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Stability Analysis of Piecewise Affine Systems with

Multi-model Model Predictive Control

Panagiotis Petsagkourakis a, William P. Heath b, Constantinos Theodoropoulos a

aSchool of Chemical Engineering and Analytical Science,The University of Manchester, M13 9PL, UK

bSchool of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK

Abstract

We propose an input-output stability analysis for closed-loop systems of piece-wise affine models under unstructured uncertainty
and controlled by multi-model linear MPC with input constraints. Integral quadratic constraints (IQCs) are employed to
assess the robustness of MPC under uncertainty. We efficiently create a model pool, by performing linearisation on selected
transient points. All the possible uncertainties and nonlinearities (including the controller) can be introduced in the framework,
assuming that they admit the appropriate IQCs, whilst the dissipation inequality can provide necessary conditions for stability
through the incorporation of IQCs. We demonstrate the existence of static multipliers, which can reduce the conservatism of
the stability analysis significantly. The proposed methodology is demonstrated through two illustrative case studies.

Key words: Unstructured uncertainty, piecewise affine, model predictive control, robust stability,

1 Introduction

Model predictive control (MPC) is a powerful tech-
nique that largely relies on receding horizon-based
optimization of an objective function to compute the
optimum trajectories of manipulated variables and out-
puts. Linear MPC has been widely used in a number
of industries (Rawlings et al., 2017) due to its relative
simplicity and robustness (Heath et al., 2006). Nonlin-
ear MPC (Rawlings et al., 2017) is more appropriate
for handling complex processes with underlying nonlin-
ear dynamics. Nevertheless, computations for nonlinear
MPC may become prohibitively slow, making it diffi-
cult to handle the process model in real time. Piecewise
affine(PWA) models (Bemporad and Morari, 1999) can
accurately represent the underlying nonlinear dynamic
system, but their use in MPC can jeopardize compu-
tational performance as the resulting mixed-integer
programming problem is NP-complete (Borrelli et al.,
2017). In this work a multi-model approach (Du and Jo-
hansen, 2015; Bonis et al., 2014) is employed where one
model is used per optimization (or per sample) to avoid
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mixed integer computations. The resulting controller
uses the same model for the whole horizon (although it
might not always be admissible) with minimum com-
putational cost. In this work, stability conditions are
established for ensuring input-to-output stability within
the IQC (Megretski and Rantzer, 1997) and dissipa-
tivity (Brogliato et al., 2007) framework. Mayne et al.
(2000) have presented a survey of stability and optimal-
ity conditions for MPC; however the main focus is on
analysis using state terminal constraints and terminal
cost for state feedback stability, which can only provide
local stability at the expense of additional complexity.
Lazar et al. (2006) employed a Piecewise Quadratic
(PWQ) Lyapunov function (Johansson and Rantzer,
1998) for a class of PWA MPC problems, proposing
sufficient conditions for asymptotic stability with ter-
minal constraints and cost. PWQ Lyapunov functions
have been developed in (Wei et al., 2018; Qiu et al.,
2018) for the synthesis of output-feedback controllers
and for the design of reliable static output feedback
control for uncertain discrete-time PWA, respectively.
Løvaas et al. (2008) have proposed a class of output ro-
bust model predictive control with all the MPC policies
(within this class) satisfying a robust stability test when
unstructured uncertainties are present. Alternatively,
simple output feedback linear MPC with only input
constraints has been shown to guarantee input-output
stability (Heath et al., 2005; Heath and Li, 2010) under
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structured or unstructured uncertainties. However, to
the best of the authors’ knowledge, there is no system-
atic framework for analyzing the input-output stability
of feedback interconnections with PWA systems and
multi-model MPC under unstructured uncertainty. A
major challenge is to appropriately handle nonlinear and
uncertain components. The theory of integral quadratic
constraints (IQCs) can be used to conveniently model
these components to construct a generic global stabil-
ity analysis framework. Here, we propose the use of
IQCs to perform input-output stability analysis for such
feedback interconnected systems. IQCs (Megretski and
Rantzer (1997)) have been widely used for input-to-
output stability taking advantage of appropriate input-
output properties as well as to perform stability and
robustness analysis of dynamic systems in the frequency
(D’Amato et al., 2001; Heath and Li, 2010) or in the time
domain. Jönsson and Rantzer (2000) have proposed a
unified framework for IQC stability analysis based on
efficient computation of multipliers. Recently, Fetzer
and Scherer (2017) proposed a comprehensive stability
analysis for the case of slope-restricted nonlinearities in
discrete time. Pfifer and Seiler (2015) propose a frame-
work for stability analysis of linear parameter varying
(LPV) models introducing IQC multipliers through J-
spectral factorization, bringing together the frequency
IQC stability with the dissipation approach significantly
reducing conservatism. Similarily, Carrasco and Seiler
(2018) prove the equivalence between IQC and graph-
separation stability, if a doubly-hard factorization is
applied. Time domain frameworks in contrast, are not
restricted to linear time invariant systems, permitting
further generalization. Robustness analysis (Pfifer and
Seiler, 2015) and robust synthesis (Wang et al., 2016)
of LPV systems using time domain IQCs have recently
been developed.

