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Abstract

We propose a decentralized control synthesis procedure for stabilizing voltage and frequency in AC Islanded microGrids
(ImGs) composed of Distributed Generation Units (DGUs) and loads interconnected through power lines. The presented
approach enables Plug-and-Play (PnP) operations, meaning that DGUs can be added or removed without compromising the
overall ImG stability. The main feature of our design algorithm is that it does not depend on line parameters. This implies
that (i) the synthesis of each local controller requires only the model of the corresponding DGU, and (ii) whenever a new
DGU is plugged in, neighboring DGUs do not have to retune their regulators because of the new power line connected to
them. Moreover, we formally prove that stabilizing local controllers can be always computed, independently of the electrical
parameters. Theoretical results are validated by simulating in PSCAD the behavior of a 10-DGUs ImG.
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1 Introduction

Voltage and frequency stability is a central problem in
low-voltage AC Islanded microGrids (ImGs) that has re-
ceived great attention within the control and the power
electronics communities (Guerrero et al. 2013). In ab-
sence of a connection to the main grid (which acts as an
infinite power source and as a master clock for the ImG
frequency), voltage and frequency must be governed by
the local controllers of the Voltage Source Converters
(VSCs) interfacing power sources with the ImG. Each
controlled VSC, together with its power supply, forms a
Distributed Generation Unit (DGU) connected to loads
and other DGUs through power lines. Voltage and fre-
quency control can be then formulated as the problem
of designing decentralized regulators guaranteeing col-
lective ImG stability in spite of the electrical coupling
between DGUs. ImGs are usually equipped with hier-
archical controllers and voltage regulators are embed-
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ded into the primary layer (Guerrero et al. 2013). Ap-
proaches to the decentralized control of ImGs can be di-
vided into two main classes. The first one embraces droop
controllers (Guerrero et al. 2013), which admit a simple
implementation and do not require synchronized DGU
clocks for the computation of the control variables. How-
ever, the droop method can generate frequency devia-
tions, whose compensation calls for the use of secondary
controllers (Guerrero et al. 2013) or communication net-
works (Kolluri et al. 2018). Stability properties of droop-
controlled microgrids have been analyzed in (Schiffer et
al. 2014, Simpson-Porco et al. 2013) under simplified
models of the DGU dynamics. The second class of con-
trollers comprises droop-free regulators often based on
approaches developed within the field of decentralized
control (Etemadi et al. 2012, Babazadeh and Karimi
2013, Riverso et al. 2015). These methods usually re-
quire controller clocks to be synchronized with sufficient
precision. To this purpose, technologies based on com-
munication networks are available. For instance, the pre-
cision Time Protocol IEEE standard (IEEE1588 2008,
IEEE1588 2017) describes architectures based on GPS
and Ethernet for providing clock accuracy of 100ns—1us
by utilizing rather infrequent updates (every 10ms—1s).
Other synchronization methods for ImGs are discussed
in (Etemadi et al. 2012, Riverso et al. 2018) and their
applicability has been shown in lab experiments.
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The necessity to address the growing demand for flexi-
ble and resizable ImGs, where DGUs and loads can en-
ter/leave over time, calls for control architectures that
can be easily updated when the ImG topology changes.
Approaches of this kind have been often termed Plug-
and-Play (PnP) (Sadabadi et al. 2017, Tucci et al. 2018,
Riverso et al. 2015, Dorfler et al. 2014). In particular, for
the PnP design algorithm in (Riverso et al. 2015) (i) the
computation of a local controller for a DGU amounts
to an optimization problem based only the DGU model
and the parameters of power lines connected to it, (ii)
stability of the ImG can be guaranteed. Note that, from
(i), the plug-in of a DGU requires to update controllers
of neighboring DGUs and it is denied if controllers for
the DGU and its neighbors cannot be computed.

