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Abstract

In this paper, we first consider a pinning node selection and control gain co-design problem for complex networks. A necessary
and sufficient condition for the synchronization of the pinning controlled networks at a homogeneous state is provided. A
quantitative model is built to describe the pinning costs and to formulate the pinning node selection and control gain design
problem for different scenarios into the corresponding optimization problems. Algorithms to solve these problems efficiently
are presented. Based on the developed results, we take the existence of a malicious attacker into consideration and a resource
allocation model for the defender and the malicious attacker is described. We set up a leader-follower Stackelberg game
framework to study the behaviour of both sides and the equilibrium of this security game is investigated. Numerical examples
and simulations are presented to demonstrate the main results.
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1 Introduction

Complex networks refer to a general type of networks
consisting of huge numbers of interconnected nodes,
where each node can be regarded as an individual dy-
namical system coupled with other nodes. Over the
past decades, intensive research efforts have revealed
that complex networks provide suitable mathemati-
cal models to describe certain real-world systems, e.g.,
social networks, biological networks, power grids, and
neural networks [1–3]. Take the swarm behaviour (e.g.,
bird flocks, fish schools, and insect swarms) in biolog-
ical networks as an example; in such a self-organized
phenomenon, each participant in the group makes de-
cisions and takes actions based on the information ex-

Email addresses: yuzheli@mail.neu.edu.cn (Yuzhe Li),
dawei.shi@outlook.com (Dawei Shi), tchen@ualberta.ca
(Tongwen Chen).
1 This manuscript is the initial submitted version of a paper
with the same title to be published in Automatica, which
has been revised and condensed.

change among its near neighbors, leading to a collective
behaviour of movement exhibited by the overall orga-
nization [4]. Naturally, understanding the mechanisms
behind the swarm behaviour has become an interesting
topic in the related areas [5,6]. In fact, the synchroniza-
tion and collective control problems are of essential im-
portance not only in the biological areas, but also in the
investigations of all kinds of complex networks [7–11].

In general, due to the consideration of a large number of
nodes, it is difficult to control all the individual dynam-
ics in a complex network at the same time to accomplish
certain tasks, which may induce huge implementation
costs. Instead, the technique of the so-called “pinning
control” has emerged and been investigated in the lit-
erature in recent years [10, 12–17]. To be specific, the
pinning control technique aims to lead the entire net-
work to an objective state by applying local feedback
controllers to a small portion of network nodes. The cri-
teria and conditions for pinning-controllability for dif-
ferent types of networks are investigated thoroughly in
[14] (scale-free networks), [10] (multi-agent systems),
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[8] (time-varying networks), [16] (networks with general
coupling topologies), and [17] (global asymptotic sta-
bility). Specifically, the results in [17] provide a suffi-
cient condition for global-pinning controllability, which
is determined by the network topology, the location of
pinning nodes, the coupling strength, and the feedback
gain. However, the optimal selection of the pinning nodes
among the networks remains an open problem. In [14],
the authors proposed two pinning schemes for scale-free
networks: one is a randomly scheme and the other one is
to choose the most highly-connected nodes, which have
a better performance in terms of control costs. Simi-
lar schemes were widely adopted in the literature, e.g.,
[10,16]. By using a M-matrix approach, the results in [15]
suggested that the interaction diagraph could be parti-
tioned into a minimum number of components and the
pinning control could be achieved if and only if the root
node of each component was pinned. Typically, due to
the various locations and connections of nodes, the costs
for applying the control on them are different. In addi-
tion, given the same selection of pinning nodes, differ-
ent control gains can also lead to different control costs.
Therefore, the selection of pinning nodes and the design
of the corresponding control gains can be optimized to
achieve better overall network performance.

On the other hand, although most systems modeled
by complex networks are benefited from the advance
of modern technologies in terms of the information ex-
change, the interactive characteristics of both the cy-
ber and the physical parts of complex networks bring
new challenges to maintain the secure operation of com-
plex networks [18–20]. As shown in [7,14], certain types
of complex networks, e.g., the so-called “small-world”
networks, are robust to the removal of nodes. However,
for most complex networks, the random failure or ad-
versarial compromise of nodes can lead to severe dam-
age to the networks operation and functionality [18]. To
defend the malicious attacks on the nodes of complex
networks, one straightforward strategy is to secure the
nodes in the networks. Take the so-called “smart grid”
as an example: As the future electricity network con-
sists of a huge number of “prosumers” (consumers and
producers of energy), its smooth operation is closely re-
lated to the national economy and security [21] and can
be secured by installing monitoring cameras or alarm
systems, and upgrading the sensor, communication and
control infrastructures [22]. Due to the large number of
nodes in the networks and a limited defensive budget, the
defender of the networks needs to balance the resource
allocation among the nodes. The malicious attacker is
also confronted with a similar resource constraint and
may compromise the nodes selectively, namely, via “pin-
ning attacks”. To model the situation where multiple
agents make decisions interactively under constraints,
game-theoretic methods are widely used in the literature
[23, 24]. Under the game framework, how the defender
of the complex networks allocates the limited resources
among nodes and how the malicious attacker designs the

strategy of pinning attacks are interesting and impor-
tant problems to investigate.