1.1 Contributions

The main contribution of this work is to construct a
general framework for the analysis of input-to-output
stability of PWA systems for multi-model MPC under
unstructured uncertainty. The MPC as well as the un-
certainties arising due to model mismatches are handled
by appropriate IQCs. Four methodologies are proposed
for stability analysis (i) single parametrization (SP) (ii)
conic combination (CC)(iii) static multipliers for box
constraints (SS)(iv) static multipliers combined with a
PWQ function (PWQ).

1.2 Assumptions

(i) Only constraints on the actuators are applied.
(ii) The (potentially nonlinear) system is: (a) open-loop
stable; (b) both controllable and observable.
(iii) All considered uncertainties and nonlinearities ad-
mit suitable IQCs

1.3 Structure of the paper

Relevant notation and the problem statement and asso-
ciated definitions are given in Sections 2 and 3, respec-
tively. Time domain IQCs are formulated in Section 4.
Stability theorems using time-domain IQCs combined
with the dissipation inequality for PWA models under
unstructured uncertainties are introduced in Section 5.
The developed methodologies are applied to two illus-
trative case studies in Section 6. Finally, conclusions and
future work are given in Section 7.

2 Notation

Let (Z+) Z be the set of (positive) integer numbers in-
cluding 0. lm2 is the Hilbert space of all square inte-
grable and Lebesgue measurable functions of size m,
f : Z+ → Rm and lm the space of all real-valued se-
quences. The truncation of the function f = f(t) at T ,
fT (t), is defined as:

fT (t) =

{
f(t) , ∀t ≤ T

0 , ∀t > T ,

}
(1)

with f ∈ lm if fT (t) ∈ lm2 for all T > 0. RH∞ stands for
the set of rational transfer functions without poles out-
side the unit circle. A∗ is the complex conjugate trans-
pose of complex matrix A. G∗ is the l2-adjoint opera-
tor of G ∈ RH∞. The inner product 〈f, g〉 is defined as∑∞
k=0 f(k)T g(k) = 1

π

∫ π
−π f̂(ejω)ĝ(ejω)dω, f̂ and ĝ de-

noting the Fourier transforms of f and g, respectively.
The l2 norm ‖f‖2 is defined as

√
〈f, f〉, while ‖f‖1 is∑∞

k=0 |f(k)|. Gi is the ith mode of PWA system, G. The
size of signal x is nx. For diagonal blocks the notation

diag is used, e.g. diag(A,B) =

[
A

B

]
.

3 Problem Statement

In this work, the robust stability of PWA systems under
unstructured uncertainty for multi-model MPC is stud-
ied. Only one model at each sampling time is employed,
to reduce computational costs as well as the difficulty
of including uncertainty into the optimization problem.
The stability is analyzed using dissipation inequalities,
whereas the uncertainties (∆) and the controller (φ) are
included in the analysis using IQCs.

3.1 Piece-wise Affine Models

The physical system is approximated by a PWA model
under unstructured uncertainty (∆) (Fig. 1) given in (2)
for every i ∈M ⊂ Z+, where M is the set of indices that
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Fig. 1. PWA model under unstructured uncertainty

defines the pool of linear sub-models. For each region Ωi
where hi holds, the dynamics evolve as:


x(k + 1)

ν(k)

y(k)

 =


Ai B1

i B2
i fi

C1
i D

11
i D21

i g1i

C2
i D

12
i D22

i g2i



x(k)

w(k)

d(k)

1


w(k) = ∆(ν)(k)

Ωi : {hi(x(k), u(k)) ≤ ζi} .

(2)

Vectors x(k) ∈ Rnx , u(k) ∈ Rnu and y(k) ∈ Rny are the
state, input and measured output at time k ∈ Z+, re-
spectively; w represents the uncertainty and ∆ : lnv →
lnw is a causal nonlinear (possibly unknown) map. The
matrixAi is Hurwitz, the superscripts inBm correspond
to the coefficients of the mth input, e.g. B1 corresponds
to input 1, in this casew. Furthermore,D requires an ad-
ditional superscript to represent the corresponding out-
put, e.g. D12 corresponds to output 1 (ν) and input 2
(d). The interconnection is well posed if for each d ∈ lnd
and y ∈ lny there exists a unique v ∈ lnv such that
the map from (d,y) to (v,w) is causal (Megretski and
Rantzer, 1997). The vectors gi (also corresponding to
inputs 1 and 2) and fi represent an arbitrary set of con-
stant real valued vectors. The set of arbitrary inequali-
ties, hi, have upper bound ζi. Less conservative results
can be obtained if a set of polyhedral inequalities is as-
sumed instead: (hi := Hx

i x(k) + Hu
i u(k)). Collection

{Ωi} is the set of (not necessarily closed or bounded)
polyhedra, with ∪Ωi = Rn, assuming that the regions, i,
are not overlapping. The model i changes with respect to
x(k) and u(k), and also with respect to time, k. Hence,
the corresponding subscripts will be denoted as i(k) in-
stead of i(x(k), u(k)). In this work, different strategies
for stability analysis of PWA models are considered using
new IQC multipliers constructed for multi-linear MPC
including uncertain/nonlinear components.