In this paper, we develop a PnP control design method
that, similarly to (Riverso et al. 2015), assumes synchro-
nization of the DGU clocks. However, differently from
(Riverso et al. 2015), it does not require knowledge of
power lines, whose parameters are often uncertain; the
only global quantity used in the synthesis algorithm is
a scalar parameter. We do not assume either to know
bounds on electrical coupling parameters, as done in
(Sadabadi et al. 2017). These simplifications are desir-
able for several reasons. First, the addition/removal of
a DGU does not require to update any existing con-
troller in the ImG. Indeed, plugging in/out operations
do add/remove lines connected to neighboring DGUs,
but DGU controllers are line-independent. Second, while
the PnP design in (Riverso et al. 2015) depends on a
tuning parameter, which must be sufficiently small for
ensuring collective ImG stability, here this constraint is
removed. To this purpose, as in (Riverso et al. 2015), we
assume Quasi Stationary Line (QSL) approximations.
However, stability is shown using a novel argument based
on the Laplacian structure of the admittance matrix
representing DGU interconnections. Finally, differently
from (Riverso et al. 2015), we show that local regulators
always exist, and they can be computed by solving Lin-
ear Matrix Inequality (LMI) problems. Hence, the plug-
in/out of a DGU is never denied.

The approach taken in this paper shares similarities with
the one in (Tucci et al. 2018), where DC mGs are consid-
ered. There are, however, fundamental differences. First,
in the AC case, one must handle three-phase balanced
signals or, in an equivalent way, their dg representation
(Schiffer et al. 2016). This makes stability analysis more
complex and, differently from (Tucci et al. 2018), our
rationale hinges on a suitable reparametrization of local
controllers and Lyapunov functions. Second, compared
to (Tucci et al. 2018) the LMIs associated to local control
design involve a different set of optimization variables
and are guaranteed to be feasible.

The paper is structured as follows. After introducting
the ImG model and the local control architecture (Sec-
tion 2), we describe the line-independent, LMI-based,
PnP design procedure in Section 3. In Section 4, we

discuss simulation results using a 10-DGU ImG and
comment on the impact of clock desynchronization on
stability. A preliminary version of this work has been
presented in the conference paper (Tucci and Ferrari-
Trecate 2017).

Notation and basic definitions. The identity and null
matrices of size N are denoted, respectively, with I and
Oy, while we use 0 to indicate a null matrix of appro-
priate size. The inequality A > 0 means that the matrix
A € R™" is positive definite.

2 Microgrid model

In this Section, we briefly introduce the electrical
model of the ImG, deferring the reader to (Riverso et
al. 2015, Floriduz et al. 2018) for details. We assume
three-phase electrical signals without zero-sequence
components and balanced network parameters. The
single-phase equivalent scheme of DGU 4, shown in the
left dashed frame of Figure 1, includes: a DC voltage
source (modeling a generic renewable), a controlled
VSC and a local load, connected to the Point of Com-
mon Coupling (PCC) through an RLC filter!. with
parameters Ry;, Ly and Cp;. We further assume that
loads Iy; are unknown and act as current disturbances
(Babazadeh and Karimi 2013). The ImG is composed
of N DGUs indexed by the set D = {1,...,N}. Then,
we call two DGUs neighbors if there is a power line
connecting their PCCs and denote with N; C D the
subset of neighbors of DGU i. We indicate with G; the
undirected electric graph induced by the neighboring
relation over the node set D. As shown in the right
dashed frame of Figure 1, R;; and L;; are, respectively,
the resistance and inductance of the power line connect-
ing DGUs ¢ and j.

Let wg be the reference network frequency. Next, we
provide a model of DGU 4 where all electric variables
are represented in the dq reference frame rotating with
speed wg. Using the notation of Flgure 1, The state
of DGU i is xp) = [Vi4, VA IE, I and collects the
d and ¢ components of the PCC voltage and the fil-
ter current. The control input is uy = [V4, VAT and
the load current, which acts as an exogenous dlstur—
bance, is dj; = [1¢,,17]T. The measured output and
controlled variables are, respectively, y;; = =z and
2 = [V VT

By using QSL approximations of power lines (Riverso
et al. 2015) one obtains the LTI system

(i) (1) = Awps) () + Biug (t) + Madp (8) + € (1)
DME Yy (t) = Ci wm (t)
2[4 (t) (t)

(1)

! As shown in (Dérfler and Bullo 2013, Floriduz et al. 2018),
also more general interconnections of loads and DGUs can
be mapped into this setting by means of Kron reduction.
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Fig. 1. Electrical scheme of DGU 4, power line ¢j, and local
PnP voltage and frequency controller.

where ;) = > c v, Aij (@5 — 2p)) accounts for the cou-
pling with neighboring DGUs through PCC voltages and
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where Xij = WOLZ‘J‘ and Zij = |R2J + iXij|.
The overall ImG model is given by
x(t) = Ax(t) + Bu(t) + Md(¢)
y(t) = Cx(t) (4)

where x = [96&7 . ,x%;v]]T € R*N and vectors u, d, y,
and z are similarly defined. Matrices A, B, M, C and H,
which can be easily derived from (2)-(3), are provided in
Appendix A.3 of (Riverso et al. 2014).

