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Abstract

This paper is about a set-based computing method for solving a general
class of two-player zero-sum Stackelberg differential games. We assume
that the game is modeled by a set of coupled nonlinear differential equa-
tions, which can be influenced by the control inputs of the players. Here,
each of the players has to satisfy their respective state and control con-
straints or loses the game. The main contribution is a backward-forward
reachable set splitting scheme, which can be used to derive numerically
tractable conservative approximations of such two player games. In de-
tail, we introduce a novel class of differential inequalities that can be
used to find convex outer approximations of these backward and forward
reachable sets. This approach is worked out in detail for ellipsoidal set
parameterizations. Our numerical examples illustrate not only the effec-
tiveness of the approach, but also the subtle differences between standard
robust optimal control problems and more general constrained two-player
zero-sum Stackelberg differential games.

Keywords: optimal control, set-based computing, differential games

1 Introduction

The origins of differential games and game-theoretic optimal control go back
to [22]. A historical overview of the early developments, roughly ranging from
1950–1970, can be found in [9]. There it becomes clear that, since their incep-
tion, the theories of differential games and optimal control have been deeply
intertwined [30]. The mathematical foundation of modern differential game
theory, was established between 1970-1990. Precise definitions and a mature
mathematical framework for this theory can, for example, be found in the books
by [16] as well as [24].

The question of how to define an appropriate mathematical model for a game
has, in general, no unique answer. This is due to the fact that the construction
of such a model may depend on many different aspects. One of these aspects
is the information each player has about other players, including their goals,
their ability (and willingness) to communicate, and their willingness to agree on
actions and rules [3, 5, 28]. The focus of this paper is on a specific class of games,
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namely, two-player zero-sum Stackelberg games [7, 35], also known as “worst-
case games”. Here, Player 1 makes a decision and announces it to the other
player, who has a conflicting objective. Stackelberg games arise in economics,
marketing and policy making [14], but their applicability also extends to control
systems [6, 29].

In a context of mathematical programming applied to static zero-sum Stack-
elberg games, one can distinguish between semi-infinite programming (SIP) [17]
and generalized semi-infinite programming (GSIP) problems [23]. Both classes
of problems can be used to model zero-sum Stackelberg games, but in SIP the
feasible set of the second player is assumed to be constant. This is in contrast
to GSIP, where the decision of the first player affects the feasible set of the
optimization problem of the second player. Notice that there exists a vast body
of literature on numerical methods for both SIP and GSIP [31, 13].

The main difference between static and differential games is that, in the
latter case, the state of the game is modeled by a differential equation [16],

∀t ∈ [0, T ], ẋ(t) = f(x(t), u1(t), u2(t)) .

Here, the decision variables of the players are functions of time: Player 1 chooses
the input function u1, while Player 2 chooses u2. A Stackelberg differential game
can either be played in open-loop or closed-loop mode. In the former, Player 1
chooses u1 first and announces his decision to Player 2. In contrast, in closed-
loop mode both players make their decisions simultaneously and continuously
in time, for example, based on the current state x(t) of the system.

Worst-case robust optimal control problems are a special class of zero-sum
differential games, where the control u2 is bounded by a given set. For exam-
ple, H∞ control problems can be interpreted as differential games against na-
ture [4]. In the mathematical control literature robust optimal control problems
are frequently analyzed by means of Hamilton-Jacobi equations [2, 10]. Modern
numerical methods for robust optimal control, both in open- and closed-loop,
are often based on set-theoretic considerations [8, 20, 26].

In order to understand the contributions of this paper, it is important to
be aware of one fact: standard robust optimal control problems are differential
games which do not enforce state constraints on the adverse player. This is in
contrast to differential games played against a rational opponent, who might
develop sophisticated strategies but agrees to act subject to the rules of the
game. Formally, such rules can be modeled via state constraints X1(t) ⊆ Rnx

and X2(t) ⊆ Rnx . These sets are such that Player 1 loses if the constraint

∀t ∈ [0, T ], x(t) ∈ X1(t)

is violated, while Player 2 loses if the constraint

∀t ∈ [0, T ], x(t) ∈ X2(t)

is violated. For example, in a football game an offside can be modeled by a
suitable state constraint set X2(t) that is related to the relative positions (dif-
ferential states) of the players and the ball. Rational players could, in principle,
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exploit their explicit knowledge of the state constraints of their opponents. In
football, for example, one team could let the adverse team run into an offside
trap. To draw an analogy to static games, one could state that zero-sum Stack-
elberg differential games with state constraints are to robust optimal control
problems what GSIP problems are to SIP problems. In the context of general
differential games, the actions of the first player affect the set of feasible actions
of the second player. This is because the solution of the differential equation
depends on both u1 and u2.

Compared to the vast amount of literature on numerical methods for stan-
dard robust optimal control, the number of articles on zero-sum differential
games with state constraints on both players is rather limited. An interesting
historical example for a differential game with state constraints is the famous
“man and lion” problem. In this game, both players have equal maximum speed,
and are both constrained to stay in a circular arena. The rather surprising fact
that the man can survive infinitely long without being caught by the lion has
been proven in 1952 by Besicovitch; [27, see]. Most contributions in the area of
state-constrained zero-sum differential games use, in one way or another, con-
cepts from viability theory [1]. For example, [11] used viability kernel techniques
to construct numerical methods for differential games with separable dynamics
and state constraints. An overview of recent advances in zero-sum differential
games with state constraints can also be found in [12].

The main contribution of this paper is a set-based computing framework for
analyzing and constructing approximate, yet conservative solutions of zero-sum
Stackelberg differential games. The proposed framework is able to deal with
coupled dynamics as well as state constraints for both players. The set-based
problem formulation is outlined in Section 2. In contrast to [11], we do not
assume that the dynamics of the game are separable. Section 3 introduces a
generic backward-forward reachable set splitting result for such non-separable
two player differential games, which is presented in Theorem 1. This result is
then used to construct convex outer approximations of the constrained reachable
set of the second player via a system of generalized differential inequalities, as
summarized in Theorem 2. Theorem 3 specializes this result for ellipsoidal set
parameterizations. In Section 4, the latter construction is leveraged in order
to construct a standard optimal control problem with boundary constraints,
whose solution conservatively approximates the solution of the original set-based
problem. This problem can be solved using existing, gradient-based, optimal
control algorithms. The developments of this paper are demonstrated through
a numerical example implemented using the optimal control software ACADO

Toolkit [19], in Section 4.1. Section 5 concludes the paper.

Notation The set of n-dimensional L1-integrable functions is denoted by Ln1
while Wn

1,1 denotes the associated Sobolev space of weakly differentiable func-
tions with L1 integrable derivatives. The set of compact and convex compact
subsets of Rn are denoted by Kn and KnC , respectively. For a set Z ⊆ Rn,
P(Z) ⊆ Rn denotes its power set, which includes the empty set, denoted by ∅.
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Moreover, int(Z) denotes the interior of a set Z ⊆ Rn and cl(Z) its closure in
Rn. The support function of a set Z is defined as

∀c ∈ Rn, V [Z](c) = sup
z∈Z

cᵀz .

