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Abstract

We propose in the paper a novel framework for using a common control input to
simultaneously steer an infinite ensemble of networked control systems. We address
the problem of co-designing information flow topology and network dynamics of
every individual networked system so that a continuum ensemble of such systems is
controllable. To keep the analysis tractable, we focus in the paper on a special class of
ensembles systems, namely ensembles of multi-agent formation systems. Specifically,
we consider an ensemble of formation systems indexed by a parameter in a compact,
real analytic manifold. Every individual formation system in the ensemble is composed
of N agents. These agents evolve in Rn and can access relative positions of their
neighbors. The information flow topology within every individual formation system is,
by convention, described by a directed graph where the vertices correspond to the N
agents and the directed edges indicate the information flow. For simplicity, we assume
in the paper that all the individual formation systems share the same information flow
topology given by a common digraph G. Amongst other things, we establish a sufficient
condition for approximate path-controllability of the continuum ensemble of formation
systems. We show that if the digraph G is strongly connected and the number N of
agents in each individual system is great than (n + 1), then every such system in the
ensemble is simultaneously approximately path-controllable over a path-connected,
open dense subset.

1 Introduction
Ensemble control deals with the problem of using a single control input to simultaneously steer
a large population (and in the limit, a continuum) of dynamical systems. Consider a general
ensemble of dynamical systems indexed by a parameter σ of a certain parameterization
space Σ, which can be either finite, countably infinite, or a locally Euclidean space. We call
an individual dynamical system in the ensemble system-σ, for σ ∈ Σ, if it is associated with
the parameter σ. Denote by xσ(t) ∈ Rl the state of system-σ at time t. Then, in its most
general form, the dynamics of an ensemble control system can be described by the following
differential equation:

Ûxσ(t) :=
∂

∂t
xσ(t) = f (xσ(t), σ, u(t)), σ ∈ Σ,
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where u(t) ∈ Rm is a common control input that applies to every individual system in the
ensemble.

Controllability of an ensemble control system is, roughly speaking, the ability of using
the common control input u(t) to simultaneously steer every individual system from any
initial condition xσ(0) to any final condition xσ(T) at any given time T . A precise definition
of ensemble controllability will be given in Section 3. Ensemble control originated from
physics (e.g., NMR spectroscopy [1, 2]), and naturally has many applications across various
disciplines of science and engineering. These applications include: (i) Spintronics for
spin-logic computation [3, 4], (ii) smart materials that can respond to external stimuli such
as light [5] and heat [6], and (iii) control of neuron activities and brain dynamics [7, 8, 9, 10],
just to name a few.

Ensemble of networked control systems. We propose in the paper a novel framework that
applies the idea of ensemble control to large scale multi-agent systems. The question of how
to control a multi-agent system is not new. Existing approaches to the question often rely on
the use of local interactions (e.g., communication and sensing) among agents, which turn the
controllability problem into a problem of designing the underlying network topology that
governs the information flow among the agents [11, 12, 13, 14, 15]. But a larger networked
system tends to be more fragile, less flexible, and less scalable; indeed, adding new agents
into or removing agents out of the system changes its network topology, and can cause the
entire system to lose controllability. Diagnosis and remediation can be very complicated
especially when the system size is large.

The ensemble control framework which we propose below provides an alternative method
for controlling large scale multi-agent systems. We will consider an extreme scenario where
an ensemble system is composed of infinitely many agents which are loosely connected —-
loose in the sense that the agents in the ensemble form relatively small networks and these
networks do not necessarily have to interact with each other (in order that the ensemble
system is controllable). Because every multi-agent system that is composed of a finite number
of such small networks can be viewed as a proper subsystem of the infinite ensemble, they
constitute as special cases of the extreme scenario. Controllability of the infinite ensemble
system will guarantee the controllability of any finite subsystem of it. As a consequence, any
finite ensemble of networked systems will be flexible and scalable; adding new (or removing
existing) individual networks has no impact on controllability of the others.

To this end, we consider a continuum ensemble of dynamical systems where every
individual system is itself a networked control system composed of finitely many agents.
For ease of presentation, we assume in the sequel that every individual system has the
same number of agents, which we denote by N . Let xσ,i(t) be the state of agent i at time t
within the individual networked system-σ, and hσ,i(t) be the local information accessible
to the agent i. The collection {hσ,i(t)}Ni=1 thus completely determines the information flow
within system-σ at time t. Then, in its most general form, the dynamics of an ensemble of
networked systems, compliant with the information flows, can be described by the following
differential equation:

Ûxσ,i(t) = fi(hσ,i(t), σ, u(t)), 1 ≤ i ≤ N and σ ∈ Σ.

We address in the paper the controllability issue of the ensemble of networked systems: How
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to co-design the information flow and the dynamics for every individual networked system
so that an ensemble of such systems is controllable?

Ensemble formation system. To keep the above co-design problem tractable, we focus in
the paper on a special class of ensemble systems, namely ensembles of multi-agent formation
systems. The class of ensemble formation systems investigated here can be viewed as a
prototype for the study of design and control of other general ensembles of networked
control systems. We describe below in details the model of an ensemble formation system
considered in the paper.

Let the parameterization space Σ be a compact, real analytic manifold. Each individual
system-σ in the ensemble is composed of N agents all of which evolve in an n-dimensional
Euclidean space Rn.

The information flow within an individual formation system is, by convention, described
by a digraph. Specifically, let Gσ = (V, Eσ) be a digraph with V = {vi}Ni=1 the vertex set and
Eσ the edge set; if viv j is an edge of Gσ (from vi to v j), then agent i of system-σ can access
the relative position (xσ, j(t) − xσ,i(t)) between agent j of the same individual system and
itself.

For simplicity, we assume that the information flows of all individual formation systems
are described by a common digraph G = (V, E), i.e., Gσ = G for all σ ∈ Σ. For a given
vertex vi, we let V−i := {v j | viv j ∈ E} be the set of outgoing neighbors of vi, then the local
information accessible to the agent i in system-σ is given by

hσ,i(t) = {xσ, j(t) − xσ,i(t) | v j ∈ V−i }.

To keep the analysis tractable, we assume that the dynamics fi(hσ,t(t), σ, u(t)) is separable
in local information hσ,i(t), parameter σ, and common control input u(t). Specifically, we
consider the following control model for each agent i in system-σ:

Ûxσ,i(t) =
∑
vj∈V−i

r∑
s=1

ui j,s(t)ρs(σ)(xσ, j(t) − xσ,i(t)), (1)

where each ρs : Σ→ R, for 1 ≤ s ≤ r , is a real analytic function and each ui j,s : [0,T] → R,
for 1 ≤ s ≤ r and viv j ∈ E , is an integrable function over any finite time interval [0,T].

We call each ρs a parameterization function. These parameterization functions
describe the way in which individual formation systems in the ensemble differ from each
other, and can be thought as the diversity of the individual systems in the ensemble. We will
see that such a diversity is necessary for an ensemble system to be controllable.

For ease of notation, we let u(t) ∈ Rr |E | be the collection of all the scalar control inputs
ui j,s(t). We note again that the same control input u(t) applies to every individual formation
system in the ensemble. We call system (1) an ensemble formation system, and refer to
Fig. 1 for an illustration.

Outline of contribution. We establish in the paper a sufficient condition for the ensemble
formation system (1) to be approximately path-controllable. Roughly speaking, this is about
the capability of using a common control input to simultaneously steer every individual
formation system in the ensemble to approximate any desired trajectory of formations. Note,
in particular, that trajectories of different individual systems can be completely different. We
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Ensemble Formation System

Controller

Figure 1: A continuum ensemble of formation systems is indexed by a parameter σ in a two
dimensional surface Σ. Each individual formation system is composed of 4 agents evolving
in R2. A cycle digraph, common to all, describes the information flow (xσ, j(t) − xσ,i(t))
within every individual formation system. A common control input u(t), composed of 4
scalar signals each of which corresponds to an edge of the cycle digraph, applies to all
individual formation systems in the ensemble. The controllability result (Theorem 3.1)
implies that such an ensemble formation system is approximately path-controllable.

refer to Def. 4 for a precise definition, to Fig. 3 for an illustration, and to Theorem 3.1 for the
controllability result. The theorem addresses the interplay between the information flows
within the individual formation systems (i.e., the common digraph G), the parameterization
functions {ρs}rs=1, and the controllability of the ensemble formation system.

