
AStrategic LearningAlgorithm for State-basedGames ?

Changxi Li†,Yu Xing‡, Fenghua He†, and Daizhan Cheng‡

†Control and Simulation Center, Harbin Institute of Technology, Harbin 150001, P. R. China

‡Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R.China

Abstract

Learning algorithm design for state-based games is investigated. A heuristic uncoupled learning algorithm, which is a two

memory better reply with inertia dynamics, is proposed. Under certain reasonable conditions it is proved that for any initial

state, if all agents in the state-based game follow the proposed learning algorithm, the action state pair converges almost surely

to an action invariant set of recurrent state equilibria. The design relies on global and local searches with finite memory, inertia,

and randomness. Finally, existence of time-efficient universal learning algorithm is studied. A class of state-based games is

presented to show that there is no universal learning algorithm converging to a recurrent state equilibrium.

Key words: Strategic learning, State-based games, Recurrent state equilibria, Multi-agent systems.

1 Introduction

Many systems, such as biological networks, social net-

works [1], and engineering systems [2], can be described

as a collection of interacting subsystems, which causes

local decisions using local information [3]. To ensure the

emergence of desirable collective behavior by designing

proper local control strategies is the core mission in such

systems. Game-theoretical method is becoming an ap-

pealing tool in control of the above systems as it provides

a modularized design architecture, i.e. the interaction

structure and learning algorithms can be designed sep-

arately [3],[4]. Some outstanding works include: (i) con-

sensus/synchronization of multi-agent systems [3]; (ii)

distributed optimization [5]; (iii) optimization in energy

[6] and transportation networks [7], just to name a few.

? This work is supported partly by the National Natu-

ral Science Foundation of China (NSFC) under Grants

61473099, 61773371, 61733018 and 61333001. Correspond-

ing author: Fenghua He. Tel.: +86 0451-86402947; fax.: +86

0451-86414580.

Email addresses: changxi1989@163.com (Changxi Li),

yxing@amss.ac.cn (Yu Xing), hefenghua@gmail.com

(Fenghua He), dcheng@iss.ac.cn (Daizhan Cheng).

State-based games, an extended model in game-theoretic

control, were proposed in [8]. In fact, the idea of state-

based games can be traced back to [9] (Section 9, Con-

clusion). Since then state-based games have shown their

strong vitality in many fields, such as achieving Pareto

optimality [10], realizing cooperative coverage in un-

known environment [11], and solving distributed eco-

nomic problem in smart grid [12]. Particularly, a com-

pletely uncoupled learning algorithm for general games

is designed for the first time using the theory of state-

based games and regular perturbed Markov chain [22].

Compared with traditional game-theoretical framework,

state-based games provide an additional degree of free-

dom, which is called state, to help coordinate group be-

havior. The underlying “state” has a variety of inter-

pretations ranging from a dummy agent [8] or external

environment [9] to real agents with unknown dynamics

or dynamics for equilibrium selection [13],[14]. Since the

additional degree of freedom is provided to help coor-

dinate group behavior, state-based game is a useful ex-

tended model in game-theoretic control.

One of the core challenges in applying state-based game

method to game-theoretic control is to design a strate-

gic learning algorithm which can converge to the equi-

Preprint submitted to Automatica 18 September 2018

ar
X

iv
:1

80
9.

05
79

7v
1

 [
m

at
h.

O
C

]
 1

6
Se

p
20

18

libria of state-based games. Although [8] proposed a fi-

nite memory learning algorithm for state-based poten-

tial games, to our best knowledge, there is no strategic

learning algorithm for general state-based games. The

purpose of this paper is to design a heuristic algorithm

for general state-based games.

The main contribution of this paper is the designed two

memory strategic learning algorithm for general state-

based games. The designed algorithm relies on global

and local searches using two memory information, in-

ertia, and randomness. Under certain reasonable condi-

tions it is proved that the algorithm converges almost

surely to a recurrent state equilibrium of state-based

games, which is a generalized Nash equilibrium. Finally,

to investigate the existence of universal learning algo-

rithm, a class of state-based games is presented, and for

such state-based games there is no universal learning al-

gorithm converging to a recurrent state equilibrium.

The rest of this paper is organized as follows: Section 2

provides some preliminaries, including the formal defi-

nition of state-based games, recurrent state equilibrium,

state-based potential games, and the theory of learning

in state-based games. Section 3 focuses on the design of

a learning algorithm for general state-based games. Sec-

tion 4 considers the existence of a universal learning algo-

rithm. A brief conclusion is given in Section 5. Appendix

contains three parts. First part reveals the Markov chain

induced by the proposed learning algorithm. Some lem-

mas used in the proof of the convergence of the proposed

learning algorithm are provided in Second part. The con-

vergence of the proposed learning algorithm is proved in

last part.

2 Preliminaries

2.1 State-based games

Definition 1 [8] (State-based game) A finite state-

based game is a quintuple G = {N, {Ai}, {ci}, X, P},
where

(1) N = {1, 2, · · · , n} is the set of agents;

(2) Ai = {1, 2, · · · , ki} is the set of actions of agent i;

(3) ci : A × X → R is the payoff function of agent

i ∈ N , where A =
∏n
i=1Ai is the action profile set,

and
∏

is the Cartesian product;

(4) X = {1, 2, · · · ,m} is the set of underlying finite

state;

(5) P : A ×X → ∆(X) is the Markovian state transi-

tion function, where ∆(X) denotes the set of prob-

ability distributions over the finite state space X.

When a state-based game is played repeatedly, a se-

quence of states

x(0), x(1), · · · , x(t), · · ·

and a sequence of joint actions

a(0), a(1), · · · , a(t), · · ·

are generated. [a(t), x(t)] ∈ A × X is referred to the

action state pair at time t. We give a rough description

on how the action state pair evolves. The sequence of

action profiles is produced using some specified decision

algorithm. Suppose the current state is x(t), and the

action taken by all agent at time t is a(t), then x(t+1) is

generated by the state transition function P (a(t), x(t)),

i. e., the ensuing state is selected randomly according to

the probability distribution P (a(t), x(t)). The dynamics

of state-based games can be described as in Fig. 1, where

‘�’ signifies that the ensuing state x(k + 1) is selected

according to the probability distribution P (a(k), x(k)).