Motivated by the existing results in the literature, in
this paper, we first consider a pinning node selection
and control gain design problem for complex networks.
We provide a necessary and sufficient condition for a
pinning controlled network to synchronize at a homoge-
neous state. A quantitative model is built to describe the
pinning costs and formulate the pinning node selection
and control gain design problem in different scenarios
as corresponding optimization problems. Algorithms to
solve these problems efficiently are also presented. Based
on the developed results, we then take the malicious at-
tacker into consideration. A resource allocation model
for the complex network defender and the malicious at-
tacker is described. Different from the analysis in terms
of the so-called “Nash equilibrium”, where both sides act
simultaneously, it is more reasonable that the decisions
are made sequentially: typically the defender first decides
its defense resource allocation, and the attacker observes
and chooses nodes to launch pinning attacks. Therefore,
we set up a leader-follower framework (namely, the so-
called “Stackelberg game” framework [25]) to study the
behaviour of both sides and the equilibrium of this se-
curity game is investigated. The main contributions of
the current work are summarized as follows:

(1) A pinning node selection and control gain co-design
problem for complex networks in the presence of
a malicious attacker is studied. To the best of our
knowledge, the problem formulation and results are
new.

(2) The interested pinning problems for different sce-
narios are formulated into corresponding quan-
titative optimization problems. The solution to
the case of free selection of nodes are provided in
Theorem 3.7; the solution to a special case when
identical control gains are adopted is provided in
Theorem 3.8, while a Branch-and-Bound algorithm
(Algorithm 1) to solve the problem efficiently is
also presented; the solution to the case of con-
strained number of pinning nodes is provided in
Theorem 3.10.

(3) A Stackelberg security game between the defender
of the complex network and an adversary launch-
ing pinning attacks on the nodes is studied and the
equilibrium of the game is investigated. Specifically,
the solutions to the Stackelberg security game for
both the defender and the attacker are provided in
Theorem 4.1; the solutions for the cases of fixed
budget constraints for both the defender and the
attacker are also studied in Proposition 4.2 and
Proposition 4.3, respectively.

The remainder of the paper is organized as follows. Sec-
tion II presents the preliminaries on the pinning control
of complex networks. The pinning node selection and
control gain co-design problems are investigated in Sec-
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tion III. Section IV provides the analysis of the proposed
Stackelberg game. Numerical examples and simulations
are demonstrated in Section V. Section VI concludes the
work with several remarks.

Notations: Z and N+ (or N) denote the set of all integers
and positive integers (or non-negative integers), respec-
tively. R is the set of real numbers and R+ is the set
of positive real numbers. Rn is the n-dimensional Eu-
clidean space. When X is a positive semi-definite ma-
trix (or positive definite matrix), we write X > 0 (or
X > 0). We write X > Y (or X > Y ) if X − Y is
a positive semi-definite matrix (or positive definite ma-
trix). Tr{·} is the trace of a square matrix. The su-
perscript ′ stands for transposition. [aij ] denotes a ma-
trix with aij as the element in the i-th row and the j-
th column. For functions f, f1, f2 with appropriate do-
mains, f1 ◦ f2(x) stands for the function composition

f1

(
f2(x)

)
, and fn(x) , f

(
fn−1(x)

)
, where n ∈ N and

with f0(x) , x. 1 , [1, 1, ..., 1]′ and I is the identity ma-
trix, with proper dimensions when no ambiguity arises.
δij is the Dirac delta function, i.e., δij equals to 1 when
i = j and 0 otherwise. The notation P[·] refers to prob-

ability and E[·] to expectation. Xi:j and {Xl}jl=i repre-
sent the same set {Xi, Xi+1, ..., Xj}. The cardinality of
a set A (or a vector x) is denoted as |A| (or card(x)).

2 Preliminaries

2.1 Complex Dynamical Networks

We consider a general complex network withN identical
coupled nodes, and each node can be represented as an
n-dimensional dynamical system with state equations as

ẋi = f(xi) + c

N∑
j=1

aijg(xj), i ∈ V , {1, 2, ..., N}, (1)

where xi = [xi,1, xi,2, ...xi,n]′ ∈ Rn is the state vector of
the i-th node; the continuously differentiable functions
f = [f1, f2, ..., fn]′ : Rn 7→ Rn and g = [g1, g2, ..., gn]′ :
Rn 7→ Rn represent the local dynamics of each nodes
and the dynamics of inner-coupling from other nodes,
respectively; the constant scalar c > 0 describes the
coupling strength of each node; the binary variable aij
(i 6= j) denotes the coupling relation between different
nodes: if node i and node j are connected to each other,
then aij = aij = 1; otherwise, aij = aij = 0. Based on
the classic graph theory, we denote the degree of node i,
namely, the number of connections to node i, as ki:

ki ,
N∑

j=1,j 6=i

aij , i ∈ V, (2)

and
aii , −ki, i ∈ V. (3)

As a result, we can further define the coupling matrix
(Laplacian matrix) A , [aij ] ∈ RN×N to describe the
coupling structure of the network. Assume that the net-
work is connected in the sense that there are no isolate
clusters, and we have the following results.

Lemma 2.1 ([14]) The coupling matrix A has the fol-
lowing properties:

(1) A is a symmetric irreducible matrix with n real
eigenvalues;

(2) A has an eigenvalue 0 with multiplicity 1 and all the
other eigenvalues are strictly negative.

Remark 2.2 Similar models as the one in (1) are widely
adopted in the literature [10, 11, 14, 16]. Different selec-
tions of the functions f and g in (1) can describe a va-
riety of network behaviour and coupling schemes, e.g.,
fixed points, periodic orbits and chaotic states [16]. In
particular, when the nodes in the network are linearly
coupled, i.e., g(x) = x, the dynamics in (1) becomes the
one considered in [11, 14]. �

2.2 Pinning Control of Networks

The goal of pinning control is to drive the network in
(1) to a homogeneous state x̄ via pinning local feedback
controllers to a small fraction δ (0 < δ < 1) of the nodes,
i.e.,

xi = x̄, i ∈ V, (4)

and
f(x̄) = 0. (5)

Assume that there are l nodes to be pinned, where l is
the smaller but nearest integer to the real number δN .
Let Vpin ⊆ V denote the set of pinning nodes and we can
express the pinning controlled network as:

ẋi = f(xi) + c

N∑
j=1

aijg(xj) + diui, i ∈ V, (6)

where the local feedback controller ui (with control gain
ci > 0) is given by:

ui = −ci
[
g(xi)− g(x̄)

]
, i ∈ V, (7)

and the binary variable di (d , [d1, d2, ..., dN ]′) indicates
the selection of pinning nodes:

di =

{
1, i ∈ Vpin,

0, i ∈ V \ Vpin.
(8)
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Remark 2.3 Notice that the local controller model in
(7) extends the ones in [11,14,16], which adopt an iden-
tical control gain for all the nodes. �

To facilitate the later discussion, we define two matrices:

C , diag
{c1d1

c
,
c2d2

c
, ...,

cNdN
c

}
∈ RN×N , (9)

and
B , A− C ∈ RN×N . (10)

We further denote:

J [f(x̄)] , [∂fi(x)/∂xj ] ∈ Rn×n,

and
J [g(x̄)] , [∂gi(x)/∂xj ] ∈ Rn×n,

as the Jacobian matrices of functions f and g at the
state x̄, respectively.

The following theorem provides a necessary and suffi-
cient condition for the pinning controlled network in (6)
to synchronize at the homogeneous state x̄.

Theorem 2.4 The pinning controlled network in (6)
synchronizes at the homogeneous state x̄ if and only if
all the N matrices J [f(x̄)] + cµiJ [g(x̄)], i ∈ V, are sta-
ble in the sense that their eigenvalues all have negative
real parts, where µi, i ∈ V, are the N eigenvalues of the
matrix B.

PROOF. To investigate synchronization of the pinning
controlled network in (6), first we define the error vector
for node i as:

ei = xi − x̄. (11)

Clearly, to reach the homogeneous state x̄, we require
that:

lim
t→∞

ei → 0, ∀i ∈ V. (12)

Similar to the procedures as in [14, 16], we can linearize
(6) at the state x̄ and re-write the network dynamics in
terms of ei. To be more specific, by using the properties

of
∑N
j=1 aij = 0 and f(x̄) = 0, we have:

ėi = J [f(x̄)]ei + c

N∑
j=1

(
aij − δij

cidi
c

)
J [g(x̄)]ej , i ∈ V.

(13)

Define

E = [e1, e2, ..., eN ] ∈ Rn×N ,

then we can present (13) in a more compact expression
as:

Ė = J [f(x̄)]E + cJ [g(x̄)]EB. (14)

Notice that the matrix B is symmetric, thus B can be
factorized in its eigendecomposition form as:

B = ΦΛΦ−1, (15)

where Λ = diag{µ1, µ2, ..., µN} ∈ RN×N is a ma-
trix whose diagonal elements are the eigenvalues of
matrix B (without loss of generality, we assume that
{µi}ni=1 are arranged in non-decreasing order) and
Φ = [φ1,φ2, ...,φN ] ∈ RN×N is an eigenvector basis
satisfying Φ′Φ = I, whose i-th column is the corre-
sponding eigenvector of µi.

Consider a transformation of E on the basis Φ and define
ξi = Eφi ∈ Rn. Thus we have

E = ΞΦ−1, (16)

where
Ξ , [ξ1, ξ2, ..., ξN ] ∈ Rn×N .

By substituting (15) and (16) into (14), we obtain that

Ξ̇Φ−1 = J [f(x̄)]ΞΦ−1 + cJ [g(x̄)]ΞΦ−1ΦΛΦ−1,

i.e.,
Ξ̇ = J [f(x̄)]Ξ + cJ [g(x̄)]ΞΛ, (17)

which can be further re-written as:

ξ̇i =
(
J [f(x̄)] + cµiJ [g(x̄)]

)
ξi, i ∈ V. (18)

It is straightforward that:

lim
t→∞

ei → 0 ⇐⇒ lim
t→∞

ξi → 0, ∀i ∈ V. (19)

Clearly, to achieve the condition that limt→∞ ξi → 0,
∀i ∈ V, it requires all the N matrices J [f(x̄)] +
cµiJ [g(x̄)], i ∈ V, to be stable, in the sense that every
eigenvalue has a negative real part. Therefore, the syn-
chronization condition of the pinning controlled network
in (6) is equivalent to the stability of all N matrices
J [f(x̄)] + cµiJ [g(x̄)], i ∈ V, which completes the proof.

3 Pinning Node Selection and Control Gain Co-
Design

In the previous section, we mainly focused on synchro-
nization condition of the pinning controlled network in
(6) by taking the pinning scheme C as pre-determined.
However, in many real world applications, it is also im-
portant to choose which nodes to be pinned. In this sec-
tion, we look into this pinning node selection and control
gain co-design problem, which serves as the basis for in-
vestigating the secure design problem in the presence of
a malicious attacker in the next section.
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3.1 Preliminaries

Before proceeding to the main results, let {λi(·)}li=1 de-
note the eigenvalues of the corresponding matrix ar-
ranged in non-decreasing order and we present the fol-
lowing supporting lemmas.

Lemma 3.1 ([26]) Let two matrices M,N ∈ Rl×l be
symmetric, then we have:

(1) λi(M+ cI) = λi(M) + c,
(2) λi(M+N ) 6 λi+j(M)+λn−j(N ), j = 0, 1, ..., l−i,
(3) λi(M+N ) > λi−j+1(M) + λj(N ), j = 1, 2, ..., i.

Lemma 3.2 The largest eigenvalue of the matrix B is
non-positive:

µN 6 0,

and all its other eigenvalues are strictly negative. Par-
ticularly, when Vpin = V, i.e., di = 1, ∀i ∈ V, µN is also
strictly negative.

PROOF. From Lemma 2.1, we can conclude that:

λN (A) = 0, λi(A) < 0, i = 1, 2, 3, ..., N − 1.