Additionally, we define V [∅](c) = −∞. The sets of positive semidefinite and
positive definite n-dimensional matrices is denoted by Sn+ and Sn++. An ellipsoid
with center q ∈ Rn and shape matrix Q ∈ Sn+ is given by

E(q,Q) =
{
q +Q

1
2 v
∣∣∣ ∃v ∈ Rn : vᵀv ≤ 1

}
,

where Q
1
2 can be any square root of Q, as the unit disc in Rn remains invariant

under orthogonal transformations.

2 Open-loop Stackelberg differential games

This paper is about two-player differential games whose state, x ∈Wnx
1,1, satisfies

a differential equation of the form

∀ t ∈ [0, T ], ẋ(t) = f(x(t), u1(t), u2(t)),

with x(0) = x0 .
(1)

Here, Player 1 chooses the control input u1 : [0, T ]→ U1 while Player 2 chooses
the control input u2 : [0, T ]→ U2.

Assumption 1 The right-hand side function, f , is jointly continuous in x, u1, u2
and locally Lipschitz continuous in x.

Assumption 2 The control constraint sets U1,U2 ⊆ Rnu are non-empty, con-
vex, and compact.

For simplicity of presentation, it is also assumed that the initial state x0 ∈ Rnx

is a given constant. The developments in this paper can easily be generalized
for the case that the initial value is chosen by one of the players or to the case
where the inputs have different dimensions.

Remark 1 Two-player differential games can sometimes be represented using
a differential equation system of the form

∀ t ∈ [0, T ], ẋ1(t) = f1(x1(t), u1(t)),

∀ t ∈ [0, T ], ẋ2(t) = f2(x2(t), u2(t)),

with x(0) = x0 .

(2)

These systems are called separable, since each function fi, i ∈ {1, 2}, depends
only on the state xi and control ui. As an example, consider a simple two-
car race: the states of each car (position, orientation, and velocities) are only
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functions of its own controls (acceleration and steering). Likewise, there are
systems that cannot be formulated as (2) easily. Consider for example two
children on a seesaw: each child may shift its own weight independently (control
input), while the state of the system (position and velocity of the seesaw) is
simultaneously affected by both control inputs. We keep the formulation general,
as every separable system can be written as (1) by introducing the stacked state
xᵀ = (xᵀ1 , x

ᵀ
2).

2.1 State constraints

State constraints can be used to define the rules of a game. Here, we consider two
given—and potentially time varying—state constraint sets, X1(t),X2(t) ⊆ Rnx .
Player 1 loses if the constraint

∀t ∈ [0, T ], x(t) ∈ X1(t) (3)

is violated. Likewise, Player 2 loses if the constraint

∀t ∈ [0, T ], x(t) ∈ X2(t) (4)

is violated. Depending on the particular definitions of X1 and X2, there may be
situations in which both players lose, one of the players loses, or no one loses.

Remark 2 There are games, where the state constraint sets X1 and X2 coin-
cide. Consider again the two-car race from Remark 1: one may be interested
in enforcing a collision avoidance constraint. This gives rise to a coupled state
constraint involving the positions of both cars. If a collision occurs, both cars
are out of the race. Thus, if there are no further constraints, we have X1 = X2.
However, as soon as we introduce the additional rule that Player 1 loses if the
first car leaves the road while Player 2 loses if the second car is not staying on
track, we have X1 6= X2 (in this example, Player 1 does not necessary lose if the
second player’s car is not staying on the road and vice-versa).

2.2 Feasibility

We use the symbol X[u1] to denote the set of feasible state trajectories that the
second player can realize,

X[u1] =

x ∈Wnx
1,1

∣∣∣∣∣∣∣∣
∃u2 ∈ Lnu

1 : ∀ τ ∈ [0, T ],
ẋ(τ) = f(x(τ), u1(τ), u2(τ)),
x(τ) ∈ X2(τ), u2(τ) ∈ U2,
x(0) = x0

 . (5)

Thus, the set-valued function X[u1] : R→ P (Rnx), given by

∀t ∈ [0, T ], X[u1](t) = { x(t) ∈ Rnx | x ∈ X[u1] } ,

denotes the reachable set in the state space.
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Definition 1 A control input u1 ∈ Lnu
1 with u1 : [0, T ] → U1 is called lower-

level feasible if
X[u1] 6= ∅ .

Otherwise, u1 is called lower-level infeasible.

Notice that if Player 1 chooses a control input u1 that is lower-level infeasible,
Player 2 is forced to violate the rules of the game. Because this paper focuses
on games in which such behavior of Player 1 is unwanted, we introduce the
following definition of upper level feasibility.

Definition 2 A control input u1 ∈ Lnu
1 with u1 : [0, T ] → U1 is called upper-

level feasible if it is lower-level feasible and

∀t ∈ [0, T ], X[u1](t) ⊆ X1(t) .

Otherwise, u1 is called upper-level infeasible.

Remark 3 Enforcing the constraint X[u1] 6= ∅ is equivalent to introducing the
rule that Player 1 loses the game if u1 is lower-level infeasible. At this point,
one should be clear in mind that requiring lower-level feasibility does not imply
that Player 1 is not allowed to “win” the game. The conditions for lower—and
upper—level feasibility merely define under which conditions Player 1 loses the
game.

Remark 4 Robust optimal control [21] considers games with X2 = Rnx with
the disturbances being the input of the adverse player. In such case, all inputs
u1 are lower-level feasible, since the second player has no state constraints that
could possibly become infeasible.

2.3 Constrained open-loop zero-sum differential games

The goal of this paper is to analyze and approximately solve constrained open-
loop zero-sum differential games with Stackelberg information structure. Thus,
we assume that Player 1 chooses a strategy and announces it to Player 2. An
optimal open loop strategy for Player 1 is any solution of

inf
u1

M(X[u1](T ))

s.t.


X[u1] 6= ∅
X[u1](t) ⊆ X1(t) for all t ∈ [0, T ]

u1(t) ∈ U1 for all t ∈ [0, T ] .

(6)

We assume that a Mayer term m : Rnx → R is given and that

M(X) = sup
ξ∈X

m(ξ)

denotes the supremum (worst-case value) of m on a given set X. Notice that (6)
is feasible if and only if there exists a control input u1 that is upper-level feasi-
ble. Additionally, we recall that if u1 is a feasible point of (6), then u1 is—by
construction of the rules of our game—also lower-level feasible.
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Remark 5 If there exists an equilibrium solution (u?1, u
?
2) (min-max point) of

the open-loop Stackelberg zero-sum differential game, it can be computed by first
finding a minimizer u?1 of (6). In this case, u?2 must be a maximizer of

max
x,u2

m(x(T )) s.t.


∀t ∈ [0, T ] :

ẋ(t) = f(x(t), u?1(t), u2(t)) ,

x(t) ∈ X , u2(t) ∈ U2

x(0) = x0 .

