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Abstract

We consider the problem of optimizing the stationary performance of a discrete time linear system affected by a disturbance
and subject to probabilistic input and state constraints. More precisely, the goal is to design a disturbance compensator which
optimally shapes the stationary state distribution so as to best satisfy the given control specifications. To this purpose, we
formulate a chance-constrained program with the compensator parametrization as optimization vector. Chance-constrained
programs are generally hard to solve and a possible way to tackle them is resorting to the so-called scenario approach. In our
set-up, however, the scenario approach is not directly applicable since the stationary state process depends on disturbance
realizations of infinite extent. Our contribution is then to provide a new scenario-based methodology, where the stationary state
process is approximated and constraints are suitably tightened so as to retain the chance-constrained feasibility guarantees of
the scenario solution. Design of a periodic compensator of a cyclostationary disturbance can be embedded in our framework,
as illustrated in an energy management numerical example.
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1 Introduction

We consider a discrete time linear time invariant sys-
tem affected by a stationary additive disturbance. Our
goal is to set its control input so as to optimize per-
formance, while satisfying some probabilistic constraint
on the state/input when the system is operating in sta-
tionary conditions. This involves characterizing and op-
timally shaping the distribution of the stationary state
process. In the same vein, in minimum variance control,
(Åström 1970), generalized minimum variance control,
(Clarke & Hastings-James 1971, Peterka 1972, Shaked
& Kumar 1986, Grimble 1988, Huang 2002, Gawthrop
2004), and H2 control, (Sinha 2007, pag. 273), the state
distribution is optimally shaped so as to minimize the
stationary variance of some suitably defined output sig-
nal. In these approaches, however, it is very difficult to
include state/input constraints and/or actuation con-
straints; these are typically accounted for only indirectly
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by introducing a control penalization term to the vari-
ance in the cost function, see e.g., (Grimble 2002). In
this paper, in contrast with the previously mentioned
approaches, we are not restricted to the variance as cost
criterion and we can include explicitly joint state and in-
put constraints, which are imposed in probability. On the
other hand, we assume that disturbance measurements
are available to shape the stationary state distribution
through a compensator. This set-up is particularly ap-
pealing in those applications in which either the state
is hardly accessible, or there are no sensors in place to
measure it and adding them would be excessively costly,
whereas disturbance measurements are easy to obtain.

Computing the compensator parameters involves solv-
ing a chance-constrained optimization program. This
is a hard problem, in general, due to the presence of
probabilistic constraints. In our set-up, the problem is
even harder since the probability appearing in the con-
straints is associated with the system operating in sta-
tionary conditions and, hence, it involves the whole dis-
turbance process, which makes analytic methods to treat
the probabilistic constraints, (Zhou & Cogill 2013, Cin-
quemani, Agarwal, Chatterjee & Lygeros 2011, Bertsi-
mas & Brown 2007), as well as randomized methods,
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(Campi, Garatti & Prandini 2009, Campi & Garatti
2008, Campi & Garatti 2011, Alamo, Tempo, Luque &
Ramirez 2015), not directly applicable.

In this paper, we are able to extend the randomized
method known as scenario approach and its guaran-
tees on feasibility, (Calafiore & Campi 2005, Calafiore
& Campi 2006, Campi & Garatti 2008), to the case of
chance-constraints involving the stationary state pro-
cess. This is achieved by suitably approximating such
a process and compensating the introduced approxima-
tion error via constraint tightening.

In our approach, the computational effort involved in the
compensator design is entirely off-line, and on-line oper-
ation does not require any (re)computation of its param-
eters. When the state of the controlled system reaches
the steady-state conditions, the resulting stationary state
process is guaranteed by construction to satisfy the prob-
abilistic constraints and performance is optimal.

Other infinite horizon approaches that account for prob-
abilistic constraints are proposed within the stochas-
tic model predictive control (SMPC) framework (see
(Mesbah 2016) for a survey). In SMPC, a feedback con-
trol policy is implemented by adopting a receding hori-
zon, which, however, typically implies on-line computa-
tions. Moreover, to the best of our knowledge, no re-
sults are available in the literature on the optimality of
the SMPC solution and on the satisfaction of probabilis-
tic state/input constraints in the long run. More im-
portantly, SMPC is not applicable to our set-up where
disturbance measurements are available whereas state
measurements are not.

This paper significantly extends its preliminary version
(Falsone, Deori, Ioli, Garatti & Prandini 2017), by pro-
viding the proofs and presenting a more extensive nu-
merical example section.

Structure of the paper: The addressed problem is
precisely described in Section 2, while the new scenario-
based resolution approach is presented in Section 3 to-
gether with the main result statement. Proofs are de-
ferred to Section 4. A numerical case study is illustrated
in Section 5. Some concluding remarks are drawn in Sec-
tion 6.

Notations: Given a discrete time process {vk, k ∈ Z},
we denote it as v and the probability distribution of v as
Pv. Correspondingly, the expected value operator with
respect to Pv is denoted as Ev[ · ]. I denotes the iden-
tity matrix (a subscript denotes the order of I when it
is not obvious from the context), 1 is a vector contain-
ing all ones, J = blkdiag(J1, . . . , Jm) is the block diag-
onal matrix built from the square matrices J1, . . . , Jm,
and X> denotes the conjugate transpose of X. We de-
note by ρX = max{|λ| : det(λI −X) = 0} the spectral

radius of a square matrix X, and by ‖ · ‖p the matrix
norm induced by the standard p-norm for vectors, i.e.,

‖X‖p = supv:‖v‖p=1 ‖Xv‖p. The symbols
L1

→ and
L2

→ de-

note the convergence in mean and in mean square of

random vectors, respectively, and
P→ the convergence in

probability. Given the integers n and k, the binomial co-
efficient

(
n
k

)
is assumed to be zero if n < k.