Since ci > 0 and di ∈ {0, 1}, ∀i ∈ V, all the eigenvalues
of the matrix C are non-negative, thus we have:

λN (−C) = −λ1(C) 6 0.

Therefore, from Lemma 3.1, we have:

µi = λi(B)

= λi[A+ (−C)]
6 λi(A) + λN (−C) < 0, i ∈ V \ {N},

and
µN 6 λN (A) + λN (−C) 6 0.

When Vpin = V, we have di = 1, ∀i ∈ V. Thus there
exists a certain j ∈ Vpin, such that:

λN (−C) = −λ1(C) = −cjdj
c

< 0,

which makes µN strictly negative and completes the proof.

Remark 3.3 Theorem 2.4 summarizes the conditions
to ensure synchronization of the pinning controlled net-
work, which depends on various factors, including the
network coupling structureA, the coupling strength c, the
nodes selection di, the control gain ci, the local dynam-
ics f and the inner-coupling dynamics g. However, even

when all the nodes are connected in a preferable structure
and can be controlled with arbitrary control gains, the
pinning controlled network in (6) may still not synchro-
nize at a homogeneous state. To illustrate this, consider a
special case when J [f(x̄)] = 2I and J [g(x̄)] = −I. Since
µN 6 0, all the matrices J [f(x̄)] + cµiJ [g(x̄)], i ∈ V,
are unstable. As a result, the pinning controlled network
may not synchronize at a homogeneous state. �

Based on the arguments in Remark 3.3, to focus on the
pinning node selection problem, we develop our subse-
quent results based on the following assumptions, al-
though we will show later that the assumption on g can
be relaxed.

Assumption 3.4 Assume that the Jacobian matrix of
the local dynamics, J [f(x̄)], is symmetric, and the inner-
coupling dynamics g is in a linear form with respect to
x, i.e.,

g(x) = agx+ bg,

where ag > 0 and bg are certain scalar constants. �

Based on Assumption 3.4, we have the following result.

Corollary 3.5 Under Assumption 3.4, the pinning con-
trolled network in (6) is synchronized at the homogeneous
state x̄ if and only if

µN < −λn(J [f(x̄)])

cag
.

PROOF. Given Assumption 3.4, since g(x) = agx +
bg, it is easy to see that J [g(x̄)] = agI. Since J [f(x̄)]
is symmetric, from Lemma 3.1, the eigenvalues of the
matrices J [f(x̄)] + cµiJ [g(x̄)], i ∈ V, are given by:

λj(J [f(x̄)] + cµiJ [g(x̄)]) = λj(J [f(x̄)]) + cagµi,

i ∈ V, j = 1, 2, ..., n.

Therefore, to ensure that all the N matrices J [f(x̄)] +
cµiJ [g(x̄)], i ∈ V, are stable, we require all the above
N × n eigenvalues to be negative, which is equivalent to:

λn(J [f(x̄)]) + cagµN < 0, i.e., µN < −λn(J [f(x̄)])

cag
.

From Theorem 2.4, the above condition will ensure that
the pinning controlled network in (6) is synchronized at
the homogeneous state x̄, which completes the proof.

Intuitively speaking, if we select all the nodes and con-
trol them with sufficient large control gains, based on
the previous discussions, the eigenvalues of matrix C will
be positively large enough, while the ones of B will be
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negatively large enough. In such a case, no matter what
network coupling structure A and the local dynamics f
are, the condition in Corollary 3.5 will always be satis-
fied. However, the nodes in a complex network are typ-
ically huge and it may not be realistic to control them
entirely. On the other hand, subject to certain practi-
cal constraints, the control gains cannot be arbitrarily
large. Therefore, it is worthwhile to consider the opti-
mal pinning node selection problem under reasonable
constraints, which will be investigated in the following
subsection.

Based on Corollary 3.5, the constrained pinning node
selection problem becomes properly designing the binary
variable di with proper control gain ci in the matrix B
under certain constraints (e.g., limiting the total number
of pinning nodes), such that the largest eigenvalue of B,
µN , is less than a threshold −λn(J [f(x̄)])/cag.

3.2 Free Selection of Nodes

There are several pinning schemes proposed in the lit-
erature and selection priority is given to the nodes with
special properties. For example, in [14], the authors con-
sidered a pinning scheme where they first choose the
node with the highest degree, and then continue to pin
the other nodes in monotonically decreasing order of de-
grees. The results in [15] suggested that we can first di-
vide the the network into components, where each com-
ponent contains a directed tree, and then select the root
nodes of those trees as pinning nodes. However, in prac-
tice, the costs to control each node are not identical.
Consider, for instance, the advertisement in social net-
works: In order to achieve a better acknowledgement of
the products, the company prefers to choose the ones
with more connections (higher degree) in the network,
which typically would ask for more endorsement fees.
Therefore, the company need to optimize the tradeoffs
between the influences and the costs, by selecting the
ones with less connections with less costs instead. To
take this factor into consideration, define the pinning
cost coefficient for node i as vi(> 0), i ∈ V and

v , [v1, v2, ..., vN ]′.

On the other hand, the pinning cost for a certain node
will also increase with the corresponding control gain ci.
As a result, the cost for selecting pinning node i with
control gain ci is given by divici and the total costs of a
certain pinning scheme can be evaluated by the quantity∑N
i=1 divici.

In such a scenario, the objective of the pinning design
problem becomes minimizing the total costs to achieve
the network synchronization. The following results re-
veal that this constrained pinning node selection and

control gain design problem can be formulated as a stan-
dard convex optimization problem.

Lemma 3.6 ([27]) If for each y ∈ D, the function
w(x, y) is convex in x, then the function v defined as

v(x) = sup
y∈D

w(x, y)

is convex in x.