A key component of the analysis of the ensemble formation system involves computing
the iterated Lie brackets of control vector fields of system (1), which further boils down to
the computation of iterated matrix commutators of certain sparse zero-row-sum matrices.
We provide in Section 4 an in-depth analysis of such matrix commutators. Specifically, for
an edge viv j of the digraph G, we let Ai j be an N × N matrix with 1 on the i jth entry, −1 on
the iith entry, and 0 elsewhere. We investigate the following iterated matrix commutators (or
Lie products) of depth k:

[Ai0 j0, [Ai1 j1, · · · [Aik−1 jk−1, Aik jk ]]],

where vi0v j0, . . . , vikv jk are edges of the given digraph G.
Amongst other things, we show that if G is strongly connected, then, for any sufficiently

large k (k ≥ d(G) with d(G) the diameter of G), the vector space spanned by the above Lie
products of depth k will be stabilized, given by the vector space of all zero-row-sum matrices
with zero-trace. Moreover, we show that there exists a family of spanning sets, termed
semi-codistinguished sets (introduced in Definition 7), of such a vector space—where each
spanning set corresponds to a strongly connected digraph G—such that for any k ≥ d(G), the
matrices in any one of the spanning sets can be obtained by evaluating certain Lie products
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of the Ai j’s of the given depth k. (see Theorem 4.1 for details).
The above results about iterated commutators of zero-row-sum matrices are instrumental

in establishing approximate path-controllability of an ensemble formation system, or more
generally, an ensemble of networked control systems whose dynamics are governed by
zero-row-sum matrices (e.g., an ensemble of continuous-time Markov chains). Those results
might also be of independent interest in the study of stochastic Lie algebra (i.e., the Lie
algebra of zero-row-sum matrices [16, 17]).

The ensemble controllability result as well as the analysis of stochastic Lie algebra carried
out in the paper significantly extends the result and analysis in [15] where we established
approximate path-controllability of a single formation system (i.e., for the case where Σ is a
singleton):

Ûxi(t) =
∑
vj∈V−i

ui j(t)(x j(t) − xi(t)), 1 ≤ i ≤ N . (2)

There, we have also computed the Lie brackets of control vector fields of system (2) and
verified that (2) meets the Lie algebra rank condition under some mild assumption. However,
the controllability of a single control-affine system is far from sufficient for a (continuum)
ensemble of such systems to be controllable (regardless of what parameterization functions
are used). In fact, a necessary condition for ensemble controllability of (1) is such that the
Lie algebra generated by the control vector fields cannot be nilpotent.

On the stochastic Lie algebra level, a key difference between this paper and [15] is the
following: In [15], we computed the vector space spanned by Lie products of the Ai j’s of all
depths while in this paper, we compute an infinite sequence of vector spaces spanned by Lie
products of the Ai j’s of any given depth k for k ≥ d(G).

Literature review on ensemble controllability. The controllability issue of a continuum
ensemble of control-affine systems has recently been addressed in [18]. The authors
established an ensemble version of the Rachevsky-Chow theorem for systems of the type:

Ûxσ(t) =
m∑

i=1

ui(t) fi(xσ(t), σ), σ ∈ Σ,

where the state xσ(t) of each individual system-σ belongs to a real analytic manifold M.
The ensemble version of the Rachevsky-Chow theorem can be used as a sufficient condition
for the above ensemble system to be approximately controllable. We briefly review such a
condition below. First, recall that a Lie bracket [ fi, f j] of two vector fields fi and f j over M
is defined such that for any smooth function φ on M , [ fi, f j]φ = fi f jφ − f j fiφ where f φ is
the Lie derivative of φ along a vector field f . For the case where M is an Euclidean space,
then [ fi, f j] can be simply defined by

[ fi, f j] =
∂ f j

∂x
fi −

∂ fi
∂x

f j .

Then, the ensemble version of the Rachevsky-Chow theorem established in [18] requires
that for all x ∈ M , the span of the following Lie products of control vector fields:

[ fα0, [ fα1, · · · [ fαk−1, fαk ]]],
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of all depths, when evaluated at x, be dense in L1(Σ,Tx M), where Tx M is the tangent space
of M at x and L1(Σ,Tx M) is the Banach space of all integrable functions φ : Σ→ Tx M , i.e.,∫
Σ
‖φ(σ)‖dσ < ∞.
We next mention [19] in which a special class of control-affine ensemble systems was

investigated. Specifically, the dynamics of each system-σ investigated there is separable in
the state xσ(t), the control u(t), and the parameter σ:

Ûxσ(t) =
m∑

i=1

r∑
s=1

ui,s(t)ρs(σ) fi(xσ(t)), σ ∈ Σ. (3)

Moreover, the set of control vector fields { fi}mi=1 satisfies the following three conditions: (i)
For all x ∈ M , { fi(x)}mi=1 spans Tx M; (ii) For any two vector fields fi, f j , there exist fk and a
constant λ ∈ R such that [ fi, f j] = λ fk , and conversely; (iii) For any fk , there exist fi, f j , and a
nonzero λ such that [ fi, f j] = λ fk . We call any such { fi}mi=1 a distinguished set of vector fields,
and system (3) a distinguished ensemble system. It was shown that the ensemble version
of the Rachevsky-Chow theorem established in [18] holds for a distinguished ensemble
system (provided that a mild assumption on the parameterization functions is satisfied). We
further refer to [20] for ensemble control of Bloch equations as a motivating example of a
distinguished ensemble system.

We note here that the ensemble formation system (1) is of type (3), i.e., the dynamics
is separable in the state, the parameter, and the control input. But, system (1) is not
distinguished. Specifically, we will see that the set of control vector fields of the ensemble
formation system (1) satisfies conditions (i) and (iii), but not (ii). Correspondingly, we will
modify the arguments used in [19] and establish ensemble controllability of system (1).

Organization of the paper. We introduce in Section 2 preliminaries, key definitions and
notations. We state in Section 3 the main result (Theorem 3.1) about controllability of the
ensemble formation system (1). A sketch of the proof of the theorem will be given at the end
of the section. Next, in Section 4, we investigate the stochastic Lie algebra. We compute the
iterated matrix commutators of the zero-row-sum matrices Ai j of a given depth. The main
result of the section we will establish is Theorem 4.1. Then, in Section 5, we analyze the
ensemble formation system and establish the controllability result. We provide conclusions
at the end.

2 Definitions and notations
We introduce here key definitions and notations.

1. Vector space. Denote by {ei}Ni=1 the standard basis of the Euclidean space RN , and
denote by 1 ∈ RN the vector of all ones.

For any vector v in a Euclidean space, denote by ‖v‖ the two-norm (i.e., the Euclidean
norm). For an arbitrary matrix X , denote by ‖X ‖ the induced matrix two-norm.

For a subset S of a vector space V , we denote by Span(S) the subspace of V spanned
by the elements in S. The negative of S, denoted by −S, is composed of all vectors −v for
v ∈ S. We further let ±S be the union of S and −S.
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For two subspaces V ′ and V ′′ of V , we let V ′ + V ′′ be the subspace of V spanned by all
vectors v′ + v′′ for v′ ∈ V ′ and v′′ ∈ V ′′.

2. Lie algebra. Let g be a real Lie algebra, with [·, ·] the Lie bracket. For g′ and g′′ two
subspaces of g, we let [g′, g′′] be defined as the span of [X′, X′′] for X′ ∈ g′ and X′′ ∈ g′′. We
will use such a notation to define the commutator ideal [g, g] of g, and more generally, the
lower central series [g, · · · , [g, g]].

However, if S′ and S′′ are two finite subsets of g, we let [S′, S′′] be a finite subset of g
composed of all [X′, X′′] for X′ ∈ g′ and X′′ ∈ g′′. So, for example, using the above notation,
we have

[Span(S′), Span(S′′)] = Span([S′, S′′]).

Denote by ad the adjoint action, i.e., for any X′ ∈ g, we let ad(X′) : g→ g be defined
as ad(X′)(X′′) := [X′, X′′] for any X′′ ∈ g. For any two finite subsets S′ and S′′ of g, we let
ad(S′)(S′′) := [S′, S′′]. Next, we define via recursion a sequence of finite subsets of g as
follows: For k = 0, we define ad0(S′)(S′′) := S′′; for k ≥ 1, we define

adk(S′)(S′′) := [S′, adk−1(S′)(S′′)].

Further, if S′ = S′′, then, for ease of notation, we simply write adk(S′) := adk(S′)(S′).
Let S := {A1, . . . , Ak} be an arbitrary set. Denote by L(S) the free Lie algebra generated

by the Ai’s treated as the free generators. For a Lie product A ∈ L(S), let dep(A) be the
depth of A defined as the number of Lie brackets in A. Equivalently, dep(A) is the number
of Ai’s in A (counted with multiplicity) minus one. For example, the depth of [Ai1, [Ai2, Ai3]]
is 2. Let S ⊂ L(S) be the collection of Lie products. We further decompose S = tk≥0S(k)
where each S(k) is composed of Lie products of depth k.

3. Directed graph. Let G = (V, E) be a directed graph (or simply, digraph) of N vertices
with V = {vi}Ni=1 the set of vertices and E the set of edges. We assume in the paper that a
digraph G does not have any self-loop. Denote by viv j a directed edge of G from vi to v j .
We call v j an out-neighbor of vi, and denote by V−i the set of out-neighbors of vi.

Let vi0 · · · vil be a path where each vip−1vip , for p = 1, . . . , l, is an edge of G. Note that
the vertices {vij }l−1j=0 have to be pairwise distinct. If vi0 = vil , then the path is a cycle. The
length of a path (cycle) is the number l of edges in it.