3 Design of stabilizing controllers

As in (Riverso et al. 2015), the goal of local controllers
is to guarantee offset-free tracking of constant references
Zref (t) = Zreg. Note that, as show in Figure 1, local ref-
erences Zref; = Vref,i are dq signals and therefore pro-
vide complete information about the desired amplitude
and frequency for the voltage V;. Typically, 2. is pro-
vided by higher control layers devoted to power flow reg-
ulation (Guerrero et al. 2013, Riverso et al. 2018). For
offset-free tracking, the ImG model is augmented with

the integrators

Oy (t) = epyy(t) = 2rey [4] (t) — 23 (1)

= Zrefpy (t) — Hy Ol (1),
also shown in Figure 1. The augmented DGU model is

21 (t) = A (t) + Biugy () + Midpy (t) + & (1)
SH] (1) = Cidg (1)
2 (t) = Higa (t)
(5)

where Zp;; = [z [i]s ¥ ] € RS is the state, U] = &) the

measurable output, d[z] = [d[i]’ Zre f[i]} € R* the exoge-
nous signals and f[i] =D ien; Ay (&[] — Zf;)). Moreover,
matrices in (5) have the form

Since the pair (A, B;) is controllable (see Proposition
2 in (Riverso et al. 2015)), system (5) can be stabilized
in absence of coupling.
Asin (Riverso et al. 2015), the overall augmented system
is obtained from (5) as

where X, ¥ and d collect variables 7 Kot ym and d[l], re-

spectively, and matrices A B, C M and H are derived
directly from (5).

We equip each DGU XA][?]GU with the following state-
feedback controller (see Figure 1),

C[i] : Uu[y) (t)

inducing a decentralized control architecture. Moreover,
if the controllers guarantee closed-loop stability of (6),
offset-free tracking is guaranteed as well (Skogestad and
Postlethwaite 1996).

= Kifjy (t) = K (t), K;=R>*O



3.1 Local conditions implying ImG stability

If coupling terms &;(¢) are not present, the asymptotic
stability of the overall ImG can be ensured by simply
stabilizing each closed-loop subsystem

1 (t) = Fydp (t) + Midy), (7)

where, by construction, thematrix F; = /1” + Bsz has
the following structure

Fii,i Fiz,i 02 R 1
Fy = | Fo1,i Fooi Fosi | > Fiii = A, Fizi = ?12-
—I; 0y 0 .
(8)
According to Lyapunov theory, system (7) is asymptoti-
cally stable if there exists a Lyapunov function V;(Z};)) =

i[T P2y, with P = PT > 0, such that

i]

Qi = (Aii+ B;K:)" Pi+ Pi(Aii + BiK;) = F| Pi+PF; (9)

is negative definite.

In presence of electric interactions between DGUs, the
previous conditions are no longer sufficient for asymp-
totic stability of system (6). In the sequel, we will show
that this property is still guaranteed under the following
assumptions.

Assumption 1 FEach matriz gain K;, i € D is designed
using P; > 0 in (9) with the following structure

7]7,'[2 02
02 |Poa;
Assumption 2 Let ¢ > 0 be a constant parameter,

common to all DGUs. Parameters n; in (10) are given
by n; = 6Cy;, Vi € D.

P = , Puy;=Pp, cRY 5,>0 (10)

The next proposition, proved in (Tucci and Ferrari-
Trecate 2018), shows that Assumption 1 implies
marginal stability (but not asymptotic stability) of (6).