Theorem 3.7 Let Vc ⊆ V denote the selectable nodes
set for pinning control. The optimal pinning nodes and
the corresponding control gains in terms of minimal total
costs are given by:

di =

{
0, if βi = 0,

1, otherwise,

and
ci = βic, i ∈ V,

where β , [β1, β2, ..., βN ]′ is the solution to the following
convex optimization problem:

min
β

v′β

s.t.


λmax(A− diag{β}) 6 −λn(J[f(x̄)])

cag
,

β > 0,

βi = 0, i ∈ V \ Vc.

(20)

PROOF. Let βi = cidi/c, it is easy to verify that the
largest eigenvalue of the symmetric matrix B can be cal-
culated by:

µN = λmax(B)

= sup
‖y‖2=1

y′By

= sup
‖y‖2=1

y′(A− C)y

= sup
‖y‖2=1

y′(A− diag{β})y.

From Lemma 3.6, µN = λmax(A − diag{β}) is a con-
vex function of β. On the other hand, the total costs∑N
i=1 divici can be expressed as the quantity v′β, which is

also a convex function of β. Therefore, the optimization
problem in (20) is a convex optimization problem. From
Corollary 3.5, it is straightforward that the binary vari-
ables di’s and control gains ci’s obtained from βi’s corre-
spond to the optimal pinning node selection and their con-
trol gains, respectively, in terms of minimal total costs,
which completes the proof.

Note that the convex optimization problem in (20) can
be solved efficiently by various methods and algorithms
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[27], e.g., the cvx toolbox (a MATLAB-based model-
ing system for convex optimization), which also provides
built-in function for calculating the largest eigenvalue of
a matrix.

3.3 Free Selection of Nodes: Identical Control Gains

Now we consider a special case when identical control
gains are adopted. Without loss of generality, we assume
that ci = c̄, ∀i ∈ V. The objective in such a scenario
becomes minimizing the total cost through purely node
selection to achieve the synchronization. In particular,
when the pinning cost coefficients vi’s for all nodes are
the same, the problem becomes minimizing the total
number of pinning nodes to achieve network synchro-
nization.

As a result, we obtain Theorem 3.8 directly from Theo-
rem 3.7 by adding binary constraints on β.

Theorem 3.8 Given an identical control gain ci = c̄,
∀i ∈ V, the optimal pinning node selection solution in
terms of minimal total costs is given by

d = β,

where β = [β1, β2, ..., βN ]′ is the binary solution to the
following problem:

min
β

v′β

s.t.


λmax(A− c̄/c · diag{β}) 6 −λn(J[f(x̄)])

cag
,

β ∈ {0, 1}N ,
βi = 0, i ∈ V \ Vc.

(21)

Though Theorem 3.8 can be regarded as a special case
of Theorem 3.7, the problem in (21) is more complicated
than the one in (20). Due to the binary constraint on β
(β ∈ {0, 1}N , which is not a convex set), the problem in
(21) (the so-called “Binary Integer Programming (BIP)”
problem) is no longer a convex optimization problem,
and thus cannot be solved by standard convex optimiza-
tion techniques. In fact, standard programming models
as in (20) have continuous decision variables and frac-
tional solutions, which are sometimes not realistic for
problem in (21) [28]. Noticing that β ∈ {0, 1}N has 2N

possible values, a direct enumeration approach to obtain
the optimal nodes selection solution is therefore compu-
tationally intractable when the network scale N is large.

Among the various algorithms in the literature [29], the
Branch-and-Bound (B&B) method is the most popular
one for solving large scale NP-hard combinatorial opti-
mization problems [30]. Though the entire solution space
may be searched in the worst-case scenario, the utiliza-
tion of bounds generated from the current best solution

generally helps reduce the computation process and a
smaller solution space is searched instead.

To be more specific, denote Vsub,Vfix ⊆ V as two cer-
tain sub-index sets of V, and β(Vsub),β(Vfix) as the cor-
responding collections of elements from β, respectively,
and we can summarize this iterative approach in Algo-
rithm 1.

Algorithm 1 B&B method for solving the BIP in (21)

1: Initialization: set incu = +∞, Vsub = V, Vfix = ∅,
and β(Vfix) = ∅;

2: function B&B(Vsub,Vfix,β(Vfix), incu)
3: Solve the following convex problem:

min
β

v′β

s.t.


λmax(A− c̄/c · diag{β}) 6 −λn(J[f(x̄)])

cag
,

β(Vsub) ∈ [0, 1]|Vsub|,

β(V \ Vsub) = β(Vfix),

βi = 0, i ∈ V \ Vc;

4: if the solution βsol exists and v′βsol < incu then
5: if the solution βsol is in binary form then
6: return βsol;
7: else
8: Choose k ∈ Vsub and define:

Ṽsub = Vsub \ {k},
Ṽfix = Vfix ∪ {k},
β̃1(Vfix) = β(Vfix) ∪ {βk = 1},
β̃0(Vfix) = β(Vfix) ∪ {βk = 0};

9: βsol1 =B&B(Ṽsub, Ṽfix, Ṽsub, β̃1(Vfix), incu);

10: βsol0 =B&B(Ṽsub, Ṽfix, Ṽsub, β̃0(Vfix), incu);

11: β̃sol = arg{βsol1,βsol0}min{v′βsol1,v
′βsol0};

12: if v′β̃sol < incu then
13: incu = v′β̃sol;
14: return β̃sol;
15: else
16: return null;
17: end if
18: end if
19: else
20: return null;
21: end if
22: end function

Remark 3.9 The computational complexity of the
branch and bound method depends on the specific problem
structure and the branch nodes selection protocol, which
is studied comprehensively in the literature, e.g., [31,32].
We will not investigate this in details in this paper. �
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3.4 Constrained Number of Pinning Nodes

The situation in Section 3.2 assumes a free selection of
nodes. However, in several applications, there may exist
constraint on the total number of pinning nodes. We will
investigate the pinning node selection and control gain
design problem under such constraint in this part.