We call G weakly connected if the undirected graph obtained by ignoring the orientation
of the edges is connected. The digraph G is strongly connected if for any pair of distinct
vertices vi and v j , there is a path from vi to v j .

The diameter of a strongly connected digraph G, denoted by d(G), is the smallest
positive integer number such that the following hold: For any two vertices vi and v j (possibly
the same), there exists a path of length l with l ≤ d(G) from vi to v j . For example, the
diameter of a cycle digraph of n vertices is n.

Given a subset V ′ of V , a subgraph G′ = (V ′, E′) is induced by V ′ if its edge set E′

contains all edges in E that connect vertices in V ′, i.e., E′ := {viv j ∈ E | vi, v j ∈ V ′}.
4. Algebra of functions. Let Σ be an arbitrary space. Given a real-valued function ρ

on Σ and a nonnegative integer k, we define ρk as ρk(σ) := ρ(σ)k for all σ ∈ Σ. Note, in
particular, that if k = 0, then ρ0 is a constant function on Σ whose value is 1 everywhere.
We say that ρ is everywhere nonzero if ρ(σ) , 0 for all σ ∈ Σ. Note that for any such
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function, ρ−1 is well defined, given by ρ−1(σ) := ρ(σ)−1 for all σ ∈ Σ. Similarly, we define
ρ−k := (ρ−1)k for any k ≥ 0.

Let {ρs}rs=1 be a set of functions over Σ. We call a function
∏r

s=1 ρ
ks
s for ks ≥ 0 a

monomial. The degree of the monomial is given by
∑r

s=1 ks. Denote by P the collection
of all monomials. We decompose P as P = tk≥0P(k), where P(k) is the collection of all
monomials of degree k.

The set of functions {ρs}rs=1 is said to separate points if for any two distinct points σ
and σ′ in Σ, there exists a function ρs out of the set such that ρs(σ) , ρs(σ′).

5. Control system. For a general control system Ûx(t) = f (x(t), u(t)), we denote by u[0,T]
the control input u(t) over the time interval [0,T], and x[0,T] the trajectory x(t) over the
interval [0,T] generated by the control input.

3 Controllability of formation systems

3.1 Controllability of a single formation system
We review in the subsection the controllability result established in [15] for a single
formation system. The formation control system considered there is composed of N agents
x1(t), . . . , xN (t) that evolve in Rn. We use, by convention, a directed graph G = (V, E) to
indicate the information flow among the N agents: If viv j is an edge of G, then agent i
can access the relative position (x j(t) − xi(t)) between agents i and j. We assume that the
dynamics of each agent i at any time t is given by a certain linear combination of (x j(t)− xi(t))
for v j ∈ V−i . Then, the way a controller steers an agent i is to manipulate the coefficients
associated with the linear combination. Specifically, we have the following dynamics for
each agent i:

Ûxi(t) =
∑
vj∈V−i

ui j(t)(x j(t) − xi(t)), 1 ≤ i ≤ N, (4)

where each ui j(t) is a scalar control input. Note that (4) is a bilinear control system, i.e.,
the dynamics is linear in the state and the control input. We also note that the above
control dynamics can be viewed as a variation of the classical diffusively-coupled dynamics
Ûxi =

∑
vj ai j(x j − xi) for which one replaces the (positive) coefficients ai j with the control

inputs ui j(t).
The dynamics of the above formation system can be written into a matrix form. For that,

we need to introduce a few definitions and notations. We first have the following one:

Definition 1 (Primary matrix). For a digraph G = (V, E) of N vertices, we define for each
edge viv j of G a zero-row-sum N × N matrix as follows:

Ai j := eie>j − eie>i , (5)

i.e., Ai j has 1 on the i jth entry, −1 on the iith entry, and 0 elsewhere. We call any such
matrix Ai j a primary matrix.

Next, for any given time t, let X(t) := [x>1 (t); · · · ; x>N (t)] be an N × n matrix, i.e., the ith
row of X(t) is x>i (t). We call X(t) a configuration, and denote by P := RN×n the configuration



9

space. With the above notations, we can re-write system (4) into the following differential
equation for the matrix X(t):

ÛX(t) =
∑

vivj∈E

ui j(t)Ai j X(t). (6)

We have investigated in [15] approximate path-controllability of system (9). Roughly
speaking, a control system is approximately path-controllable if one is able to steer the
system to approximate any target trajectory of states. A precise definition is given below.

Definition 2. Let Q be an open, path-connected subset of P. System (6) is approximately
path-controllable over Q if for any T > 0, any smooth trajectory X̂ : [0,T] → Q, and
any error tolerance ε > 0, there are integrable functions ui j : [0,T] → R, for viv j ∈ E , as
control inputs such that the trajectory X[0,T] generated by (6), from an initial condition
X(0) with X(0) ∈ Q and ‖X(0) − X̂(0)‖ < ε , satisfies

‖X(t) − X̂(t)‖ < ε, ∀t ∈ [0,T].

We illustrate the above definition in Fig. 2:

Figure 2: In the figure, the red dashed curve is a desired trajectory X̂[0,T] we want the
system (6) to follow. Each X(t) belongs to a certain open, path connected subset Q of P.
The blue region is an ε-tubular neighborhood of this trajectory. The solid curve is generated
by a control law u[0,T] such that the solution X[0,T] is within the ε-tubular neighborhood.

We state below the controllability result for system (6). To proceed, we first specify the
open, path-connected set Q considered in [15]. We need the following definition:

Definition 3. A configuration X = [x>1 ; · · · ; x>N ] ∈ P is nondegenerate in Rn if the span of
{xi − x1, . . . , xi − xN } is Rn for some (and hence, any) i = 1, . . . , N . If N = n + 1, then X is
an n-simplex.
Remark 1. A configuration X is nondegenerate if and only if there does not exist a proper
subspace of Rn that contains all the xi’s. For example, a line configuration is degenerate
in R2 and a planar configuration is degenerate in R3. Note that if a configuration X is
nondegenerate, then there exists a subset of (n + 1) agents such that the sub-configuration
formed by these (n + 1) agents is an n-simplex (a nondegenerate triangle for n = 2 or a
nondegenerate tetrahedron for n = 3).

Now, let Q be the collection of all nondegenerate configurations in P:

Q := {X ∈ P | X is nondegenerate}. (7)

We have the following fact:
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Lemma 1. If N > (n + 1), then Q is a path-connected, open dense subset of P. Moreover,
if the underlying digraph G is strongly connected, then system (6) is approximately path-
controllable over the set Q.

A complete proof of the above result can be found in [15] where we have established the
controllability result for a broader class of (weakly connected) digraphs.

3.2 Controllability of an ensemble formation system
We now return to the ensemble formation system introduced in Section 1. We will state in the
subsection the path-controllability result for the ensemble system which straightforwardly
generalizes Lemma 1.

Recall that if an individual formation system is indexed by σ ∈ Σ, then we call it
system-σ. Each individual formation system is composed of N agents in Rn. We reproduce
below the dynamics of agent i associated with system-σ:

Ûxσ,i(t) =
∑
vj∈V−i

r∑
s=1

ui j,s(t)ρs(σ)(xσ, j(t) − xσ,i(t)). (8)

We note again that the control inputs ui j,s(t) are the same for every individual formation
system. Similarly, one can re-write the above dynamics into a matrix form as we did in
the previous subsection: For any given time t, we let Xσ(t) be an N × n matrix defined as
follows:

Xσ(t) := [x>σ,1(t); · · · ; x>σ,N (t)].
We call Xσ(t) a configuration of system-σ. Then, by (8), we have the following differential
equation for Xσ(t):

ÛXσ(t) =
∑

vivj∈E

r∑
s=1

ui j,s(t)ρs(σ)Ai j Xσ(t), σ ∈ Σ, (9)

where each Ai j is a primary matrix introduced in Def. 1.
We will now generalize approximate path-controllability for a single formation system

(Def. 2) to the ensemble case. Roughly speaking, an ensemble system is said to be
approximately path-controllable if one is able to use to common control inputs to steer
simultaneously every individual system to approximate any given target trajectory (different
individual systems can have different target trajectories). We make the statement precise
below. Let

XΣ(t) := {Xσ(t) | σ ∈ Σ}
be the collection of configurations at time t. We call XΣ(t) a profile of the ensemble formation
system. For a fix time t, we say that XΣ(t) is smooth if the map σ ∈ Σ 7→ Xσ(t) ∈ P is
smooth. Further, let XΣ[0,T] := {Xσ[0,T] | σ ∈ Σ} be the trajectory of XΣ(t) over [0,T].
Similarly, we say that XΣ[0,T] is smooth if the map

(t, σ) ∈ [0,T] × Σ 7→ Xσ(t) ∈ P

is smooth. We now introduce the definition about approximate path-controllability for an
ensemble formation system:
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Definition 4. Let Q be an open, path-connected subset of P. System (9) is approximately
ensemble path-controllable over Q if for any smooth target trajectory X̂Σ[0,T], with
X̂σ(t) ∈ Q for all (t, σ) ∈ [0,T] ×Σ, and any error tolerance ε , there are integrable functions
ui j,s : [0,T] → R as control inputs such that the trajectory XΣ[0,T] generated by (9), from
an initial condition XΣ(0) with Xσ(0) ∈ Q and ‖Xσ(0) − X̂σ(0)‖ < ε for all σ ∈ Σ, satisfies

‖Xσ(t) − X̂σ(t)‖ < ε, ∀(t, σ) ∈ [0,T] × Σ.
We illustrate the above definition in Fig. 3:

Figure 3: The red surface is a desired trajectory X̂Σ[0,T] we want the ensemble formation
system (9) to follow. Each Xσ(t), for (t, σ) ∈ [0,T] × Σ, belongs to an open, path connected
set Q. The red dashed curve is a desired trajectory for the individual system-σ. The grey
surface is the trajectory XΣ[0,T] generated by a common control input u[0,T] such that it
is within the ε-tubular neighborhood of X̂Σ[0,T]. The black solid curve is the trajectory
Xσ[0,T] for the individual system-σ.