Throughout this paper it is assumed that the decision of whether one of the
players has won the game is made a posteriori, after both players have played
their strategies. This final decision is based on the objective value m(x(T )),
where x(T ) denotes the state of the system at time T . As we can always add
constant offsets to m, we say that Player 1 wins the game if u1 is upper-level
feasible and m(x(T )) ≤ 0. Similarly, Player 2 wins if x(t) ∈ X2(t) for all
t ∈ [0, T ] and m(x(T )) > 0. Notice that this definition is consistent in the sense
that at most one player can win the game and it is impossible that one of the
players wins and loses a game simultaneously.

Remark 6 One can also consider closed-loop games whose dynamics are given
by

∀t ∈ [0, T ], ẋ(t) = F (x(t), µ1(t, x(t)), µ2(t, x(t))

with x(0) = x0 .

Here, Player 1 chooses the feedback law µ1 : R × Rnx → U1 while Player 2
chooses the feedback law µ2 : R × Rnx → U2. Closed-loop games in full gener-
ality are significantly harder to solve and analyze than open-loop games, even
without the presence of state-constraints. Nevertheless, by restricting the search
to parametric feedback laws, for example, affine feedback laws of the form

µ1(x) = K1(t)x+ k1(t) and µ2(x) = K2(t)x+ k2(t) ,

one can formulate closed-loop games in the form of (6) by regarding the control
law coefficients u1 = (vec(K1)ᵀ, kᵀ1 )ᵀ and u2 = (vec(K2)ᵀ, kᵀ2 )ᵀ as the inputs of
the first and second player, respectively.

3 Backward-forward reachable set splitting

The goal of this section is to analyze the reachable sets X[u1](t). Notice that,
due to the presence of state constraints for Player 2, it is non-trivial to ensure
lower-level feasibility of an input u1 (see Remark 4). In particular, the state
constraints X2(·) induce a coupling in time; that is, knowing the reachable state
at time t, requires knowledge of the state trajectories on the whole time horizon.
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In order to remove the coupling in time, we introduce the set-valued function
XB[u1] : R→ P (Rnx) given by

XB[u1](t) =


ξ ∈ Rnx

∣∣∣∣∣∣∣∣∣∣∣∣

∃x ∈Wnx
1,1, ∃u2 ∈ Lnu

1 :

∀ τ ∈ [t, T ],

ẋ(τ) = f(x(τ), u1(τ), u2(τ))

x(τ) ∈ X2(t), u2(τ) ∈ U2,

x(t) = ξ


. (7)

The set XB[u1](t) can be interpreted as the set of all states x(t) of the game
at time t for which the second player is able to satisfy the rules of the game on
the remaining time interval [t, T ]. Next, we introduce the set-valued function
XF[u1] : R→ P (Rnx) given by

XF[u1](t) =


ξ ∈ Rnx

∣∣∣∣∣∣∣∣∣∣∣∣

∃x ∈Wnx
1,1, ∃u2 ∈ Lnu :

∀ τ ∈ [0, t],

ẋ(τ) = f(x(τ), u1(τ), u2(τ))

x(τ) ∈ XB[u1](τ), u2(τ) ∈ U2,

x(0) = x0 , x(t) = ξ


. (8)

The set-valued function XF[u1](t) is called the constrained forward reachable
set of the system at time t. The following theorem establishes the fact that X
and XF coincide.

Theorem 1 The equation X[u1] = XF[u1] holds for all input functions u1 ∈
Lnu
1 .

Proof. Let t ∈ [0, T ] and u1 ∈ Lnu
1 be given. The goal of the first part of

this proof is to establish the inclusion

XF[u1](t) ⊆ X[u1](t) . (9)

Let the functions xF ∈Wnx
1,1 and u2,F : [0, t]→ U2 be such that

ẋF(τ) = f(xF(τ), u1(τ), u2,F(τ)) (10)

xF(τ) ∈ XB[u1](τ), (11)

xF(0) = x0 (12)

for all τ ∈ [0, t]. Now, the definition of XB[u1] and (11) imply that there exists
a xB ∈Wnx

1,1 and u2,B : [t, T ]→ U2 such that

ẋB(τ) = f(xB(τ), u1(τ), u2,B(τ)) (13)

xB(τ) ∈ X2(τ), (14)

xB(t) = xF(t) (15)
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for all τ ∈ [t, T ]. Thus, we can construct the functions

x(τ) =

{
xF(τ) if 0 ≤ τ ≤ t
xB(τ) if t ≤ τ ≤ T

and

u2(τ) =

{
u2,F(τ) if 0 ≤ τ ≤ t
u2,B(τ) if t ≤ τ ≤ T

with u(τ) ∈ U2 for all τ ∈ [0, T ]. These functions satisfy

ẋ(τ)
(10),(13),(15)

= f(x(τ), u1(τ), u2(τ)) (16)

x(τ)
(11),(14)
∈ X2(τ), (17)

x(0)
(12)
= x0 (18)

Inclusion (17) follows from (11) and (14) since, by construction, XB satisfies
XB[u1](τ) ⊆ X2 for all τ ∈ [0, t]. Now, (16)-(18) imply that x ∈ X[u1] and,
consequently, x(t) ∈ X[u1](t). Thus, we have established (9).

For the second part of the proof, we need to show that the inclusion

X[u1](t) ⊆ XF[u1](t) , (19)

holds. Let x ∈ X[u1] and u2 satisfy

ẋ(τ) = f(x(τ), u1(τ), u2(τ)) (20)

x(τ) ∈ X2 (21)

x(0) = 0 . (22)

It is clear that x satisfies the constraints in (7) on [t, T ], x(t) ∈ XB[u1](t).
But then, x also satisfies the constraints in (8) on [0, t], which implies (19).
Finally, (9) and (19) yield the statement of the theorem. �

3.1 Construction of convex enclosures using generalized
differential inequalities

This section is concerned with the construction of enclosures for the reachability
tube XF[u1].

Definition 3 Let Z : R → P(Rn) be a set-valued function. A set-valued func-
tion Y : R → KnC is called an enclosure of Z on [0, T ] if Y (t) ⊇ Z(t) for all
t ∈ [0, T ].
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In the following, we use the shorthand

Γ(ν1, c, Y, Z) =

f(ξ, ν1, ν2)

∣∣∣∣∣∣∣
cᵀξ = V [Y ](c)

ξ ∈ Y ∩ int(Z)

ν2 ∈ U2

 , (23)

which is defined for all Z ∈ Knx

C , c ∈ Rnx , and ν1 ∈ Rnu .
The next theorem provides a basis for the construction of convex enclosures

of XF[u1]. It exploits the reach-set splitting structure of the backward-forward
propagation scheme that has been introduced in Section 3.