3.2 Integral quadratic constraints

IQCs replace difficult to identify/analyze components
with quadratic constraints satisfied by the inputs and
outputs of those components (Fetzer and Scherer, 2017).
Let Π be a bounded self-adjoint operator; then inequal-
ity (3) defines a general IQC in the frequency domain,
and it is deemed that “uncertainty w = ∆(ν) admits

IQC”, defined by multiplier Π (∆ ∈ IQC(Π)), when

∫ π

−π

[
ν̂(ejω)

ŵ(ejω)

]∗
Π(ejω)

[
ν̂(ejω)

ŵ(ejω)

]
≥ 0 . (3)

It is more convenient here to use time domain analysis as
nonlinear systems can be thus handled in a more natural
way. Multiplier Π can be factorized as Ψ∗MΨ and ap-
plying Parseval’s theorem (Zhou and Doyle, 1998) with

r(k) := Ψ
[
v(k)

T
w(k)T

]T
(see Fig. 2), inequality (3)

is transformed to the soft-IQC inequality (4)

∞∑
k=0

r(k)TMr(k) ≥ 0 . (4)

The theory of dissipation, however, requires a finite

Fig. 2. Graphical representation of the connection between
the auxiliary system Ψ and uncertainty ∆

time horizon. Hence, hard IQCs ( Megretski and Rantzer
(1997)) are necessary forcing the quadratic inequality
constraints to hold for every finite time horizon, T:

T∑
k=0

r(k)TMr(k) ≥ 0 . (5)

For nonlinearities varying in time, we define IQCs with
a multiplier Mi:

T∑
k=0

r(k)TMi(k)r(k) ≥ 0 . (6)

Here, we will form time domain hard-IQCs directly using
the KKT conditions.

3.3 Dissipation inequality

The robustness of the interconnection between the dy-
namic system and its uncertainties(or nonlinearities) is
analyzed using the extended system Gs

i (Fig. 3) where
xs := [xψ] is the state space vector and ψ the states of Ψ.

ψ(k + 1) = Aψψ(k) +B1
ψw(k) +B2

ψv(k)

r(k) = Cψψ(k) +D11
ψ w(k) +D12

ψ v(k)
(7)

The particular values of Aψ, B
1
ψ, B

2
ψ, Cψ, D

11
ψ and D12

ψ

3



Fig. 3. Extended system Gs
i

depend on the factorization of the multiplier M (see
(Carrasco and Seiler, 2018)). For time-invariant multi-

pliers, we have D11
ψ =

[
1 0
]T

and D12
ψ =

[
0 1
]T

. The

extended system can now be constructed:

xs(k + 1) = Asix
s(k) +Bs1i w(k) +Bs2i d(k)

r(k) = Cs1i x
s(k) +Ds11

i w(k) +Ds12
i d(k)

e(k) = Cs2i x
s(k) +Ds21

i w(k) +Ds22
i d(k) .

(8)

Different strategies can be implemented for MPC, which
will affect the structure of the problem. Written in state
space as in (2), the matrices in (8) are as follows:

Asi =

[
Ai 0

B1
ψ Aψ

]
(9a)

Bs1i =

[
B1
i

Bψ1
D11
i +B2

ψ

]
, Bs2i =

[B2
i fi

]
B1
ψD

12
i

 (9b)

Cs1i =
[
D11
ψ C

1
i Cψ

]
, Cs2i =

[
C2
i 0
]

(9c)

Ds11
i = D11

ψ D
11
i +D12

ψ , D
s12
i = D11

ψ

[
D12
i gi

]
(9d)

Ds21
i = D21

i , D
s22
i = D22

i . (9e)

The induced controller gain, l2, from d to e (Fig. 3)) is
defined using the interconnection between Gi and ∆:

||Gi,∆|| = sup
d6=0,d∈l2

‖e‖
‖d‖

(10)

where ∆ is now diag(∆1, . . . ,∆m, . . . ,∆N ) with m ∈
[1, . . . , N ] and N being the number of all the uncertain-
ties and nonlinearities in the closed-loop, assumed to sat-
isfy time-domain hard IQCs (5 and 6). Storage functions
can be used for stability analysis of PWA problems and
their type will affect the conservatism of the stability re-
sults (Johansson and Rantzer, 1998). A common storage
function can be employed, V (x) = xTPx, or a piece-
wise quadratic function, V (x) = xTPix, with P (or Pi)
a symmetric positive definite matrix. Although the lat-
ter may reduce the conservatism of stability estimates,
its construction requires significant computational time
that may lead to computationally intractable problems.