()x t  1() (), , ()na t a t a t 
 (1) (), ()x t P a t x t  (1)x t 




Player i

Player 1

Player n

()ia t

()na t

1()a t

Fig. 1. Dynamics of State-based Games

Denote by X(a|x) ⊆ X the set of reachable states start-

ing from initial state x driven by an invariant action a.

That is to say, a state y ∈ X(a|x) if and only if there

exists a time ty > 0 such that

Pr[x(ty) = y] > 0,

conditioned on the events x(0) = x and x(k + 1) �
P (a, x(k)) for all k ∈ {0, 1, · · · , ty − 1}. The transition

process can be illustrated as

x
a−→ x(1)

a−→ a· · · a−→ x(ty − 1)
a−→ x(ty) = y.

2

Remark 2 As pointed in [8] (Section 3.4), the model of

state-based games is a simplification of Markov games

[15]. In state-based games each agent is myopic (seeks

to optimize the current payoffs), while in markov games

every agent seeks to optimize a discounted sum of future

payoffs.

As a generalization of Nash equilibrium, the equilibrium

in state-based games is called the recurrent state equi-

librium (RSE).

Definition 3 [8] (Recurrent state equilibrium) Con-

sider a state-based game G = {N, {Ai}i∈N , {ci}i∈N , X, P} .
The action state pair [a∗, x∗] is a recurrent state equilib-

rium with respect to the state transition process P (·) if

the following two conditions are satisfied:

(1) The state x∗ satisfies x∗ ∈ X(a∗|x) for every state

x ∈ X(a∗|x∗);
(2) For each agent i ∈ N and every state x ∈ X(a∗|x∗),

ci(a
∗
i , a
∗
−i, x) > ci(ai, a

∗
−i, x), ∀ai ∈ Ai.

Denote P (a; ·, ·) the probability transition matrix of a

joint action a ∈ A in a state-based game G. The first

condition means that if the action state pair [a∗, x∗] is a

recurrent state equilibrium, thenX(a∗|x∗) is a recurrent

class of the Markov chain P (a∗; ·, ·) starting from the

initial state x∗. The second condition implies that a∗ is

a pure Nash equilibrium of state invariant game Gx =

{N,Ai, ci(·, x)} for every state x ∈ X(a∗|x∗).

Consider two action state pairs [a, x] and [b, y]. [a, x]

and [b, y] are called equivalent if the following three con-

ditions are satisfied: i) a = b, ii) [a, x] is a recurrent

state equilibrium, and iii) y ∈ X(a|x). Use the notation

[a, x] ∼ [b, y] to represent that [a, x] and [b, y] are equiv-

alent. Otherwise, it is denoted by [a, x] � [b, y]. It is easy

to verify that ∼ is an equivalence relation. Denote

R(a, x) :=
{

[a, y] : [a, y] ∼ [a, x]
}
.

We call R(a, x) a recurrent state equilibrium set gener-

ated by the recurrent state equilibrium [a, x].

Example 4 Consider the following state-based game

with N = {1, 2}, A1 = A2 = {1, 2}, X = {1, 2, 3}. The

game Gx is a coordination game, prisoner’s dilemma

game, and matching pennies game when x = 1, 2, and 3,

respectively. The payoff matrices are shown as follows.

Table 1

Payoff Bi-Matrix for x = 1 of Example 4 (coordination game)

Agent 1\Agent 2 1 2

1 (4, 4) (1, 3)

2 (3, 1) (2, 2)

Table 2

Payoff Bi-Matrix for x = 2 of Example 4 (prisoner’s dilemma

game)

Agent 1\Agent 2 1 2

1 (2, 2) (0, 3)

2 (3, 0) (1, 1)

Table 3

Payoff Bi-Matrix for x = 3 of Example 4 (matching pennies

game)

Agent 1\Agent 2 1 2

1 (−1, 1) (1, − 1)

2 (1, − 1) (−1, 1)

The state transition process is shown in Fig. 2.

1

2 3

1

2 3

1

2 3

1

2 3

1/3 2/3

1 1

1

3/4
1/4 1

1/2

1/2

2/5

3/51/2 1/2

1

1

a) b)

c) d)

1

(11,)P a   (12,)P a  

(21,)P a   (22,)P a  

Fig. 2. State Transition Diagram of Example 4

One can verify that the recurrent states of Markov chain

P (a = 22, ·) is x = 1, x = 2, and a = 22 is a pure

Nash equilibrium when x = 1, 2. Therefore, action state

pair [a = 22, x = 1] and [a = 22, x = 2] both are the

recurrent state equilibria of Example 4, and [a = 22, x =

1] ∼ [a = 22, x = 2]. Although a = 11 is the pure Nash

equilibrium of G1, x = 1 is a transient state of Markov

chain P (a = 11, ·). So [a = 11, x = 1] is not a recurrent

state equilibrium.

3

2.2 State-based potential games

State-based potential game, which is introduced by J. R.

Marden [8], can guarantee the existence of a recurrent

state equilibrium.

Definition 5 (State-based potential games)[8] A state-

based game G = {N, {Ai}, {ci}, X, P} is called a state-

based potential game if there exists a function φ : A ×
X → R such that for each action state pair [a, x] ∈ A×X,

the following two conditions are satisfied:

(1) For any agent i ∈ N and action a′i ∈ Ai

ci(a
′
i, a−i, x)− ci(a, x) = φ(a′i, a−i, x)− φ(a, x).

(2) For any state x′ in the support of P (a, x),

φ(a, x′) ≥ φ(a, x).

φ is called a potential function of the state-based potential

game, where a−i ∈ A−i :=
∏
j 6=iAj is the joint action

profile other than agent i.

The first condition means that every state invariant

gameGx = {N,Ai, ci(·, x)} is a potential game. The sec-

ond condition ensures that any action state pair which

maximizes the potential function is a recurrent state

equilibrium of the state-based potential game. Denote

by [a∗, x∗] the action state pair which maximizes the po-

tential function, i.e., [a∗, x∗] ∈ arg max[a,x]∈A×X φ(a, x).

Let R(a|x) be the recurrent states of the Markov chain

P (a, ·) starting from state x, which is by definition

nonempty. Obviously, R(a|x) ⊆ X(a|x). Therefore the

second condition of Definition 5 can be relaxed as:

(2) If [a∗, x∗] ∈ arg max[a,x]∈A×X φ(a, x), then [a∗, y] ∈
arg max[a,x]∈A×X φ(a, x) for every y ∈ R(a∗|x∗).

