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Abstract

A comprehensive approach addressing identification and control for learning-
based Model Predictive Control (MPC) for linear systems is presented. The design
technique yields a data-driven MPC law, based on a dataset collected from the
working plant. The method is indirect, i.e. it relies on a model learning phase and
a model-based control design one, devised in an integrated manner.

In the model learning phase, a twofold outcome is achieved: first, different optimal
p-steps ahead prediction models are obtained, to be used in the MPC cost function;
secondly, a perturbed state-space model is derived, to be used for robust constraint
satisfaction. Resorting to Set Membership techniques, a characterization of the
bounded model uncertainties is obtained, which is a key feature for a successful
application of the robust control algorithm.

In the control design phase, a robust MPC law is proposed, able to track piece-wise
constant reference signals, with guaranteed recursive feasibility and convergence
properties. The controller embeds multistep predictors in the cost function, it en-
sures robust constraints satisfaction thanks to the learnt uncertainty model, and
it can deal with possibly unfeasible reference values. The proposed approach is
finally tested in a numerical example.

1 Introduction

The idea of combining identification and control for efficient and reliable control sys-
tems design, starting from data collected on the plant, has a long standing history,
see the survey paper [10]. Indirect approaches are characterized by an initial phase
aimed at estimating the model of the plant, while a following one concerns the model-
based control synthesis. In this framework different solutions have been proposed, as
thoroughly discussed in [[10]]. Specifically, in dual algorithms, parameter estimation
and control design are posed as a combined problem, in optimal experiment design
methods, identification procedures suitably tailored for the adopted control synthesis
algorithm are developed, while in robust algorithms the model is estimated together
with uncertainty bounds, to be properly used in the control synthesis. With the cheap
availability of large data-sets and the advent of more and more powerful identification



and learning techniques, recent years have seen a renaissance of research activity in
this area, and in particular on robust methods. From the learning side, new and pow-
erful Set Membership (SM) identification methods, see [|6,|16,(30,[31]], have been de-
veloped to identify a model for the system with guaranteed prediction error bounds,
suitable for robust control design. From the control side, MPC algorithms, robust
with respect to model disturbances, have been studied from several standpoints, and
considering different characterizations of the model and its associated uncertainty, see
e.g. 2,47, /8L 12, |14L/18]22,[2528]]. Among the most recent contributions in learning-
based control, we recall the dual MPC algorithm described in [[13] for systems charac-
terized by probabilistic parametric uncertainty and process noise, and the MPC method
developed in [1] guaranteeing both robustness and performance by considering differ-
ent models of the system. Another recent contribution is reported in [[16], where an
MPC guaranteeing stability has been developed for nonlinear models estimated with
the learning method proposed in [5]].

In this paper we present a unitary approach to learning-based robust MPC, where we
take a joint perspective on the learning and the control design phases. The system
generating the data is linear and time-invariant, with unknown order, subject to pro-
cess disturbance and measurement noise. In the learning phase, we identify with SM
different models, together with their uncertainty bounds. Specifically, we compute
from data p-steps-ahead independent prediction models, p € [0, j], used to compute
the future evolution of the system outputs over the prediction horizon p considered in
the MPC cost function. The use of different models, as previously suggested in [29],
allows one to achieve good prediction accuracy at different steps ahead and to have
non-conservative bounds on the process disturbance. In addition to the independent p
models, we also estimate a perturbed state-space model, together with its disturbance
bounds, subsequently used in the MPC design for enforcing state, input and output con-
straints, as well as the robust stability property according to the well known tube-based
approach, see [21]]. The robust MPC controller is designed, following the approach
proposed in [15]], for tracking piece-wise constant reference signals, with guaranteed
recursive feasibility and convergence properties. A numerical example is finally re-
ported. Preliminary results on the learning and control synthesis algorithms developed
in this paper have been reported in [31], and [32]. In this paper, we propose a novel
offline method to learn the uncertainty model to be used in the control design phase,
together with a new MPC design to deal with the tracking of (possibly infeasible) piece-
wise constant reference signals, we derive the full proofs of all the theoretical results
concerning learning and control design, and we merge our preliminary work into a uni-
tary and holistic vision of the interplay between learning and control for MPC.

The paper is organized as follows: in Section [2] the problem is stated and the pro-
posed approach is described. In Section[3]the SM identification algorithm is presented,
Section [4] describes the robust MPC control scheme design, followed by a numerical
example in Section [5]and a concluding discussion in Section|[6}

Notation

k is the discrete time index and Z is the set of non negative integers. The transpose
of matrix M is MT. We denote with 1, a column vector with all its elements equal to
one and of dimension x, and with 0, , a matrix of zeros with x rows and y columns,
wheras I denotes the identity matrix of dimension x. Finally, |a|,a € R, denotes the
absolute value of real number a, ||v|| = v/vTv denotes the 2-norm of vector v, ||v|[4 =




VvT Av denotes the 2-norm of vector v weighted by matrix A, and the infinity norm of
a generic matrix N € R™¢, with element n,. in position (r,c), is indicated by [|N||. =

max Y| |npl.
re(l..7

2 Problem formulation: a unitary approach to learning-
based MPC

We consider a discrete-time, linear time-invariant (LTI), single-input/single-output (SISO)
system of order n described by the following autoregressive exogenous (ARX) struc-
ture (- is the matrix transpose operator):

@k
{<k+1> "ol (k) +v(k) W
y(k) = 2(k) +d(K),

where z is the output, v an additive process disturbance, y the output measure, and d an

additive measurement noise. For a given integer p > 1, the regressor (pz(p ) (k) € R2n+p—1
is defined as:

oP(k) = [z(k),.. (k n+1)

Juk—1),.. . ulk—n+1),
u(k),....u(k+p—1)]",

here u is the system input. In (I)), 6() e R>"+7=1 is a vector of unknown system
parameters. The value of n is not known a priori as well.

Assumption 1 (System and signals)

- The system (1) is asymptotically stable;

- The static gain from u to z is not zero;

-u(k) e UC R,Vk € Z, U compact and convex;
-|d(k)| < d,Vk € Z, d > 0 known;

- |v(k)| < v,Vk € Z, v > 0 possibly not known. O
Remark 1
a) The problem is formulated in the SISO setting for the sake of clarity and notational
simplicity.

b) Our working assumptions are rather common in theoretical contributions concerned
with system identification, when an unknown-but-bounded assumption is considered
for process and measurement disturbances. They are valid in many practical appli-
cations as well: a characterization of the available sensors can be used to compute
the worst-case measurement error bound d, while for process disturbances we just as-
sume boundedness, without necessarily knowing the worst-case value v. Indeed, the
worst-case effect of the signal v(k) on the system output will be estimated as part of the
uncertainty model in our approach.