Theorem 2 Let Assumptions 1 and 2 be satisfied and let the Lebesgue integrable
function u1 : R → U2 be given. Let X2, YB, YF : [0, T ] → Knx

C be compact set-
valued functions such that V [YB(·)](c) and V [YF(·)](c) are, for all c ∈ Rnx ,
Lipschitz continuous on [0, T ). If

YB(t) ∩ int(X2(t)) 6= ∅ and YF(t) ∩ int(YB(t)) = ∅

for all t ∈ [0, T ] and if the inequalities

V̇ [YB(t)](c) ≤ −V [−Γ(u1(t), c, YB(t),X2(t))](c)

V̇ [YF(t)](c) ≥ V [Γ(u1(t), c, YF(t), YB(t))](c)

V [YF(0)](c) ≥ cᵀx0
V [YB(T )](c) ≥ V [X2(T )](c)

hold for all t ∈ [0, T ) and all c ∈ Rnx , then the set-valued function YF∩B : R→
Knx

C given by
∀t ∈ [0, T ], YF∩B(t) = YF(t) ∩ YF(t)

is an enclosure of X[u1] on [0, T ].

Figure 1 visualizes the conditions of Theorem 2. The left panel shows two
dimensional enclosures YF(t) and YB(t) in light and dark gray, respectively.
Notice that the conditions in Theorem 2 are verified pointwise-in-time at the
boundary of the enclosures. The black arrow indicates a given direction c and
the red line corresponds to the set of points of the associated supporting facet,

F [YF(t)](c) =

{
ξ

∣∣∣∣∣ cᵀξ = V [YF(t)](c)

ξ ∈ YF(t)

}
,

that are also in YB(t). For a given control u1 and starting from F [YF(t)](c) ∩
int(YB(t)), we have that any trajectory x must satisfy

ẋ(t) ∈
⋃

ξ∈F [YB(t)](c)∩int(YB(t))

{f (ξ, u1(t), ν2) | ν2 ∈ U2} .

At this point, it is easy to see that the right-hand side of the above inclusion
is exactly Γ(u1(t), c, YF(t), YB(t))—which is shown in the right panel, in light
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0

0 0

0

x2

x1

f2

f1

f(·, u1(t),U2)

V [YF(t)](c)

V [Γ(u1(t), c, YF(t), YB(t))](c)

Figure 1: A sketch of the conditions in Theorem 2. Left: The
sets YF(t) and YB(t) are shown in light and dark gray. The set {ξ ∈
YF(t) | cᵀξ = V [YF(t)](c), ξ ∈ int(YB(t))}, is shown in red. Right: The set
Γ(u1(t), c, YF(t), YB(t)) is shown in light red. In both plots, the black ar-
row is the direction vector c. We also use the shorthand f(ξ, u1(t),U2) =
{f(ξ, u1(t), ν2) | ν2 ∈ U2}.

red. Then, taking the support function of Γ(u1(t), c, YF(t), YB(t)) as a bound
on V̇ [YF(t)](c) we are bounding the dynamics of the points on F [YF(t)](c) ∩
int(YB(t)).

A proof of Theorem 2 can be found in Appendix A.

3.2 Ellipsoidal-valued enclosures for reachability tubes

This section presents a practical construction of ellipsoidal enclosures based on
Theorem 2. Our focus is on ellipsoidal set parameterizations of the form

YB(t) = E(qB(t), QB(t)) and YF(t) = E(qF(t), QF(t)) .

In particular, our goal is to develop a computational method for constructing
the functions qB, qF : R→ Rnx as well as QB, QF : R→ Snx

++ in such a way that
YB and YF satisfy the conditions from Theorem 2.

Assumption 3 The sets X2(t) are bounded for all t ∈ [0, T ].

Let s : R→ Rnx , S : R→ Snx
++, and (v, V ) ∈ Rnu × Snu

++ be given such that

U2 ⊆ E (v, V ) and X2(t) ⊆ E (s(t), S(t)) .

The existence of s, S, v and V is guaranteed, if Assumptions 2 and 3 hold.
Moreover, let

Ω : Rnx×nx × Rnx×nu × Rnx × Rnu × Rnu × Snx
+ → Snx

+

be a nonlinearity bound such that

f(x, u1, u2)−A(x− q)−B(u2 − v) ∈ E(0,Ω(A,B, q, u1, v,Q))
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is satisfied for all vectors x ∈ E(q,Q); all vectors u1, u2, v, and q; and all
matrices A, B, and Q of compatible size. If Assumption 1 is satisfied, such a
function can always be constructed [21].

Remark 7 The accuracy of the enclosures constructed in this section depends
on the choice of v, V , s, S, and Ω. A thorough analysis of the conservatism of
the ellipsoidal bounds as a function of these parameters goes beyond the scope of
this paper. Methods to construct such functions can be found in other works [21,
34].

In the following, we introduce the functions

Φ1(Q,A) = AQ+QAᵀ

Φ2(Q,W, σ) = σQ+
1

σ
W

ϕ3(q1, q2, Q1, Q2, κ) = κQ1Q
−1
2 (q2 − q1)

Φ3(q1, q2, Q1, Q2, κ) = κ
(
I − ‖q1 − q2‖2Q−1

2
I −Q1Q

−1
2

)
Q1

for all scalars κ, σ as well as all vectors q1, q2 and matrices A,B,W,Q,Q1, Q2

with compatible dimensions. Similarly, we introduce the variables

y = (qB, qF, QB, QF) ∈ Y

and
λ = (AF, AB, BF, BB, σB, σF, µB, µF, κB, κF) ∈ L

together with the domains Y = Rnx × Rnx × Snx
++ × Snx

++ and L = Rnx×nx ×
Rnx×nx×Rnx×nu×Rnx×nu×R6

+. The functions F : Y×Rnu×Rnx×Snx
++×L→ Y

with F = (F1, F2, F3, F4) and

F1(t, y, u1, λ) = f(qB, u1, v)− ϕ3(qB, s(t), QB, S(t), κB)

F2(t, y, u1, λ) = f(qF, u1, v) + ϕ3(qF, qB, QF, QB, κF)

F3(t, y, u1, λ) = Φ1(QB, AB)− Φ2 (QB, BV B
ᵀ, σB, )

− Φ2 (QB,Ω(AB, BB, qB, u1, v,QB), µB)

− Φ3 (qB, s(t), QB, S(t), κB)

F4(t, y, u1, λ) = Φ1(QF, AF) + Φ2 (QF, BV B
ᵀ, σF)

+ Φ2 (QF,Ω(AF, BF, qF, u1, v,QF), µF)

+ Φ3 (qF, qB, QF, QB, κF)

and G : Y× Y→ Y given by

G(y(0), y(T ))

= (qF(0)− x0, qB(T )− s(T ), QF(0), QB(T )− S(T )) .

determine, respectively, the right-hand side and constraint function of the boundary-
value problem that is needed in the following theorem.
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Theorem 3 Let Assumptions 1, 2, and 3 be satisfied and let the Lebesgue in-
tegrable function u1 : [0, T ] → U1 be given. Let y : R → Y and λ : R → L be
any functions satisfying the boundary value problem

∀t ∈ [0, T ], ẏ(t) = F (t, y(t), u1(t), λ(t))

0 = G(y(0), y(T )) .