2 Problem formulation

Consider a linear system where the state xk ∈ Rnx
evolves according to the discrete time equation

xk+1 = Axk +Buk +Wdk, (1)

affected by the control input uk ∈ Rnu and an additive
stochastic disturbance dk ∈ Rnd , A, B, and W being
matrices of appropriate dimensions.

We make the following assumptions.

Assumption 1 (Asymptotic stability) The spectral
radius of matrix A satisfies ρA < 1. 2

Assumption 2 (Disturbance) The stochastic process
d is strictly stationary with zero mean 1 and well-defined
and known second order moments. 2

Throughout the paper we will assume that the value
taken by dk at any time k ∈ Z is available for compen-
sation purposes. However, note that it is typically not
possible to cancel out the contribution of dk on the state
dynamics (1) by setting Buk = −Wdk, because B could
be not invertible and uk may be subject to constraints.

Our goal is to optimize the system performance in sta-
tionary conditions by suitably designing a disturbance
compensator of the following form:

uk = γ + ϑdk, (2)

where the control input uk is parameterized as a static
function of dk, and γ and ϑ are the compensator pa-
rameters taking values in the convex and compact sets
Γ ⊂ Rnu and Θ ⊂ Rnu×nd , respectively.

By plugging the disturbance compensator (2) into (1),
we obtain the controlled system equation

xk+1 = Axk +Bγ + (Bϑ+W )dk. (3)

1 The zero mean assumption is without loss of generality,
since if this is not the case, we can introduce x̄k+1 = Ax̄k +
Wd̄, where d̄ = Ed[dk], and reformulate the problem in terms
of ∆xk = xk − x̄k which evolves according to ∆xk+1 =
A∆xk + Buk + W∆dk, and is affected by the zero mean
strictly stationary disturbance process ∆dk = dk − d̄.
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Under Assumptions 1 and 2, for any k ∈ Z there
exists a measurable function xk,∞ of the process
dk−1 = {. . . , dk−2, dk−1} such that the process
x∞ = {xk,∞, k ∈ Z} satisfies (3) and is strictly sta-
tionary with finite first and second order moments,
(Caines 1988, Theorem 1.4, pag. 80). This xk,∞ is
unique, (Caines 1988, Theorem 3.2, pag. 101), and is
given by xk,∞=(I−A)−1Bγ+

∑∞
s=0A

s(Bϑ+W )dk−1−s.

Our goal is to choose the compensator parameters γ and
ϑ so as to optimize some performance criterion while sat-
isfying state and input constraints. This corresponds to
suitably shaping the distribution of the stationary state
xk,∞. Specifically, suppose that a function `(x, u, d) :
Rnx × Rnu × Rnd → R is given, associating a cost to
the state/control input pair (x, u) when the disturbance
value is d. Moreover, a joint constraint on (x, u) is de-
fined by requiring the non positivity of a given function
f(x, u) : Rnx × Rnu → R. 2 Functions `(x, u, d) and
f(x, u) are required to be convex as specified in the fol-
lowing.

Assumption 3 (Convexity) The cost function
`(x, u, d) and the constraint function f(x, u) are convex
with respect to (x, u) ∈ Rnx × Rnu . 2

Then, our design problem is formulated as the following
chance-constrained optimization program:

min
γ∈Γ,ϑ∈Θ,h

h (4)

subject to: Pdk

{
`(xk,∞, γ + ϑdk, dk) ≤ h,

∧ f(xk,∞, γ + ϑdk) ≤ 0
}
≥ 1− ε,

where ε ∈ (0, 1) is a user-chosen probability level
and Pdk is the probability distribution of process
dk = {. . . , dk−1, dk}. If we set ε = 0 in (4), then we are
minimizing the worst-case cost value while satisfying
the joint state and input constraint over all disturbance
realizations. Instead, by setting 0 < ε < 1, we require
that the cost is minimized and the joint state and input
constraint is satisfied over a set of disturbance real-
izations of measure at least 1 − ε, thus allowing for
the solution to (4) to have a larger cost and/or violate
the constraint over the disturbance realizations in the
remaining set of measure at most ε.

Notice that functions `(x, u, d) and f(x, u) are evaluated
in stationary conditions, i.e., with x set equal to the sta-
tionary state xk,∞ and with u given by the disturbance
compensator in (2). In stationary conditions, thus, the
solution to (4) is optimal and satisfies the probabilistic

2 The fact that f(·) is a single constraint function is without
loss of generality because if multiple constraint functions
f1(·), . . . , fm(·) are present, then, we can redefine f(·) as the
point-wise maximum of these f1(·), . . . , fm(·).

constraint in (4) for every time instant k. In practice,
thanks to Assumption 1, stationarity is always reached
in the long run, with a convergence rate that depends on
ρA (see also Remark 3 in Section 4.2). This makes the
proposed approach particularly appealing because the
control law is computed once (off-line) and then applied
at each time step without solving any further on-line op-
timization problem.

Chance-constrained problems like (4) are generally chal-
lenging to solve because of the presence of the proba-
bilistic constraint, which is not easy to express analyt-
ically as a function of the optimization variables and
can be non convex even under Assumption 3, (Prèkopa
1995, Dentcheva 2006). One could then head for an ap-
proximate solution to (4) by adopting a randomization
of the probabilistic constraint according to the scenario
approach, (Calafiore & Campi 2005, Calafiore & Campi
2006, Campi & Garatti 2008, Campi et al. 2009). This

would involve using a set {d(i)
k = {. . . , d(i)

k−2, d
(i)
k }}Ni=1 of

N independent realizations of the disturbance process
dk (“scenarios”) and solving the convex scenario pro-
gram

min
γ∈Γ,ϑ∈Θ,h

h (5)

subject to: `(x
(i)
k,∞, γ + ϑd

(i)
k , d

(i)
k ) ≤ h

f(x
(i)
k,∞, γ + ϑd

(i)
k ) ≤ 0

x
(i)
k,∞=(I−A)−1Bγ +

∞∑
s=0

As(Bϑ+W )d
(i)
k−1−s

i = 1, . . . , N.