2.3 Learning in state-based games

Roughly speaking, learning in games is a decision-

making process using available information. The differ-

ence of learning algorithm between state-based games

and normal form games is that for the former there is

an additional factor, state, needed to be considered.

Consider a repeated state-based game. The observed se-

quence of agent i at time t is {{a(τ), x(τ)}τ=0,1,...,t−1, x(t)}.
Let Oi(t) denote the obtained/available information of

agent i at time t, that is,

Oi(t) :=
{
{a(τ), x(τ)}τ=0,1,...,t−1, x(t)

}
.

Generally speaking, the action updating mechanism of

agent i can be described by a response algorithm fi [16],

fi : Oi(t)→ ∆(Ai),

where fi is a function which maps agent i’s available

information Oi(t) to a probability distribution over i’s

own actions Ai. Agent i selects the action a(t+ 1) ∈ Ai
according to the probability distribution at time t + 1.

∆(Ai) denotes the set of probability distributions over

Ai.

According to the available information used in making

decisions, the most common learning algorithms can be

categorized as uncoupled learning algorithms and com-

pletely uncoupled learning algorithms, whose definition

are shown as follows.

Definition 6 [17] A learning algorithm is called

i) uncoupled if the available information of agent i used

for decision-making is the payoff structure of himself and

history sequence of the play, i.e.,

Oi(t) =
{
{a(τ), x(τ)}τ=0,1,...,t−1, x(t); ci(a, x)

}
.

ii) completely uncoupled if the available information of

agent i used for decision-making is his own past realized

payoffs and actions, i.e.,

Oi(t) =
{
{ai(τ), x(τ), ci(a(τ), x(τ))}τ=0,1,...,t−1, x(t)

}
.

Replicator dynamics [18], best-reply [19], and fictitious

play [20] are uncoupled learning algorithms. Regret

learning [21] and trial-and-error learning [22] are com-

pletely uncoupled learning algorithms.

The paper focuses on designing a natural and effec-

tive strategic learning algorithm which converges to re-

current state equilibrium of the state-based games. By

natural we require the algorithm being uncoupled or

completely uncoupled. By effective we mean that the

designed algorithm should converge to the equilibrium

heuristically, not be trapped in an adjustment cycle, and

not be predicted easily by each agent’s opponents.

4

3 A two-memory better reply learning algo-

rithm

3.1 Available information

Consider a repeated state-based game. Each agent seeks

to maximize its myopic payoff. Agent i knows his own

payoff function, but he doesn’t know his opponents’ ones.

He can observe current state x and his opponents’ ac-

tions a−i ∈ A−i, but the agent doesn’t know the struc-

ture of the Markovian state transition function P . Each

agent can recall the past 2-period information, i.e. 2-

memory, at each time. Denote by ξi(t) the information

used to make decision for agent i at time t ≥ 2

ξi(t) :=
{
a(t− 2), a(t− 1), x(t); ci(a, x)

}
.

Then the response algorithm fi of agent i has the fol-

lowing form

pi(t) = fi
(
ξi(t)

)
∈ ∆(Ai).

For any action state pair [a, x] ∈ A×X, agent i’s strict

better reply set is defined as

Bi(a;x) :=
{
a′i ∈ Ai : ci(a

′
i, a−i, x) > ci(a, x)

}
.

For simplicity, let Bi(t) := Bi(a(t− 1);x(t)), ∀t ≥ 1.

3.2 The flow of the two-memory better reply learning

algorithm

Suppose the information of the past two periods at time

t ≥ 2 is [a(t− 2), x(t− 1)]× [a(t− 1), x(t)] ∈ (A×X)×
(A×X). The response algorithm fi of agent i is defined

as follows:

(i) Check whether a(t− 2) = a(t− 1) or not at time t.

(ii) If a(t − 2) = a(t − 1). Then each agent calculates

Bi(t) and check whetherBi(t) = ∅ or not. IfBi(t) = ∅,
then agent i plays ai(t − 1) next moment. Otherwise

agent i selects actions according to a probability distri-

bution onAi, the support of which is {ai(t−1)}∪Bi(t).
Particularly, agent i selects ai(t− 1) with probability

εi ∈ (0, 1), the inertia of agent i, and the actions in

Bi(t) with equal probability.

(iii) If a(t− 2) 6= a(t− 1), then all agents take actions

simultaneously according to their probability distri-

butions with full support. Particularly, agent i selects

ai(t−1) with probability εi ∈ (0, 1), and other actions

in Bi(t) with equal probability.

Denote by paii (t) the probability that agent i selects ai ∈
Ai at time t. The detailed algorithm of the proposed

learning algorithm is shown in Algorithm 1.

Algorithm 1 . Two memory better reply learning algo-

rithm
Input: n, Ai, ci(a, x), X, P (x, a), εi.

Output: Recurrent state equilibrium of G.

1: Initialization: Choose a initial state x(1) ∈ X ran-

domly. Set simulation time T ≥ 3.

2: for i = 1 : n do

3: paii (1) = 1
|Ai| ,∀ai ∈ Ai;

4: end for

5: x(2) � P (a(1), x(1));

6: for i = 1 : n do

7: paii (2) = 1
|Ai| ,∀ai ∈ Ai;

8: end for

9: x(3) � P (a(2), x(2));

10: for t = 3 : T do

11: if a(t− 2) = a(t− 1) then

12: for i = 1 : n do

13: if Bi(t) = ∅ then

14: ai(t) = ai(t− 1);

15: else

16: p
ai(t−1)
i (t) = εi;

17: paii (t) = 1−εi
|Bi(t)| ,∀ai ∈ Bi(t);

18: end if

19: end for

20: else

21: for i = 1 : n do

22: p
ai(t−1)
i (t) = εi;

23: paii (t) = 1−εi
|Ai|−1 ,∀ai ∈ Ai \ {ai(t− 1)};

24: end for

25: end if

26: x(t+ 1) � P (a(t), x(t));

27: end for

28: return

Remark 7 The proposed learning algorithm is a 2-

memory, stochastic learning algorithm with inertia εi
for agent i. It is a combination of testing, searching,

and lock-in. Since the learning algorithm is 2-memory,

and every agent can can observe the opponents’ actions.