Proposition 1 Under Assumption 1, the matriz Q; in
(9) cannot be negative definite. Moreover,

Qi <0 (11)
implies that Q; has the following structure:
02 02 02

Qi= |02 Q2 Qaz | . (12)
02 Qa3 Qs3:

Next, we consider the overall closed-loop ImG model,
given by

9(t) = Cx(t) (13)
z(t) = Hy (1)
where K = diag(K7y,...,Ky). Being P = diag(Py, ..., Py),
the collective Lyapunov function is
N
V()A() = ZVl(l‘[z]) =% Px (14)
=1

and one has that V(%) = 7 Qx, where
Q= (A + BK)"P + P(A + BK).

From Proposition 1, we know that, if Assumption 1
holds, then (i) matrix Q cannot be negative definite, and
(ii), at most, one can have

Q<o. (15)

In the next Proposition, we show that (15) is always
satisfied if also Assumption 2 is fulfilled.

Proposition 2 Under Assumptions 1 and 2, if matrix
gains K; guarantee (11) for alli € D, then (15) holds.

PROOF. We start by decomposing the matrix A as
follows

A=A
where (i) Ap = diag(
dynamics only, (ii) Ag

p+ Az + Ac, (16)
Ais, . .. ,ANN) collects the local
= diag(Agl, oo 5A§N) with

—Ri; > —Xyl0

JEN;  _ JEN;
Aéi = C Xz] Z 7R'Lj 0 ) (17)
t| _JEN; JEN;
0 0o |o

Ei]‘ = 1;—2 and ),Zij = %, takes into account the depen-
dence of each local state on the neighboring DGUs, and
(iii) A includes the effect of couplings. Notably, Ac is
composed by zero blocks on the diagonal and blocks A;;,
1 # j outside the diagonal.

Using (16), condition (15) becomes

(Ap + BK)"P + P(Ap + BK) + AZP + PA= +
(a) (b)
+ALP +PAc <.
N———
©

(18)



Since (11) holds, we have that (a) = diag(Q1,...,Qn) <
0. Next, we study the matrix (b) 4+ (¢) in (18). By con-
struction (recalling (10) and (17)), one can easily show
that the matrix (b) is block diagonal, collecting, on its

diagonal, blocks Ag;Pi + Pifl@» in the form

- 3 27 0 0
R R JEN;
AfiPi+ PiAg; = 0 - > 2h50 ], (19)
JEN;
0 0 0

with 7;; = C"—;E” = 5]§Z-j. Regarding matrix (c), we
have that each the block in position (%, j) is equal to

AT N . .
{ A} P+ P A;; if j € N; (20)

0 otherwise

Using Assumption 2, by direct calculation one obtains

ALP,+ PA, = —Pﬁbﬂ. (21)

By looking at (19) and (21), we observe that only the
elements in position (1, 1) and (2, 2) of each 6 x 6 block
of (b) + (¢) can be different from zero. Therefore, the
positive/negative definiteness of the 6N x 6N matrix
(b) + (c¢) can be equivalently studied by considering the
2N x 2N matrix

[OSPIORP PN
= | % " - : , (22)
L ®no1 o1 Pno N
Oyt ... Oy N1 [OFNaN

obtained by deleting the last four rows and columns in
each block of (b) + (c¢). Furthermore, one has

2 27 0
By = |TN , 1€D
0 > —2i;
JEN;
and, using (20) and (21), for
obtains

i,j7 € D, i # j, one

2% 0
i if j €N
Qi = 0 27

02 otherwise

We notice that £ is symmetric, with non negative off-
diagonal elements and zero row and column sum. In
other words, £ is a Laplacian matrix, and, as such, it is
negative semidefinite. This allows us to show that (18)
(and, equivalently, (15)) holds. |

Remark 1 As shown in the proof of Proposition 2, As-
sumption 2 provides a reference setting for showing that
the Lyapunov function V(X) cannot increase because of
the interactions between DGUs.The assumption is re-
strictive as it requires perfect knowledge of the capaci-
tances at PCCs. However, thanks to the integral action
in local controllers, one expects robustness of stability
(Skogestad and Postlethwaite 1996) to sufficiently small
perturbations of the DGU parameters.

Asymptotic stability of the ImG, will be discussed in
Section 3.2, after providing the algorithm for local con-
trol design.