In this paper we adopt an indirect approach to learning-based control synthesis, i.e.,
based on a sequence of model learning and model-based design phases.
The learning phase (Section 3 has a twofold role:

1. Identifying optimal (in the sense specified below) independent p-steps ahead
prediction models of the type

2(k+p) = 0" o” (k) ©)



where 2(k + p) is the predicted output at time k + p, and the model regressor
(p(,p ) (k) is defined as

o7 (k) = DR ylk—o+ Doulk—1).ulk—o+1),
u(k),...,ulk+p—1)]7.

with o being the order of the prediction model. Models (2) are also defined
“multi-step” since they directly provide the output prediction p steps ahead,
without integrating an underlying simulation model. These models, for all p €
[1, p], will be used in the MPC cost definition, thanks to their optimal predictive
properties, tailored on specific prediction lengths.

2. Identifying a state-space model of the type
X(k+1) =AX(k) + Biu(k) + Myw(k)

(k) = CX (k) ()
(k) = z(k) +d(k)

z
y

where X is the system state, w is the process disturbance, and A, By, M1, C are
the system matrices. One of the contributions of this paper consists also of a
novel approach for obtaining a non-conservative bound w on the amplitude of
the process disturbance w(t) from experimental data. This is fundamental, in a
constrained robust design context, to limit the conservativeness of the resulting
control approach.

In the control phase (Section[d), we propose a scheme, to be applied to the real system
(1), that asymptotically steers the variable z(k) towards the goal z,, and that guarantees
the fulfillment of the following input and output constraints, for all £ > 0.

u(k) €U (52)
k) €T (5b)

where Z is assumed convex. As already remarked, to this purpose (i) the multi-step
prediction models (2) are used for the definition of the cost function and (ii) the per-
turbed state-space model (@), with bounds d and W on d(t) and w(t), respectively, are
used for constraint satisfaction.

3 Learning linear prediction models for robust MPC -
a Set Membership approach

3.1 Model structure and preliminary considerations

In MPC with horizon j, at each step k the predictions of variables z(k+p), p=1,...,p
are needed. Many contributions on robust MPC in the literature [[121|19,20,22] assume
that a model of the system in the form (4) is available. A common, but quite conser-
vative, setup is to consider d(k) = 0,Vk, and C = I, i.e. perfectly measurable state,
and finally to assume a known bound w on the worst-case additive process disturbance,
such that ||w(k)|| < w, Vk. Such a model is then integrated forward in time to predict
the state and output values at each future step k + p.

However to learn, from experimental data, a model of the form @I) with good prediction



accuracy at different steps ahead and with non-conservative bounds on the process dis-
turbance is a complex task. The parameter identification problem is convex only when
a 1-step prediction error method is used, which may return models with poor prediction
accuracy over multiple future steps (i.e. poor simulation performance), see e.g. [9[29].
On the other hand, the use of a cost function that penalizes the multi-step prediction
error, or simulation error, yields a nonlinear program (NLP) in the parameters of the
1-step-ahead model, which, besides the possible trapping in local minima, makes it dif-
ficult to derive guaranteed disturbance bounds. Additionally, in practical applications
the state might not be fully measured, the system order is not known, and measure-
ment noise and process disturbances are present. These features make the identification
problem even more challenging.

To deal with these problems, the approach taken in this paper consists of learning
a different (linear-in-the-parameters) multi-step prediction model (2)) for each value of
p € [1, p]. Besides, as discussed, directly using models (2)) in the MPC cost function,
we will employ their corresponding worst-case error bounds to optimally compute the
bound w in a state-space realization (@), employed to robustly guarantee stability and
constraint satisfaction.

The choice of a model structure of type (2) is motivated by the fact that, integrat-
ing over time a model of type (I, the future system outputs are indeed affine in the

regressor (py(p ) (k), containing noise-corrupted output measurements:

)" )

7P (k)+ 6" 2P (k) 6)

& (k) &4(k)

2(k+p) =87 9" (k) + 87

where ¥ (P) (k) = [v(k),...,v(k+p—1)] and 2 (k) = [d(k),...,d(k+ p—1)] are the
sequences of output disturbance and measurement noise, respectively, values from k
to k+ p — 1. The parameter vectors 6(?), Q‘SP ) and é{gp ) are polynomial functions of
the true system parameters (1) (possibly padded with zeros if the model order o is
strictly larger than the true system order n), readily obtained by recursion of (I)). In our
approach, we will consider instead a distinct parameter vector for each p, i.e. 6") in
(@). A first advantage in doing so is the possibility to efficiently compute not only a
nominal multi-step prediction model for each p, but also a model set which is tight (i.e.
the smallest one compatibly with the available prior information and data), through a
Set Membership (SM) identification approach [23]]. From such a model set, we can
thus estimate a tight worst-case prediction error bound Tp(é<1’>) for any given multi-
step predictor, i.e.:

2(k+ p) — 2(k+ p)| < 1,(8%P)). (7)

We term the bound rp(é(p)) global, since it holds for any regressor value (py<p ) within a
suitable compact set ®(?), introduced in the remainder. A second advantage in using the
multi-step models is the possibility to rigorously define, and then efficiently compute, a
model optimality criterion and related optimal models, which minimize the worst-case
guaranteed prediction error.

We describe next the considered data-set, followed by the learning approach. An
important assumption throughout the paper is the following.

Assumption 2 (Model order)
o>n O

Assumption[2|can be easily satisfied in practice, on the basis of physical considerations
on the system at hand and/or by estimating the system order from data [[17].



3.2 Available data-set

For a given prediction step p, we denote with ®(?) the compact set containing all the
possible regressor vectors (p}(,p ), i.e., such that for each p € [1, p|

o\ (k) € @) ¢ R2~1*7 Yk e 7.

The set ) is not known explicitly in general, as it is a complicated set that depends
on the system input and disturbance trajectories and initial conditions of interest. Its
compactness is due to the fact that the system is asymptotically stable and its input

belongs to a compact set (Assumption . For any fixed regressor instance (p}(,p )(i) €

P, considering all possible disturbance sequences ”//(”>(i) and all possible noise

realizations 2(7) (i), there is a set ¥ p((py(” ) ) C R containing all the compatible p-step

ahead output measurements y, (i) = z(i+ p) +d(i+ p). In view of Assumptions|Ijand
and of the compactness of ®P) also Y p((p}(,p )) is compact. Let us then define the set

T
Ty ={10" 3ol 3y € Y (@), 9" € @)} c R, (8)

Now assume that a finite number N, of data [~y(’7 )(i)T, 9,(i)]" is available, where

(ny(-p ) (i) are the available measured instances of the regressor (p}(p ) (i) € @), and 5, (i) =

z(i+ p) +d(i+ p) the corresponding measured values of noise-corrupted outputs. We
can express our data-set as:

Ty = {0 @) 5@ i =1, N, } CRP, ©)

SN . S .
The set .7, ” is countable and contained in its continuous counterpart .7,. The follow-
ing assumption is introduced:

Assumption 3 (Data-set) For any B > 0, there exists a value of N, < oo such that
dp (,7,,7 jﬁ”) < B, where d, (ﬂp, ZN”) =max min ||T— k|| is the Haussdorff dis-
T€Tp ke g

SN,
tance between the sets F, and J, " . O

Assumption 3[implies that Nlim d> (y,,, ﬁpr ) =0, i.e. if more points are added to the
P
data-set, the underlying set of all trajectories of interest will be densely covered. This

is essentially an assumption on the persistence of excitation of the inputs used for the
preliminary experiments, together with an assumption of bound-exploring property of
the additive disturbances d and v, such that the bounds d and v in Assumption Erare
actually tight.