3.4 Model predictive control

The MPC controller here exploits a multi-model scheme.
The control law consists of only input constraints (guar-
anteed feasibility) and it can be described according to
equation (11) for every possible model i.

u∗(k) = arg min
U

Nout∑
t=0

lx(x̃(t), u(t))+

Nin∑
t=0

lu(x̃(t), u(t)) + F (x(Nout + 1)

s. t. x̃(0) = x(k)

x̃(t+ 1) = Aix̃(t) +B1
i u(t) + fi
LiU ≤ b ,

(11)

where

lx = (x̃(t)− xr)TQ(x̃(t)− xr))
lu = (u(t)− ur(t))TR(u(t)− ur(t))

(12a)

F (x(Nout)+1) = (x̃(Nout+1)−xr)TPr(x̃(Nout+1)−xr))2 ,
(12b)

with x̃, u∗ and xr being the states, the control ac-
tions (resulting from optimization) and the vector
of setpoints, respectively; b ≥ 0, Pr is the solu-
tion of the Discrete Algebraic Riccati Equation, and
U = [u(0)T , . . . , u(Nin − 1)T ]T the future input actions
(u ∈ Rnu) for the control horizon, Nin. Only the first
control action is applied at each sampling time. This
formulation employs the same model for the whole hori-
zon, reducing the computational cost. It is, however,
crucial to guarantee the input-to-output stability of the
closed-loop, as using the same model may not be appro-
priate. Equation (11) can be easily transformed to:

u∗(k) = φ(ξ) = arg min
U

UTHiU − UT ξ(k)

s.t. LiU ≤ b ,
(13)

where ξ(k) = Fix(k) + Di. Hessian, Hi, and Fi, Di

can be easily deduced from (Maciejowski, 2002). MPC
corresponds to nonlinearity φ and block uncertainties
can be used as in (Jönsson and Rantzer, 2000), ∆tot =
diag(φ,∆).

4 Integral Quadratic Constraints for MPC

To perform input-output stability analysis, we propose
to compute IQCs, defined as in (6) through the construc-
tion of thee different types of multipliers, for multi-model
MPC (13) using its KKT conditions.
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4.1 Sector-bounded MPC

For the case of linear MPC, IQCs can be calculated in
the frequency domain using the KKT conditions (Heath
et al., 2006). Here, we will construct IQCs in the time-
domain using appropriate inequalities. Nonlinearity φ(ξ)
is sector-bounded in the sense that there exists some
S > 0 such that φ(ξ)TS−1φ(ξ)− φ(ξ)T ξ ≤ 0.

Lemma 1 The nonlinearity u∗ = φ(ξ) (13) belongs to
the sector [0, H−1i ] for each Ωi.

PROOF. From the KKT conditions of (13) we have:

Hiu
∗ − ξ + LTi λ = 0 (14a)

λ̃j(Liju
∗ − bj) = 0 (14b)

λ̃j ≥ 0 , (14c)

with λ̃j the Lagrange multipliers. Multiplying (14a) by
uT and assuming bj ≥ 0, with u∗ = φ(ξ) leads to:

φ(ξ)THiφ(ξ)− φ(ξ)T ξ ≤ 0 . (15)

A different sub-model can be used at every sampling
time with only input constraints. Therefore, a new type
of IQC multiplier can be introduced:

Lemma 2 (Petsagkourakis et al., 2017) The nonlinear-
ity φ : Rnnξ → Rnu∗ (13) admits the time-domain hard

IQC (6) with Mi =

[
O I

I −2Hi(k)

]
, r =

[
ξT φ(ξ)T

]T
and Ψ equal to the identity matrix, for every ξ ∈ lnξ .

Here, KKT conditions guarantee that IQC using SP mul-
tipliers, hold for any time T . The IQCs from Lemma 2
will give conservative stability results. Hence, a conic
combination of the optimality conditions (14) can be uti-
lized to reduce the conservatism, by incorporating more
degrees of freedom:

Lemma 3 The nonlinearity φ : Rnnξ → Rnu∗ (13) ad-

mits the time-domain hard IQC (6) for λi ≥ 0 with

Mi =

[
O I

I −2λiHi(k)

]
for every ξ ∈ lnξ .