So each agents can tell whether a(t − 2) = a(t − 1) or

5

not. This is testing. The searching process consists of

local search and global search. If a(t − 2) 6= a(t − 1),

then all agents take actions simultaneously according to

their probability distributions with full support. This is a

global stochastic search, both for agents and actions. If

a(t− 2) = a(t− 1) and Bi(t) 6= ∅, then agent i will take

actions from Bi(t). This is a local random search. If

a(t− 2) = a(t− 1) and [a(t− 2), x(t− 2)] is an RSE, all

agents will repeat their actions forever, which is called

lock-in.

Denote by h(t) := {a(t− 2), a(t− 1), x(t)} the past two

plays, t > 2. Then ξi(t) = {h(t); ci(a, x)}, i ∈ N. The

flow of the two-memory better reply learning algorithm

can be described as in Fig. 3.




Player i

Player 1

Player n

 1 1 1() ()a t f t

 (1) (), ()x t P a t x t  () ()i i ia t f t

 () ()n n na t f t

()a t (1)h t ()h t

Fig. 3. Dynamics of State-based Games

3.3 Convergence of the proposed learning algorithm

Consider a state-based game G =
{
N, {Ai}, {ci}, X, P

}
.

Let

P̄ (·, ·) :=
1

|A|
∑
a∈A

P (a; ·, ·),

and we know that P̄ (·, ·) ∈ R|X|×|X| is row stochastic.

Then a Markov chain is defined by P̄ with X as its state

space. Suppose G has at least one RSE, and let

A∗ = {a ∈ A|there exists a state x, s.t. [a, x] is a RSE}.

For a ∈ A∗, denote

X(a) := {x ∈ X : ∃x∗ ∈ X(a|x), s.t. [a, x∗] is an RSE}.

The set X(a),∀a ∈ A∗ contains all states from which

the algorithm can reach an RSE class of action a with

positive probability by only adopting the same action a.

Let X∗ :=
⋃
a∈A∗ X(a) ⊆ X.

Theorem 8 Consider a state-based game G = {N, {Ai},
{ci}, X, P}, where the recurrent state equilibria exist.

Suppose that either X \X∗ = ∅, or X \X∗ 6= ∅ and the

following assumptions hold:

(i) For every recurrent class R̄ of P̄ , there exists an

action a∗ ∈ A and a state x∗ ∈ R̄ such that [a∗, x∗] is

an RSE.

(ii) P (a;x, x) > 0 for all a ∈ A and x ∈ X \X∗.

Then for any initial state x0 ∈ X, if all agents play the

game G by the proposed two memory better reply learning

algorithm, the action state pair converges almost surely

to an action invariant set of recurrent state equilibria.

Conditions (i) and (ii) of Theorem 8 guarantee that there

exists a positive probability “path” which leads any ini-

tial action state pair to an RSE. The proof of Theorem

8 is presented in the Appendix.

The following example shows that the assumption (ii)

of Theorems 7 avoids the situation where some desired

actions cannot be selected according to the learning al-

gorithm.

Example 9 Consider the following state-based game

with N = {1, 2}, A1 = A2 = {C,D}, X = {1, 2, 3, 4},
and A = {CC,CD,DC,DD}. The payoff bi-matrices

are shown in Table 4-Table 7.

Table 4

Payoff Bi-Matrix for x = 1 of Example 9

Agent 1\Agent 2 C D

C (5, 4) (2, 3)

D (4, 2) (3, 1)

Table 5

Payoff Bi-Matrix for x = 2 of Example 9

Agent 1\Agent 2 C D

C (1, 2) (3, 1)

D (2, 0) (2, 1)

Table 6

Payoff Bi-Matrix for x = 3 of Example 9

Agent 1\Agent 2 C D

C (−1, 1) (1,−1)

D (1,−1) (−1, 1)

Table 7

Payoff Bi-Matrix for x = 4 of Example 9

Agent 1\Agent 2 C D

C (2, 2) (2, 3)

D (0, 3) (3, 1)

6

The Markovian state transition matrices are as follows:

P (CC; ·, ·) =



1 0 0 0

0 1 0 0

0 1
2

1
2 0

0 0 1
2

1
2


, P (CD; ·, ·) =



1 0 0 0

1
2

1
2 0 0

0 0 0 1

0 0 0 1


,

P (DC; ·, ·) =



1
2

1
2 0 0

0 0 0 1

0 0 0 1

0 0 0 1


, P (DD; ·, ·) =



1 0 0 0

0 1
2 0 1

2

0 0 0 1

0 0 0 1


.

It can be observed that the only RSE is (CC, 1). Suppose

that x(0) = 4, and the only possible choice of actions such

that the system leaves the state 4 and reaches the state 2 is

adopting CC twice. This is because a(0) must be CC and

x(1) = 3 with probability 1/2. Although a(1) can be any

action in A, actions CD, DC, and DD make the system

return to the state 4. Therefore, a(1) should be CC too,

and x(2) = 2 with probability 1/2 on the condition that

x(1) = 3.

However, since B1(CC, 2) = {D} and B2(CC, 2) = ∅,
the algorithm can only select actions from set {CC,DC}
at time t = 2. The choice CC makes the state of the sys-

tem stay at 2, while the latter makes x(3) = 4, and every-

thing returns to the beginning. Thus, the algorithm can-

not reach the RSE from the initial state x(0) = 4, though

P̄ is irreducible, and the assumptions (i) of Theorem 8

holds.

4 Existence of universal time-efficient learning

algorithm

4.1 Time efficiency

One may be interested in the complexity of the proposed

learning algorithm, especially the time efficiency. The

time efficiency of a learning algorithm is defined as fol-

lows:

Definition 10 [17] A learning algorithm is called time

efficient if the time for the algorithm to converge to an

equilibrium is polynominal with respect to the number of

agents.

[23] proved that there does not exist any time-efficient

uncoupled learning algorithm that converges to a pure

Nash equilibrium for generic normal form games where

such an equilibrium exists. As state-based games contain

normal form games as its special case, we can conclude

that:

Proposition 11 There does not exist any time-efficient

uncoupled learning algorithms that converge to a recur-

rent state equilibrium for general state-based games where

such an equilibrium exists.

4.2 A counter example

In fact, when it comes to state-based games, things be-

come a bit more complicated. There is even no universal

learning algorithm converging to a recurrent state equi-

librium. We present the following example.

Example 12 Consider the following state-based game

with N = {1, 2}, A1 = A2 = {1, 2}, X = {1, 2, 3, 4}.
The payoff matrices are shown in Table 8-Table 11.