3.2 Design of local controllers

For computing local control gains K;, ¢ € D guarantee-
ing (11), we parametrize the unknown quantities in (9)
as follows

P=Y !, K =GY ', (23)

where G; = [G11; Gia,i Gis,i | € R?*5,G114,G124,Grs,i €
R?*2 and, under Assumption 1,

-1
" [2‘ 02 O _1
: A b 0
Y, = 02 V22, Vo3, |:n10 2 Vos :| . (24)
02 |Vis; Vasi *
We also focus on the matrix
Qi = Y,Q:Y; (25)

instead of @;. Apparently, when Y; > 0, Q); is negative

semidefinite if and only if @); has the same property.
The advantage of the parametrization (23) is that, as

shown below, all entries of @; depend linearly on G;
and Y;, while products of matrices P; and K; appear in
Q; (see (9)). Indeed, (23) is routinely used for mapping
the design of state-feedback gains into LMIs (Boyd et
al. 1994).

By direct calculation, from (23), (25), and (9) one has

02 Q12 Qis,

Qi = Q1T22 Q20,0 Qo3 | (26)
~2T3,i Q2Tsz 02
~ 1 1 1
Qi2,i = CT{yQM - mlz + fngﬂz (27)

- . - 1 1
Qo0 = A22,i)02,s + y22,i-’4§2,7; + —G12,i + 7g1TQ,i (28)
Ly; Ly;
~ 1 _
Quzi= 5Vaszi —m; 'I (29)
Cti

~ A 1

Qa3 = A22,: )23, + L7g13,i~ (30)
ti

The following result, proved in (Tucci and Ferrari-
Trecate 2018), mirrors Proposition 1 and provides key



properties of the blocks of Q; that will be used for
control design.

Proposition 3 Under Assumption 1,

(i) the matriz Q; in (26) cannot be negative definite;
(i) Qs <0 implies

02 02 02
Qi =] 02 Q22,i 02 |, (31)
02 02 O

where Qg ; is given in (28).

Hereafter, we focus on the design of the local control
gains that, using the notation of Section 3.1, can be sum-
marized as follows.

Problem 1 Under Assumptions 1 and 2, compute ma-
trices K;, i € D and Paa; > 0 such that (11) holds.

If Pyy; > 0, then Yoo ; = Py,'; > 0. This implies Y; > 0
and hence @); < 0 & @Q; < 0. By means of Proposition
3-(ii), the last inequality is equivalent to

Q22, < 0 (32)
Q13 =0, Q23,;,=0, and Q12; =0 (33)

Therefore, Problem 1 can be rephrased as follows.

Problem 2 Under Assumptions 1 and 2, compute ma-
trices Yaz; > 0 and Gy, i € D such that (32) and (33)
hold.

We highlight that the inequality (32) can be always
verified strictly, as shown in the following proposition,
proved in (Tucci and Ferrari-Trecate 2018)

Proposition 4 For any positive-definite matriz T'; €
R2%2 there exist matrices Gia,i and Yoo ; = szQ’i >0
verifying

Q22,i < _y22,iri_1y22,i (34)

We notice that, from (34), the matrix T'; ' can be inter-
preted as a robustness margin in the fulfillment of the
inequality y;;i Qgg,iyz_;i <0.

Next, we discuss equations (33). From (28), (29), and
(27) they are equivalent, respectively, to

Cii
Va3, = t I, (35)
LiCyi -
Gigi = —— : % Agoi, (36)
L 1
G, = 07;:)@2,1‘ + EIQ. (37)

Therefore, Problem 2 can be stated in the following final
form.

Problem 3 Under Assumptions 1 and 2, for a given
matriz I'; > 0, ﬁnd ygz,i = yQTQJ > 0, y337i = y{m >0
and Gia; verifying (34) and Yaz; > 0 (with block Va3 ;
in (24) given by (35)).

From Proposition 4, Problem 3 can be always solved if
there is V33, = yg;ﬂ- > 0 such that Ys; > 0. Using
the Schur complement (Boyd et al. 1994) on the block
structure of Yag ; (shown in (24)), the latter condition is

equivalent to Vs3,; — ygg,iygjiym > 0. From (35) one
2
obtains Vz3; — %gy;;l > 0, which is verified by, e.g.,

2
Vi = 258 Vil
After solving Problem 3, blocks Gi3; and Gq1,; of the
matrix G; can be computed as in (36) and (37). Fur-
thermore, the controller K; can be recovered from (23).
Most importantly, as shown in the next theorem, local
controllers guarantee asymptotic stability of the ImG.