With the above preliminaries, we are now in a position to state the first main result of the
paper (compared to Lemma 1):

Theorem 3.1. Let G be strongly connected and N > (n + 1). Suppose that the set of
parameterization functions {ρs}rs=1 separates points and contains an everywhere nonzero
function; then, system (9) is approximately ensemble path-controllable over the set Q of
nondegenerate configurations.

A sketch of proof will be given at the end of the section. Detailed analysis will be
provided in Sections 4 and 5. With a few more efforts, we can extend the above result to a
time-varying digraph. We recall from [15] the following definition:

Definition 5. A time-varying digraph G(t) is right-continuous if for any time t, there exists
a time duration δt > 0 such that G(t′) = G(t) for all t′ ∈ [t, t + δt). We call an instant ti a
switching time if limt→ti−G(t) , G(ti).

We now assume that the information flow of every individual formation system in the
ensemble is described by a common time-varying digraph G(t). With the above definition,
we state the following fact as a corollary to Theorem 3.1:
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Corollary 3.2. Let G(t) be a right-continuous time-varying digraph such that for any finite
time interval, G(t) has a finite number of switching times. Suppose that for any t ≥ 0,
G(t) is strongly connected with N > (n + 1); then, system (9) is approximately ensemble
path-controllable over the set Q of nondegenerate configurations.

The proof of the corollary is similar to the proof of Corollary 1 in [15]. For completeness
of presentation, we provide below a relatively short proof of the result:

Proof. Let X̂Σ[0,T] be a desired trajectory with X̂σ(t) ∈ Q for all (t, σ) ∈ [0,T] × Σ. Let
t1, . . . , tm ∈ (0,T) be the switching times of G(t). We construct an admissible u[0,T] as
follows. Given a graph G(0), we know from Theorem 3.1 that there exists u1[0,T] such
that system (9) approximates X̂Σ over [0,T]. We use this control until the first switching
time: u[0, t1) := u1[0, t1). It follows that ‖Xσ(t1) − X̂σ(t1)‖ < ε for all σ ∈ Σ. We
can thus apply Theorem 3.1, but now with graph G(t1), to obtain a control law u2[t1,T]
that steers the ensemble formation system from XΣ(t1) along a trajectory XΣ(t) such that
‖Xσ(t) − X̂σ(t)‖ < ε for all (t, σ) ∈ [t1,T] ∈ Σ. As before, we let u[t1, t2) := u2[t1, t2). Note
that implementing the control u(t) over the time interval [0, t2) yields a trajectory XΣ[0, t2)
within the ε tolerance of X̂Σ[0, t2) over that interval. Repeating this procedure for a finite
number of times yields a control input u[0,T] that can steer the ensemble formation system
to approximate X̂Σ[0,T] as required. �

Remark 2. We note here that a more general case is to assume that the underlying digraphs
Gσ(t), for σ ∈ Σ, of the individual formation systems in the ensemble are heterogeneous.
Specifically, we assume that there exists a finite static graph G such that for each σ ∈ Σ and
each time t, Gσ(t) is a subgraph of G. Denote by GΣ(t) := {Gσ(t) | σ ∈ Σ} the collection of
the digraphs. We call GΣ(t) a time-varying ensemble digraph. Def. 5 can be transposed here
by replacing G(·) with GΣ(·) in the definition. We defer to another occasion the analysis of
an ensemble formation system defined over a (time-varying) ensemble digraph.

Sketch of Proof. The proof of Theorem 3.1 relies on the use of the so-called “Lie
extension” of system (9). We will review such a technique in Section 5.1. By repeatedly
applying the technique of Lie extension, one arrives at the following system (with a few
details omitted):

ÛXσ(t) =
∑

uα(t)ρs(σ)Ai j Xσ(t) +
∑

uβ(t)ρs(σ)ρs′(σ)[Ai j, Ai′ j ′]Xσ(t) + · · · (10)

Truncation after the term that involves Lie products of depth k gives rises to the kth order
Lie extended system. It is known that the original system (9) is approximately ensemble
path-controllable if and only if one (and hence any) of its Lie extended system is. It thus
suffices to establish controllability of Lie extended systems. The proof is composed of two
key components as we outline below:

• Commutators of primary matrices. The control vector fields in the above Lie
extension (10) involve iterated matrix commutators of primary matrices Ai j for viv j an
edge of the digraph G. To evaluate those control vector fields, we compute explicitly
the associated matrix commutators. This is done in Section 4. Specifically, we
establish in the section the following fact (Theorem 4.1): Let

A∗ :=
{

A ∈ RN×N | A1 = 0 and tr(A) = 0
}
;
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then, there exists a basis {A∗i } of A∗ such that for any sufficiently large k (k ≥ d(G)),
the matrices A∗i can be obtained as the matrix commutators of Ai j’s of the given
depth k. Consequently, system (10) can then be simplified as follows (details will be
provided in Section 5.1):

ÛXσ(t) =
∑
p,i

ui,p(t)p(σ)A∗i Xσ(t), (11)

where each p is a monomial of the functions {ρs}rs=1.

• Span of control vector fields. We analyze system (11) in Section 5. We show that
the control vector fields in (11) satisfy the ensemble version of the Lie algebraic rank
condition. More specifically, we establish in the section two facts for system (11)—one
is about the span of {A∗i X} while the other is about function approximation by the
summation

∑
p,i ui,p(t)p(σ). Specifically, we establish the following two facts: (i)

The span of {A∗i X} is RN×n for any nondegenerate configuration X provided that
N > (n + 1). This is done in Prop. 5.2, Section 5.2; (ii) Every continuous function
ci(t, σ) (continuous in both arguments) can be approximated arbitrarily well by a
finite sum

∑
p,i ui,p(t)p(σ). This is essentially an application of the Stone-Weierstrass

theorem.

4 Stochastic Lie algebra and semi-codistinguished sets

Let A ⊆ RN×N be the vector space of all zero-row-sum (zrs) matrices, i.e.,

A := {A ∈ RN×N | A1 = 0}.

Denote by [·, ·] the matrix commutator, i.e., for any two N × N matrices A1, A2, we have
[A1, A2] := A1A2 − A2A1. It should be clear that A is a Lie algebra with the matrix
commutator being the Lie bracket; indeed, if A11 = A21 = 0, then [A1, A2]1 = 0. We call A
the stochastic Lie algebra.

Denote by tr(·) the trace of a square matrix. For any two N × N matrices A1 and A2, we
have tr([A1, A2]) = 0. Define a proper subspace A∗ of A as follows:

A∗ := {A ∈ A | tr(A) = 0}. (12)

If we let Z := I − 11>/N and RZ be the one-dimensional subspace of A spanned by Z , then
A = A∗ ⊕ RZ . The codimension of A∗ in A is thus 1. Recall that the commutator ideal of
the Lie algebra A is defined by [A,A], i.e., it is the linear span of all matrix commutators
[A, A′] for A, A′ ∈ A. By computation (see, for example, [16]),

[A,A] = A∗. (13)

We need the following definition:

Definition 6. A Lie algebra g is perfect if g = [g, g].
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By (13), the stochastic Lie algebra A is not perfect. Nevertheless, its commutator ideal
is perfect:

Lemma 2. The Lie algebra A∗ is perfect. Let A∗ = A∗
l
⊕ A∗r be the Levi decomposition

where A∗
l
is semi-simple and A∗r is the radical of A∗. Then,

A∗l = {A ∈ A∗ | A>1 = 0} and A∗r = {1v> | v>1 = 0}.

Moreover,A∗
l
is isomorphic to the special linear Lie algebra slN−1(R) := {M ∈ R(N−1)×(N−1) |

tr(M) = 0}.

The above fact has certainly been observed in the literature [16, 17]. For completeness
of presentation, we provide a proof in the Appendix.

The lower central series {Am}m≥0 of A can be defined by the recursion: A0 := A and
Am+1 = [A,Am] for all m ≥ 0. It follows from Lemma 2 that Am = A

∗ for all m ≥ 1. Recall
that a primary matrix Ai j is given by Ai j = eie>j − eie>i . For the digraph G, we let SG be the
collection of all primary matrices Ai j such that viv j is an edge of G, i.e.,

SG := {Ai j | viv j ∈ E}.