PROOF. For every time interval k that a model i is
employed the following holds:

T2∑
k=T1

[
ξ(k)

φ(ξ)(k)

]T [
O I

I −2Hi(k)

][
ξ(k)

φ(ξ)(k)

]
≥ 0 (16)

Employing a conic combination completes the proof. 2

These new IQC multipliers will be termed conic combi-
nation (CC) multipliers. This simple transformation in-
creases the degrees of freedom of the stability analysis,
allowing a more accurate estimation of the stable region.

4.2 Multipliers for box and stage constraints

Here we develop more general, less conservative IQC
multipliers for multi-model problems with a tighter class
of constraints, i.e. box and stage constraints. A spe-
cial structure of fixed constraints has been exploited
by Heath and Li (2010) for the case of linear MPC, where
the existence of multipliers in the frequency domain has
been demonstrated, reducing the conservatism of the
analysis. We extend these results to prove the existence
of static multipliers in the time domain for the multi-
model case. For each Ωi an equivalent structure can be
found where the controller u∗ = φ(ξ) (13) is written as
parallel saturation functions together with a feedback.
Letψc:RNU → RNU be the following quadratic program:

u∗ = ψc(z) = arg min
U

1

2
UTU − UT z

s.t. LU ≤ b .
(17)

If we define z = ξ + (I −Hi)u
∗, then the feedback u∗ =

φ(ξ) (13) is equivalent to u∗ = ψc(z). The structure
of ψc is depicted in Fig. 4 for each sub-model i with
NU being the size of signal u∗. The constraints in (17)

Fig. 4. Structure of ψc

have a specific structure for our case. For the staged/box
constraints L ∈ RNL×NU and b ∈ RNL can be written as

LT = [LT0 , . . . , L
T
NL−1

]

bT = [bT0 , . . . , b
T
NL−1

] ,
(18)

with
LiL

T
j = 0,∀i 6= j = 0, . . . , NL − 1 . (19)

For box constraints this structure can be simply seen as:

Li = [0, . . . , L̃i, . . . , 0] , (20)

with L̃i = [1,−1]T and bi = [b̄i,−bi] with bi ≤ 0 ≤ b̄i.
Also, L0L0T = I and LcLT = 0. The rows of L0 form an
orthonormal basis spanned by the rows of L. Exploiting

5



the orthogonality of Lj , we can break ψc into several
QPs. u∗ can be written as:

u∗(k) =

NL∑
j=0

vj(k) , (21)

where j refers to the jth sub-QP of the main QP instead
of the QP of sub-model i. Then for each j:

vj = arg min
U

1

2
UTU − UT z

s.t. LjU ≤ bj
LcjU = 0

∀j = 0, . . . , NL − 1

(22a)

vNL = −LcTLcz . (22b)

Each vj can be written as

vj(z) = L0T
j θj(L

0
jz) (23)

with θj : Rnj → Rnj being the quadratic program:

θj(p) = arg min
q

1

2
qT q − qT p

s.t. LjL
0T
j q ≤ bj ,

(24)

where p = L0
jz and q the optimization variables. It fol-

lows immediately from the KKT conditions of (24) that
θj is sector-bounded if bj ≥ 0 (Heath and Wills, 2007):

θTj θj − θTj L0
jz ≤ 0 . (25)

The main result of this section can then be given:

Lemma 4 The controller output u∗ = φ : Rnξ → Rn∗
u

(13) for static constraints, admits the IQC:

T∑
k=0

[
ξ(k)

φ(ξ)(k)

]T
Mφ
i

[
ξ(k)

φ(ξ)(k)

]
≥ 0 (26)

where

Mφ
i =

[
O Ki(k)

Ki(k) −Ki(k)Hi(k) −Hi(k)Ki(k) .

]
(27)

Multipliers Ki = diag(κ0i, . . . , κ(NU−1)i), with κji ≥ 0
can be computed for each sub-model i ∈M , for the case
of box and staged constraints (18)-(20).

PROOF.

For each model i ∈ M, ψc admits the following time-
domain IQC using a conic combination and (24):

NU−1∑
j=0

κji

T2(i)∑
k=T1(i)

[
z(k)

ψc(x)(k)

]T
Mψc
j

[
z(k)

ψc(x)(k)

]
≥ 0

(28)

with Mψc
j =

[
L0
j

L0
j

]T [
O I

I −2I

][
L0
j

L0
j

]
. Because of

the orthogonality of L0
j , it follows immediately for the

time interval [T1(i), T2(i)] that:

T2(i)∑
k=T1(i)

[
ξ(k)

φ(ξ)(k)

]T
Mφ
i

[
ξ(k)

φ(ξ)(k)

]
≥ 0 (29)

with Mφ
i given by (27). The summation of (29) from 0

to T gives (26). 2

In section 6 the multipliers developed are compared in
terms of conservatism. Next, IQC multipliers are em-
ployed in stability theorems through the dissipation in-
equality.