Let n be the number of scalar variables in the controller
parametrization (γ, ϑ). Given a confidence parameter
β ∈ (0, 1), if (5) is feasible and N is selected so as to
satisfy

n∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β, , (6)

then, under Assumption 3, (Campi & Garatti 2008, The-
orem 2.4) guarantees that, with probability at least 1−β,
the optimal solution to (5) is feasible for (4).

The catch here is that (5) cannot be solved in practice
since it involvesN realizations of the process dk, which is
an infinite sequence of random vectors. Since in practice
one can have finite-length realizations of dk only, this
renders the standard scenario approach inapplicable as it
is. The idea then is to turn (5) into a solvable problem by
approximating xk,∞ with a truncated version. However,
as shown in the next section, a suitable tightening of
the constraints is needed to account for the truncation
error and obtain feasibility guarantees with respect to
the original problem (4) for the resulting approximate
scenario-based solution.
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3 Proposed solution and main results

Given an integer M ∈ N, let

xk,M = (I −A)−1Bγ +

M−1∑
s=0

As(Bϑ+W )dk−1−s (7)

be a truncated version of xk,∞, which satisfies xk,M
L2

→
xk,∞, and hence, approximates xk,∞ with an accuracy
that increases as M grows to infinity. Let also define
the process xM = {xk,M , k ∈ Z}. Consider now a set

{d(i)
k−j , j = 0, . . . ,M}Ni=1 of N independent realizations

of length M + 1 of the disturbance process dk. Then, we
can formulate the following approximated version of (5):

min
γ∈Γ,ϑ∈Θ,h

h (8)

subject to: `(x
(i)
k,M , γ + ϑd

(i)
k , d

(i)
k ) ≤ h− δ

f(x
(i)
k,M , γ + ϑd

(i)
k ) ≤ −δ

x
(i)
k,M =(I−A)−1Bγ +

M−1∑
s=0

As(Bϑ+W )d
(i)
k−1−s

i = 1, . . . , N,

in which we used xk,M in place of xk,∞, thus requiring
only finite-length realizations of the disturbance. Note
also that, to account for the introduced approximation
error, we introduced a δ ≥ 0 to tighten the constraints
in which xk,∞ appears.

Under Assumption 3, the scenario optimization problem
(8) is convex and can be efficiently solved via standard
convex optimization techniques, (Boyd & Vandenberghe
2004). For instance, when `(·) and f(·) are linear function
of their first two arguments, and Γ and Θ are box-sets,
(8) reduces to a linear program.

Let (γ?, ϑ?, h?) be the optimal solution to (8). Our main
result, Theorem 1 below, is that (γ?, ϑ?, h?) is with high
confidence feasible for the original problem (4) under the
following two assumptions.

Assumption 4 (Feasibility and uniqueness) For
any N , for any sample of disturbance realizations, the
constrained optimization problem (8) is feasible and its
feasibility set has a nonempty interior. Moreover, its
solution exists and is unique. 2

Assumption 5 (Lipschitz continuity) The cost
function `(x, u, d) and the constraint function f(x, u)
are Lipschitz continuous in x ∈ Rnx , with Lipschitz
constant L, for any (u, d) ∈ Rnu × Rnd . 2

Assumption 4 is quite standard in scenario-based op-
timization (see, e.g., (Campi & Garatti 2008, Campi

& Garatti 2011, Caré, Garatti & Campi 2015)). The
uniqueness part of Assumption 4 can be relaxed by con-
sidering suitable convex tie-break rules to single out a
unique solution (see (Campi & Garatti 2008)). Also the
feasibility part of Assumption 4 can be relaxed, see e.g.
(Calafiore 2010). Assumption 5 is instead a regularity
condition on the cost function `(·) and the constraint
function f(·). The main theorem follows.

Theorem 1 (Guarantees) Fix a confidence parame-
ter β ∈ (0, 1), and let M,N ∈ N and δ > 0 be such that

n∑
i=0

(
N

i

)
ε̃i(1− ε̃)N−i ≤ β, (9)

ε̃ = ε− KM
δ

> 0, (10)

n being the number of scalar variables in the controller
parametrization (γ, ϑ) and

KM =Lη σ ‖T‖1 ‖T
−1‖1 ρ

M
A (11)

m−1∑
i=0

i∑
s=0

(
(−1)s

(
M

i

)(
i

s

)
M − i

M + s− i
ρs−iA

(1− ρA)i+1

)
,

where L is the Lipschitz constant in Assumption 5,
η = maxϑ∈Θ ‖Bϑ+W‖1, σ =

∑nd
j=1

√
[Vd]j,j with

Vd = Edk [dkd
>
k ], T is a nonsingular transformation

matrix such that the matrix J = T−1AT is the Jordan
normal form of A, m is the maximum eigenvalue index,
and ρA is the spectral radius of the dynamic matrix A. 3

Then, if Assumptions 1-5 hold, the solution (γ?, ϑ?, h?)
of the scenario program (8) is feasible for the original
chance-constrained problem (4) with probability larger
than or equal to 1− β, i.e.,

PNdk
{Pdk{`(x?k,∞, γ? + ϑ?dk, dk) ≤ h? (12)

∧ f(x?k,∞, γ
? + ϑ?dk) ≤ 0} ≥ 1− ε} ≥ 1− β,

where x?k,∞ is the stationary process defined as the mean

square limit of xk,M with (γ, ϑ) set equal to (γ?, ϑ?). 2

The solution (γ?, ϑ?, h?) to the scenario program (8) is
a random quantity and, hence, the feasibility result in
Theorem 1 holds with a certain probability 1− β. Since
the dependence of N on β is logarithmic, very small val-
ues of β such as 10−6 can be enforced without affect-
ing N too much, thus providing a result that in practice
holds beyond any reasonable doubt.