Table 8

Payoff Bi-Matrix for x = 1 of Example 12

Agent 1\Agent 2 1 2

1 (5, 4) (2, 3)

2 (4, 2) (3, 1)

Table 9

Payoff Bi-Matrix for x = 2 of Example 12

Agent 1\Agent 2 1 2

1 (2, 2) (3, 1)

2 (0, 3) (2, 1)

Table 10

Payoff Bi-Matrix for x = 3 of Example 12

Agent 1\Agent 2 1 2

1 (−1, 1) (1, − 1)

2 (1, − 1) (−1, 1)

The Markov transition matrices under different actions

7

Table 11

Payoff Bi-Matrix for x = 4 of Example 12

Agent 1\Agent 2 1 2

1 (2, 2) (2, 3)

2 (0, 3) (3, 1)

have the following form:

P (a; ·, ·) =



p11(a), p12(a), 0, 0

p21(a), p22(a), 0, 0

0, 0, p33(a), p34(a)

0, 0, p43(a), p44(a)


,

where 0 < pij(a) < 1 is the probability that state i trans-

fers to state j, ∀a ∈ {11, 12, 21, 22}.

It is obvious that action state pair [a = 11, x = 1] and

[a = 11, x = 2] are RSEs. For any learning algorithms,

once the process enters action state pair [a, x = 3] or

[a, x = 4], it cannot escape from such an action state pair.

Therefore, there does not exist any learning algorithms

that converge to a recurrent state equilibrium in such

state-based games.

According to Example 12, the following claim is obvious.

Proposition 13 If for all Markov chain P (a; ·, ·),∀a ∈
A, there exists a common closed set, denoted by Xc ⊆ X,

s.t., such that, for all x ∈ Xc and a ∈ A, [a, x] is not an

RSE. Then there does not exist any uncoupled learning

algorithm that converge to an RSE for generic state-based

games even if such an equilibrium exists.

The reason why there does not exist such learning algo-

rithms is that for a given state-based game the dynamic

of the stateP (a; ·, ·) is pre-given, which is uncontrollable.

5 Conclusion

An extended model in game theory, called state-based

games, is investigated in this paper. An uncoupled two

memory learning algorithm is proposed. We proved that

under certain reasonable conditions the proposed learn-

ing algorithm converges to a recurrent state equilibrium

of a state-based games. Since an additional degree of

freedom is provided to help coordinate group behavior,

state-based game is an useful extended model in game-

theoretic control. The existence of time-efficient univer-

sal learning algorithm is also investigated. A numerical

example is presented to show that there is even no uni-

versal learning algorithm converging to a recurrent state

equilibrium. Future works will focus on the applications

of the state-based game model and the learning algo-

rithm to engineering control problems.

Appendix

A The proposed algorithm and corresponding

Markov chain

The proposed 2-memory learning algorithm defines a

discrete-time Markov chain {ω(t), t ≥ 0} with finite

state space Ω := X × A × X × A × X, where ω(t) =

[x(t), a(t), x(t+ 1), a(t+ 1), x(t+ 2)]T , t ≥ 0.

Let xi ∈ X and ai ∈ A be the state and action at time i,

respectively. The initial distribution of the Markov chain

{ω(t)} is

Pr
{
ω(0) = [x0, a0, x1, a1, x2]T

}
=
(∏

1≤i≤n
1
|Ai|

)2
p(x0)P(a0;x0, x1)P(a1;x1, x2),

where p : X → [0, 1] is the probability distribution of for

initial state. For the sake of simplification, suppose the

inertia of agent i is the same, i.e., ε = εi.

Consider any two states ω1, ω2 ∈ Ω of the Markov

chain {ω(t)}, where ω1 = [x1, a1, x2, a2, x3]T and

ω2 = [y1, b1, y2, b2, y3]T . According to the learning al-

gorithm, the transition probability from ω1 to ω2 of the

Markov chain {ω(t)} is as follows:

(1) If [y1, b1, y2] 6= [x2, a2, x3], then

Pr {ω(t+ 1) = ω2|ω(t) = ω1} = 0.

(2) If [y1, b1, y2] = [x2, a2, x3] and a1 6= a2, then

Pr {ω(t+ 1) = ω2|ω(t) = ω1}

= εn−|H(b1,b2)| ·
∏
i∈H

1− ε
|Ai| − 1

· P(b2; y2, y3),

where H(a, b) := {i ∈ N : ai 6= bi}, a, b ∈ A.

8

(3) If [y1, b1, y2] = [x2, a2, x3] and a1 = a2, then

Pr {ω(t+ 1) = ω2|ω(t) = ω1}

= εn−|H(b1,b2)|−|N(b1,y2)| × P(b2; y2, y3)

×
∏
i∈H

1− ε
|Bi(b1, y2)|

IBi(b1,y2)((b
2)i),

where N(a, x) := {i ∈ N : Bi(a, x) = ∅}, and

IBi(a,x)(bi) is an indicator function such that

IBi(a,x)(bi) = 1 if bi ∈ Bi(a, x) and IBi(a,x)(bi) = 0

if bi /∈ Bi(a, x), a ∈ A, x ∈ X, bi ∈ Ai.

B Some lemmas used in proof of Theorem 7

Denote D(a, x) := {b ∈ A : bi ∈ Bi(a, x) ∪ {ai}, i ∈ N}
as the collection of action vectors whose entries are strict

better reply actions for a and x or entries of a. From

the definition, we know that {a} ⊆ D(a, x) ⊆ A for any

a ∈ A and x ∈ X.

Lemma 14 Consider a state-based game, where the

RSE exists. For any fixed initial value x(0) = x0 and

fixed action-state pairs (a0, x1), (a1, x2) of the learning

algorithm, if there exists a positive integer K ≥ 2 and a

sequence of action-state pairs {(ai, xi+1), 2 ≤ i ≤ K},
where ai ∈ A, xi+1 ∈ X, 2 ≤ i ≤ K, such that

(i) P (a2;x2, x3)P (a3;x3, x4) · · ·P (aK ;xK , xK+1) > 0;

(ii) if ak−1 = ak for some integer k ∈ [1,K), then

ak+1 ∈ D(ak, xk+1);

(iii) (aK , xK+1) is an RSE,

then the algorithm converges to some RSE almost surely,

by which we mean that P{τ < ∞} = 1, where τ :=

min{t ≥ 2 : (at, x(t+1)) is an RSE }, and, at the same

time, that a(τ+t) = aτ , x(τ+t) ∈ X(aτ |x(τ+1)) for t ≥ 1.