Denote the maximal total number of pinning nodes as
Ntotal. Based on Theorem 3.7, by adding a cardinality
constraint on β, we can readily obtain the following re-
sult.

Theorem 3.10 Given the maximal total number of pin-
ning nodes Ntotal, the optimal pinning nodes and the cor-
responding control gains in terms of minimal total costs
are given by:

di =

{
0, if βi = 0,

1, otherwise,

and

ci = βic, i ∈ V,

where β , [β1, β2, ..., βN ]′ is the solution to the following
convex optimization problem:

min
β

v′β

s.t.


λmax(A− diag{β}) 6 −λn(J[f(x̄)])

cag
,

β > 0,

card(β) 6 Ntotal.

(22)

�

It is easy to verify that card(x) is quasiconcave on Rn+,
which make the problem in (22) a convex-cardinality
problem [33]. Similar to the problem in (21), standard
convex optimization techniques are not suitable. How-
ever, notice that if we fix the sparsity pattern of β, i.e.,
which elements are zero or non-zero, the problem in (22)
becomes a convex problem. We can divide the convex-
cardinality problem into convex sub-problems according
to all the possible sparsity patterns, which is a NP-hard
problem. Fortunately, it can be solved by the branch and
bound method that we discussed in the previous part.
The procedure is similar to the one in Algorithm 1 and
thus we omit it here.

4 Stackelberg Security Game Analysis

In this section, we continue the analysis of the pinning
node selection problem from a security perspective.

4.1 Defender and Attacker Models

Without loss of generality, we develop the following anal-
ysis on the basis of free selection of nodes with identical
control gains as in Section 3.3. The extensions to other
cases are similar. Assume that a pre-determined selec-
tion of nodes (represented by the set Vpin ⊆ V) to apply
feedback controllers with an identical control gain, i.e.,

d = β(Vpin) , βpin =
[
β

(1)
pin, β

(2)
pin, ..., β

(N)
pin

]′ ∈ {0, 1}N .
Notice that for a faster convergence rate or the redun-
dancy concern [14], the pinning control schemeβpin is as-
sumed to include extra nodes than the optimal solution
to the problem in (21) and can guarantee the synchro-
nization of the pinning controlled network at a homoge-
neous state in the case without an attacker. As stated
before, to ensure the normal operation of the complex
networks and defend malicious attacks, one straightfor-
ward strategy for the defender is to secure the nodes in
the networks. Under the limited defensive budget, we
assume that the defender’s strategy is given by a vector:

πd ,
[
π

(1)
d , π

(2)
d , ..., π

(N)
d

]′
,

where π
(i)
d is the defense budget allocated to the node

i. The total cost for establishing such a defense strategy
can be written as:

Ud , 1 · πd.

Further assume that the associated cost for compromis-
ing the node i, denoted by σ(i), is linear with its allo-

cated defense investment π
(i)
d , i.e., σ(i) = κ(i)π

(i)
d , where

the coefficient κ(i) > 0 represents how difficult for the
attacker to compromise the node i. For the ease of no-
tation, we denote:

σ ,
[
σ(1), σ(2), ..., σ(N)

]′
,

and
κ ,

[
κ(1), κ(2), ..., κ(N)

]′
.

On the other hand, suppose that the attacker aims to
compromise the nodes in the complex networks with pin-
ning attacking index vector denoted as

βattack ,
[
β

(1)
attack, β

(2)
attack, ..., β

(N)
attack

]′ ∈ {0, 1}N ,
where β

(i)
attack = 1 or 0 indicates whether the attacker will

compromise the node i or not, respectively. Then, given
the defender’s resource allocation, the cost for compro-
mising the target nodes indexed by βattack can be writ-
ten as:

Ua , σ · βattack = (κ ◦ πd) · βattack,
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where the operator ◦ denotes the Hadamard product
(entrywise product).

In the following discussion, the superscript “̃·” is used
to denote the associated quantities under attacks. Given
the pinning control scheme βpin and the pinning attack

scheme βattack, we have d̃i = β
(i)
pin(1− β(i)

attack) and thus

d̃ = βpin◦(1−βattack). Therefore, the pinning controlled
network in (6) under attacks can be written as:

ẋi = f(xi)+c

N∑
j=1

aijg(xj)+β
(i)
pin(1−β(i)

attack)ui, i ∈ V.

(23)

Now the matrices C and B in (9) and (10) can be written
as:

C̃ , c̄/c · diag{d̃} ∈ RN×N ,
and

B̃ , A− C̃ ∈ RN×N .

From Corollary 3.5, under pinning attacks, the pinning
controlled network in (23) is synchronized at the state
x̄ if and only if:

λmax(B̃) 6 −λn(J [f(x̄)])

cag
.

The attacker compromises a certain portion of nodes
to affect the synchronization of the pinning controlled
network, so that

λmax(B̃) > −λn(J [f(x̄)])

cag
,

i.e.,

λmax(A−c̄/c·diag{βpin ◦ (1− βattack)}) > −λn(J [f(x̄)])

cag
.