Then, the set-valued functions

YB(t) = E(qB(t), QB(t)) and YF(t) = E(qF(t), QF(t))

satisfy the conditions of Theorem 2 on [0, T ]. That is, the set-valued function
YF∩B : R→ Knx

C with

∀t ∈ [0, T ], YF∩B(t) = E(qF(t), QF(t)) ∩ E(qB(t), QB(t))

is an enclosure of X[u1] on [0, T ].

A proof of Theorem 3 can be found in Appendix B.

4 Tractable approximation of differential games

We now present a conservative and tractable approximation of (6). This ap-
proximation is constructed by leveraging on the properties of the ellipsoidal
approximation presented in the previous section. We assume that two bound-
ing functions H : R× Rny → Rnh and M : Rny → Rnh satisfying

H(t, y) ≤ 0 =⇒ E(qF, QF) ∩ E(qB, QB) ⊆ X1(t) (24)

M(y) ≤ 0 =⇒ M(E(qF, QF) ∩ E(qB, QB)) ≤ 0 , (25)

are available. Notice that the construction of these functions is akin to the
construction of the nonlinearity bounder Ω [32]; see also Remark 7.

Let us consider the optimal control problem

inf
x,y,

u1,u2,λ

M(y(T )) s. t.



∀t ∈ [0, T ],
ẋ(t) = f(x(t), u1(t), u2(t))
ẏ(t) = F (y(t), u1(t), λ(t))
u1(t) ∈ U1 , u2(t) ∈ U2

y(t) ∈ Y , λ(t) ∈ L
x(t) ∈ X2(t)
0 ≥ H(t, y(t))
0 = G(y(0), y(T )) .

(26)

Theorem 3 implies that any feasible point of is a feasible point of (6). The
auxiliary state x is used to enforce lower-level feasibility of the control u1.
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4.1 Numerical illustration

We consider a differential game with dynamics given by

∀t ∈ [0, T ], ẋ(t) =

(
x1(t) + 1

2x2(t) + u1(t),
3
2x1(t) + x2(t) + u2(t)

)
and x(0) = (0, 0)ᵀ

with T = 3
2 . The path constraints are given by

X1(t) = [−6, 6]2 and X2(t) = R(t)E(s, S)

for all t ∈ [0, T ] with

s =

(
5
50

− 71
25

)
, S =

(
802
25

16
5

16
5

802
25

)
,

and R(t) =

(
21
20 cos(πt2 ) − 19

20 sin(πt2 )

21
20 sin(πt2 ) 19

20 cos(πt2 )

)
.

The control sets are U1 = [−1.4, 0] and U2 = [0, 2]. The Mayer objective
function is given by m(x) = x1 − x2 .

The bounding functions M and H can, in this example, be constructed
without introducing further conservatism using the result from Proposition 1 in
Appendix B. Problem (26) was formulated and solved numerically with ACADO

Toolkit [19] using a multiple shooting discretization with 10 equidistant inter-
vals, and a Runge-Kutta integrator of order 4/5.

Figure 2 shows projections onto the x1- (top) and x2-axis (bottom) planes of
the ellipsoidal enclosures YB (light gray), the pointwise-in-time intersection of
YB and YF (dark gray), and an inner approximation of X[u?1] (black)—computed
by Monte Carlo simulation with 104 trajectories.

The optimal value of (26) is −1.59. Recall that (26) is only a conservative
approximation of (6), since Theorem 3 only provides a means to construct outer
approximations of the exact forward reachable set of the game. However, the
conservatism of the solution can be evaluated a posteriori by solving the optimal
control problem of Player 2. Here, we find that Player 2 can at most achieve an
optimal value of −3.67. Thus, the optimal value of the exact differential game
is overestimated by approximately 2.08. If one wishes to further reduce this
overestimation, one would have to abandon the idea to work with ellipsoids and
use more accurate set parameterizations. An in depth analysis of such general
set parameterizations is, however, beyond the scope of this paper.

Last but not least, we also solve the above game for the case that Player 2
has no state constraints. In this case, the differential game reduces to a standard
robust optimal control problem and the optimal value of Player 2 is 3.85. This
illustrates the importance of taking state constraints in dynamic games into
account and highlights the differences between robust optimal control and more
general zero-sum differential games with state constraints.
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Figure 2: Projections of YB (light gray) and the pointwise-in-time intersection
of YB and YF (dark gray) onto the x1- and x2-axis.
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5 Conclusion

This paper has presented a set-theoretic framework for the numerical analysis of
zero-sum differential games with state constraints. In particular, it introduced
a novel backward-forward reachable set splitting scheme, which can be used by
the first player to compute the reachable set of states of the second player. This
splitting scheme was then used to derive convex outer approximations for the
reachable set of the game using boundary value constrained differential inequal-
ities. A particular emphasis was placed on ellipsoidal outer approximations,
which lead to the conservative but tractable approximation (26) of the solution
of the original Stackelberg differential game (6). The advantage of (26) is that
this is a standard optimal control problem, which can be solved using state-of-
the art optimal control solvers. The effectiveness of the approach was illustrated
by means of a numerical example.
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A Proof of Theorem 2

The proof of Theorem 2 is non-trivial and, therefore, it has been divided into
different sub-sections, which build upon each other.
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A.1 Technical preliminaries

Let us consider a general differential equation of the form

ẋ(t) = g(x(t), w(t)) with x(0) = x0

with g being Lipschitz continuous in x and continuous in the external input
w : [0, T ]→W ⊆ Knw . Let

XT(t) =


ξ ∈ Rnx

∣∣∣∣∣∣∣∣∣∣∣∣

∃x ∈Wnx
1,1, ∃w ∈ Tnw :

∀ τ ∈ [0, t],

ẋ(τ) = g(x(τ), w(τ))

x(0) = x0

w(τ) ∈W, x(t) = ξ


denote the reachable sets of this differential equation for a given subset T ⊆ L1.
Let Cnw ⊆ Lnw

1 denote the set of bounded continuous functions. Now, a direct
consequence of Lusin’s theorem [15] and Gronwall’s lemma is that

∀t ∈ R, cl(XC(t)) = cl(XL1
(t)) .

In other words, if we are only interested in the closure of a reachable set, we
may simply replace Lebesgue integrable functions by continuous functions in a
statement without altering its conclusion. In the following, we will use such re-
placements without saying this explicitly at all places. In particular, we assume,
without loss of generality, that u1 is any given continuous function.

