634-667.

[19] Su, R. (2013). Discrete-event modeling of multi-agent systems with
broadcasting-based parallel composition. Automatica, vol. 49, no. 11,
pp. 3502-3506.

[20] Su, R. and Lin, L. (2013). Synthesis of control protocols for multi-
agent systems with similar actions. Proc. 52nd IEEE Conf. Decision
Control, pp. 6986-6991.

[21] Su R, Lennartson B. (2017). Control protocol synthesis for multi-
agent systems with similar actions instantiated from agent and
requirement templates. Automatica, vol. 79, pp. 244-255.

[22] Jiao, T., Gan, Y., Yang, X., and Wonham, W. M. (2015). Exploiting
symmetry of discrete-event systems with parallel components by
relabeling. Proc. TENCON IEEE Region 10 Conf., pp. 1-4. Also
see technical report, Xi’an Jiaotong University.

[23] Jiao, T., Gan, Y., Xiao, G., and Wonham, W. M. (2016). Exploiting
symmetry of state tree structures for discrete-event systems with
parallel components. Int. J. Control, vol. 90, no. 8, pp. 1639-1651.

[24] Willner, Y. and Heymann, M. (1991). Supervisory control of con-
current discrete-event systems, Int. J. Control, vol. 54, no. 5, pp.
1143-1169.

[25] Yingying Liu, Kai Cai, and Zhiwu Li. (2018) On scalable supervisory
control of multi-agent discrete-event systems. Proceedings of 14th
Workshop on Discrete-Event System, (pp. 25-30). Italy.

[26] Yingying Liu, Kai Cai, and Zhiwu Li. (2018) On scalable supervi-
sory control of multi-agent discrete-event systems. Available online
https://arxiv.org/pdf/1704.08858.pdf.

VIII. APPENDIX

Proof of Lemma 1:
(i): (⊆) Let t ∈ R(L). There exists s ∈ L such that t =

R(s). Let w ∈ Σ∗ be such that sw ∈ L. Hence R(sw) =
R(s)R(w) ∈ R(L). Therefore R(s) ∈ R(L), i.e. t ∈ R(L).

(⊇) Let t ∈ R(L). There exists u ∈ T ∗ such that tu ∈
R(L). Thus there are strings s, w ∈ Σ∗ such that sw ∈ L,
R(s) = t and R(v) = w. Therefore s ∈ L, so R(s) ∈ R(L),
i.e. t ∈ R(L).

(ii): Let t ∈ R(L1∩L2). There exists s ∈ L1∩L2 such that
R(s) = t. Thus s ∈ L1 and s ∈ L2. It follows that R(s) ∈
R(L1) and R(s) ∈ R(L2), i.e. t = R(s) ∈ R(L1) ∩R(L2).

(iii): (⊆) Let s ∈ R−1(H). Then R(s) ∈ H , and thus there
exists R(t) ∈ T ∗ such that R(s)R(t) ∈ H , i.e. R(st) ∈ H .
It follows that st ∈ R−1(H), therefore s ∈ R−1(H).

(⊇) Let s ∈ R−1(H). Then there exists t ∈ Σ∗ such that
st ∈ R−1(H); so R(st) ∈ H , i.e. R(s)R(t) ∈ H . Thus
R(s) ∈ H , and therefore s ∈ R−1(H).

13

(iv): (⊆) Let s ∈ R−1(H1 ∩H2). Then R(s) ∈ H1 ∩H2,
i.e. R(s) ∈ H1 and R(s) ∈ H2. Hence s ∈ R−1(H1) and
s ∈ R−1(H2), i.e. s ∈ R−1(H1) ∩R−1(H2).

(⊇) Let s ∈ R−1(H1) ∩ R−1(H2), i.e. s ∈ R−1(H1)
and s ∈ R−1(H2). Thus R(s) ∈ H1 and R(s) ∈ H2, i.e.
R(s) ∈ H1 ∩H2. Therefore s ∈ R−1(H1 ∩H2). 2

Proof of Lemma 5: First, we show that H is nonblocking.
By Assumption (A1) each plant component Gij is nonblock-
ing. Thus by (1) and Lemma 2, each Hi is also nonblocking.
Therefore by Assumption (A2) that Hi do not share events,
we derive that H computed as the synchronous product of
Hi is nonblocking.

Next, we prove Lm(H) ⊆ R(Lm(G)). From (P1) we have

Lm(H) = ||i∈{1,...,l}Lm(Hi)

= ||i∈{1,...,l}R(Lm(Gi1)) (by (2))
⊆ ||i∈{1,...,l} (R(Lm(Gi1)|| · · · ||Lm(Gi ni)))

= R
(
||i∈{1,...,l}(Lm(Gi1)|| · · · ||Lm(Gi ni

))
)

(by Assumptions (A1), (A2))
= R(Lm(G)).

2

Finally we provide the proof of Lemma 6. This proof in
fact has been given in the full version of [22], which is
currently under review and there is no online version we
can refer to. For completeness (for the review of this paper),
we reproduce the proof here.

Proof of Lemma 6: (⊆) This direction is always true.
(⊇) Let s ∈ Lm(SSUP) ∩ Lm(G). Then

s ∈ Lm(SSUP)

⇒s ∈ R−1(Lm(RSUP)) (by (P4))

⇒s ∈ R−1(Lm(RSUP)) (by Lemma 1(iii))

⇒R(s) ∈ Lm(RSUP).

Let t := R(s). Then there exists w ∈ T ∗ such that tw ∈
Lm(RSUP). By (P3) we have Lm(RSUP) ⊆ Lm(H),
and by Lemma 5 Lm(H) ⊆ R(Lm(G)). Hence tw ∈
R(Lm(G)). This implies that there are s′ and v′ such that

R(s′) = t & R(v′) = w & s′t′ ∈ Lm(G).

Since R(s) = R(s′) = t and by the symmetric structure of
the plant under Assumptions (A1), (A2), it can be shown
that there exists v such that R(v) = R(v′) = w and sv ∈
Lm(G).

On the other hand,

tw ∈ Lm(RSUP)

⇒R(s)R(v) ∈ Lm(RSUP)

⇒R(sv) ∈ Lm(RSUP)

⇒sv ∈ R−1(Lm(RSUP))

⇒sv ∈ Lm(SSUP).

Hence

sv ∈ Lm(SSUP) ∩ Lm(G)

by which we conclude that s ∈ Lm(SSUP) ∩ Lm(G). 2

14

	I INTRODUCTION
	II Preliminaries and Problem Formulation
	II-A Preliminaries
	II-B Problem Formulation

	III Scalable Supervisory Control
	IV Extensions for improving permissiveness
	V Scalable Distributed Control
	VI Illustrating Examples
	VI-A Small Factory
	VI-B Transfer Line
	VI-C Mutual Exclusion

	VII CONCLUSIONS
	References
	VIII Appendix