(24)

On the other hand, to protect the network, the defender
aims to allocate the secure resources among the pinning
nodes efficiently to increase the attacking cost of the
attacker. Based on the proposed defender and attacker
models, we can summarize the elements of such a two-
player Stackelberg security game as follows:

• Players: the defender and the attacker;
• Actions: the action of the defender is represented by its

secure resources allocation strategy πd; similarly, the
action of the attacker corresponds to its the pinning
attack scheme βattack;
• Payoffs: given the condition in (24) satisfied, the at-

tacker wants to minimize the cost for launching such

an attack, namely, Ua, and we define the payoff for the
attacker as:

Ra(βattack,πd) , −Ua; (25)

the defender aims to increase the difficulty of launch-
ing attacks for the attacker, in terms of Ua, while re-
ducing its own defensive in terms of Ud. Therefore, we
propose the payoff for the defender as:

Rd(βattack,πd) , Ua − ηUd, (26)

where η is a weighting parameter. Clearly, both players
want to maximize their own payoffs. �

Traditionally, the security game analysis is in terms of
the so-called “Nash equilibrium” [34], where the actions
from players are chosen simultaneously without knowing
the action from their opponent in advance, see [35, 36].
The situation in this paper is different, where both sides
make their decisions sequentially: it is more reasonable
that the defender decides the defense budget allocation
first, based on its prediction of the possible reaction from
the attacker, then the attacker observes the existing pro-
tection situation and select the corresponding nodes to
compromise. In the following parts, we use a leader-
follower framework (the so-called “Stackelberg game”
[25]) to model this security game.

4.2 Stackelberg Security Game

Based on the proposed defender/attacker models and the
framework of the two-player Stackelberg security game,
we have the following results.

Theorem 4.1 The solutions to the Stackelberg security
game described in Section 4.1 are given by solving:

max
πd

min
βattack

Rd(βattack,πd), (27)

given the condition in (24) satisfied. In particular, the
optimal resource allocation for the defender π?d can be ob-
tained by solving the following linear programming (LP)
problem:

min
πd,ε∈R

ε

s.t.

{
Mπd > −ε1,
πd > 0,

(28)

where the matrix M is given in (35). The optimal pin-
ning attacking node selection for the attacker β?attack is
obtained by solving:

β?attack = arg min
βattack∈{βattack,i}

t0
i=1

(κ ◦ π?d) · βattack.
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PROOF. We first call for the concept of best response,
which refers to the action that produces the maximal pay-
off for a player, while taking other players’ actions as
given [37]. Specifically, the best responses for the defender
and the attacker are defined as:

Yd(βattack) , arg max
πd

Rd(βattack,πd), (29)

and
Ya(πd) , arg max

βattack

Ra(βattack,πd), (30)

respectively.

Since the decisions in the current Stackelberg security
game are sequentially made, given a certain πd, the
attacker will choose βattack = Ya(πd). Therefore, the
defender will choose πd to maximize its payoff given
βattack = Ya(πd) by solving:

π?d = Yd
(
Ya(π?d)

)
, (31)

The attacker observes π?d and then obtain its optimal
strategy by solving:

β?attack = Ya(π?d). (32)

Based on (25) and (26), since the term −ηUd is indepen-
dent of βattack, (30) can be re-written as:

Ya(πd) = arg max
βattack

Ra(γa,πd) = arg min
βattack

Rd(γa,πd).

Therefore, from (31) and (32), the optimal solutions for
both sides in this sequential decision-making Stackelberg
security game can be obtained by solving:

max
πd

min
βattack

Rd(βattack,πd),

given the condition in (24) satisfied.

Clearly, the attacker only needs to compromise the nodes
belonging to the pre-determined set Vpin, to which the
feedback controllers are applied. Then we have:

β
(i)
attack = 0, if i ∈ V \ Vpin. (33)

As a result, the condition in (24) can be re-written as:
λmax(A− c̄/c · diag{βpin}+ c̄/c · diag{βattack})

> −λn(J[f(x̄)])
cag

,

β
(i)
attack = 0, if i ∈ V \ Vpin.

(34)

Clearly, given the set Vpin, the total number of the possi-

ble values βattack can take is given by 2|Vpin|. Suppose that
among these 2|Vpin| possible pinning attacking node selec-
tions, there are t0 values for βattack to satisfy the first
condition in (34). We denote them by {βattack,i}t0i=1.

Similarly, the defender will only allocate protective re-
sources to the nodes in Vpin, i.e.,

π
(i)
d = 0, if i ∈ V \ Vpin.

By summarizing the previous discussions and from
Wald’s maximin model [38], solving (27) becomes an
equivalent mathematical programming (MP) problem:

max
πd

min
βattack

Rd(βattack,πd)

= max
πd

min
16i6t0

{
Rd(βattack,i,πd),∀i = 1, 2, ..., t0

}
= max
πd,ε∈R

{
ε
∣∣ε 6 Rd(βattack,i,πd), ∀i = 1, 2, ..., t0

}
= max
πd,ε∈R

{
ε
∣∣ε 6 [(κ ◦ βattack,i)− η1

]
· πd,

∀i = 1, 2, ..., t0
}

= max
πd,ε∈R

{
ε
∣∣ε1 6Mπd

}
,

where

M ,
[
M[1]′,M[2]′, ...,M[t0]′

]′ ∈ Rt0×N , (35)

with

M[i] =
[
(κ ◦ βattack,i)− η1

]′
,

as the i-th row ofM.

Combining with condition in (34), we can formally re-
write the above optimization problem in the following LP
problem:

min
πd,ε∈R

ε

s.t.

{
Mπd > −ε1,
πd > 0,

After we obtain the solution π?d for the defender, from
(32), the optimal node selection for compromising is read-
ily obtained by:

β?attack = arg min
βattack∈{βattack,i}

t0
i=1

(κ ◦ π?d) · βattack,

which completes the proof.
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4.3 Discussions on Fixed Budget Constraints

In the previous subsection, Theorem 4.1 provides gen-
eral solutions to the Stackelberg security problem where
the resource constraints for both sides are imposed by
a penalty term in their objective functions. However,
in certain cases, the attacker or the defender may be
constrained to fixed budgets. We will study these cases
briefly in this section.