3 L, η, ρA can be replaced by upper bounds without com-
promising the result, the only constraint being that the up-
per bound on ρA must be smaller than 1 to preserve the
exponential decay to zero of KM as a function of M . In par-
ticular, one can replace η with ‖B‖1 maxϑ∈Θ ‖ϑ‖1 + ‖W‖1,
which is typically easier to calculate.
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Theorem 1 provides a similar result to the standard sce-
nario theory in (Campi & Garatti 2008, Theorem 2.4).
Indeed, condition (9) on the multi-sample size is the
same as (6) except that ε̃ is used in place of ε, thus
resulting in a bigger value for N . We actually need to
tighten the probability level from ε to ε̃ by subtracting
KM
δ from ε to account for the approximation of xk,∞ by

its truncated version xk,M . The presence of δ > 0 thus
introduces conservatism twice, because it gives rise to:
(i) a tightening of the constraints, and (ii) a reduction of
the value of ε̃ with respect to the violation parameter ε,
which determines an increase of the multi-sample sizeN .
The modulation of δ has an opposite impact on (i) and
(ii): to push ε̃ closer to ε, higher values of δ are needed,
leading eventually to infeasibility of problem (8) because
of the tightening of the constraints; on the other hand,
δ cannot be taken too small because condition ε̃ > 0 in
(10) has to be satisfied and, moreover, N grows to infin-
ity as ε̃ goes to zero. In a given problem, various values
of δ can be explored to find the best trade-off between
(i) and (ii).

The introduced conservatism can be effectively reduced
by increasing the length M of the extracted disturbance
realizations, which can be performed in most cases at low
computational effort. Since KM in (11) decreases to zero
exponentially fast as M grows, larger values of M result
in values of KM closer to zero, which, in turn, allow for
lower values of δ. Therefore, by increasing M , we can
reduce the constraint tightening without deteriorating
the value of ε̃.

Remark 1 (Guidelines on the use of Theorem 1)
Typically, ε and β are given and we then need to choose
ε̃, δ, N , and M . From (10) we have that ε̃ ∈ (0, ε). Since
the complexity of (8) depends on N , and N is propor-
tional to 1/ε̃, it is better to set ε̃ as close as possible
to ε, to keep N as low as possible. If we fix a tentative
value for ε̃ and a threshold for δ, then we can use (11) to
choose M such that δ = KM

ε−ε̃ (from (10)) is less than the

threshold, and this is always possible since KM in (11) is
exponentially decaying to zero as M grows to infinity. If
the value for M is too high, we can increase the threshold
on δ and repeat the procedure. If a suitable pair (δ,M)
cannot be found, then we can go back and select a lower
ε̃ at the price of growing N .
In the case when N and M are given (e.g., when a
dataset is provided), we need to compute ε, β, and δ.
We can start by setting β to a desired confidence level
and use (9) to compute the corresponding ε̃. Given M ,
we can then compute KM from (11). Finally, from (10)
we can let δ vary and determine the corresponding ε. If
obtaining a reasonable ε requires a too high value for δ,
then we can either increase β or collect more data. 2

4 Proofs

4.1 Preparatory results on matrix norm bounds

Let A = TJT−1 where J is the Jordan normal form
of A and T is a suitable nonsingular transformation
matrix. J is known to have a block-diagonal structure
J = blkdiag(J1, . . . , Jnb), whose b-th block is given by

Jb =


λb 1

λb
. . .
. . . 1

λb

,
λb being the b-th eigenvalue of A. By the Jordan form of
A we can compute As = TJsT−1, where

Js = blkdiag(Js1 , . . . , J
s
nb

). (13)

For a Jordan block Jb of order mb, the (i, j)-th element
of Jsb is given by

[Jsb ]i,j =

{(
s
j−i
)
λ
s−(j−i)
b 0 ≤ j − i ≤ s

0 otherwise,
(14)

with 1 ≤ i ≤ mb and 1 ≤ j ≤ mb.

Lemma 1 (Bound on the matrix norm) Set m =
maxbmb. The norm ‖As‖1 satisfies the following bound:

‖As‖1 ≤ ‖T‖1‖T
−1‖1

m−1∑
i=0

(
s

i

)
ρA

s−i. (15)

Proof. By the sub-multiplicativity of ‖ · ‖1, we have that

‖As‖1 ≤ ‖T‖1‖T
−1‖1‖J

s‖1, (16)

and the block-diagonal structure of ‖Js‖1 gives

‖Js‖1 = max
1≤b≤nb
1≤j≤mb

mb∑
i=1

|[Jsb ]i,j |

= max
1≤b≤nb

mb∑
i=1

|[Jsb ]i,mb |

= max
1≤b≤nb

mb∑
i=1

(
s

mb − i

)
|λb|s−(mb−i)