3.3 Learning procedure
The proposed estimation procedure consists of the following steps:

1. Define an optimality criterion to evaluate the model estimates and the corre-
sponding optimal (i.e. minimal) error bound.

2. Derive a procedure to estimate the optimal error bound.



3. Based on the available data and the error bound estimate, build the set of all
admissible model parameters (Feasible Parameter Set, FPS).

4. Using the information summarized in the FPS, for any given model of the form
(2) compute the related guaranteed error bound 7, see (7).

5. Select a nominal model with minimal guaranteed error bound.

3.3.1 Optimal parameter set and optimal error bound

For any p € [1, p], consider a given value of 6(P). From (2) and (@), the error between
the true system output and the predicted one is, for all k € Z:

£,(8), o) (k), 7P (k), 2P (k)) =
7 o (1 (10)

Thus, from (I and ) we have:
y(k+p) = z(k+p) +d(k+p)
=60 o) (k) +d(k+ p) (11)
+6,(07.9" (1), ") (1), 7 (k)
The quantity €,(-,-,-,-) accounts for the quality of the estimate §(P), for possible model

order mismatch, and for the disturbances v and d. In view of Assumption (I} g, is
bounded. Moreover, from (TT)) :

y(k+p) — 0P @WPy(k)| <

A - N - 12
l€,(87), 0" (k), 7 P) (k), 2P (k)| +d < &,(8¥)) +d 12

where Ep(é<”)) is the global error bound with respect to all possible regressors of in-
terest and all feasible disturbance sequences in the compact set ®(7):

£,(0P) = mine
57 ) S ) o 1" 4
st ly,— 0" | <e+d V(@ 7yp>¢[<py” yp} €Jp

We can now define the optimal parameter values (i.e. optimal models) as those that
minimize the bound é,,(é<p)). As a technical assumption, we consider parameters
within a compact set Q(?) ¢ R?*P~1_Q(P) can take into account application-specific
prior information on the model parameters or, if no such information is available, it
can be chosen as a large-enough set (e.g. by considering box constraints of 10"
on each element of the parameter vector). This technical assumption allows us to use
maximum and minimum operators instead of supremum and infimum. The set @) of
optimal parameter values is:

el = {é<”) : 6 —arg min ép(e(”))}, (14)
0(P)cQ(p)

and we denote with €, the corresponding optimal error bound:

= min &,(6%). (15)

ok
P 0P cqp)



Considering (T3)-(I3) we can alternatively write:
er = {5(17) c QP |y, - é(p)T(p;P)| <&

T
V((P}('p)a)’p): [ (P(fp)Typ } € yp}

»+d,
(16)

3.3.2 Estimating the optimal error bound

The optimal models and optimal error bound cannot be computed in practice, since
the solution to (T4) would imply the availability of an infinite number of data and the
solution to an infinite-dimensional optimization program. However, we can compute
an estimate A, ~ &, from the available experimental data, by solving the following
linear program (LP):

= min A

0P eQ(P) AeR+

subject to a7

. T _ " ~ T T =Np
7~ 07" ¢ <A+d, V(@ 5,): [ @75, | € T

A,

The following result shows that, under the considered working assumptions, the value
of A » converges to the optimal one, &,.

Theorem 1 Let Assumptions[I\3|hold. Then:

1A, <&,
2. Vp e (0,8 IN, <0 : A, >E;—p O
Proof 1 See the Appendix. |

Theorem 1| implies that Nlim (8, —1,) =07, ie. that the solution of converges
P

to the optimum from below. This is a consequence of the considered problem settings,
where a finite data-set is available. In practice, one can increase the number N, of
experimental data and observe the behavior of 4 ,, which converges to a limit provided
that the data are informative enough. Then, a practical approach to compensate for the
uncertainty caused by the use of a finite number of measurements is to inflate the value
&p: R

sp:a&p,oc>l. (18)
With sufficiently large number of and exciting data points, a coefficient & ~ 1 can
be chosen. We show an example of such a procedure in Section [5] and consider the

following assumption in the remainder:

Assumption 4 (Optimal error bound)
The chosen value of & is such that §p > E‘;. O



3.3.3 Feasible Parameter Set

We exploit the estimated optimal error bound to construct the tightest set of parameter
values consistent with all the prior information, i.e. the FPS o).

19)

The set ©(7) is non-empty by construction, since under Assumptionwe have (see
and (T9)) that @) C ). If the FPS is bounded, it results in a polytope with at most
N, faces. If it is unbounded, then this indicates that the available measured data are not
informative enough to derive a bound on the worst-case model error, and that N, must
be increased until a bounded FPS is obtained. This situation usually occurs when very
few data points are used (e.g. N, < 20+ p — 1) or the preliminary experiments are not
informative enough.

3.3.4 Error bound computation for a given model

Consider now a given parameter vector 8(?) and any (py('7 ) (k) € ). From (6), (T0),

and (T6) it follows that
l2(k+ p) — 2(k+ p)| < (8 — 6P o) (k)| + & (20)

In view of Assumption the global worst-case prediction error bound for model 6(r)
is then:

7,(6%)) = max max |(979<p))T(py(p)|+§,, (21)
go)(”)ed)(l’) 0coP

This bound cannot be computed exactly with finite data under the considered assump-
tions, and its computation would be intractable also if the set ®(?) were known pre-
cisely. The complexity may be reduced only if additional assumptions are made, e.g.
that ®(?) is a polytope, which however may result in a high conservativeness. How-
ever, we can approximate 7, by computing the outer maximization in (ZI) over the

. <N,
finite data-set 7, *:

7,(6P)) = max max |(6—é(p>)T¢;(vp)(i)‘+§ﬂ (22)
i=1,...,Np gc@(p)

The following result shows convergence from below of 11,(?)(1’)) to 7,(6 ).
Lemmal Let Assumptionshold. Then, for any 8(P) € QP):

2. 9p € (0,5, (87)] IN, < oo = 1,(87)) > 7,(07) —p

Proof 2 See the Appendix. u



Considerations similar to those reported after Theorem for A » hold also for the bound
gp(é(p)), i.e. it is possible to monitor its behavior for increasing values of N, in order
to evaluate convergence. As done in @I), we inflate this bound to account for the
uncertainty deriving from our finite data-set:

£ (67) = vz,(6%), y> 1, (23)
and we assume that the resulting estimate is larger than the true bound:

Assumption 5 (Error bound for a given )
The chosen value of v is such that ,(0(P)) > 7,(8(P)). O