Theorem 1 If Assumptions 1 and 2 are fulfilled, local
control gains K; i € D are computed by solving Problem
3, and the graph G.; is connected, then system (13) is
asymptotically stable.

The proof of Theorem 1, which is based on the Proposi-
tion 2 and the Lasalle’s invariance theorem, can be found
in (Tucci and Ferrari-Trecate 2018).

3.3  Optimization-based design of local controllers

It is not difficult to see that a solution to Problem 3 is
provided by the following LMI optimization problem

0 : min 171 T Q22 + @3ifi + @i
V22,i,V33,i,G12,4,
Y1i,Y2i,0i,Ci
77;1[2 02 02
Y, = 02 Voo C;f;l I | >0 (38&)
02 C,‘,T Iz Y33,
{A22,1‘y22,z‘+y22,i-»‘i§2,i+%”g12,i+%”gg7i y22,i:| <0
Va22,i -y | =
(38b)
B GT Y;
o 1 >0 (38c¢)
G —I I Gl
7: >0, 72 >0, B;>0, (>0 (38d)
where ay;, k = 1,...,4 are positive weights and I'; =

diag(v1i,72i)- Indeed, (38b) corresponds, up to Schur
complement, to (34). Furthermore, constraints (38c) are
always feasible. Their role is to penalize aggressive con-
trol actions (Riverso et al. 2015) since they correspond to
the bound ||K;||2 < v/Bi¢; and large values of 3; and ¢;



are are penalized in the cost function. Finally, the mini-
mization of v1; and 9; corresponds to the maximization
of the robustness margin I';” I discussed in the previous
section.

We highlight that the computation of controller Cp; is
decentralized (i.e. independent of the synthesis of con-
trollers Cj1, j # 1), up to the knowledge, shared by all
DGUs, of the parameter ¢ in Assumption 2. Indeed,
constraints in (38) depend only upon local electrical pa-
rameters of DGU i and local design parameters (ay;,
k=1,...,4).

Remark 2 As shown in (Riverso et al. 2014), if a DGU
is disconnected from the ImG, its closed-loop perfor-
mance can be finely tuned by complementing local con-
troller with pre-filters and load-current compensators.
These enhancements, which are standard in linear con-
trol systems, are usually effective also when DGUs are
interconnected. However, a rigorous assessment of per-
formance cannot be based only on local line-independent
closed-loop DGU models. Indeed, even if tracking is
perfect (i.e. DGUs are ideal voltage sources) the ImG
dynamics depends on the parameters of RL lines and the
ImG topology. Moreover, even if QSL approximations
hold and the ImG is asymptotically stable, the Lyapunov
function (14) does not capture the exponential conver-
gence rate of the ImG to the equilibrium state because Q
is not negative definite.

3.4 PnP operations

Suppose that we want to add the DGU iﬁvﬁl{]) to the

ImG. From Theorem 1, in order to preserve stability, it is
enough to equip f]ﬁvcﬂ] with the controller obtained by
solving the LMI problem Opn 41 and connect the DGU
to the ImG. Differently from (Riverso et al. 2015), the
plug-in of a DGU is never denied and no other DGU
must to retune its local controller.

The unplugging of a DGU is even simpler as it has no
impact on the controllers of the remaining units. There-
fore, if G¢; remains connected, the stability of the ImG is
preserved. Otherwise, if G.; becomes disconnected, The-
orem 1 can still be applied to each connected component
of Ge; (which, in turn, can be seen as an independent
ImG). An example is provided in Section 4.

4 Simulation results

For studying performance brought about by PnP con-
trollers, we consider the 10-DGU, meshed ImG in Figure
2. In order to simulate a realistic scenario, we replace
constant current loads with RL loads, except for DGU
2 which is connected to a three-phase six-pulse diode
rectifier. The values of electrical parameters are similar
to those provided in (Riverso et al. 2015).

The simulation (conducted in PSCAD) starts with
DGUs 1-9 connected together and equipped with PnP

controllers Cp, i = 1,...,9.

©-®
e

(a) ImG topologies until ¢t = 12s. For 0 < ¢ < 7.5,
DGUs 1-9 are interconnected (in black); at t = 7.5
s, DGU 10 joins the network (in red).
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(b) Independent ImGs after the trip of lines 3-7
and 8-10 at time t = 12 s.