5 Stability Analysis

This section will provide the main conditions for achiev-
ing input-output stability. First a general parametrized
linear matrix inequality (LMI) is given, and then it
is adapted according to the needs of each theorem to
prove input-output stability using the dissipation in-
equality (Brogliato et al., 2007). Define LMI as:

LMI(Λi, λk, γ, Px, Py) :=
AsTi PyA

s
i − Px AsTi PyB

s1
i AsTi PyB

s2
i

Bs1Ti PyA
s
i Bs1Ti PyB

s1
i Bs1Ti PyB

s2
i

Bs2Ti PyA
s
i Bs2Ti PyB

s1
i Bs2Ti PyB

s2
i − γ2I

+

+


Cs2Ti

Ds21T
i

Ds22T
i



Cs2Ti

Ds21T
i

Ds22T
i


T

+

+


Cs1Ti

Ds11T
i

Ds12T
i




Λi . . . 0
...

. . .
...

0 . . . λNMN



Cs1Ti

Ds11T
i

Ds12T
i


T

< 0

(30)

Here, Px, Py, are symmetric positive matrices and Λi is
symmetric with i ∈ M, λk and γ are non-negative and
k ∈ {2, . . . , N} for N nonlinearities.
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5.1 Conic combination-common storage function

Sufficient conditions are provided for the closed-loop sta-
bility using CC multipliers(Lemma 3). The IQCs for each
MPC hold for arbitrary time, as long as we use static
multipliers derived through the KKT conditions. We can
use similar arguments for every memoryless nonlinearity
with static multipliers.

Theorem 5 Let Gi ∈ RH(ne+nw)×(nw+nd)
∞ be a stable

system and ∆m : lnvm → lnwm a bounded, causal oper-
ator containing every nonlinearity. The interconnection
is well-posed and ∆m satisfies IQC with multiplier Mm

and the controller multiple IQCs given by Lemma 3. Then
‖(Gi,∆)‖ < γ if Λi = λi1M

i
1 and there exists a symmet-

ric matrix Px = Py = P ≥ 0 and non-negative γ, λi1 and
λ = [λ2, . . . , λN ] such that LMI(Λi, λ, γ, P ) < 0 holds.

PROOF. Multiplying the LMI with
[
xsT , wT , dT

]
from

the left and right respectively we get (for positive δ):

λi1 r
c(k) TM i

1r
c(k) +

N∑
j=2

λj r(k)TMjr(k)+

+ ∆V (k) + e(k)T e(k) ≤ (γ2 − δ)d(k)T d(k) .

(31)

Summing from k = T1 to T2,with xs(0) = 0, [T1T2] being
the interval in which a model is employed, we have:

λi1

T2∑
k=T1

rc(k)TM i
1r
c(k) +

N∑
j=2

λj

T2∑
k=T1

r(k)TMr(k)

+ V (T2 + 1)− V (T1) +

T2∑
k=T1

e(k)T e(k)

≤ (γ2 − δ)
T2∑
k=T1

d(k)T d(k)

(32)

Summation of (32) over all intervals, with positive defi-
nite storage function and IQC given by Lemma 3, yields:

T∑
k=0

e(k)T e(k) < γ2
T∑
k=0

d(k)T d(k) (33)

from which follows that ‖e‖ < γ‖d‖ 2

The degrees of freedom include parameters λi. The con-
ditions for single parametrization IQC follow directly:

Corollary 6 The stability conditions for the single
parametrization case are given by modifying the con-
straints of Theorem 5: Λi = λ1M

i
1

Hence, conic combination can provide less conservative
results, since from Corollary 6 additional constraints are
provided for stability, reducing the degrees of freedom.

5.2 Stability analysis for box/staged constraints

For systems with box and staged constraints the exis-
tence of IQC multipliers, Ki, was proven in section 4.2.
We can then easily modify Theorem 5 to provide stabil-
ity conditions using SS multipliers.

Theorem 7 Let Gi ∈ RH(ne+nw)×(nw+nd)
∞ be a stable

system and ∆m : lnvm → lnwm a bounded, causal oper-
ator containing every nonlinearity. The interconnection
is well-posed and ∆m satisfies IQC with multipliers Mm

and the controller IQCs with multipliers Mφ
i (Lemma 4).

Then ‖(Gi,∆)‖ < γ if Λi = Mφ
i and there exists a

symmetric matrix Px = Py = P ≥ 0, non-negative γ,
λ = [λ2, . . . , λN ], and K = diag(K1, . . . ,KM ) such that
LMI(λ, γ, P,K) < 0 holds.

PROOF. Similar to Theorem 7 using (26). 2

Staged and box constraints are assumed for the con-
troller (13). The resulting diagonal static multipliers can
reduce conservatism even further by increasing the de-
grees of freedom of the stability analysis. This is an ex-
tension of the conic combination case, where the scalar
parameters λ are substituted by diagonal matrices.