A.2 Constrained set propagation operators

Let

Π(t2, t1, X1, Z) =


ξ ∈ Rnx

∣∣∣∣∣∣∣∣∣∣∣∣

∃x ∈Wnx
1,1, ∃u2 ∈ Lnu

1 :

∀ t ∈ [t1, t2],

ẋ(t) = f(x(t), u1(t), u2(t))

x(t1) ∈ X1, x(t) ∈ Z(t),

u2(t) ∈ U2, x(t2) = ξ


, (27)

denote the constrained set propagation operator of (1), which is defined for all
X1 ∈ Knx

C , all Z : [t1, t2]→ Knx

C , and all t1, t2 ∈ R with t1 ≤ t2. Moreover, let

π (ξ,X) = argmin
ξ′∈X

∥∥∥ξ − ξ′∥∥∥2
2
.

denote the Euclidean projection of a point ξ ∈ Rnx onto a compact convex set
X ∈ Knx

C . Now, the key idea is to introduce the auxiliary differential equation

∀t ∈ [0, T ], ż(t) = fK(t, z(t), u2(t), Z(t)) (28)
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with
fK(t, ξ, ν2, X) = −K(ξ − π(ξ,X)) + f(ξ, u1(t), ν2)

for all ξ ∈ Rnx , ν2 ∈ Rnu , and all X ∈ Knx

C . Here, K > 0 is a tuning parameter
that can be interpreted as a proportional control gain of an additional control
term, which can be used to steer (28) towards X whenever z(t) is outside of X.
Let

ΠK(t2, t1, X1, Z) =


ξ ∈ Rnx

∣∣∣∣∣∣∣∣∣∣∣∣

∃z ∈Wnx
1,1, ∃u2 ∈ Lnu

1 :

∀ t ∈ [t1, t2],

ż(t) = fK(t, z(t), u2(t), Z(t))

x(t1) ∈ X1, u2(t) ∈ U2

x(t2) = ξ


,

denote the set-propagation operator of (28). In analogy to the propagation
operator Π, ΠK is defined for all X1 ∈ Knx

C , all Z : [t1, t2] → Knx

C , and all
t1, t2 ∈ R with t1 ≤ t2.

Lemma 1 Let Assumptions 1 and 2 be satisfied. Let Y,Z : [0, T ] → Knx

C be
any given set valued function such that the intersection Y (t) ∩ Z(t) is, for all
t ∈ [0, T ], nonempty and such that the functions V [Y (·)∩Z(·)](c) and V [Y (·)](c)
are, for all c ∈ Rnx , Lipschitz continuous on [0, T ]. If the differential inequality

V̇ [Y (t)](c) ≥max
ξ,ν2

cᵀfK(t, ξ, ν2, Y (t) ∩ Z(t))

s. t.


cᵀξ = V [Y (t)](c)

ξ ∈ Y (t)

ν2 ∈ U2

(29)

V [Y (0)](c) ≥ V [X0](c) (30)

is satisfied for all c ∈ Rnx and all t ∈ [0, T ] for a given initial set X0 ∈ Knx

C ,
then

∀t ∈ [0, T ], Π(0, t,X0, Z) ⊆ ΠK(0, t,X0, Z) ⊆ Y (t) .

Proof. First, notice that π satisfies π(ξ, Y (t) ∩ Z(t)) = ξ whenever ξ ∈
Y (t) ∩ Z(t). Thus, we have

fK(t, ξ, u2(t), Y (t) ∩ Z(t)) = f(ξ, u1(t), u2(t))

for all ξ ∈ Y (t) ∩ Z(t). This implies the first inclusion,

∀t ∈ [0, T ], Π(0, t,X0, Z) ⊆ ΠK(0, t,X0, Z) .

In order to establish the remaining inclusion, we assume for a moment that u2 is
constant. Since the set Y (t)∩Z(t) is nonempty and convex, π(·, Y (t)∩Z(t)) is
non-expansive. Thus, this function is uniformly Lipschitz continuous on [0, T ]×
U2 with Lipschitz constant 1. Furthermore, by the Lipschitz continuity of the
function V [Y (·) ∩ Z(·)](c) the function π(ξ, Y (·) ∩ Z(·)) is continuous. This,
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together with Assumption 1, implies that fK is jointly continuous in (t, ξ, ν2)
as well as Lipschitz continuous in ξ, uniformly on [0, T ]× U2.

At this point, it is important to notice that Y and Z are arbitrary but given,
thus the right-hand side function fK is only a function of time, the state and the
parameter u2. We can now replicate the arguments of all the steps in the proof
of Theorem 3 in [33] to (28)—observing that we have established the required
properties of fK—to obtain the second inclusion

∀t ∈ [0, T ], ΠK(0, t,X0, Z) ⊆ Y (t).

The assumption that u2 is constant can be removed using the same argument
as in [33, Remark 2]. �

Corollary 1 Let the conditions of Lemma 1 hold. Assume, in addition, that
Y (t)∩int(Z(t)) 6= ∅, for all t ∈ [0, T ]. If Y is such that the differential inequality

V̇ [Y (t)](c) ≥max
ξ,ν2

cᵀf(ξ, u1(t), ν2)

s. t.


cᵀξ = V [Y (t)](c)

ξ ∈ Y (t) ∩ int(Z(t))

ν2 ∈ U2

V [Y (0)](c) ≥ V [X0](c)

is satisfied for all c ∈ Rnx and all t ∈ [0, T ], then

∀t ∈ [0, T ], Π(0, t,X0, Z) ⊆ Y (t) .

Proof. The proof proceeds in two steps. First, we show that the result
holds under the stronger assumption that Y is such that Y (t) is strictly convex
for all t ∈ [0, T ] and that it satisfies the differential inequality

V̇ [Y (t)](c) ≥max
ξ,ν2

cᵀf(ξ, u1(t), ν2)

s. t.


cᵀξ = V [Y (t)](c)

ξ ∈ Y (t) ∩ Z(t)

ν2 ∈ U2

(31)

for all t ∈ [0, T ] and all c ∈ Rnx .
Let the set

F [Y (t)](c) =

{
ξ ∈ Rnx

∣∣∣∣∣ cᵀξ = V [Y (t)](c)

ξ ∈ Y (t)

}
.

be the supporting facet of Y (t) in the direction c ∈ Rnx . Notice that for any
given pair (t, c) ∈ [0, T ] × Rnx , the set F [Y (t)](c) is a singleton. Thus, for any
given pair (t, c) ∈ [0, T ]× Rnx , there are only two possible cases:
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Case 1: The set F [Y (t)](c) ∩ Z(t) is nonempty. In this case, we have

F [Y (t)](c) ∩ Z(t) ⊆ Y (t) ∩ Z(t) .

Since f and fK coincide on Y (t)∩Z(t) they also coincide on F [Y (t)](c)∩Z(t).
Thus, Y and Z satisfy the differential inequality (29) from Lemma 1 at (t, c) for
any K > 0.

Case 2: The set F [Y (t)](c) ∩ Z(t) is empty. This is only possible, if

max
ξ∈F [Y (t)](c)

cᵀξ > max
ξ′∈Y (t)∩Z(t)

cᵀξ
′
.