3.3.5 Selection of nominal multi-step models

The last step in the proposed estimation algorithm is to select a nominal multi-step
model for each prediction step p. The most common approach is probably based on
least-squares estimation: in this case the results of Section [3.3.4] can be applied to
obtain an estimate of the resulting global error bound. Since our final goals are to
employ the multi-step models in a robust MPC algorithm and estimate bound w for
the perturbed model @]} in a non-conservative manner, we rather seek the model that
minimizes the worst-case error bound for each p value. Specifically, considering that
the tightest set that contains the optimal parameter values (i.e. with minimum error,
see Section b is the FPS ©(P), we search within this set for a parameter value that
minimizes the resulting bound %, (8(?)):

6" —arg min £,(6). (24)
0(p)c@(p)

The resulting nominal model reads
2(k+p) =07 9" (k) (25)

and the associated error bound estimate is %, ( é<”)*). Note that term §p, see (22)), does

not depend on 6(P)* and it converges to the optimal error bound &, as N, increases

(Theorem[T)).
Remark 2 0P in @) reads

6" —arg min max max |(6 — é“”)%ﬁ”(l’)l- (26)
6o i=1,..Ny gcoP) ’

This problem can be solved by reformulating it as 2N, + 1 LPs [3)], [24]].

3.4 Derivation of the state-space model realization and estimation
of the corresponding process disturbance bound

In this section we describe the derivation of the state-space model (@) and of of the
bound w of the corresponding disturbance w(k).
First of all, we define the equations of the state-space model @) based on the nominal

1-step ahead predictor, i.e., 23) with p = 1. To do so, recalling the structure of (p§p ) @,
note that we can partition the parameter vector 8(?) of a prediction model as follows:
A A\ AT a(T1T
[T @)

10



where é{g’,? eRe, é;]p ) e RO and él(-]p ) € RP are the parameters pertaining to the past o
output values, the past o — 1 input values, and the current and future inputs, respectively,
up to p — 1 steps ahead. We define the state vector of the model (@) as

X (k) = [z(k),...,z(k—o+1),u(k—1),...,.u(k—o+1)]7, (28)

Denoting the process disturbance as w(k) € R (accounting for both the disturbance v
and prediction error stemming from the learning phase), the state X (k) evolves accord-
ing to (4) with the following matrices:

AT AT A (1)*
O4r Oy U
A= Io—l 00—1,1 0071,071 Bl — 0071,]
01,01 ’ 1
0, ' (29
o-le I—o 0p-21 0p—2.1

1
M, = C=|1 052
1 [02(01)71} ) [ 120-2]

Remark 3 The model (29) of order 20 — 1 is considered to be in minimal form

Secondly, we need to define the bound w on the amplitude of w(k). As anticipated,
to this aim we will use the computed FPSs ©(?). More specifically, the following
approach is proposed.

Starting from a noise-corrupted initial state at step k and by iteration of the state-space
model (@) (discarding process disturbance), we can compute a p-steps ahead prediction
20 (k+ p) of the variable z(k + p) as follows:

p—1
2D (k+p) = CAPX, (k) +C Y A'Bju(k+p—i—1) (30)
i=0

where
X, (k) = y(k),...,y(k—o+1),u(k—1)...,u(k—o+1)]" (31)

We can write (30) equivalently as
£ (k+p) = 6011 ol (k). (32)

This is a multi-step prediction model whose parameter vector 61 in view of (30),
is composed of polynomial combinations of the entries of the 1-step ahead prediction
model parameter vector §(1*, Clearly, §(P)-! is in general different from 6(?)* used in
([23), and therefore z(k+ p) # 21 (k+ p). At this point, we can use the FPSs derived in
Sectionto estimate the associated worst-case prediction error bounds, f'p(é(m’l):

lz(k+ p) — 2 (k+ p)| < £,(6P1) (33)

On the other hand, by initializing the state-space model with the true (i.e. without
measurement noise) initial state (28)), and including the presence of process disturbance
w, we can also write:

a(k+p)= CAPX(k)+CYly Al(Bu(k+p—i—1)

Mk p—i o 1)) GY

11



Then, taking the difference between (34) and (30), we obtain:

2k+p)—2D(k+p) = CLZgAMwlk+p—i—1)

—CAP (X, (k) — X (K)). 33)

which highlights the prediction error due to the process disturbance w, and the one due
to the measurement noise on the initial condition, X, (k) — X (k). Note that the latter is
equal to zero for all state components pertaining to the past input values, and it is at
most equal to d for all components pertaining to the past output values. Thus, recalling
that |w(k)| < w, we have:

p=l -
2(k+p) =W (k+p)| < Y [CAMy |0+ || CAPE | .d (36)
i=0

=l

where E = [Io 0<0,])’0] ", The idea proposed here is to compute w as the minimum
value such that the bounds (36) do not violate the (tight) bounds (33)) for all p € [1,7]:

W = arg min w
Lo weR* . (37)
sit. T [CA'My[w + |CAPE || =d > %,(8)1), p € [1, ]

Note that problem always admits a finite feasible solution thanks to the bounded-
ness of £,(0(P)11) Vp € [1, p]

4 MPC for tracking with learned models

As anticipated in Section [2] the MPC controller devised in this paper uses, in the cost
function optimized at each time instant k, the optimal p-steps ahead models (@) to
predict in the best possible way the future evolution of the output variable, while the
perturbed state-space model (4) is used to rigorously define the constraints and ensure
recursive feasibility. For notational convenience, we rewrite the predictions (23) as
outputs of model (@) (where matrices A, B, C are defined in (29)), as follows:

2y (k) = C,X (k) +D,U (k) (38)
where U (k) = [u(k) ... u(k+p)] c,,:[éfgf;g*f é(gm*f],p,,:[égw olﬁw,p]

and we denote z, (k) = Z(k+ p) for brevity. For later use we also define Co = C and
Do = 01 541 such that we can write z(k) = zo(k) = CoX (k) + DoU (k).

4.1 State observer and tube-based control approach

Since z(k) is measured with some noise, the state X (k) of the system (@) cannot be
perfectly reconstructed as a suitable collection of the past available outputs and inputs.
For this reason, a Luenberger state observer is employed. To design the observer on the
basis of the model (@), it is beneficial to introduce an estimate w(k) of the disturbance
w. The term w(k) will result from a suitable optimization problem introduced later on,
in Section[d.2] The observer takes then the following form:

X(k+1) = AX (k) + Byu(k) +Myw(k) + L(y(k) — CX (k)) (39)
where X (k) is the estimated state and the matrix L is chosen such that the closed-loop

matrix (A — LC) is Schur stable.
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Furthermore, for application of a tube-based robust control method inspired by [21]], we
define the nominal dynamic system related to (@), where again the disturbance estimate
w(k) is included, i.e.