First we consider the scenario when the defender has a
fixed total resource limit, denoted as Ωd. In such a case,
the defender will not put a penalty term on the total
defense cost, namely, η = 0; instead, this term is replaced
by a constraint in the optimization problem. Now the
problem in (28) can be re-cast as follows.

Proposition 4.2 The solution ofπ?d for a fixed defender

budget Ωd is given by solving the following LP problem
with η = 0:

min
πd,ε∈R

ε

s.t.


Mπd > −ε1,
πd > 0,

1 · πd 6 Ωd

(36)

�

When a fixed budget (denoted as Ωa) goes to the attacker
for compromising nodes, the objective of the defender
becomes minimizing the total defense budget while keep-
ing the minimal cost of launching a successful pinning at-
tack beyond the attacker’s resource constraint Ωa, which
is summarized in as follows.

Proposition 4.3 The solution of π?d for a fixed attack-

ing budget Ωa is given by solving the following LP prob-
lem with η = 0:

min
πd

1 · πd

s.t.

{
Mπd > Ωa1,

πd > 0,

(37)

From the aforementioned discussions, by allocating the
defense resource according to the solution to the prob-
lem in (37), the defender can protect the network from
the pinning attack launched by the attacker with fixed
budget Ωa. On the other hand, when the solution π?d is

beyond the defender’s fixed budget, i.e., 1 ·π?d > Ωd, the
defender is not capable to prevent the network from the
pinning attacks.

5 Numerical Examples

In this section, we will illustrate our main results using
several simple numerical examples.

The chaotic Chen’s oscillator [39] is typically used as the
dynamic model for a single node [16], which is given by:

ẋ1

ẋ2

ẋ3

 =


α(x2 − x1)

(γ − α)x1 − x1x3 + γx2

x1x2 − βx3

 ,

with α = 35, β = 3, γ = 28. An illustration of the
chaotic Chen’s oscillator is shown in Figure 1.

Figure 1. An illustration of the chaotic Chen’s oscillator with
x1(0) = −1, x2(0) = 1, x3(0) = 3.

In our simulation, assume that ag = 1, bg = 0, c =
10, N = 9. The state equations in (1) for the complex
network with nodes modelled by the Chen’s oscillator
can be written as:


ẋi,1

ẋi,2

ẋi,3

 =


α(xi,2 − xi,1) + c

∑N
j=1 aijxj,1

(γ − α)xi,1 − xi,1xi,3 + γxi,2

+c
∑N
j=1 aijxj,2

xi,1xi,2 − βxi,3 + c
∑N
j=1 aijxj,3

 ,

where i = 1, 2, ..., 9, with the topology depicted as in
Figure 2.

42 6

5

73

1 8

9

Figure 2. The network topology for the simulation.

We first consider the pinning control problem in the case
of free selection of nodes as described in Section 3.2. As-
sume that vi = 0.1ki, which represents that the cost
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coefficient for controlling node with higher number of
connections is larger, and Vc = {4, 6}. Based on Theo-
rem 3.7, the optimal pinning nodes and the correspond-
ing control gains in terms of minimal total costs at x̄ =
[0, 0, 0]′ are given by:

β1 = [0, 0, 0, 1.2411, 0, 1.9855, 0, 0, 0]′.

As a comparison, when the cost coefficient for node 4 is
large enough, e.g., v4 > 10, the solution becomes:

β2 = [0, 0, 0, 0, 0, 11.4341, 0, 0, 0]′,

i.e., the optimal solution in terms of minimal total costs
is only pinning control node 6 with a lager control gain. A
comparison of the node state evolutions in the complex
network under two pinning control schemes is provided
in Figure 3, where both pinning control schemes drive
the network to a homogenous state at x̄ = [0, 0, 0]′, but
β1 leads to a faster convergence rate.

Now we consider the case with the attacker. Consider the
case where an identical control gain is adopted. Assume
that Vpin = {4, 6, 7}, η = 2, c̄ = c, and:

κ ,
[
1, 1, 1, 10, 5, 6, 5, 1, 1

]′
.

Based on Theorem 4.1, the optimal resource allocation
for the defender is given by:

π?d = [0, 0, 0, 1.5003, 0, 2.5007, 3.0009, 0, 0]′

while the optimal pinning attacking node selection for
the attacker β?attack is given by:

β?attack = [0, 0, 0, 0, 0, 0, 1, 0, 0]′,

i.e, the attacker can achieve its pinning attacking goal
with minimal cost by compromising node 7. The cost
for the attacker is given by Ua = 5 (the cases for fixed
budget constraints can be calculated in a similar way).
The evolutions of the complex network before and after
the attacker compromising node 7 are shown in Figure 4.

6 Conclusion

In this paper, a pinning node selection and control gain
co-design problem for complex networks was first stud-
ied. A necessary and sufficient condition for synchro-
nization of the pinning controlled network at a homoge-
neous state was derived. Based on a quantitative model
to describe the pinning costs, we formulated the pinning
node selection and control gain design problem in differ-
ent scenarios as corresponding optimization problems.

(a) The node states evolution in the complex network without
pinning control.

(b) The node state evolution in the complex network under pin-
ning control scheme β1.

(c) The node state evolution in the complex network under pin-
ning control scheme β2.

Figure 3. Comparison of the node state evolutions in the
complex network under two pinning control schemes.

Algorithms to solve these problems efficiently were pro-
posed. Based on the developed results, a resource alloca-
tion model for the complex network defender and a mali-
cious attacker was described. A Stackelberg game frame-
work was set up to study the behaviour of both sides
and the solution to this security game was obtained. Nu-
merical examples and simulations were demonstrated to
illustrate the main results.
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(a) The node state evolution in the complex network without
attacks.

(b) The node state evolution in the complex network under at-
tacks.

Figure 4. Comparison of the node state evolutions in the
complex network before and after the attacker compromising
node 7.
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