We also recall that the sets {adm(SG)}m≥0 are also defined by the recursion: ad0(SG) = SG
and adm+1(SG) = [SG, ad

m(SG)] for all m ≥ 0. It should be clear that adm(SG) ⊂ Am. In
particular, adm(SG) ⊂ A∗ for all m ≥ 1.

We now state the main result of the section. First, for the given digraph G, we let S∗G be a
finite subset of A∗ defined as follows:

S∗G := {A j k − Ak j, Aik − Ai j | v jvk ∈ E}. (14)

Note that each matrix in the set S∗G can be obtained as a commutator of certain primary
matrices (see [15, 21]):

[Ai j, A ji] = A ji − Ai j, 1 ≤ i , j ≤ N,
[Ai j, A j k] = Aik − Ai j, 1 ≤ i , j , k ≤ N,
[Ai j, Aik] = Ai j − Aik, 1 ≤ i , j , k ≤ N .

(15)

However, the matrices on the left hand side of (15) do not necessarily belong to SG and,
hence, S∗G may not belong to [SG, SG]. Nevertheless, we will show that if m is sufficiently
large, then S∗G ⊂ adm(SG). Said in another way, for sufficiently large m, every matrix in
S∗G can be obtained as a certain iterated matrix commutator of the Ai j’s in SG of the given
depth m. Precisely, we have the following fact:

Theorem 4.1. Let G be a strongly connected digraph with at least three vertices (N ≥ 3).
Then, the set S∗G spans A∗. Moreover, there exists a positive integer l, with l ≤ d(G), such
that S∗G ⊆ adm(SG) for any m ≥ l.

We provide below an example illustrating Theorem 4.1:
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Example 1. Consider a cycle digraphG = (V, E) composed of three vertices: V = {v1, v2, v3}
and E = {v1v2, v2v3, v3v1}. In this case, we have SG = {A12, A23, A31} and

S∗G = {A12 − A21, A23 − A32, A31 − A13, A13 − A12, A21 − A23, A32 − A31}.

For the purpose of illustration, we write explicitly the matrices in the set S∗G:

A12 − A21 =


−1 1 0
−1 1 0
0 0 0

 , A23 − A32 =


0 0 0
0 −1 1
0 −1 1

 ,
A31 − A13 =


1 0 −1
0 0 0
1 0 −1

 , A13 − A12 =


0 −1 1
0 0 0
0 0 0

 ,
A21 − A23 =


0 0 0
1 0 −1
0 0 0

 , A32 − A31 =


0 0 0
0 0 0
−1 1 0

 .
The above matrices span A∗ (any five out of the six matrices form a basis). We show below
that S∗G ⊂ adm(SG) for any m ≥ 3 (d(G) = 3). For convenience, we introduce an index set as
follows:

I := {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.
All triplets in I can be obtained by a cyclic rotation of (1, 2, 3). Then, by computation, we
have that

ad(SG) = ± ∪(i, j,k)∈I {Aik − Ai j},
ad2(SG) = ± ∪(i, j,k)∈I {Aik − Ai j, Aik − Ak j},

and
ad3(SG) = ± ∪(i, j,k)∈I

{
Ai j − A ji, Aik − Ai j, Aik − Ak j, 2Ai j − Aik − A ji

}
.

It follows that S∗G ⊂ ad3(SG). Moreover, since ad2(SG) ⊂ ad3(SG), adm(SG) ⊂ adm+1(SG)
for all m ≥ 3. We thus conclude that S∗G ⊂ adm(SG) for any m ≥ 3. �

In the remainder of the section, we establish facts that are relevant to the proof of
Theorem 4.1.

4.1 Semi-codistinguished sets
We consider here the adjoint action of the stochastic Lie algebra A on its commutator
ideal A∗, i.e., ad(A)(A∗) = [A, A∗] for any A ∈ A and A∗ ∈ A∗. We introduce the following
definition adapted from [19]:

Definition 7 (Semi-codistinguished set). A subset {A∗j }
p
j=1 of A

∗ is semi-codistinguished
to a subset {Ai}mi=1 of A if the following hold:

(i) The set {A∗j }
p
j=1 spans A

∗.
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(ii) For any A∗k in the set {A
∗
j }

p
j=1, there exist Ai, A∗j , and a nonzero λ such that

[Ai, A∗j ] = λA∗k . (16)

Remark 3. A stronger notion, termed codistinguished set, is introduced in [19] (which
was defined for arbitrary Lie algebras): A set {A∗j }

p
j=1 is codistinguished to {Ai}mi=1 if it is

semi-codistinguished, and moreover, for any Ai and any A∗j , there exist A∗k and a constant λ
(which could be zero) such that (16) holds. Existence of a codistinguished set for the case
where g is semi-simple was addressed in [22].

We establish in the subsection the following result:

Proposition 4.2. IfG is strongly connected, then S∗G is semi-codistinguished to SG. Moreover,
for any matrix A∗k ∈ S∗G, there exist Ai ∈ SG and A∗j ∈ S∗G such that the nonzero constant λ
in (16) takes value 1.

Note that Prop. 4.2 implies that if there exists an l such that S∗G ⊂ adl(SG), then
S∗G ⊂ adm(SG) for any m ≥ l. We prove Prop. 4.2 below:

Proof of Proposition 4.2. We prove the proposition by showing that the two items of Def. 7
are satisfied. We first show that S∗G spans A∗. Denote byK the complete graph on N vertices.
Correspondingly, we have that

S∗K = {A j k − Ak j, Aik − Ai j | v j , vk}.

We note here the fact that the set S∗K spans A∗. We omit a proof of the fact, but refer to [16]
for details. The authors there provided a basis of A∗. The elements of the basis can be
realized as integer combinations of the matrices in S∗K. It now suffices to show that each
matrix in S∗K can be expressed as a linear combination of the matrices in S∗G.

We start by considering matrices of type Aik − Ai j ∈ S∗K. Since G is strongly connected,
there exists a path from v j to vk . Denote such a path by vi0vi1 · · · vil where vi0 = v j and
vil = vk . By definition of S∗G (14), we have that

{Ai,ip − Ai,ip−1 | p = 1, . . . , l} ⊂ S∗G .

One can thus express Aik − Ai j as follows:

Aik − Ai j =

l∑
p=1

(Ai,ip − Ai,ip−1),

which is an integer combination of matrices in S∗G.
We next consider matrices of type A j k − Ak j ∈ S∗K. We again let vi0 · · · vil be the path

from v j to vk . Similarly, one can express A j k − Ak j as follows:

A j k − Ak j = (Ai0il − Ai0i1) + (Ailil−1 − Aili0)

+

l∑
p=1

(Aip−1ip − Aipip−1) +
l−1∑
p=1

(Aipip−1 − Aipip+1).



17

By (14), each term (Aip−1ip − Aipip−1) for p = 1, . . . , l on the right-hand side of the above
expression belongs to S∗G. By the earlier arguments, any other term on the right-hand side
can be expressed as an integer combination of matrices in S∗G. We have thus shown that
every matrix in S∗K can be expressed as an integer combination of matrices in S∗G. Since S∗K
spans A∗, S∗G spans A∗ as well.

Finally, we show that any matrix in S∗G can be obtained as a matrix commutator [A, A∗]
with A ∈ SG and A∗ ∈ S∗G. But this directly follows from the computation: For any v jvk ∈ E ,
we have

[A j k, A j k − Ak j] = A j k − Ak j,
[A j k, Aik − Ai j] = Aik − Ai j .

This completes the proof. �

Remark 4. We note here that the set S∗G is in general not codistinguished to SG. Consider,
for example, the case where G is the complete graph K. If 1 ≤ i , j , k ≤ N , then by
computation, we have that

[A ji, Aik − Ai j] = (A j k − A ji) − (Ai j − A ji),
[Aki, Aik − Ai j] = (Aki − Aik) − (Aki − Ak j),
[Aik, Ai j − A ji] = (Aik − Ai j) − (A ji − A j k).

The matrices on the right-hand sides of the above expressions do not belong to S∗K, but are
expressed as integer combinations of the matrices in S∗K.

4.2 Proof of Theorem 4.1.
We establish in the subsection Theorem 4.1. With Prop. 4.2, it remains to show that there
exists a positive integer l, with l ≤ d(G), such that S∗G ⊆ adl(SG). The result will be
established after a sequence of lemmas. We start with the following fact:

Lemma 3. For any l ≥ 1, adl(SG) = − adl(SG).