X(k+1) = AX (k) + Byia(k) + M (k) (40)

The input u(k), to be applied to system (@) at time instant k, is defined as the sum of
two components as follows.

u(k) = (k) + K (X (k) — X (k)) 41)

The second component (i.e., K (X (k) — X (k))) is given by a suitable proportional con-
trol law, aiming to reduce the displacement of the state X (k) of with respect to the
state estimate X (k), available at time k. The gain K is defined in such a way that the
closed-loop transition matrix A + B K is Schur stable, e.g. by pole-placement or LQR
design. The corresponding nominal outputs are, for all p € [0, p]

Z,(k) = C,X (k) + D, U (k) (42)

where U (k) = [a(k) ... a(k+p)] T we finally define (k) = CoX (k) = Zo(k).

4.2 Definition of the cost function

The goal is to steer variable z(k) in order to track the (possibly piece-wise) constant
goal z,,,. However, tracking this value could lead to infeasibility problems: to avoid
them, inspired by [[15]], we introduce an output reference z.; to be used as a further
degree of freedom in the optimization problem.
Assuming that a reliable estimate [ of the system gain is available (see the following
Remark, we can now compute W as a function of a generic z..;(k) as follows. We first
compute the constant input and state values u,; and X, corresponding to the reference
output Zy:

Ui (k) = ()2 (k),  Xeet(k) = Nz (k) (43)

where N = {1 1(:1 ) ]] . The value of w can now be defined in such a way that
o—1

Xeet (k) = AX s (k) + By ues (k) + My (k) (44)
i.e., as a linear function of z.. In short we write

W(k) = nzwzref(k) (45)

where 1., = M{ [(lo—1 —A)N — By (f1)~']. Moreover, for consistency, the term (k)
is forced to be bounded, so that |w(k)| < w.

Remark 4 Since the long-term prediction capabilities are commonly more accurate
with model [23)) with the longest possible prediction horizon, i.e., p = p, one suitable
option for the gain estimate i is to choose fl = U, where

(67

)"

N
1,4+ 67" 1,.)
1601,

uh =
is the gain of the optimal p-steps-ahead model .

13



Last we can define, Vp € [1, p], the reference for the p-steps ahead model, i.e.,

Xeer (K)
rk)=1[c, D - 46
Zref( ) [ P P] |:uref(k)1ﬁ+1:| (46)
and 22, (k) = zer(k) = CoXeet(k) + Dot (k)11

The cost function to be minimized at each (sampling) time £ is therefore

p
B - D 2 i — Ut ?
J(k)pgh(HZp(k) k), + -+ p) — (], ) )

X (k4 + 1) — Xt (k) lef’ + 0|z (k) — Zgoale
where X (k+ p+ 1) is obtained by iterating the unperturbed state equation (0) 5 + 1

times, i.e., i
X(k+p+1) = APTIX (k) + TU (k) + Ty 15,1 (k) (48)

with ['=[A?B; ... Bi|.I\,=[A’M; ... M;]. To compute the weights Q,,
R, and P in order to guarantee closed-loop stability, we must first define B = [Bl 0201, p]
and

G D,

CA  CB+DH, : :
Y= : = Gy D; |

C;A CsB+DsH; APT! r

0p+120—1 Ipt1

_ %1 I;
= [ 0 01
Also, we write 2 =diag(Qo,...,0p). and
2 =diag(Q1,...,0p,Iv, %), where Ty is a positive definite matrix to be used as a
further tuning knob and % =diag(Ro/2,R1 —Ro,...,Rs — Rp_1). Then, the weighting
matrices are computed such that the following constraints are satisfied:

(A+BiK)"P(A+BK)—P=—Ty— K R;K (492)
yT 9y < 9T 9P (49b)
Iv>0, #Z>0, 2>0, P>0 (49¢)

Finally, the scalar o > 0 must be chosen sufficiently large to provide converge
properties, its quantitative evaluation is discussed in the Appendix.

4.3 Definition of the tightened constraints

As common in tube-based control, see e.g., [21}27], we enforce the input and output
constraints (3) with suitable tightened bounds on the nominal input and output (k)
and z(k) = CX (k) respectively. For their definition, we first have to define the state
estimation error é(k) = X (k) — X (k). We obtain, from (@) and (39), that

é(k+1)=(A—LC)é(k)+M;(w(k) —w(k)) — Ld(k) (50)
Denote now with [ a robust positively invariant (RPI) set [26] (minimal, if possible)

for the system (50) containing é(0) = X(0) — X(0), where |w(k) — (k)| < 2w . This

14



guarantees that, for all k > 0, é(k) € .
We also define the displacement between the estimated state and the nominal one as

A —

e(k) = X (k) — X (k). From (39) and (40) we derive
g(k+1) = (A+ B K)e(k) + LCe(k) + Ld (k) (51)

Since the equivalent disturbance LCé(k) + Ld (k) is bounded for all k > 0, we can define
as IE the (minimal, if possible) RPI set for ).

Then, the input and output constraints can be defined with reference to the model (40)
in a tightened fashion:

ak)eU, z(k)eZ, wk) eW, (52)
where W = {w € R : |w| < w} and the sets U and Z are closed and satisfy:

UCUsKE (53a)
ZCrZeCEaR) (53b)

Finally, to define the terminal constraint set we consider the following auxiliary control
law
(k) = uer(k) + K(X (k) — X (k) (54)

To compute an invariant set where (X (k),z.r) must lie in order to guarantee that con-
straints are verified for all k, we need to define the Maximal Output Admissible
Set (MOAS, see [11]])) O for the system

{)’((k—i—l)] _ [A—i—BlK Ble—i—ManW] {)_((k)} (55)

Zref(k + 1) - 01,2071 1 Zref(k)

F

that is subject to the auxiliary control law (54), where M = i~! — KN. The triplet
(i(k),z(k),w(k)) is computed as

ak)|=| Kk M
W(k) 01,2071 Nzw
—_——

¢

z(k) c 0]
LX(Z%] (56)

An invariant, polytopic inner approximation Q¢ to the MOAS can be computed in a
finite number of steps as shown in [11]. Specifically, O is defined as follows
Qe = {(X,20et) : €T (X, 20e1) € Xzpywy for all k > 0
and lim . 7(X, zer) € Xzuw ()} (57)

—rFoo

where Xz (€) is a close and compact set satisfying Xz (€) © %3 (0) C Xzuwy, with
22(0) aball in R? containing the origin and with radius € arbitrarily small. Note that,
see again [11]], O, C O and if (%, %) is observable, then O is bounded.
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4.4 The optimization problem and main result

The optimization problem, to be solved at each time instant k > 0, reads

J(klk)=_ min  J(k) (58a)
X (k)0 (k) zret (k)

subject to the dynamical system {@0), (@3), @4), @6) and

X(k)—X(k) € E (58b)
Also, Vp € [0, p] . )
i(k+p)eU, zk+p)eZ, wk)eW (58¢)
Finally, as a terminal constraint, the following must be fulfilled
X(k+p+1)
58d
{ zerlK) ] < Ce 8

If available, the solution to the optimization problem (58)) is denoted X (k|k), U (k|k) =
(a(klk),...,ia(k+Dlk)),zer(k|k), and u(k) in @I)) is applied to the system according to
the receding horizon principle. Also, we denote with X (k + p|k) the future nominal
state predictions generated using with input U (k|k). The following result holds.