Proof: For convenience, let

ω(t) := [xt, at, xt+1, at+1, xt+2]T ,∀t ≥ 0,

unless elsewhere stated. The assumptions imply that, for

any fixed initial state ω(0) = [x0, a0, x1, a1, x2]T ,

Pr{ω(K − 1)|ω(0)} > 0.

From the transition probability of {ω(t)} and that

(aK , xK+1) is an RSE, it follows that

Pr{ω(K + 1) = [xK+1, aK , xK+2, aK , xK+3]T

|ω(K − 1) = [xK−1, aK−1, xK , aK , xK+1]T } > 0,

where xK+2, xK+3 ∈ X(aK |xK+1).

Thus,

Pr{ω(K + 1) = [xK+1, aK , xK+2, aK , xK+3]T

|ω(0) = [x0, a0, x1, a1, x2]T } > 0,

Therefore, the algorithm can reach an RSE from any

state ω(0) ∈ Ω with positive probability. 2

Lemma 15 Suppose that the following assumptions

hold:

(i) P̄ is irreducible;

(ii) there exists an action a∗ ∈ A and a state x∗ ∈ X
such that (a∗, x∗) is an RSE;

(iii) P (a;x, x) > 0 for all a ∈ A and x ∈ X.

Then for any initial state x ∈ X, the algorithm converges

to some RSE class a.s.

Proof: It suffices to validate the conditions in Lemma 14

hold.

(i) For any fixed initial state [x0, a0, x1, a1, x2], if a0 6=
a1, and (a1, x2) is an RSE, then the desired sequence

of action-state pairs is obtained when we let a2 = a1.

If x2 ∈ X(a∗|x∗), then let a2 = a∗, and the desired

sequence is obtained too.

Now assume that a0 6= a1, that (a1, x2) is not an RSE,

and that x2 6∈ X(a∗|x∗). From assumption (i), it follows

that, for x2 ∈ X, there exists a positive integer K1 ≥ 3

such that

P̄ (x2, x3)P̄ (x3, x4) · · · P̄ (xK1−1, xK1) > 0,

where xi 6= x∗, 2 ≤ i < K1, and xK1 = x∗. The defini-

tion of P̄ implies that there exists a sequence of action-

state pairs {(ai, xi+1), 2 ≤ i < K1} such that

P (a2;x2, x3)P (a3;x3, x4) · · ·P (aK1−1;xK1−1, x∗) > 0,

where xi 6= x∗, 2 ≤ i < K1. Let aK1 = a∗.

Without loss of generality, suppose that (ai, xi+1) is

not an RSE for all 2 ≤ i < K1. Otherwise let K̃1 :=

min{2 ≤ i < K1 : (ai, xi+1) is an RSE} and consider

the sequence {(ai, xi+1), 0 ≤ i ≤ K̃1}.

Suppose that there exists some integer k ∈ [1,K1) such

that ak−1 = ak but ak+1 6∈ D(ak, xk+1). Denote k̂ :=

9

1 + max{t ∈ [0, k − 1) : at 6= ak−1}. The assumption

a0 6= a1 implies that k̂ ≥ 1. Insert an action ãi 6= ai

between ai and ai+1, k̂ ≤ i < k. In fact, ãi, k̂ ≤ i < k,

can be the same action vector. Assumption (iii) ensures

that

P (ak̂;xk̂, xk̂+1)P (ãk̂;xk̂+1, xk̂+1)P (ak̂+1;xk̂+1, xk̂+2) · · ·
P (ak−1;xk−1, xk)P (ãk−1;xk, xk)P (ak;xk, xk+1) > 0.

The condition (ii) in Lemma 14 is satisfied for this new

sequence of action-state pairs, and the desired sequence

is obtained in this way.

(ii) If a0 = a1, and (a1, x2) is an RSE, then let a2 = a1

and x3 ∈ X(a1|x2).

(iii) If a0 = a1, but (a1, x2) is not an RSE, then, accord-

ing to the learning rule, one can choose a2 6= a1. By ap-

plying the argument above to (x1, a1, x2, a2, x3), we can

obtain the desired sequence of action-state pairs. 2

Lemma 16 Suppose that the following assumptions

hold:

(i) for every recurrent class R̄ of P̄ , there exists an action

a∗ ∈ A and a state x∗ ∈ R̄ such that (a∗, x∗) is an RSE;

(ii) P (a;x, x) > 0 for all a ∈ A and x ∈ X.

Then for any initial state x ∈ X, the algorithm converges

to some RSE class a.s.

Proof: From the proof of Lemma 15, it suffices to show

that the conditions in Lemma 14 still hold when a0 6= a1,

and x2 is a transient state of P̄ . If there exists an action

a∗ ∈ A such that (a∗, x2) is an RSE, then let a2 = a∗

and the desired sequence is obtained. Otherwise, since

x2 is transient for P̄ , we know that there exists a positive

integer K1 ≥ 3 and a recurrent state of P̄ , x̃, such that

P̄ (x2, x3)P̄ (x3, x4) · · · P̄ (xK1−1, xK1) > 0,

where xi 6= x̃, 2 ≤ i < K1; xK1 = x̃; (ã, x̃) is an RSE for

some ã ∈ A. The definition of P̄ implies that there exists

a sequence of action-state pairs {(ai, xi+1), 2 ≤ i < K1}
such that

P (a2;x2, x3)P (a3;x3, x4) · · ·P (aK1−1;xK1−1, x̃) > 0,

where xi 6= x̃, 2 ≤ i < K1. Let aK1 = ã.

We can obtain the desired sequence by applying the same

argument in Lemma 15. 2

C The proof of Theorem 7

Proof: Before proving the theorem, we point out the fol-

lowing facts: if

(a) the action state pair [a(t), x(t)] is a RSE,

(b) the action a(t) is repeated for the next time, i.e.

a(t+ 1) = a(t),

(c) all agents use the proposed learning algorithm,

then for ∀t′ > t + 1, [a(t′), x(t′)] will be a RSE and

a(t′) = a(t).Therefore according to Lemma 14, the proof

of Theorem 8 is equivalent to proving the following state-

ments: for any action state pair [a(t), x(t)],∀t > 0, there

exists a finite timesteps T > 0 and a positive probabil-

ity ρ ∈ (0, 1] such that [a(t+ T), x(t+ T)] is a RSE and

a(t+ T) = a(t+ T + 1) with at least probability ρ > 0.