5.3 Stability analysis using PWQ storage function

The common storage function may yield over- conserva-
tive results for PWA systems. Also, finding a single com-
mon storage function for all sub-models is quite hard,
which can be overcome by using different storage func-
tions for hi being polyhedral. Alternatively, a PWQ func-
tion can be employed at a significant computational cost.
Theorem 8 provides the sufficient stability conditions for
SS multipliers and PWQ storage function:

Theorem 8 Let Gi ∈ RH(ne+nw)×(nw+nd)
∞ be a stable

system and ∆m : lnvm → lnwm a bounded, causal oper-
ator containing every nonlinearity. The interconnection
is well-posed and ∆m satisfies IQC with multipliers Mm

and the controller IQCs with multipliers Mφ
i (Lemma 4).

Then ‖(Gi,∆)‖ < γ if Λi = Mφ
i and there exists a sym-

metric matrix Py = P j > 0, Px = Pi > 0, non-negative
γ, λ = [λ2, . . . , λN ], and K = diag(K1, . . . ,KM ) such
that LMI(λ, γ, P j , Pi,K) holds for all i, j.

PROOF. The difference with Theorem 7 is the use of
a PWQ storage function. Here we have a fixed model for
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each time interval yielding the following inequality:

T∑
k=0

(V i(k+1)(k + 1)− V i(k)(k)) =

T1∑
k=0

(V i(k+1)(k + 1)− V i(k)(k))+

T2∑
k=T1+1

(V i(k+1)(k + 1)− V i(k)(k)) + · · ·+

T∑
k=Tn+1

(V i(k+1)(k + 1)− V i(k)(k)) =

V i(T+1)(T + 1)− V i(0)(0) ≥ 0 ,

(34)

with V i(0)(0) = 0. Hence, only
∑T
k=0(V j(k)(k + 1) −

V i(k)(k)) ≥ 0 is needed with j(k) be i(k + 1). 2

6 Applications

The proposed IQC multipliers are tested for two case
studies: First for a numerical example, where the stabil-
ity region can be numerically predicted, then for a larger
more complex case where the stability of a PDE-based
tubular reactor (Xie et al., 2015) is considered.

6.1 Numerical Example

The system’s dynamics are given by:

x(k + 1) =


−0.85

0.85

0.52

0.26

x(k) +

[
1 1 0 0

0 0 1 1

]
u(k),

if V1x ≤ b1
−0.1 0.3 0.1 0.05

0.3 0.15 0.4 0.2

0.1 0.4 0.4 0.1

0.05 0.2 0.1 0.3

x(k) +

[
1 .5 0 0

0 0 .1 1

]
u(k) +


1

1

1

1

 ,
otherwise

(35)

where V1 =
[
−0.92 0.33 −0.60 1.48

]
and b1 = 0.35.

Here, it is assumed that all states can be measured. The
design parameters in (12a) are: Q = I, R = rI, where
I the identity matrix and P is the solution of the Ric-
cati equation. Matrices Hi, Fi and Di can be easily con-
structed (see Maciejowski (2002)). Boxed constraints are
applied, namely −0.1 ≤ u(k) ≤ 0.1. The objective is to
compute the maximum positive constant gain κ̃ that can

Fig. 5. Stable & unstable regions for the numerical example.

be applied on the plant’s output implementing different
values for r. The results are shown in Table 1 and 2.
As expected, small values of r correspond to aggressive
controller behaviour. Hence, the maximum value of κ̃ in-
creases for larger values of r (Table 1). Next, r is kept

Table 1
Maximum κ̃ for which stability is guaranteed for N = 3

IQC r = 0.1 r = 0.3 r = 0.5

SP 0.97 1.07 1.16

CC 0.98 1.07 1.16

SS 1.92 2.09 2.25

PWQ 1.94 2.1 2.25

constant and the stability is tested for various values
of N . The controller uses one model per optimization
for the whole horizon, which requires less computational
time than the MIQP controller at the cost of increased
uncertainty. As a result for larger horizons the actual sta-
bility region should decrease. The results confirm this.
As can be seen in Table 2, the maximum κ̃ decreases
as the horizon becomes larger. SP and CC multipliers

Table 2
Maximum κ̃ for which stability is guaranteed for r = 0.1

IQC N = 3 N = 4 N = 5

SP 0.97 0.77 0.67

CC 0.98 0.78 0.67

SS 1.92 1.78 1.64

PWQ 1.94 1.84 1.68

for this case study give almost the same maximum κ̃ for
all N . Using SS multipliers has a significant impact on
the conservatism of our results. This is related to the
additional degrees of freedom added to the analysis Ad-
ditionally, employing a PWQ storage function does not
change vastly the conservatism. To validate further these
results, a simulation is conducted for r = 0.1,N = 3 and
κ̃ = 2.2. In Fig. 5 the input u∗(k) applied is depicted. For
κ̃ outside of our predicted region, the closed-loop is un-
stable whereas for the maximum κ̃ computed is stable.