Theorem 2 [fthe optimization problem is feasible at time step k = 0 then it is feasible
at all time steps k > 0 and, for all k > 0, the constraints @ are satisfied. Also, if ©
is sufficiently large, the resulting MPC control law asymptotically steers the nominal

system output Z(k) to the admissible set-point 7oy """, where

FEASIBLE

oot =argmin ||Z — Zgou|*
z

, o (59)
stz @ W' =[CN p7' my] zeRguw(e)

Finally, dist(z(k),zEASBE ¢ C(E @ R)) — 0 as k — oo, where dist(ct, ) denotes the

) “-goal

distance from point a. to set 3. O

Proof 3 See the Appendix. |

S Simulation example

The proposed approach for learning-based predictive control has been tested on a sim-
ulation example. The considered system is of third order, and it corresponds to the
discretization of the system with continuous time transfer function

Z(s) B 160
U~ Y = i@+ 1o+ 16)

(60)

characterized by dominant complex poles with natural frequency w, =4 and damping
factor & = 0.2, and with unitary gain. Figure [I| shows the open loop step response of
the system under analysis. The input and output samples are collected with sampling
time 7y = 0.1, the output z(k) is corrupted by an additive disturbance v(k) such that
[v(k)| < 7= 0.01, while the bound on the measurement noise is d = 0.1. The multistep
models and bounds are computed up to p = 20 steps ahead, while the chosen model
order is 0 = 4. The collected dataset is composed overall of 1000 input-output data
samples, where the input is a step-wise sequence taking a random value in {—1,0,1}
every 5 time units.
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Time

Figure 1: Open loop response of the system to a unitary step at time 10. Solid line:
nominal z (v(k) = d(k) = 0), dashed line: output z, dotted line: output measure y

0.25

0.2r

~<1'0.15T

0.1k

10 20 30 40 50 60 70 80 90 100
% of the dataset

Figure 2: Trend of A , against the employed percentage of the dataset. Dotted line:
p=3, solid line: p=10, line with circles: p = p =20

Following the approach of Section [3.3.2 we compute A, and monitor its trend
against the percentage of dataset used to compute it. This procedure enables one to

assess the convergence rate of A » to a limit value, presumably equal to €, according to

Theorem Figure shows this trend. Parameters §,,,p € [1, p] are then computed with
a conservative factor a = 1.1 to account for the finite dataset employed, see (I8)), and
the FPSs are then built independently for each step as in (I9). The parameters of the
nominal one-step predictor 6()* are computed by solving (24). In order to learn the
uncertainty bound w, the given predictor 6()* is iterated and rewritten in form (32) and
the estimated value f',,(é(l’)*l) is computed exploiting the FPSs previously introduced.
Finally the optimization program is solved leading to the minimizer w.

The multi-step guaranteed bounds %,(8(")!) are compared with the bounds (36),
pertaining to the state-space model with matrices in Figure The multi-step
bounds are smaller, as expected, however they are decoupled in time, and therefore not
directly usable to guarantee recursive feasibility within the proposed robust MPC law.

To clarify the advantage of our approach, in Figure ] we compare the guaranteed
bounds computed by iterating the obtained state-space model as described in this pa-
per with those achieved by considering the uncertainty bound w = 7 ( é“)*) +d, ie.
the one-step-ahead guaranteed prediction error bound, iterating it over time with the
same model matrices, and eventually adding d. This alternative bound has been pro-
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Bounds

05

Figure 3: Trend of bounds against step p. Solid line: bounds learned as in (36) after
optimizing w, dashed line: multistep bounds associated to the iterated 1 step model

%p(é(p)’l)

25

0 5 10 15 20
step p

Figure 4: Trend of bounds against step p. Dotted line: bounds with the previous
approach we adopted (see [31] [32]) line with circles: current bounds for the additive

disturbance Y7~ [CAM, |w

10

-10

Time

Figure 5: Controlled system trajectories. Solid dark line: z(k), dashed line: refer-
ence value z,, solid light line: Zo(k|k), dashed dot line: constraints and tightened

constraints
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posed in out previous works [31]] and [32]]. It can be noted that the proposed approach
achieves a guaranteed bound on the prediction error that is half the one obtained from
the integration of 1} (é(l)*) +d, thus reducing conservativeness significantly.

In the control design phase, the constraint sets U = Z = [—10, 10] are considered,
while the prediction and control horizon is p = 10. The Luenberger observer and the
auxiliary control law are chosen thanks to optimal control theory and the weighting
matrices are tuned according to (@9). The reference to be tracked is piece-wise con-
stant and takes value {0,5,12}, thus including an unfeasible setpoint as well. The
trajectories of the closed-loop system are reported in Figure [5] where it is shown that
Zo(k|k) — zgu O to its nearest feasible point. As visible from the simulations, the in-
feasibile reference is handled successfully by the controller as well as the transients
with respect to the open loop response of the system.

6 Conclusions

The proposed unitary approach to learning-based MPC for linear systems allows one to
design a control law based on a dataset collected from the working plant. The obtained
data-driven controller is able to effectively deal with constraints and track desired out-
put references. The method relies on two phases: model learning and model-based
control design, that are conceived to limit conservativeness while still robustly guar-
anteeing constraint satisfaction. To achieve this result, multi-step predictors and the
related uncertainty bounds are derived and exploited to compute the state-space model
employed in the MPC design. Future directions are concerned with the extension to
classes of nonlinear systems, the online (adaptive) computation of the prediction mod-
els and disturbance bounds, and the direct use of multi-step predictors also in the con-
straint tightening scheme.

Appendix

Proof of Theoreml]]
Proof of claim 1). The solution to (I5) must imply a regressor, denoted with (p)%ff, and a corre-
sponding output value, y, o, satisfying:

[Yp.0 — o))" (py(%)\ —d, so that, see (™)
7 _ T
vpo— 00 @ |~ W@ ) | o'y, | €7

(61)

Tk T o
vV

From the definition of 7,, and 1%1\]" it holds that <7~pr C 17,,; thus, from @ neglecting the trivial

case A, =0, wehave A, = min max 5, — )" (ﬁy(p)\ —-d<
P P 0P Q) 5 (p)T T SNp
[ @ Ip | <7
min max lyp — o)’ (py<p)| —d =&, thus we have then A, <&},

o) cQ(p) )7 T j
[ &5 ]2

Proof of claim 2). Starting from (T7), with standard properties of absolute values, we compute

A,(Np) :maX{O, min max \fp—e(p>T¢;p)|—J >
0P QP ~(p)r 5 T 7,\,[)
[ 675, | <% (62)
min {\y- (N,) — 6P P (N )|—d‘} where
o eQr) Pyp ) P ’
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{‘py(p) (NI’)} = arg min

YP(NP) [ (p;p)ryp ]TE%NP Yp,0 Yp
(p)

Adding and subtracting y, o and o)’ ?0 from (62), and neglecting the trivial case A =0