≤
m−1∑
i=0

(
s

i

)
ρA

s−i, (17)

where the first inequality holds because, given the struc-
ture of Jsb , the maximum over j is achieved when j = mb,
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the second equality is obtained using the definition of
[Jsb ]i,j in (14) with j = mb, and the last inequality is
obtained by changing the sum index, by setting m =
maxbmb, and by using |λb| ≤ ρA for any b. Inequality
(15) follows by plugging (17) into (16), thus concluding
the proof. 2

Lemma 2 (Sum of the matrix norm) Under As-
sumption 1, we have

∞∑
s=M

‖As‖1 ≤ HM , (18)

where we set

HM = ‖T‖1‖T
−1‖1ρ

M
A

m−1∑
i=0

i∑
s=0

(
(−1)s

(
M

i

)(
i

s

)
M − i

M + s− i
ρs−iA

(1− ρA)i+1

)
. (19)

Proof. By (15) in Lemma 1

∞∑
s=M

‖As‖1 ≤
∞∑
s=M

‖T‖1‖T
−1‖1

m−1∑
i=0

(
s

i

)
ρs−iA

= ‖T‖1‖T
−1‖1

m−1∑
i=0

∞∑
s=M

(
s

i

)
ρs−iA

= ‖T‖1‖T
−1‖1

m−1∑
i=0

∞∑
s=0

(
s+M

i

)
ρs+M−iA

(20)

where the first equality is the exchange between the two
summations and the second equality is due to a shift in
the inner summation index. Using the fact that(

s+M

i

)
=

(
M

i

) (
s+M
M

)(
s+M−i

s

) ,
and that ρA < 1 by Assumption 1, we have

∞∑
s=0

(
s+M

i

)
ρs+M−iA

= ρM−iA

(
M

i

) ∞∑
s=0

(
s+M
M

)(
s+M−i

s

)ρsA
= ρM−iA

(
M

i

)
2F1(1,M + 1,M + 1− i, ρA), (21)

where 2F1(a, b, c, z) is the Gaussian Hypergeomet-
ric function, (Olde Daalhuis 2010). Using the Euler’s

transformation, 2F1(a, b, c, z) can be expressed in the
following closed form:

2F1(1,M + 1,M + 1− i, ρA)

=
M − i

(1− ρA)i+1

i∑
s=0

(−1)s
(
i

s

)
ρsA

M + s− i
(22)

Combining (20), (21), and (22) yields (18), thus conclud-
ing the proof. 2

Remark 2 (Tightness) Note that the bounds given in
Lemmas 1 and 2 are tight. If matrix A is equal to a single
Jordan block, then, equality holds in both (15) and (18).
In fact, matrix T would be the identity, and (16) and (17)
would hold with the equality. 2

4.2 Preparatory results on the truncation error bounds

We now formally assess the quality of xM in (7) as an
approximation of x∞ in Proposition 1 and Corollary 1.
Results in this subsection hold for any choice of the con-
troller parameters (γ, ϑ) ∈ (Γ,Θ).

Proposition 1 (Error bound) Under Assumptions 1
and 2, we have that

Edk

[
‖xk,∞ − xk,M‖1

]
≤ η σHM , (23)

where we set η = maxϑ∈Θ ‖Bϑ+W‖1, σ =
∑nd
j=1

√
[Vd]j,j,

Vd = Edk

[
dkd
>
k

]
, and HM is defined in (19).

Proof. Consider Edk

[
‖xk,∞ − xk,M‖1

]
and pick M ′ >

M . By adding and subtracting xk,M ′ we have

Edk

[
‖xk,∞ − xk,M‖1

]
(24)

≤ Edk

[
‖xk,∞ − xk,M ′‖1

]
+ Edk

[
‖xk,M ′ − xk,M‖1

]
,

due to sub-additivity of ‖ · ‖1 and linearity of Edk [ · ].
The second term on the right-hand-side of (24) can be
bounded as follows

Edk

[
‖xk,M ′ − xk,M‖1

]
= Edk

∥∥∥∥∥∥
M ′−1∑
s=M

As(Bϑ+W )dk−1−s

∥∥∥∥∥∥
1


≤ Edk

M ′−1∑
s=M

‖As(Bϑ+W )dk−1−s‖1


≤
M ′−1∑
s=M

‖As‖1‖(Bϑ+W )‖1Edk [‖dk−1−s‖1], (25)

where the first equality is due to (7), the first inequal-
ity to sub-additivity of ‖ · ‖1, and the last inequality to
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sub-multiplicativity of ‖ · ‖1 and linearity of Edk [ · ]. The
right-hand-side of (25) can be upper bounded as follows

M ′−1∑
s=M

‖As‖1‖Bϑ+W‖1Edk [‖dk−1−s‖1]

=

M ′−1∑
s=M

‖As‖1‖Bϑ+W‖1
nd∑
j=1

Edk

[
|[dk−1−s]j |

]

≤
M ′−1∑
s=M

‖As‖1‖Bϑ+W‖1
nd∑
j=1

√
Edk

[
|[dk−1−s]j |2

]

≤ ησ
M ′−1∑
s=M

‖As‖1 (26)

where the first equality is given by the definition of
‖ · ‖1, the first inequality is the Lyapunov inequality,
(Shiryaev 1996, pag. 193), and the last inequality di-
rectly follows from the stationarity of d and the defini-
tion of η = maxϑ∈Θ ‖Bϑ+W‖1, σ =

∑nd
j=1

√
[Vd]j,j ,

and Vd = Edk

[
dkd
>
k

]
. Using (25) and (26) in (24) we get

Edk

[
‖xk,∞ − xk,M‖1

]
≤ Edk

[
‖xk,∞ − xk,M ′‖1

]
+ ησ

M ′−1∑
s=M

‖As‖1. (27)

Taking the limit on both sides of (27) as M ′ → ∞ and

recalling that xk,M ′
L2

→ xk,∞ (see discussion below (7))

and that xk,M ′
L2

→ xk,∞ implies xk,M ′
L1

→ xk,∞, we have

Edk

[
‖xk,∞ − xk,M‖1

]
≤ ησ

∞∑
s=M

‖As‖1. (28)

Combining (28) and (18) from Lemma 2, yields (23),
thus concluding the proof. 2

The following result follows from Proposition 1.