Denote by S := (A × X) × (A × X). Split S into four

disjoint parts:

S1 :=
{

[a, x]× [b, y] ∈ S : [a, x] ∼ [b, y]
}

;

S2 :=
{

[a, x]× [b, y] ∈ S : [a, x] � [b, y] and [b, y] is a

RSE
}

;

S3 :=
{

[a, x]× [b, y] ∈ S : [a, x] � [b, y], [b, y] is not a

RSE, and a 6= b
}

;

S4 :=
{

[a, x]× [b, y] ∈ S : [a, x] � [b, y], [b, y] is not a

RSE, and a = b
}
.

Before starting the proof, we suppose εi = ε, ∀i ∈ N.

This assumption will not affect the results.

Case 1: Suppose the play of the past two periods at time

t > 2 is [a(t− 2), x(t− 1)]× [a(t− 1), x(t)] ∈ S1. Then

there exists a recurrent state equilibrium setR(a, x) such

that [a(t−2), x(t−1)]×[a(t−1), x(t)] ∈ R(a, x)×R(a, x).

It follows that a(t − 2) = a(t − 1) = a. According to

the proposed learning algorithm, for any t′ ≥ t, [a(t′) =

a, x(t′ + 1)] is a RSE, and we are done.

Case 2: Suppose [a(t−2), x(t−1)]× [a(t−1), x(t)] ∈ S2.

Denote by

S1
2 :=

{
[a, x]× [b, y] ∈ S2 : a = b

}
,

S2
2 :=

{
[a, x]× [b, y] ∈ S2 : a 6= b

}
.

10

• If [a(t−2), x(t−1)]×[a(t−1), x(t)] ∈ S1
2 , then accord-

ing to condition (i) of the proposed learning algorithm,

all agent will take a(t − 1) at time t with probability

1. So the action state pair [a(t) = a(t− 1), x(t+ 1)] is

a RSE. Therefore [a(t−1), x(t)]× [a(t), x(t+1)] ∈ S1.

According to the above argument, we are done.

• If [a(t − 2), x(t − 1)] × [a(t − 1), x(t)] ∈ S2
2 , then ac-

cording to condition (ii) of the proposed learning algo-

rithm, all agent will take action simultaneously. The

probability of a(t) = a(t− 1) is at least εn. Hence the

probability of [a(t−1), x(t)]× [a(t), x(t+1)] transfers

into S1 after 2 steps with at least probability εn.

Once [a(t − 1), x(t)] × [a(t), x(t + 1)] transfers into S1,

it will stay in a recurrent state equilibrium set R(a, x)

forever.

Case 3: Suppose [a(t−2), x(t−1)]× [a(t−1), x(t)] ∈ S3.

Let [a∗, x∗] be an RSE of G. According to algorithm (ii)

of the proposed learning algorithm, all agents will take

action simultaneously. The probability of a(t) = a∗ is

δ1 = εn−|H(a(t−1),a∗)|
∏
ij∈H

1− ε
|Aij | − 1

> 0,

where H(a(t− 1), a∗) = {i : ai(t− 1) 6= a∗i }.

• If x(t + 1) = x′ ∈ X(a∗|x∗). Denote by γ1 > 0 the

probability that x(t)→ x(t+1) = x′ under the action

a∗. Then [a(t−1), x(t)]× [a(t), x(t+ 1)] transfers into

S2 with probability δ1 · γ1 > 0.

• If x(t+1) /∈ X(a∗|x∗). (i) If X \X∗ = ∅. According to

the definition of X∗, we know that there exists an ac-

tion a such that [a, x(t)] is an RSE. As a(t−2) 6= a(t−
1), according to the learning algorithm the probabil-

ity of a(t) = a is positive. And x(t+1) ∈ X(a(t)|x(t)).

The probability of a(t) = a is

δ2 = εn−|H(a(t−1),a)|
∏
ij∈H

1− ε
|Aij | − 1

> 0,

where H(a(t − 1), a) = {i : ai(t − 1) 6= ai}. Then

[a(t − 1), x(t)] × [a(t) = a, x(t + 1] transfers into S2

with probability δ2 · P (a;x(t), x(t + 1)) > 0. (ii) If

X \X∗ 6= ∅, and there exists an action b ∈ A∗, such

that x(t) ∈ X(b). As a(t− 2) 6= a(t− 1), according to

the learning algorithm, let a(t) = b. According to the

definition, we know that there exists a finite integer

K > 0 and a state x ∈ X such that

x(t)
b−→ b· · · b−→ x(t+K) ∈ X(b|x), (C.1)

where (b, x) is an RSE. Then [a(t+K − 1) = b, x(t+

K)]×[a(t+K) = b, x(t+K+1)] transfers into S2 with

probability εnK · δ3 ·P (b;x(t+K), x(t+K + 1)) > 0,

where

δ3 = εn−|H(a(t+K−2),b)|
∏
ij∈H

1− ε
|Aij | − 1

> 0.

(iii) If X \X∗ 6= ∅, and x(t) /∈ X∗. From the proof of

Lemma 15 and Lemma 16, we know that there exists

a positive integer K1 ≥ 0 and a recurrent state x̃ of

P̄ , such that

P̄ (x(t), x(t+ 1)) · · · P̄ (x(t+K1 − 1), x(t+K1)) > 0,

where x(t+ τ) /∈ X∗, 0 ≤ τ < K1, x(t+K1) = x̃ and

x̃ ∈ X(ã) for some ã ∈ A∗. Moreover, the definition of

P̄ implies that there exists a sequence of action-state

pairs {(a(t+ τ), x(t+ τ + 1)), 0 ≤ τ < K1} such that

P (a(t);x(t), x(t+ 1))P (a(t+ 1);x(t+ 1), x(t+ 2))

· · ·P (a(t+K1 − 1);x(t+K1 − 1), x̃) > 0,

where x(t + τ) /∈ X∗, 0 ≤ τ < K1, and x̃ ∈ X(ã) for

some ã ∈ A∗. Assumption (ii) in Theorem 7 ensures

that by applying the same argument as in Lemma 15

and Lemma 16, with a slight abusement of notations,

we can obtain a sequence of action-state pairs {(a(t+

τ), x(t+τ+1)), 0 ≤ τ ≤ K1}, which satisfy the all the

conditions in Lemma 14. Using the same arguments

in above condition (ii), there exists a a finite integer

K2 > 0, such that

[a(t+K1 +K2 − 1), x(t+K1 +K2)]

× [a(t+K1 +K2), x(t+K1 +K2 + 1)]

transfers into S2 with positive probability.