6.2 Tubular reactor

To further illustrate the features of the proposed analy-
sis, we apply it to a tubular reactor, where an irreversible
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exothermic reaction takes place. The system’s dynamics
are given by the following dimensionless equations:

∂c

∂t
=

1

Pe1

∂2c

∂y2
− ∂c

∂y
−Da c eγ1T/(1+T )

∂T

∂t
=

1

Pe2

∂2T

∂y2
− ∂T

∂y
−BDa c eγ1T/(1+T )

+ b(T − Tw)

(36)

Here c and T are the dimensionless concentration and
temperature, respectively. Tw is the temperature of the
cooling zones on the reactor jacket, separated in 8 differ-
ent sectors, representing the problem’s degrees of free-
dom, depicted in Fig. 6. The system parameters are
Pe1 = Pe2=7, Da=0.1, B=2 b = 1, and γ1=10. Neu-
mann boundary conditions are used:

∂c

∂y
|y=0 = −Pe1 c ,

∂T

∂y
|y=0 = −Pe2 T

∂c

∂y
|y=L = 0 ,

∂T

∂y
|y=L = 0

(37)

The PDE-based model was discretized in 16 finite el-
ements. To construct the model pool, 180 trajectories
were collected over a range of cooling temperatures,
Tw. Principal component analysis was employed to
reduce the data-set size and to handle noisy data. K-
means (Hastie et al., 2009) was then applied to identify
the clusters and their centroids. Finally, linearization
around the closest data-point of each centroid was used
to construct the system Jacobian. The model pool con-
sisted of 18 affine sub-models. It was assumed that
only 10 out of 16 points along the length of the reactor
can be measured. The model error was assumed to be

Fig. 6. Tubular reactor with 8 cooling zones

norm-bounded with b2 = 0.01 and the MPC had the
same design parameter, r, and prediction and control
horizons, Nout=3 and Nin=2, respectively, as the pre-
vious application. The input variables (8 cooling tem-
peratures) had upper and lower bounds −1 ≤ Twi ≤ 1
for i = 1 . . . Nin, hence the method from section 4.2
could be implemented. This case is more computation-
ally intensive as it comprises 32 states and 18 models
with 8 manipulated variables for each control horizon.
The inherent computational intensity of the PWQ stor-
age function produced an intractable computational
problem. Thus, only a common storage function was
employed. Stability analysis was carried out, with the
same objective as in the previous application. Here too,
as shown in Table 3, SS multipliers produced a sub-
stantially less conservative stability estimate. Hence,
SS multipliers can be confidently used with a common
storage function to obtain realistic stability estimates

for moderately-sized distributed parameter systems.
For validation purposes we show the closed-loop per-

Table 3
Minimum r for which stability is guaranteed

IQC Multiplier rlimit

SP 0.70

CC 0.25

SS 0.01

PWQ -

formance of the tubular reactor in Fig. 7, for r = 0.01.
Despite the small value of r, the closed-loop system is
stable. The semi-definite programming problems were

0 5 10 15 20

Time (dimensionless)

0

0.2

0.4

0.6

O
u
tp

u
t 

an
d

 r
ef

er
en

ce

Fig. 7. closed-loop performance

solved using MATLAB with YALMIP (Löfberg, 2004)
and MOSEK ApS (2015) on a computer with 3.40GHz
Intel Core i5-3570 CPU processor and 8 GB of memory.

7 Conclusions and Future Work

This paper focuses on the development of a robust
stability analysis methodology for PWA models under
unstructured uncertainty and multi-model-based MPC.
A systematic framework was developed to account for
uncertainties such as model error. Sufficient conditions
were presented using three different types of IQC mul-
tipliers in conjunction with common and PWQ storage
functions. It was shown, through two illustrative case
studies, that SS multipliers significantly reduce con-
servatism in the prediction of stability boundaries. For
the first example with two sub-models and four states
the SP multipliers with a common storage function re-
quired 2 cpu-sec per each calculation, and 1 cpu-min
when the PWQ storage function was employed. For the
tubular reactor with 18 sub-models and 32 states, ∼40
cpu-min are required for the SS multipliers with a com-
mon storage function. The available computer memory
was not enough to solve the problem with the PWQ
storage function. Therefore, the difference is substan-
tial when the number of states increases and additional
work needs to be performed in regards to the handling
of large-scale systems. In related work, model order
reduction is employed (Theodoropoulos, 2011; Petsagk-
ourakis et al., 2018) to describe the infinite dimensional
system with a finite reduced one. This is the first time
that IQCs have been used beyond the scope of linear
MPC and we believe this is a significant step towards
their use for the analysis of complex nonlinear systems.
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