Corollary 1 (Convergence rate) Under Assump-

tions 1 and 2, the convergence rate of xk,M
L1

→ xk,∞, as
M →∞ is a O(ρ̄M ) for any ρ̄ ∈ (ρA, 1).

Proof. The statement directly follows from Proposi-
tion 1 by taking the limit on both sides of (23) as
M → ∞, while noticing that HM defined in (19) is the
summation of a finite number of terms where the term(
M
i

)
appears re-scaled by ρMA and, hence, tends to zero.

The asymptotic divergence rate O(M i) of
(
M
i

)
is in

fact dominated by the exponential convergence rate to
zero of ρMA . Overall we get a O(ρ̄M ) asymptotic rate of
convergence to zero with ρ̄ ∈ (ρA, 1). 2

Corollary 1 confirms the intuition that, since the con-
trolled system in (3) is an asymptotically stable system
fed by a stationary disturbance, the larger the value of
M , the closer the truncation xk,M to xk,∞.

Remark 3 (Stationarity) If system (3) is initialized
at time k = 0 with a random variable x0 6= xk,∞ with
finite first and second order moments, then, convergence
in mean (and hence also in probability) of the resulting
state process to xk,∞ can be proven as k → ∞, with a
O(ρ̄k) rate, by following similar (yet not identical) steps
to those for the proof of Corollary 1. This entails that
we can optimize the controller parameters (γ, ϑ) by re-
ferring to the stationary process x∞, and get an optimal
stationary behavior in the long run. 2

Define the function

g(x, u, d, h) = max{`(x, u, d)− h, f(x, u)}. (29)

Then, we get the following equivalence

`(x, u, d) ≤ h, f(x, u) ≤ 0 ⇐⇒ g(x, u, d, h) ≤ 0. (30)

Set gk,∞ = g(xk,∞, γ + ϑdk, dk, h) and gk,M =
g(xk,M , γ + ϑdk, dk, h) for ease of notation.

In the following we exploit the result of Proposition 1 to
establish the convergence gk,M to gk,∞ as M →∞.

Proposition 2 (Constraint function error bound)

Under Assumptions 1, 2, and 3, we have that gk,M
P→

gk,∞ as M →∞. Moreover, if also Assumption 5 holds,
we have that

Edk [|gk,∞ − gk,M |] ≤ KM , (31)

where KM = LησHM , and gk,M
L1

→ gk,∞ as M → ∞
with a convergence rate that isO(ρ̄M ) for any ρ̄ ∈ (ρA, 1).

Proof. The convergence in mean of a random vari-
able implies the convergence in probability (see, e.g,
(Shiryaev 1996, Theorem 2, pag. 256)), therefore

xk,M
L1

→ xk,∞ implies xk,M
P→ xk,∞. Moreover, since

g(x, u, d, h) is continuous in x thanks to the convexity
requirement of Assumption 3, the Continuous Mapping
Theorem (Billingsley 1968, Corollary 2, pag. 31) ap-

plies, yielding gk,M
P→ gk,∞, which is the first part of

the proposition. Under Assumption 5, we have

|gk,∞ − gk,M | ≤ L ‖xk,∞ − xk,M‖2 ≤ L ‖xk,∞ − xk,M‖1.

Applying the expected value operator on both sides and
exploiting (23) in Proposition 1, we obtain (31). By tak-
ing the limit on both sides of (31), the last part of the
proposition readily follows. 2
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4.3 Proof of Theorem 1

Consider the following optimization problem

min
γ∈Γ,ϑ∈Θ,h

h (32)

subject to: Pdk{g(xk,M , γ + ϑdk, dk, h) ≤ −δ} ≥ 1− ε̃,

where xk,M is defined in (7) and ε̃ is defined in (10).

As a consequence of definition (29) and (30), thanks to
Assumptions 3 and 4, it follows from (Campi & Garatti
2008, Theorem 2.4) that the solution (γ?, ϑ?, h?) to the
scenario program (8) with N satisfying (9) is a feasible
solution for the chance-constrained problem (32) with
probability at least 1− β. Equivalently,

PNdk
{Pdk{g(x?k,M , γ

? + ϑ?dk, dk, h
?) > −δ} ≤ ε̃} ≥ 1− β,

(33)

where x?k,M is as in (7) with (γ, ϑ) = (γ?, ϑ?).

Consider now the original chance-constrained optimiza-
tion problem (4), and notice that the left-hand side of
its probabilistic constraint evaluated for (γ?, ϑ?, h?),
namely, Pdk{g(x?k,∞, γ

? + ϑ?dk, dk, h
?) > 0} ≤ ε, can

be upper bounded as follows

Pdk{g(x?k,∞, γ
? + ϑ?dk, dk, h

?) > 0}
= Pdk{g?k,M + δ + g?k,∞ − g?k,M − δ > 0}
≤ Pdk{g?k,M > −δ ∨ g?k,∞ − g?k,M > δ}
≤ Pdk{g?k,M > −δ}+ Pdk{g?k,∞ − g?k,M > δ}, (34)

where we adopted the shorthand notations g?k,∞ =

g(x?k,∞, γ
? + ϑ?dk, dk, h

?) and g?k,M = g(x?k,M , γ
? +

ϑ?dk, dk, h
?). The first term in (34) is the inner proba-

bility appearing in (33). The second term, instead, can
be upper bounded by KMδ irrespective of the value taken
by γ? and ϑ?:

Pdk{g?k,∞ − g?k,M > δ} ≤ Pdk{|g?k,∞ − g?k,M | > δ}

≤
Edk

[
|g?k,∞ − g?k,M |

]
δ

≤ KM
δ
, (35)

where the second inequality is the application of Cheby-
shev’s inequality (Shiryaev 1996, pag. 192), and the last
inequality follows from (31) in Proposition 2. From (34),

(35), and (33) we eventually obtain that

PNdk

{
Pdk{g(x?k,∞, γ

? + ϑ?dk, dk, h
?) > 0} ≤ ε̃+

KM
δ

}
≥ PNdk

{
Pdk{g?k,M > −δ} ≤ ε̃ ∧

Pdk{g?k,∞ − g?k,M > δ} ≤ KM
δ

}
=

[
PNdk

{
Pdk{g?k,∞ − g?k,M > δ} ≤ KM

δ

}
= 1

]
= PNdk

{
Pdk{g?k,M > −δ} ≤ ε̃

}
≥ 1− β.

The obtained inequality is statement (12) in Theorem 1
given the definition of ε̃ in (10) and the definition of g(·)
in (29). This concludes the proof. 2

5 Numerical example

We present an energy management application exam-
ple to show the efficacy of the proposed scenario-based
approach. In this example we solve the problem by the
scenario program (8) with design parameters tuned ac-
cording to Theorem 1 and the guidelines in Remark 1.

Consider a photovoltaic panel installation connected to
the grid. The amount of energy produced by the panels
and injected into the grid clearly depends on the amount
of solar irradiation, which is unpredictable due to vari-
abilities in the weather conditions and can vary signif-
icantly. A battery is introduced to act as a buffer be-
tween the photovoltaic panel installation and the main
grid and absorb the energy fluctuations. The goal is to
offer to the grid a nominal exchange profile and a given
(minimal) variability around that profile, so as to ease
the grid operator task of balancing electrical energy pro-
duction and consumption, and, hence, to facilitate the
integration of the highly varying solar energy produc-
tion in the electrical grid. Due to the daily periodicity of
the solar irradiation phenomenon, an effective battery
management strategy can be designed with reference to
a one-day time horizon. We next embed the stochastic
periodic control problem in our framework by a lifting
transformation and apply Theorem 1 to design (off-line,
and only once!) a disturbance compensator for battery
management.

Consider a one day time horizon discretized into Th =
144 time slots of 10 minutes duration each. LetEb(t) ∈ R
denote the energy exchanged with the battery (Eb(t) > 0
if the battery is charged and Eb(t) < 0 if discharged),
Ep(t) ∈ R the energy produced (Ep(t) ≥ 0) by the solar
panels, andEg(t) ∈ R the amount of energy injected into
the grid, in time slot t ∈ N. Then, the energy balance
equation Eg(t) = Ep(t)−Eb(t) must hold for any t. The
evolution of the battery state of charge (SOC) ξ(t) ∈ R
at the beginning of each time slot t follows the first order
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model ξ(t+ 1) = aξ(t) + Eb(t), where we set a = 0.998
to account for the self-discharging losses per time slot.

We assume that the solar energy production Ep(t) is
a strictly cyclostationary process with period Th with
known first and second order moments. Let k denote
the index of the day and µp = E[[Ep(kTh)Ep(kTh +
1) . . . Ep((k+ 1)Th−1)]>] ∈ RTh the daily average pro-
duction profile. Then, the disturbance process d with
dk ∈ RTh representing the solar energy production fluc-
tuations with respect to the average profile µp, i.e., dk =
[Ep(kTh)Ep(kTh + 1) . . . Ep((k+ 1)Th− 1)]>−µp, sat-
isfies Assumption 2. If we let xk = ξ(kTh) be the battery
SOC at the beginning of day k, by iterating the battery
model for Th time slots, the day-by-day evolution of the
battery SOC is given by xk+1 = Axk + Buk, with A =
aTh ,B = [aTh−1 · · · a 1], and uk = [Eb(kTh) · · · Eb((k+
1)Th − 1)]> ∈ RTh . Clearly, A satisfies Assumption 1
since a < 1.

Note that the disturbance dk does not enter directly into
the battery model, but it does affect the control input
uk = γ + ϑdk, where γ ∈ RTh and ϑ ∈ RTh×Th , thus
allowing the battery to react to the measured solar pro-
duction profile representing the disturbance to compen-
sate. Since the value of Eb(t) cannot depend on the fu-
ture solar energy production Ep(τ) with τ ≥ t, ϑ has
a strictly lower triangular structure, i.e., with zeros on
and above the main diagonal. To reduce the number of
optimization variables, we constrain ϑ to have only the
first p = 3 subdiagonals different from zero and with the
elements on the same subdiagonal being equal, which
corresponds to using the solar production in the latest
3 time slots for compensation and weight it with time-
invariant parameters.