Proof. The proof can be carried out by induction on l. For the base case l = 1, we have
that for any A, A′ ∈ SG, [A, A′] = −[A′, A]. For the inductive step, we assume that the
lemma holds for (l − 1) and prove for l (with l ≥ 2). Consider any [A, A′] ∈ adl(SG) with
A ∈ SG and A′ ∈ adl−1(SG). By the induction hypothesis, −A′ ∈ adl−1(SG). It follows that
[A,−A′] = −[A, A′] ∈ adl(SG). �

Recall that there are two different types of matrices in the set S∗G, namely Aik − Ai j and
A j k − Ak j (where v jvk is an edge of G). To show that every type of matrix can be obtained
by an iterated matrix commutator of primary matrices in SG, we need the following two
lemmas (Lemmas 4 and 5):

Lemma 4. Let vi0 · · · vil be a path of length l in the digraph G. Suppose that l ≥ 2 and
vi0 , vil ; then,

Ai0il − Ai0il−1 ∈ adl−1(SG).
See Fig. 4 for an illustration.
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Proof. The proof will be carried out by induction. For the base case where l = 2, we
have that [Ai0i1, Ai1i2] = Ai0i2 − Ai0i1 = ad(SG). For the inductive step, we assume that
the lemma holds for (l − 1) with l ≥ 3, and prove for l. By the induction hypothesis, we
have Ai0il−1 − Ai0il−2 ∈ adl−2(SG). By Lemma 3, −(Ai0il−1 − Ai0il−2) ∈ adl−2(SG). It then
follows that

[Ail−1il, Ai0il−2 − Ai0il−1] = Ai0il − Ai0il−1 ∈ adl−1(SG).
This completes the proof. �
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Figure 4: In the figure, v1v2v3v4 is a path of a digraph G. The set of primary matrices
{A12, A23, A34} belongs to SG. We show how to generate A14 − A13 by an iterated matrix
commutator of those primary matrices. In the first step, we have [A23, A12] = A12 − A13 ∈
ad(SG). The plus/minus sign of an edge viv j in the figure indicates the sign of the
associated matrix Ai j in the expression. Next, we have [A34, [A23, A12]] = [A34, A12− A13] =
A14 − A13 ∈ ad2(SG).

We next have the following fact:

Lemma 5. Let vi0vi1 · · · vilvi0 be a cycle of length (l + 1) in the digraph G. Suppose that
l ≥ 2; then,

Ai0i1 − Ai1i0 ∈ adl+1(SG).
See Fig. 5 for an illustration.

Proof. Consider the path vi2 · · · vilvi0vi1 of length l ≥ 2. By Lemma 4, we have Ai2i1−Ai2i0 ∈
adl−1(SG). Next, by computation, we obtain

[Ai1i2, Ai2i1 − Ai2i0] = Ai2i1 − Ai1i0 ∈ adl(SG).

Further, we have

[Ai0i1, Ai2i1 − Ai1i0] = Ai0i1 − Ai1i0 ∈ adl+1(SG).

This completes the proof. �

With the lemmas above, we are now in a position to prove Theorem 4.1:

Proof of Theorem 4.1. We show that S∗G ⊆ adl(SG) for some l ≤ d(G). First, consider the
matrix A j k−Ak j with v jvk ∈ E . If vkv j is an edge ofG, then A j k−Ak j = [Ak j, A j k] ∈ ad(SG).
Now, suppose that vkv j is not an edge of G; then, since G is strongly connected, there exists a
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Figure 5: In the figure, v1v2v3v4v1 is a cycle of length 4. The set of primary matrices
{A12, A23, A34, A41} belongs to SG. We show how to generate A12 − A21 by an iterated
matrix commutator of those primary matrices. By Lemma 4, we have A32 − A31 ∈ ad2(SG)
via the path v3v4v1v2. Next, we have [A23, A32 − A31] = A32 − A21 ∈ ad3(SG), and finally,
[A12, A32 − A21] = A12 − A21 ∈ ad4(SG).

cycle vi0vi1 · · · vil′vi0 with vi0 = v j and vi1 = vk , and the integer l′ satisfies 2 ≤ l′ ≤ d(G) − 1.
By Lemma 5, A j k − Ak j ∈ adl(SG) with l := (l′ + 1) ≤ d(G).

We next consider the matrix Aik − Ai j with v jvk ∈ E . If viv j is an edge of G, then
[Ai j, A j k] = Aik − Ai j ∈ ad(SG). Now, suppose that viv j is not an edge of G; then, there
exists a path vi0 · · · vil with vi0 = vi and vil = v j , and l satisfies 2 ≤ l ≤ d(G). By Lemma 4,
Ai j − Ai,il−1 ∈ adl−1(SG). Then, by computation, we have

[A j k, Ai j − Ai,il−1] = −(Aik − Ai j) ∈ adl(SG).

The above holds regardless of whether vil−1 = vk or not. By Lemma 3, Aik − Ai j ∈ adl(SG).
Finally, by Prop. 4.2, the set S∗G is semi-codistinguished to SG. We thus conclude that

S∗G ⊂ adl(G) for some l ≤ d(G) and S∗G ⊂ adm(SG) for all m ≥ l. �

5 Analysis of ensemble formation system
We investigate in the section controllability of an ensemble formation system and establish
Theorem 3.1. For convenience, we reproduce below the dynamics:

ÛXσ(t) =
∑

vivj∈E

r∑
s=1

ui j,s(t)ρs(σ)Ai j Xσ(t), σ ∈ Σ. (17)

As was mentioned at the end of Section 3, the proof of Theorem 3.1 relies on the use of
Lie extension of (6). The technique of Lie extension has been widely used in the proof of
approximate controllability of a control-affine system [23, 24] and in nonholonomic motion
planning [25]. We now review such a technique below.

5.1 Lie extended formation systems
To proceed, we consider an arbitrary control-affine system as follows:

Ûx(t) =
m∑

i=1

ui(t) fi(x(t)), (18)
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where the ui(t)’s are control inputs and the fi(x)’s are control vector fields. Let F := { fi}mi=1,
and L(F) be the associated free Lie algebra generated by the set F where the fi’s are treated
as if they were free generators. Let F be a basis of L(F), composed of Lie products of
the fi’s. Recall that for a given k ≥ 0, F (k) is a subset of F composed of all formal Lie
products of the fi’s of depth k. Then, the Lie extension of system (18) gives rise to a family of
control-affine systems as follows: Given a nonnegative integer k, we have the following kth
order Lie extended system:

Ûx(t) =
k∑

l=0

∑
f ∈F (l)

u f (t) f (x(t)),

where each f is a formal Lie product of the fi’s. Note that the control inputs u f (t) are
independent of each other. We have the following well known fact (see [23, 24] and [18]):

Lemma 6. System (18) is approximately path-controllable if and only if any of its Lie
extended system is.

We now apply the technique of Lie extension to the ensemble formation system (17).
First, note that for a given parameter σ ∈ Σ, the control vector fields of system-σ are given
by ρs(σ)Ai j Xσ for s = 1, . . . , r and viv j ∈ E . The Lie bracket of any two of these vector
fields is given by

[ρs(σ)Ai j Xσ, ρs′(σ)Ai′ j ′Xσ] = ρs(σ)ρs′(σ)[Ai′ j ′, Ai j]Xσ .

So, for example, the first order Lie extended system of (17) is given by the following
ensemble system: For all σ ∈ Σ,

ÛXσ(t) =
∑
α

uα(t)ρs(σ)Ai j Xσ(t) +
∑
β

uβ(t)ρs(σ)ρs′(σ)[Ai j, Ai′ j ′]Xσ(t),

where the two summations are over admissible multi-indices α = (s, viv j) and β =
(s, s′, viv j, vi′v j ′). We make the statement precise below.

For a general kth order Lie extended system of (17), we have the following: First, recall
that P(k) is the collection of monomials

∏r
s=1 ρ

ks
s of degree k =

∑r
s=1 ks. We also recall

that SG is the collection of primary matrices Ai j with viv j ∈ E . We let L(SG) be the free Lie
algebra generated by the set SG as if the primary matrices were free generators. Let S be a
subset of L(SG), composed of all formal Lie products of the matrices in SG. Decompose the
set S = tk≥0S(k) where each S(k) is composed of formal Lie products of depth k in S.
Then, the kth order Lie extended system can be expressed as follows: For all σ ∈ Σ,

ÛXσ(t) =
k∑

l=0

∑
p∈P(l+1)

∑
A∈S(l)

uA,p(t)p(σ)AXσ(t), (19)

where each A on the right-hand side of the above expression is a formal Lie product of the
Ai j’s in SG.
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To proceed, we recall that by Theorem 4.1, the set S∗G defined in (14) spans A∗. For
convenience, we let

γ := dimA∗ = N(N − 1) − 1,
and let {A∗i }

γ
i=1 be any subset of S∗G such that the matrices A∗i form a basis ofA∗. By the same

theorem, we also have that S∗G ⊂ adl(SG) for any l ≥ d(G). Thus, there exists a subset of
formal Lie products in adl(SG) such that if one evaluates these formal Lie products (i.e., one
computes the iterated matrix commutators), then the set of the resulting matrices contains S∗G
as a subset. Let {A[l]i }

γ
i=1, for l ≥ d(G), be such a subset out of adl(SG):

A[l]i = A∗i , ∀i = 1, . . . , γ. (20)

Let S∗ be a subset of S composed of the formal Lie products A[l]i for all i = 1, . . . , γ and for
all l ≥ d(G), i.e., S∗ := {A[l]i | 1 ≤ i ≤ γ, l ≥ d(G)}.