Thus, it follows that

∀ξ ∈ F [Y (t)](c), cᵀ(ξ − π(ξ, Y (t) ∩ Z(t)) > 0 ,

since π(ξ, Y (t) ∩ Z(t)) ∈ Y (t) ∩ Z(t) . Therefore, the term

cᵀfK(t, ξ, u2(t), Y (t) ∩ Z(t))

= −K cᵀ(ξ − π(ξ, Y (t) ∩ Z(t)))︸ ︷︷ ︸
>0

+cᵀf(ξ, u1(t), u2(t))

can be made arbitrarily small by choosing a sufficiently large K.
Thus, we have shown that there exists for every pair (t, c) ∈ [0, T ] × Rnx a

sufficiently large K, such that Y and Z satisfy the differential inequality (29)
from Lemma 1. In particular Y and Z satisfy the (strengthened) conditions
from Lemma 1 in the limit as K → ∞. We must mention that one should
be careful when taking this limit, as the Lipschitz constant of fK diverges for
K → ∞. Fortunately, one can apply the following topological argument: if
Y and Z satisfy the above hypothesis, one can always construct enclosures Yε
and Zε satisfying the conditions of Lemma 1 for a sufficiently large K and such
that the Hausdorff distance between Yε(t) and Y (t) (as well as Zε(t) and Z(t))
converges to zero as ε→ 0—uniformly on [0, T ]. This claim follows readily from
our continuity assumptions. As the images of these functions are compact, one
can pass to the topological closure to show that Lemma 1 implies that

∀t ∈ [0, T ], Π(0, t,X0, Z) ⊆ Y (t) ,

if (31) holds.
At this point, we construct an enclosure Yε of the operator Π, such that Yε(t)

is, for all t ∈ [0, T ], compact, and strictly convex. Then, we apply the procedure
above and a continuity argument to show that (31) also holds in the limit as
ε→ 0, for set-valued functions with convex and compact images. The technical
proof for this claim is analogous to Step S2 in the proof of Thm. 3 in [33].

Finally, observe that the only difference between (31) and the condition of
Corollary 1 and is that in the latter, the intersection Y (t) ∩ Z(t) has been
replaced by the tighter set Y (t) ∩ int(Z(t)). However, as Z(t) has a nonempty
interior, we have

cl(Y (t) ∩ int(Z(t))) = cl(Y (t) ∩ Z(t)) ,
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i.e., the statement of the corollary is not affected if we replace Z(t) in the
intersection by its interior. This follows from the fact that the supremum of a
continuous function over any bounded set in Rnx coincides with the maximum of
the function over the closure of this set. Thus, we conclude that the statement
of the corollary holds. �

A.3 Complete Proof of Theorem 2

The statement of Theorem 2 can be obtained by a repeated application of Corol-
lary 1. First, the corollary is applied to the reversed differential equation

ż(t) = −f(z(t), u1(T − t), u2(t)) with z(0) ∈ X2(T ) .

with Y (t) = YB(T − t), Z(t) = X2(T − t), and X0 = X2(T ). Reversing time
once more, shows that the inequalities for V̇ [YB](c) and V [YB(t)](c) in Theorem 2
imply the inclusion XB[u1](t) ⊆ YB(t), which is valid for all t ∈ [0, T ].

Now, we apply Corollary 1 directly with Y = YF, Z = YB and X0 = {x0}.
This yield the inequalities for V̇ [YF](c) and V [YF(t)](c) in Theorem 2, implying
that YF is an enclosure for XF[u1] on [0, T ]. Since XB[u1] is, by definition, also
an enclosure for XF[u1] on [0, T ], it follows that the inclusion YF(t) ∩ YB(t) ⊇
XF[u1](t) holds for all t ∈ [0, T ], yielding the statement of the theorem. �

B Proof of Theorem 3

This appendix is divided into a number of subsections which build upon each
other and lead to the proof of Theorem 3. Moreover, we use the technical
convention from Section A.1.

B.1 Support functions of set propagation operators

We recall that the constrained set-propagation operator Π has been introduced
in (27), see Appendix A, while the shorthand Γ is defined in (23).

Lemma 2 Let Assumptions 1 and 2 be satisfied. Let Y,Z : [0, T ] → Knx

C be
any set-valued functions, such that Y (t) and Y (t) ∩ Z(t) are, for all t ∈ [0, T ],
strictly convex and the intersection is nonempty; and such that V [Y (·)](c) and
V [Y (·)∩Z(·)](c) are, for all c ∈ Rnx , differentiable. If there exists a continuous
function α : R→ R with α(0) = 0 such that the inequality

V [Π(t, t+ h, Y (t), Z)](c) ≤ V [Y (t+ h)](c) + hα(h) ,

holds for all c ∈ Rnx with ‖c‖ ≤ 1 and all t ∈ [0, T ], then

V̇ [Y (t)](c) ≥ V [Γ(u1(t), c, Y (t), Z(t))](c)

holds for all c ∈ Rnx with ‖c‖ ≤ 1 and all t ∈ [0, T ].
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Proof. We first show that the set-propagation operator Π satisfies, for all
c ∈ Rnx , the differential inequality

V̇ [Π(t, t+ h, Y (t), Z)](c)

≥ V [Γ(u1(t), c, Y (t), Z(t))](c) .
(32)

The proof of this statement is indirect. Let c ∈ Rnx be a vector for which (32)
does not hold. Then, there exists a point

ξ? ∈ argmax
x∈Y (t)

cᵀx with ξ? ∈ int(Z(t)) .

Otherwise we have V [Γ(u1(t), c, Y (t), Z(t))](c) = −∞, and the inequality (32)
holds. Now, it follows from the definition of Γ(u1(t), c, Y (t), Z(t)) that there
exists a ν?2 ∈ U2 such that

V [Γ(u1(t), c, Y (t), Z(t))](c) = cᵀf (ξ?, u1(t), ν?2 ) ,

i.e., we have

V̇ [Π(t, t+ h, Y (t), Z)](c) < cᵀf (ξ?, u1(t), ν?2 ) .

Since ξ? ∈ int(Z(t)), the inequality contradicts the definition of Π. Thus, (32)
must hold for all c ∈ Rnx .

This means that there exists a continuous function β : R→ R such that

V [Π(t, t+ h, Y (t), Z)](c)− V [Y (t)](c)

≥ hV [Γ(u1(t), c, Y (t), Z(t))](c)− hβ(h) .
(33)

Thus, using the assumptions of this lemma, we can conclude that

V [Y (t+ h)](c)− V [Y (t)](c)

≥ V [Π(h, Y (t), Z)](c)− V [Y (t)](c)− hα(h)

≥ hV [Γ(u1(t), c, Y (t), Z(t))](c)− h[α(h) + β(h)] .

Dividing the last inequality by h on both sides and taking the limit for h→ 0,
we obtain the statement of the lemma. �

B.2 Ellipsoidal calculus

The following proposition summarizes two known results from the field of ellip-
soidal calculus.

Proposition 1 Let q1, q2 ∈ Rnx and Q1, Q2 ∈ Snx
++ be given.

1. If λ ∈ (0, 1), then

E(q1, Q1)⊕ E(q2, Q2) ⊆ E
(
q1 + q2,

Q1

λ
+

Q2

1− λ

)
.