Our goal is to design the compensator such that the en-
ergy exchanged with the grid µp+dk−uk remains within
a minimum-width tube centered in µp−γ (i.e., the nom-
inal grid exchange profile) with a pre-defined high prob-
ability. To this end, let 1 ∈ RTh and parameterize γ
and the tube half-width as γ = cγ1 and ct,01 + ct,1µp,
respectively, where cγ , ct,0, ct,1 ∈ R, with ct,0, ct,1 ≥ 0,
are further optimization variables (the total number is
n = p + 3 = 6). In this way, the tube width is tuned
according to the average production profile and is pos-
sibly zero in those time slots where the production is
zero with probability 1, like at night. The constraint that
µp + dk − uk belongs to the tube can then be written as

|µp + dk − uk − (µp − γ)| = |(I − ϑ)dk| ≤ ct,01+ ct,1µp,

where the absolute value and the inequality have to be
intended component-wise. In order to minimize the de-
viation from the nominal profile, we set the cost func-
tion `(xk, uk, dk) = 1

>(ct,01 + ct,1µp). Clearly, we also
need to ensure that the battery SOC ξ(t) and the battery
energy exchange Eb(t) both stay within their minimum
and maximum values in each time slot t.
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Fig. 1. Value of δ as a function of M for different values of
ε̃ and the corresponding N , when ε = 0.1 and β = 10−4.

The resulting control problem can be formulated as

min
cγ ,ϑ,ct,0,ct,1,h

h

subject to: Pdk

{
|(I − ϑ)dk| ≤ ct,01+ ct,1µp,

ξmin ≤ ATxk,∞ +BT (cγµp + ϑdk) ≤ ξmax,

|cγµp + ϑdk| ≤ smax
}
≥ 1− ε

1
>(ct,01+ ct,1µp) ≤ h
ct,0 ≥ 0, ct,1 ≥ 0, ‖ϑ‖1 ≤ r,

where ξmin = 5% and ξmax = 95% of the battery to-
tal capacity of 60MJ, smax = 1MJ is the maximum
energy that can be exchanged with the battery in one
time slot, AT ∈ RTh+1 and BT ∈ R(Th+1)×Th are such
that AT ξ(kTh) + BT (cγµp + ϑdk) = [ξ(kTh) ξ(kTh +
1) · · · ξ((k+ 1)Th)]>, and ‖ϑ‖1 ≤ r is used to define the
set Θ.

As for KM appearing in Theorem 1, the constraints are
linear in x with Lipschitz constant L = 1, σ = 11.7624
(as it can be inferred from a historical dataset of 229
daily energy production profiles collected in the General
Electric Research Center in Munich, Germany), and it
is easy to see that η ≤ ‖B‖1 maxϑ∈Θ ‖ϑ‖1 + ‖W‖1 ≤ r
since ‖B‖1 = 1, W = 0, and ‖ϑ‖1 ≤ r, and we can
therefore set η = r. If we further notice that T = 1 the
expression for KM simplifies to KM = rσ

1−aTh a
ThM ≈

141 · 0.75M .

Figure 1 reports the value of δ as a function of M , for
different tentative values of ε̃ < ε and the corresponding
number N of scenarios, when ε = 0.1 and β = 10−4.

Results reported next refer to ε̃ = 0.095, which corre-
sponds toN = 217 by solving (9) via bisection. We chose
M = 60 to have δ < 10−3 (δ = 8.67 · 10−4) so as not to
overtighten the constraints. For comparison purposes we
also computed the tube when the battery is not present.
Disturbance realizations were generated using a Gaus-
sian model with mean and covariance estimated from the
available dataset of 229 daily energy production profiles.
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Fig. 2. A realization of Eg(t) at day M = 60 together with
the optimal tubes, with (green) and without (red) battery.

Fig. 3. Probability distribution of ξ(kTh) for days k = 1, 2, 3,
M,M + 1, M = 60. Red dashed bars denote ξmin and ξmax.

We simulated Nv = 104 validation scenarios (different
from those used for the optimization) for both strategies:
with and without the battery. In Figure 2 we report a
representative behavior of Eg(t) during day M = 60
when the battery is absent (red) and when the battery
is present (green) along with the corresponding tubes.
Both profiles stay within the respective tube, but the
tube obtained with our strategy is narrower with respect
to the one without the battery (44% reduction of the
tube area when using the battery).

Figure 3 represents the evolution of the probability dis-
tribution of ξ(kTh) computed over theNv validation sce-
narios for days k = 0, 1, 2,M,M + 1, with M = 60: the
battery was initialized at 25% in all scenarios and, af-
ter a transient, its probability distribution tends to the
asymptotic one. Note also that there are some realiza-
tions which go beyond ξmax or ξmin, but the probability
mass in those regions is very low.

To validate the statement in Theorem 1 we computed
a posteriori the empirical violation ε̂, which counts the
percentage of realizations that violate at least one con-
straint over day M , with respect to the total number of

δ M ε̂ h?

8.79 · 100 28 0.0245 29.07

8.76 · 10−1 36 0.0215 25.46

8.73 · 10−2 44 0.0214 25.29

8.70 · 10−3 52 0.0214 25.27

8.67 · 10−4 60 0.0214 25.27

Table 1
Empirical violation ε̂ and optimal cost h? as a function of
the tightening parameter δ and the truncation length M .

Nv simulations in the case where the battery is present,
for different values of the tightening δ (see Table 1). As
can be seen from the table, ε̂ is always less than ε = 0.1,
as predicted by the theory. Moreover, both ε̂ and h? are
barely affected by δ when δ ≤ 1. Instead, when δ is
larger, the tightening introduces some conservatism and
an increase in the optimal cost is experienced.

6 Conclusions

We addressed the design of a disturbance compensator
for a discrete time linear system so as to optimize its
performance in stationary regime while satisfying prob-
abilistic joint state/input constraints. We proposed an
off-line one-shot design method that rests on the approx-
imation of the stationary state process with a truncated
version and on the resolution of a chance-constrained op-
timization program via an extended scenario approach,
where a tightening of the constraints is introduced so as
to preserve feasibility guarantees. The approach looks
competitive in terms of ease of computation, applicabil-
ity, and performance guarantees, with respect to alter-
native approaches to optimal constrained control when
the state measurement is not available for feedback.
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