Now, we fix a positive integer k ≥ d(G) and consider the kth order Lie extended
system (19). Let a control input uA,p(t) be identically zero if the formal Lie product A does
not belong to the subset S∗ defined above. Then, by (20), system (19) can be reduced to the
following: For all σ ∈ Σ,

ÛXσ(t) =
γ∑

i=1


k∑

l=d(G)

∑
p∈P(l+1)

ui,p(t)p(σ)
 A∗i Xσ(t). (21)

We are now in a position to state the main result of the section. Recall that the subset
Q ⊂ P is composed of all nondegenerate configurations. By Lemma 1, if N > (n + 1), then
Q is path-connected, open, and dense in P. We now have the following fact:

Proposition 5.1. Let X̂Σ[0,T] be a smooth trajectory with X̂σ(t) ∈ Q for all (t, σ) ∈ [0,T]×Σ.
Suppose that the assumption of Theorem 3.1 is satisfied; then, there exist a positive
integer k ≥ d(G) and smooth control inputs ui,p : [0,T] → R for system (21) such that
for any σ ∈ Σ, the trajectory Xσ[0,T] generated by the system, with Xσ(0) ∈ Q and
‖Xσ(0) − X̂σ(0)‖ < ε , satisfies:

‖Xσ(t) − X̂σ(t)‖ < ε, ∀(t, σ) ∈ [0,T] × Σ. (22)

Theorem 3.1 then follows from Lemma 6 and the above proposition. The remainder
of the section is devoted to the proof of Prop. 5.1. A critical constituent of the proof is to
show that for each X ∈ Q, the linear span of {A∗i X}γi=1 is the entire Euclidean space R

N×n

(which can be viewed as the tangent space of Q at any X). We prove such a fact in the next
subsection.

5.2 Linear span of control vector fields
We consider here an auxiliary single control-affine system associated with (21):

ÛX(t) =
γ∑

i=1

ui(t)A∗i X(t),



22

where the matrices {A∗i }
γ
i=1 were defined in the previous subsection; they were chosen out of

the set S∗G and form a basis of A∗. We illustrate the vector fields A∗i X in Fig. 6.

Figure 6: We illustrate A∗i X by describing the infinitesimal motions of the N agents. Since
the matrices A∗i′’s are chosen out of S∗G, either A∗i′ = Aik − Ai j or A∗i′ = Ai j − A ji. If
A∗i′ = Aik − Ai j , then only agent xi has nonzero infinitesimal motion given by (xk − x j). If
A∗i′ = Ai j − A ji, then agents xi and x j have nonzero infinitesimal motions given by (x j − xi).

We show that the above system is exactly path-controllable over Q by proving the fact
that if X ∈ Q, then {A∗i X}γi=1 spans the entire Euclidean space R

N×n(≈ TXQ). For a matrix
X ∈ Q, we define a subspace L∗X of RN×n as follows:

L∗X := {AX | A ∈ A∗}.

We establish below the following fact:

Proposition 5.2. If N > (n + 1) and X ∈ Q, then L∗X = R
N×n.

To prove the above proposition, we first recall a fact established in [15]. Define a subspace
of RN×n as follows:

LX := {AX | A ∈ A}.
Since A∗ ( A, we have L∗X ⊆ LX . We established in [15] the following fact as a weaker
version of Prop. 5.2:

Lemma 7. If N > n and X ∈ Q, then LX = R
N×n.

The proof of the lemma is built upon the construction of a set of nN linearly independent
vectors Ai j X’s where each Ai j is a primary matrix. However, note that any primary matrix
Ai j has trace −1, and hence does not belong toA∗. In the proof of Prop. 5.2, we will construct
a new set of matrices A∗i ’s in A

∗ so that the A∗i X’s span RN×n.
Also, by comparing Prop. 5.2 with Lemma 7, we see that if N > (n + 1) and X ∈ Q, then

the equality L∗X = LX = R
N×n holds. On the other hand, we note here that if N = n + 1 and

X ∈ Q, then L∗X ( LX . To see this, first note that

dimA∗ = N(N − 1) − 1 = n(n + 1) − 1.

It then follows that

dimL∗X ≤ dimA∗ = n(n + 1) − 1 < n(n + 1) = dimLX .
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In other words, the condition N > (n+ 1) is also necessary for the equality L∗X = LX = R
N×n

to hold. With Lemma 7 as a preliminary result, we now prove Prop. 5.2:

Proof of Prop. 5.2. Since the configuration X ∈ Q is nondegenerate and N ≥ (n + 2), by
Remark 1 there exists a subset of (N − 1) agents such that the subconfiguration formed by
these (N − 1) agents is nondegenerate in Rn. Without loss of generality, we assume that the
subset is composed of the first (N − 1) agents {xi}N−1i=1 .

We now introduce a subset L∗X of L∗X , and show that L∗X spans RN×n. The subset of
interest is defined as follows:

L∗X := {(Ai j − ANk)X | 1 ≤ i , j ≤ N − 1, 1 ≤ k ≤ N − 1}.

Note that the leading (N − 1) × (N − 1) principal minor of (Ai j − ANk) is simply a primary
matrix. Moreover, the collection of all such principal minors is the set SK′ where K′ is the
complete subgraph induced by the first (N − 1) vertices {vi}N−1i=1 .

Let X′ := [x>1 ; · · · ; x>N−1] ∈ R(N−1)×n be the subconfiguration formed by the first (N − 1)
agents. Correspondingly, we partition a matrix Y ∈ L∗X as follows:

Y =
[
Y ′

y>

]
, Y ′ ∈ R(N−1)×n and y ∈ Rn. (23)

By the above arguments, we can write Y ′ = A′X′ for A′ ∈ SK′. From the definition of L∗X ,
the collection of all such Y ′ is {A′X′ | A′ ∈ SK′}.

Denote by A′ the stochastic Lie algebra composed of all (N − 1) × (N − 1) zero-row-sum
matrices. Because SK′ spans A′, the span of all the Y ′ is given by LX ′ := {A′X′ | A′ ∈ A′}.
Furthermore, since (N − 1) > n, by Lemma 7, dimLX ′ = n(N − 1), i.e., LX ′ = R

(N−1)×n. By
the above arguments, we know that there exists a subset L′X of L∗X , composed of n(N − 1)
matrices {Yi}n(N−1)i=1 , such that the sub-matrices {Y ′i }

n(N−1)
i=1 (obtained by the partition (23))

form a basis of LX ′. We fix any such subset L′X .
It now suffices to find another n matrices in L∗X such that they together with the Yi’s

span RN×n. Since the subconfiguration X′ formed by the first (N −1) agents is nondegenerate
and N > n + 1, by Remark 1 there exist (n + 1) agents out of {xi}N−1i=1 such that they form an
n-simplex. Without loss of generality, we assume that the (n + 1) agents are {xi}n+1i=1 . Then,
we define a subset of L∗X as follows:

L′′X := {(AN,n+1 − ANk)X | 1 ≤ k ≤ n}.

Note that each matrix in the above set is an integer combination of the matrices in L∗X ; indeed,
we have

(AN,n+1 − ANk)X = (A1 j − ANk)X − (A1 j − AN,n+1)X,
for some j ∈ {2, . . . , N − 1}. It should be clear that there are n matrices in L′′X .

We show below that the union L′X ∪ L′′X spans RN×n. First, by computation, we have

Zk := (AN,n+1 − ANk)X =
[

0(N−1)×n
(xn+1 − xk)>

]
,
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for all k = 1, . . . , n. Since the agents {xk}n+1k=1 form an n-simplex, by Def. 3, the n vectors
{xn+1 − xk}nk=1 span R

n. Thus, {Zk}nk=1 are linearly independent.
Furthermore, by the construction, the matrices {Zk}nk=1 are linearly independent of

the matrices {Yi}n(N−1)i=1 ; indeed, the sub-matrices Y ′i of Yi form a basis of LX ′ while the
corresponding sub-matrices of the Zk’s are all zeros as shown in the above computation. So,
there are nN linearly independent matrices in the union L′X ∪ L′′X . We thus conclude that
Span(L′X ∪ L′′X) = Span(L∗X) = RN×n for any X ∈ Q. �

5.3 Controllability of Lie extended formation systems

We prove here Prop. 5.1. Recall that X̂Σ[0,T] is the desired trajectory we want the Lie
extended formation system (21) to approximate. Since the initial condition XΣ(0) may differ
from X̂Σ(0), we choose a smooth trajectory X̃Σ[0,T] such that X̃Σ(0) = XΣ(0) and

‖ X̃σ(t) − X̂σ(t)‖ < ε, ∀(t, σ) ∈ [0,T] × Σ. (24)

Because Xσ(0) ∈ Q for all σ ∈ Σ, X̂σ(t) ∈ Q for all (t, σ) ∈ [0,T] × Σ, and Q is open, we
can choose X̃Σ[0,T] such that each X̃σ(t), for (t, σ) ∈ [0,T] × Σ, belongs to Q as well. In the
case where XΣ(0) = X̂Σ(0), we can simply let X̃Σ[0,T] = X̂Σ[0,T].