Fig. 2. Simulation of a 10-DGUs ImGs: considered network
topologies.

At time t = 7.5 s, we connect DGU 10 with DGUs 2
and 8 (see Figure 2a). The dg component of the volt-
ages at PCCs 2, 8, 10 are shown in Figures 3a, 3d and
3e, respectively. Notably, we notice very small devia-
tions of the DGUs voltages from their reference signals
(V;fmf = 0.6 pu, quﬂ?f = 0.5 pu, V8a;ref = 0.7 pu,
VSqu = 0.6 pu, and quo’mf = 0.8 pu, qu(),ref = 0.6 pu).
The oscillations of V! and V;! around their respective
references are due to the fact that the corresponding
signals in the abc reference frame are not perfectly sinu-
soidal because of the nonlinear behavior of the rectifier.
For analyzing the robustness of the PnP-controlled ImG
against load dynamics, at time ¢ = 10 s the RL load
at PCC 10 changes from R = 60 2, L = 0.02 mH to
R =120 Q, L = 0.02 mH. From Figures 3a, 3d and 3e,
we notice that the d and g components of the voltages
at PCCs 2, 8 and 10, do not significantly deviate from
their references. Figure 3f shows that the real-time plug-
in of DGU 10 and the load change at its PCC produce
minor effects also on the frequency profiles of the PCC
voltages (veriations around the 50 Hz reference value
are smaller than 0.6 Hz). In a similar way, there are no
significant deviations from the reference RMS voltages
(see Figure 3g).

For testing the capabilities of PnP regulators to preserve
stability after line faults, at time t = 12 s, we simulate
the simultaneous trip of lines 3-7 and 8-10, leading to
the formation of two independent ImGs (see the sub-
graphs G5! and G5? Figure 2b). As described in Section
3.4, the stability of the two networks is preserved (see
Figures 3b-3g), without the need to redesign any local



controller. Finally, from Figure 3h, we notice that the
Total Harmonic Distortion (THD) of the voltage at
PCC 2 (whose local load is nonlinear) always remains
below 5%, which is the maximum limit recommended
by IEEE standards.

4.1 Impact of clock desynchronization

As mentioned in the introduction, we assume the ImG
is equipped with a clock synchronization layer capable
to guarantee a worst-case accuracy in presence of clock
drifts. In the following, we discuss the ImG performance
in the pessimistic scenario where clock shifts are con-
stant and maximal. A phase shift in the rotating dq
frame generates an offset in the dq signals, i.e. an ad-
ditive step disturbance on the dq side of the abc — dqg
and dq — abc transformation blocks in Figure 1. As an
example, assuming wy = 2750 [rad/s] and using the pro-
tocols in (TEEE1588 2008, IEEE1588 2017), which pro-
vide a clock accuracy of 106 s, one obtains a worst-case
phase shift 6y pcu, = epgu, - wo - 17@ = (3.6 X 10_2)0.
On the one hand, step disturbances on the feedback
path cannot be rejected by the controller (which con-
tains an integral action) and induce a tracking offset. On
the other hand, since the closed-loop system is linear,
asymptotic stability of the ImG is not compromised by
exogenous disturbances. For simulations under signifi-
cant clock shifts (i.e. much higher than those reported in
(IEEE1588 2008, IEEE1588 2017)), we defer the reader
to (Tucci and Ferrari-Trecate 2018).

5 Conclusions

In this paper, we presented a decentralized control ap-
proach to voltage and frequency stabilization in AC
ImG. The design algorithm is always feasible and guar-
antees overall ImG stability while computing local con-
trollers in a line-independent fashion. In future research
we will study how to include performance specifications
in local control synthesis. Another interesting research
topic is how to extend PnP design to microgrids in-
cluding both synchronous and inverter-interfaced dis-
tributed generators.
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Fig. 3. Performance of PnP voltage and frequency control. Connection of DGU 10, load change at PCC 10, and disconnection
of DGUs 3 and 7, are performed at times ¢ = 7.5 s, t = 10 s and ¢t = 12 s, respectively. In panels (a)-(e), blue and red lines

represent the d and ¢ components, respectively, of voltages.
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