A (Np)>9§mg {1Fp(Np) = ypo)+

2

o (plh) — g7 <N ) +yp0— 0P )|~}

>61’I>nelgp){b’p0_ (pyo‘_‘( yP(NP)—’_vaO)_
00 (g — " <N ))H,-}
(63)
= min {\yp,of \}* (max {1(=3p(Np) +yp0)+
80 cQ €Ql

0" (—ol) +@P (N,))| - d}

=&, +d— max {|(=3p(Np)+yp0)+
0 eQ(r)

T
00" (o) + 0" (V,)| - d)
Then, simplifying d, we compute

Ap(Np) > &, — max {|(=3p(Np) +p0)

o) eQr) ) " " (64)
+00) () + o (N,)) [}
Considering AssumptionEI, we know that for N, — o
AR
Sp(Np) =¥po

185" (09p) = (51| < B and |5, () -
and thus, using the inequality |a” b| < ||a||2||p]|2

A,(Np(B)) =& — max {|(- y_p(Np(B))+yp70)|

VB >0,3N,(B): ‘ < B,in particular (65)

(66)

o e _Q(P
+|o» Hzll‘Pyo PV (&, (B))l2}
25;;—[3(1—1— max ||6 ||2)
o) eQr)

p

1+ max [|0@|,
o(P)eq(p)

Finally, choosing 8 < ( ) concludes the proof.

Proof of Lemmall|
The proof of claim 1 is very similar to that of claim 1 of Theorem [T]and thus omitted for brevity.
Regarding the second claim, we note that the definition of 7, (9</’ )) must imply a vector, denoted

(p;,f)) cplr ), that satisfies

7,(8%)) — &, = max |(0—6")T o)

0cow®)
Let us denote (py(p)( Np) =arg min H(p< ?) (p}o |l2 and
(p;,p)rf)p TEZNP
7,(00) -, = max max |(9—9(1’))T¢}(,p)|

(675, ez o<

> 6— 0T aP (N
erélgg;l( )T @y (N
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By adding and subtracting (6 — o)’ )(p;'(l)), one can write

7, (01) ~ & >

=P
Jmax [(6-60)7 g — (660 (9l — 9 (V)| >
Jmax (6007 glf)] — max |(6-6%) (9, — " (N))

Recall from AssumptionEl that for N, — oo
VB > 0,3N,(B) : 19" (N, (B) — o) | < B

and, using the property |a” b| < ||a||2||b||. also replacing max [(6— 6(1’>)(p)(,16)| = TP(O(”)) -
6ceP) ’
?:1,, we eventually obtain:

00)) > 7(6%)) — max [[(9) @\ (Np) (6~ 6))
> 2,(67)) —p max [jo— 0]
0cOP)

Now, taking any p € (0,7,(0(?))) and choosing f < m we have 1,,(6(”)) >1,(6(P) —
] @)(P)
p, which concludes the proof. )

Proof of Theorem|[Z]
The proof of Theorem2]is here divided into the following steps:

e Proof of recursive feasibility of the optimization problem (38).
e Proof that constraints (3 are satisfied.
e Proof of convergence.

Recursive feasibility.

The proof is conducted by induction. Assume that, at instant k, a solution to the optimization
problem (58) exists. All constraints (58B)-(38d) are therefore verified by z.¢(k|k), the trajectories
X(k+ plk), and U (k|k) = (ia(k|k),...,i@(k+Pp|k)). The input u(k), actually applied to the system
at time step , is defined according to (@T).

Atstep k+ 1, X (k+1) = AX (k) +Byu(k) + Myw(k) and X (k+1) = AX (k) + Bu(k) + Mw(k) +
L(y(k) — CX (k)). We can show that a feasible, although possibly suboptimal, solution to (58} at
step k+ 1 can be defined as z.(k + 1]k) = z.r(k|k), X (k+ 1]k),

U(k+1]k) = (a(k+1]k), ..., @(k + plk), ue (klk) + K (X (k+ P+ 1]k) — X (k|K))) .

First of all, in view of the invariance of E, X (k4 1) — X (k+ 1|k) = (A4 B1K) (X (k) — X (k|k)) +
LCé(k) + Ld(k) € (A+ B K)E® LCE @D C E, where D = [~d,d]. Also, i(k+ plk) € U in
view of (38d), for all p = 1,...,p; also, u(k|k) + K(X(k+ P+ 1|k) — Xt (k|k)) € U in view
of (38d) and of the definition of Q. Last w(k|k) € W at time k ensures W(k + 1]k) € W since
Zer(k 4+ 1]k) = zer(k|K) and @3).

Thirdly, CX (k+ plk) € Z forall p=1,...,p in view of and CX (k+p+ 1|k) € Z in view
of (58d) and of the definition of Q. Finally, it holds that

X(k+p+2(0] _ o [X(k+P+1]k)
{ Zur(k+11K) }ﬂg{ Zeer (K[) ]e@g

in view of (38d) and of the positive invariance of Q. Since feasibility holds by assumption at
time k = O then, by induction, it is guaranteed also for all k > 0.

Constraint satisfaction.
In view of the feasibility of the problem (38) at any time instant k > 0, it results that constraints
(58B)-(58c) are verified. Therefore, for all k > 0, from @) u(k) = a(k|k) + K (X (k) — X (k|k)) €
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U@ KE C U, proving Ba). Also, z(k) = CX (k) = CX(k|k) + C(X (k) — X (k|k)) + C(X (k) —
X (klk)) € Z& CoE ® Colk C Z, proving (5b).

Convergence.

We compute, from (7)), that

> X (k|k
o 5OMQ’Z”WUH5 L0,
|X (k+ P+ 1K) = Xer (k[) |7+ O |2 (kIK) = Zgoa |

+ (7
+
At step k+ 1, the optimal cost function is J(k+ 1|k +1) < J(k+ 1|k), where J(k + 1|k) is the
cost obtained if the feasible solution X (k+ 1|k), U (k+ 1|k), z.c(k|k) is applied. We compute that

5 X(k+1lk
RTINS Y it o] BRI
Ha(k+ p+ 11k) — e (k1K) [
+HX(k+ﬁ+2‘k)_Xref(k|k)HP+G”Zrer’(k‘k)_ZgoalH2

(63)

where @(k+p + 1k) = i (k|k) + K (X (k+ P+ 1k) — X.c(k|k)). From (67) and (68), J(k+ 1|k+
1) = J(k[k) < J(k+11k) = J (k|k) < = (/|20 (k[k) = zer (k[K) (1, + 1 (k|K) = trr (k[K) |, )

" ol o) [ iin] - LI,
SCpr Do) o]~ TS, , It 1+~ (R, ~ e+ 110 -

ts (k1K) .., )+ 11 [Cp Dﬂ[ gi}ﬁﬂ ()G, + N (k+ 5o+ 11k) — e (kIR |7, — |1 X (k+
1+ plk) — X (klK) |3 + | (A +B1K) (X (k+ 1+ plk) — Xi(K|K))||3), where we used X (k+ p+
2[k) = X (k|k) = (A+ B1K) (X (k+ 1+ Plk) — Xer(K[K)).