Next, we consider the time-derivative ∂ X̃σ(t)/∂t ∈ RN×n. Since X̃σ(t) belongs to Q, by
Prop 5.2, we have that

Span{A∗i X̃σ(t)}γi=1 = R
N×n, ∀(t, σ) ∈ [0,T] × Σ.

In particular, there exists a set of smooth functions {ci(t, σ)}γi=1 in both t and σ such that

∂

∂t
X̃σ(t) =

γ∑
i=1

ci(t, σ)A∗i X̃σ(t).

Suppose, for the moment, that for any positive number δ, there exist a positive integer k
for k ≥ d(G) and a set of smooth control inputs ui,p(t) for the kth order Lie extended
formation system (21) such that������ k∑

l=d(G)

∑
p∈P(l+1)

ui,p(t)p(σ) − ci(t, σ)

������ < δ, ∀(t, σ) ∈ [0,T] × Σ and∀i = 1, . . . , γ; (25)

then, it follows that for all σ ∈ Σ, the trajectory Xσ[0,T] generated by system (21), with
Xσ(0) = X̃σ(0), can be made arbitrarily close to X̃σ[0,T].

Note that if the above holds, then Prop. 5.1 will be established. To see this, first note that
[0,T] × Σ is compact. By (24), there exists an ε′, with 0 < ε′ < ε , such that if we replace ε
with ε′, then (24) still holds. Next, we let δ be chosen sufficiently small so that if (25) holds,
then

‖Xσ(t) − X̃σ(t)‖ < ε − ε′, ∀(t, σ) ∈ [0,T] × Σ.
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Combining the above arguments, together with the triangle inequality, we obtain that

‖Xσ(t) − X̂σ(t)‖ ≤ ‖Xσ(t) − X̃σ(t)‖ + ‖ X̃σ(t) − X̂σ(t)‖
< (ε − ε′) + ε′ = ε, ∀(t, σ) ∈ [0,T] × Σ,

and hence (22) holds.
It now remains to show that for any given δ > 0, there exist a positive integer k ≥ d(G)

and smooth control inputs ui,p[0,T] such that (25) holds. We establish the fact below.
By assumption, {ρs}rs=1 separates points and contains an everywhere nonzero function.

Without loss of generality, we let ρ1 be such a function. Note, in particular, that ρ−11 is
defined. Because Σ is compact, by the Stone-Weierstrass theorem, the subalgebra generated
by {ρs}rs=1 is dense in the algebra of all integrable functions defined on Σ. Thus, given any
δ′ > 0 and any i = 1, . . . , γ, there exist

1) a nonnegative integer k′i ,

2) a subset of monomials {p′ij }
mi

j=1 out of t
k ′i
l=0P(l), and

3) a set of smooth control inputs {uij (t)}
mi

j=1,

such that the following holds:������ mi∑
j=1

uij (t)p′ij (σ) − ρ
−d(G)−1
1 (σ)ci(t, σ)

������ < δ′, ∀(t, σ) ∈ [0,T] × Σ. (26)

Because Σ is compact and ρ1 is everywhere nonzero,

κ := max
{���ρ−d(G)−11 (σ)

��� | σ ∈ Σ}
exists and is strictly positive. Now, let

δ′ := δ/κ and pij := ρ
d(G)+1
1 p′ij .

Then, the degree of each pij is at least (d(G) + 1). Moreover, by (26), we obtain that������ mi∑
j=1

uij (t)pij (σ) − ci(t, σ)

������ < κδ′ = δ, ∀(t, σ) ∈ [0,T] × Σ and∀i = 1, . . . , γ.

We have thus established (25). �

Remark 5. The arguments used in the proof of Prop. 5.1, when combined with the averaging
techniques established in [23, 24], could be used to design an algorithm for generating a
set of control inputs ui j,s[0,T] for steering the original ensemble formation system (17) to
approximate a given trajectory X̂Σ[0,T]. In a nutshell, the algorithm is composed of two
steps: (i) Identify the order k of Lie extension and computes the control inputs ui,p(t) for the
Lie extended system so that for any σ ∈ Σ, the trajectory generated by (21) is within a certain
error tolerance of the desired trajectory X̂σ[0,T]; (ii) Apply the averaging technique [23, 24],
which takes as input the kth order Lie extended system (with the ui,p(t)’s computed above)
and yields an appropriate set of control inputs ui j,s(t) that steer (17) to approximate the
trajectory generated by the Lie extended system. We defer the analysis to another occasion.
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6 Conclusions
We investigated in the paper a continuum ensemble of multi-agent formation systems (1)
with their information flows described by a common digraph G. Such an ensemble control
model can be viewed as a prototype for the study of design and control of other general
ensembles of networked control systems. We established in the paper a sufficient condition
(Theorem 3.1) for the ensemble formation system (1) to be approximate path-controllable, i.e.,
for every individual formation system to be simultaneously approximately path-controllable.
In particular, the theorem related ensemble controllability to the (common) information flow
topology of every individual formation system.

To establish the controllability result, we investigated the stochastic Lie algebra A and
computed iterated matrix commutators of the primary matrices Ai j for Ai j ∈ SG. We
introduced the notion of semi-codistinguished set (Def. 7) and showed that for every strongly
connected digraph G, there exists a set S∗G (defined in (14)) semi-codistinguished to SG with
respect to the adjoint representation of A on its commutator ideal A∗. Moreover, we showed
that such a set S∗G can be generated by iterated matrix commutators of primary matrices of
any given depth that is greater than or equal to the diameter of G. The above analysis of
stochastic Lie algebra was instrumental in evaluating iterated Lie brackets of control vector
fields of the ensemble formation system. We verified in Section 5 the ensemble version of
the Lie algebraic rank condition.

Future work may focus on extending the controllability result to the case where the
information flow digraphs Gσ(t), for σ ∈ Σ, are time-varying and heterogeneous. We will
also aim to address the observability of an ensemble formation system, which is about
the ability of using a finite number of output measurements to estimate the state of every
individual formation system in the ensemble.
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Appendix
We prove here Lemma 2. Let U be an N × N nonsingular matrix such that U1 = eN . Define
a subspace Ã∗ of RN×N by Ã∗ := UA∗U−1, i.e., Ã∗ := {U AU−1 | A ∈ A∗}. It should be
clear that Ã∗ is isomorphic to A∗ (as a matrix Lie algebra). We show below that Ã∗ is
perfect. Recall thatA∗ is defined by the conditions that A1 = 0 and tr(A) = 0 for any A ∈ A∗.
Translating these conditions to the set Ã∗, we obtain that

Ã∗ = { Ã ∈ RN×N | ÃeN = 0 and tr(Ã) = 0}.

Note, in particular, that the right column of Ã′ ∈ Ã∗ is zero. Decompose a matrix Ã ∈ Ã∗
into 2 × 2 blocks: Ã = [Ã′, 0; b>, 0] where Ã′ ∈ R(N−1)×(N−1) and b ∈ RN−1. Since
tr(Ã′) = tr(Ã) = 0, the collection of all such submatrices Ã′ is then the special linear Lie
algebra slN−1(R), which is known to be simple (note that N ≥ 3).

It follows that the Lie algebra Ã∗ can be expressed as a semidirect product Ã∗ =
slN−1(R) n RN−1. Specifically, if we represent a matrix Ã ∈ Ã∗ by a pair (A′, b>), then the
Lie bracket of (Ã′1, b>1 ) and (Ã′2, b>2 ) is given by

[(Ã′1, b>1 ), (Ã′2, b>2 )] = ([Ã′1, Ã′2], b>1 Ã′2 − b>2 Ã′1)

Recall that the standard representation of slN−1(R) on RN−1 is given by (Ã′, b) 7→ Ã′b. The
representation is known to be irreducible, i.e., there does not exist a nonzero, proper subspace
V ∈ RN−1 such that slN−1(R)V ⊆ V . This, in particular, implies that slN−1(R)RN−1 = RN−1.
It then follows that the Lie algebra Ã∗ = slN−1(R) n RN−1 is perfect.
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Let Ã∗ = Ã∗
l
⊕ Ã∗r be the Levi decomposition of Ã∗ where Ã∗

l
is semi-simple and Ã∗r is

the radical of Ã∗. It should be clear from the above arguments that

Ã∗
l
=

{[
Ã′ 0
0 0

]
| tr

(
Ã′

)
= 0

}
≈ slN−1(R),

Ã∗r =

{[
0 0

b> 0

]
| b ∈ RN−1

}
;

indeed, we have that [Ã∗r, Ã∗r ] = 0. Correspondingly, A∗
l
and A∗r can be obtained by the

similarity transformation: A∗
l
= U−1 Ã∗

l
U and A∗r = U−1 Ã∗rU. By computation, we have

A∗l = {A ∈ A∗ | A>1 = 0} and A∗r = {1v> | v>1 = 0}.

Note that the above result does not depend on a particular choice of U as long as U is
nonsingular and U1 is linearly proportional to eN . �
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