24



2. If κ = (κ1, κ2) ∈ R2
+ satisfies

1 = κ1(1− qᵀ1Q
−1
1 q1) + κ2(1− qᵀ2Q

−1
2 q2)

+q(κ)ᵀQ(κ)q(κ) ,

with Q(κ) ∈ Snx
++ and q(κ) ∈ Rnx given by

Q̃(κ) =
(
κ1Q

−1
1 + κ2Q

−1
2

)−1
q̃(κ) = QN (κ)

(
κ1Q

−1
1 q1 + κ2Q

−1
2 q2

)
,

then E(q1, Q1) ∩ E(q2, Q2) ⊆ E
(
q̃(κ), Q̃(κ)

)
.

Proof. The proofs for these two statements can be found in [25]. See
also [18] for alternative derivations. �

Corollary 2 Let Assumptions 1, 2, and 3 be satisfied and let r : R → Rnx

and R : R → Snx
++ be given differentiable functions. Let q : R → Rnx and

Q : R→ Snx
++ be differentiable and satisfy the differential equations

q̇(t) = f(q(t), u(t), v) + ϕ3(q(t), r(t), Q(t), R(t), κ(t))

Q̇(t) = Φ1(Q(t), A(t)) + Φ2 (Q(t), B(t)V B(t)ᵀ, σ(t))

+ Φ2 (Q(t),Ω(A(t), B(t), q(t), u1(t), v,Q(t)), µ(t))

+ Φ3 (q(t), r(t), Q(t), R(t), κ(t)) ,

on the interval [0, T ], for any given functions A : R → Rnx×nx , B : R →
Rnx×nu , σ, µ : R → R++ and κ : R → R+. Then, the ellipsoidal set valued
function Y with Y (t) = E(q(t), Q(t)) satisfies, for all c ∈ Rnx , all t ∈ [0, T ], and
any Z : R→ Knx

C with Z(t) ⊆ E(r(t), R(t)) the differential inequality

V̇ [Y (t)](c) ≥ V [Γ(u1(t), c, Y (t), Z(t))](c)

V [Y (t)](c) ≥ V [X0](c)

with X0 = E(q(0), Q(0)).

Proof. This proof relies on the application of Lemma 2 with Y (t) =
E(q(t), Q(t)). Notice that by differentiability of q andQ, the function V [E(q((·), Q(·))](c)
is also differentiable on [0, T ], for all c ∈ Rnx . Let

x̃(t, h) = x(t) + hf(x(t), u1(t), u2(t))

= x(t) + hf(q(t), u1(t), v) + hA(t)(x(t)− q(t))
+ hB(t)(u2(t)− v) + hn(t)

denote an Euler approximation of the original ODE at time t, where

n(t) ∈ E(0,Ω(A(t), B(t), q(t), u1(t), v(t), Q(t)))
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and x(t) ∈ E(q(t), Q(t)). The second statement of Proposition 1 implies that by
setting

Q̃(t, h) =
(
κ1(t, h)Q(t)−1 + κ2(t, h)R(t)−1

)−1
q̃(t, h) =

(
κ1(t, h)Q(t)−1q(t) + κ2(t, h)R(t)−1r(t)

)
Q̃(t, h) .

we have, by our assumption Z(t) ⊆ E(r(t), R(t)),

Y (t) ∩ Z(t) ⊆ E(q̃(t, h), Q̃(t, h))

as long as κ1(t, h), κ2(t, h) ≥ 0 satisfy

q̃(t, h)ᵀQ̃(t, h)q̃(t, h) = 1− κ1(t, h)(1− q(t)ᵀQ(t)−1q(t))

− κ2(t+ h)(1− r(t)ᵀR(t)−1r(t)) .
(34)

Moreover, since U2 ⊆ E(v, V ), a repeated application of the first statement in
Proposition 1 shows that setting

Q̂(t, h) =
1

λ1(t, h)
(I + hA(t))Q̃(t, h)(I + hA(t))ᵀ

+
h2

λ2(t, h)
B(t)V B(t)ᵀ

+
h2

λ3(t, h)
Ω(A(t), B(t), q(t), u1(t), v,Q(t)))

q̂(t, h) = qN (t+ h) + hf(qN (t+ h), u1(t), v) ,

for any function λ1(t, h), λ2(t, h), λ3(t, h) > 0 with λ1(t, h)+λ2(t, h)+λ3(t, h) =
1, implies

V [Π(t+ h, t, Y (t), Z)](c)

≤ V [E(q̂(t, h), Q̂(t, h))](c) + hγ(h)
(35)

for a continuous function γ : R → R with γ(0) = 0, for all c with ‖c‖ = 1,
because the Euler discretization is accurate for h→ 0. Next, we substitute

λ1(t, h) = 1− hσ(t)− hµ(t)

λ2(t, h) = hσ(t)

λ3(t, h) = hµ(t)

κ1(t, h) = 1− hκ(t) ,

while κ2(t, h) is defined implicitly by (34). Differentiating the above formulas
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for q̂ and Q̂ with respect to h yields

d

dh
q̂(t, 0) = f (q̂(t, 0), u1(t), v)

+ ϕ3

(
q̂(t, 0), r(t), Q̂(t, 0), R(t), κ(t)

)
d

dh
Q̂(t, 0) = Φ1

(
Q̂(t, h), A(t)

)
+ Φ2

(
Q̂(t, 0), B(t)V B(t)ᵀ, σ(t)

)
+ Φ2

(
Q̂(t, 0),Ω(A(t), B(t), q̃(t, t),

u1(t), v, Q̂(t, 0)), µ(t)
)

+ Φ3

(
q̂(t, 0), r(t), Q̂(t, 0), R(t), κ(t)

)
.

Since the right-hand of these derivatives coincide with the differential equations
for q and Q, we must have

q(t+ h) = q̂(t, h) +O(h2) and Q(t, h) = Q̂(t, 0) +O(h2) ,

i.e., (35) implies that there exists a continuous function α : R→ R with α(0) = 0
and

V [Π(t+ h, t, Y (t), Z)](c)

≤ V [E(q(t+ h), Q(t+ h))](c) + hα(h) .
(36)

Thus, the statement of this corollary turns into an immediate of consequence of
Lemma 2. �

B.3 Complete Proof of Theorem 3

The statement of Theorem 3 follows by applying the result of Corollary 2 twice.
Firstly, we apply the corollary to the reverse dynamic system

∂

∂t
z(t) = −f(z(t), u1(T − t), u2(t)) with z(0) ∈ X2(T ) .

with q = qB, Q = QB, r = s, R = S and qB(0) = s(T ) and QB(0) = S(T ).
This yields an enclosure for the backward tube XB[u1]. And secondly, we apply
Corollary 2 to (1) with q = qF, Q = QF, r = qB, R = QB, qF(0) = x0, and
QF(0) = 0, which yields the enclosure of the forward tube XF[u1]. Since both
YB(·) = E(qB(·), QB(·)) and YF(·) = E(qF(·), QF(·)) are enclosures of X[u1] on
[0, T ], constructing a set-valued function YF∩B by taking their pointwise-in-time
intersection yields the statement of the theorem. �
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