We can write that U (k+ 1|k) = H U (k|k) + Hy (e (k|k) + K (X (k+ P+ 1|k) — Xt (k|k))) and that
Uyt (k|e) = Hy 1yt (K[K) + Hoe (k| ), being Hy = (015 1}7. Also, X (k+1+plk) —

B X (k|k) — X, (k|k)
Xeulkl) = AP0\ 54 2 1 ()

X (k+1]k) — X (K|k) }_
\U (k+1]k) = 154 s (K|k) |

} . In view of this we can write

- _ (69)
A B X (k|k) — X (K[ k)
|HoKAPTY Hy + HoKT | | U (K[k) — 141t (k)
For notational simplicity, we define
z X (k|k) — X, (K|K) }
klk) = |~
0= el L1 iy
Defining p > 1, AR, = R, — R, and recalling that D,,H, = 0, for all p = 1,...,p, we can write

that J(k+ 1]k +1) — (k\k) <
= (120 (klk) =z (k1) 1, + i (K|k) — e (kIR) I, /)

(e B+ D] EGIOIG, -

ICer Dt €W, ) =110 Ty EGIOITS

TG CoB+ Dy EWIIB,

+|IX(k+1+plk)— ref(k|k)|\KTR K+(A+B K)TP(A+BIK)—P p- From (@9a) we obtain that J (k4 1]k +
1) = J0K) < — (120 (K1) 2 k)3, + KB — e KRR, )
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- _
oy (Ilem Cop Dy SRR, -

I [Cpa1 D,,H]E(k\k)l@,,ﬂ)—l\ 0541201 Tt EKIK)IG+ 1 [CpA  CpB+ Dy | E(KIK) G, —

”X(k +1 +p|k) 7Xref(k|k) H%‘N
We can write the latter in compact form as

J (k- 1jk+ 1) = (klk) < —([120 (KlK) =z (k1K) [,

- . 70
+ [Jia(k[k) = wres (ki) Iz, 12) + 11 (KIK) [
where Q = PT 2% — 9T 9¥. In view of [{@9b)
(ke 1k + 1) = I (klk) < —([120 (K[K) — 2 (k1K) [, o

k1R — (kIR 13, 2)

In view of then, asymptotically,
k — +oo.

20 (k[k) = zes (K|K) 15, + | (kIK) — s (KIK)IR, /5 — O as

In the final part of the proof we show that, similarly to [15] the only asymptotic solution com-
patible with ||Zo (k|k) — z.c(k|k) Héﬂ = 0and ||i(k|k) — v (k|k) ”1230/2 = 0 is the one corresponding
t0 Zeor (k|k) = z5ea®®"=. Similarly to [[L5]] we proceed by contradiction.
Preliminarly we highlight a property of the MOAS, specifically that the definition (57) im-
plies, for all X, lim €.FX(X,z.) = im €. F5 (Xt 2er) = € (Xeets Zus) = (Zuets Uers Wre ) Where
k—>4-o0 k—>+-o0 ’
} T

[Xref Useg 1’?’re_f]T = [N At Naw]  Zret

and so lim %9"(}2,@) = [CN ot nzw}rzref
koo

FEASIBLE
goal

Therefore, we assume by contradiction that 775 # Z , where

~— T o S
[CN o ! nzw] Zret EXZUW(S)
is the steady-state solution where the output Zy(k|k) converges. In steady state, Zo(k|k) = z5,
corresponding to the state and input values

Note that such steady-state condition is feasible for @, since all constraints are verified, i.e.,
(B8B)-(58¢). The corresponding value of the cost function (7) is Ji = 6|25 — Zyeu | >-

Consider now an alternative solution (starting, at time k, from the previously-defined steady-
state) to problem (38, i.e., the triple (X (k), U (k),z.c(k)) where the initial condition X (k), com-
patible with constraint (38b), is X (k) = X2} and the reference output is

Zt = 2 A+ (1= }L)ZFEASIBLE -

goal

. . . S o N
that, in passing, corresponds to the following reference values for X and i, {XM} = LAFI} Zre -
ref

Finally, the alternative input sequence is given by ii(k + p) = s + K(X (k+ p) — X.¢). Note that,
importantly, the latter alternative solution to (38) is feasible (i.e., also verifies (38c)) if (1 — 1) is
sufficiently small (with A = 1). The corresponding cost function J, reads:

5 X (k) X, )
_ P et 2 2
B =516 P | [, itk o) -,

+‘|X7(k+ﬁ+ 1) 7Xref”12—’ + GHZref — Zgoal ”2

=Y, 0l [Co Dp) Guulz —2)llp, (73)
+ [KA+BIK)? 01 pi1] Guu(2 —z0) IR

[ [(A+BIK)PT 01 i1 ] G2 — zeo) I+ 0|2 — Zuou |

= ”Z::r 72ref”%§ + G”Zref — Zgoal ”
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where

G — ho-1 020—1,1} {Nl]

Opr120-1  1pp1 | A7
and where P = GT, AT diag(Qo, . ..,Qp.Ro, .., Rp, P)AGy, with

Co Dy
Cp Dj

A= |KA+BK)® 0,41 (74)

KA+BK)? 041
LA+BIK)PT 01 pi |

From (72), Z:f T = (1 _ /l)( oo ZFEASIBLE) and 7. — Zgoal = /’L(Z,D:f Zl;])i;]\SIBLE) + Z:SQSIBLE — Zgoul-

ret goal

If o is sufficiently large, i.e. if ¢ > Ayqx(P) we compute that

11/6 _ Hzm FEASIBLEH2 + HZFEASIBLE _szHZ

ret ref

FEASIBLE 00 FEASIBLE
+ 2 ( goal — Zgoal ) (Zref zgoal )

< - zrefH + ||zt — Zgou[®
S ((1 /'L) +AZ) Hsz FFAS[BIF||2

Zgoul
+‘ ‘l;ErAGIBLE _ Zgna] H

+2}/ ( FEASIBLE _ Zgoal)T (ZOO _ Z;E:?SIBLE)

/o

ref

By subtraction we get

Ji—Jh > (17(171) /’LZ)GHZM ZE:I\SIBLEHZ s
+ 2(1 _ A)G(ZFEASIBLE _ Zg()ul)T(z‘?:f _ Z:E:TSIBLE)

goal

Since 2(zgen™""* — Zeou) ! (25— Zpen "P¥) > 0 by optimality, we obtain that J; > J;. This shows that
the second (non-steady state) solution, associated to the cost J, is more convenient than the one
associated to Ji, and 50 z3; = 750" is the only possible steady-state solution where the output
Zo(k|k) converges, contradicting the assumption. This entails that, as k — oo, Z(k|k) — zgeq ™"

Finally, in view of (53b) we obtain that dist(z(k), 2= @ C(E@ E)) — 0 as k — oo.
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