According to the arguments in Case 2, we can conclude

that any state in S3 will transfer into S1 with a positive

probability after finite steps.

Case 4: Suppose [a(t−2), x(t−1)]× [a(t−1), x(t)] ∈ S4.

Let [a∗, x∗] be an RSE of G.

11

• If a(t − 1) = a∗, according to the arguments in Case

3, we can conclude that

[a(t− 1) = a∗, x(t)]× [a(t) = a∗, x(t+ 1)]

will transfer into S1 will a positive probability after

finite steps. Similar with the arguments in Case 2,

the probability that [a(t − 1), x(t)] × [a(t), x(t + 1)]

transfers into S2 is at least δ2 · γ3 · εnm > 0.

• If a(t − 1) 6= a∗, there must be an agent i ∈ N with

an action a′i ∈ Ai for some state x′ ∈ X(a(t− 1)|x(t))

such that

ci(a
′
i, a−i(t− 1), x′) > ci(a(t− 1), x′).

Otherwise, a(t− 1) = a∗. Since x′ ∈ X(a(t− 1)|x(t)),

there exists a time t′ ∈ {t+1, . . . , t+m+1} such that

Pr[x(t′) = x′] > θ > 0 (C.2)

conditioned on the events x(t), a(t − 1) = a(t) =

· · · = a(t′−1). The above events happen with at least

probability θ · εnm. Denote by a′ = (a′i, a−i(t− 1)). If

(a′, x′) is an RSE. Then

[a(t′ − 1) = a(t− 1), x(t)]× [a′, x′]

transfers into S2. Notice that a′ 6= a(t′ − 1). If (a′, x′)

is not an RSE,

[a(t′ − 1) = a(t− 1), x(t)]× [a′, x′]

transfers into S3. According to the arguments in Case

2 and Case 3, we can conclude that any state in S4

will transfer into S1 will a positive probability after

finite steps.

Summarizing Case 1, Case 2, Case 3 and Case 4, we

conclude that for any fixed initial state x(0) and any

action state pair [a(t), x(t + 1)],∀t > 0, there exists a

finite time T such that [a(t+T), x(t+T + 1)] is an RSE

and a(t+ T) = a(t+ T + 1) with a positive probability.

2

References

[1] J. R. P. French, “A formal theory of social power,”

Psychological Review, vol. 63, no. 3, pp. 181-194, 1956.

[2] F. Bullo, Lectures on Network Systems. CreateSpace. ISBN:

978-1986425643, 2018. http://motion.me.ucsb.edu/book-lns.

[3] J. R. Marden and J. S. Shamma, “Game theory and

distributed control,” Handbook of Game Theory with

Economic Applications, vol. 4, pp. 861-899, 2015.

[4] C. Ocampo-Martinez and N. Quijano, “Game-theoretical

methods in control of engineering systems: an introduction to

the special issue, IEEE Control Systems, vol. 37, no. 1, pp.

30-32, 2017.

[5] B. Yang and M. Johansson, “Distributed optimization and

games: A tutorial overview,” Networked Control Systems, vol.

406, pp. 109-148, 2010.

[6] W. Saad, Z. Han, H. Poor, and T. Basar, “Game-theoretic

methods for the smart grid: an overview of microgrid systems,

demand-side management, and smart grid communications,”

IEEE Signal Process. Mag., vol. 29, pp. 86-105, 2012.

[7] X. Wang, N. Xiao, T. Wongpiromsarn, L. Xie, E. Frazzoli, and

D. Rus, “Distributed consensus in noncooperative congestion

games: an application to road pricing,” in Proc. 10th IEEE

Int. Conf. Contr. Aut., Hangzhou, China, 1668-1673, 2013.

[8] J.R. Marden, “State based potential games,” Automatica, vol.

48, no. 12, pp. 3075-3088, 2012.

[9] H.P. Young, Strategic Learning and Its Limits. Oxford, U.K.:

Oxford Univ. Press, 2004.

[10] J. R. Marden, H. P. Young and L. Y. Pao, “Achieving Pareto

optimality through distributed learning,” SIAM Journal on

Control and Optimization, vol. 52, no. 5, pp. 2753-2770, 2014.

[11] S. Rahili and W. Ren, “Game theory control solution for

sensor coverage problem in unknown environment”, in the

Proceedings of 53rd IEEE Conference on Decision and Control,

2014: 1173-1178.

[12] Y. Liang, F. Liu, W. Wei, and S. Mei, “State-based potential

game approach for distributed economic dispatch problem in

smart grid”, In the Proceedings of IEEE Power and Energy

Society General Meeting (PESGM), 2016:1-5.

[13] B.S.R. Pradelski and H.P. Young, “Learning efficient Nash

equilibria in distributed systems,” Games and Economic

behavior, vol. 75, no. 2, pp. 882-897, 2012.

[14] J.R. Marden, “Selecting efficient correlated equilibria

through distributed learning,” Games and Economic

Behavior, vol. 106, pp. 114-133, 2017.

[15] L.S. Shapley, “Stochastic Games, ” in Proceedings of the

National Academy of Sciences of the United States of America

vol. 39, no. 10, pp. 1095-1100, 1953.

[16] J.S. Jordan, “Three problems in learning mixed-strategy

Nash equilibria,” Games and Economic Behavior, vol. 5, no.

3, pp. 368-386, 1993.

[17] M.S. Talebi, “Uncoupled learning rules for seeking equilibria

in repeated plays: An overview,” arXiv preprint, arXiv:

1310.5660, 2013.

[18] T. Börgers and R. Sarin, “Learning through reinforcement

and replicator dynamics,” Journal of Economic Theory, vol.

77, no. 1, pp. 1-14, 1997.

[19] P. Ramazi and M. Cao, “Asynchronous decision-making

dynamics under best-response update rule in finite

12

http://motion.me.ucsb.edu/book-lns

heterogeneous populations,” IEEE Trans. Autom. Control,

vol. 63, no. 3, pp. 742-751, 2018.

[20] J.S. Shamma and G. Arslan, “Dynamic fictitious play,

dynamic gradient play, and distributed convergence to Nash

equilibria,” IEEE Trans. Autom. Control, vol. 50, no. 3, pp.

312-327, 2005.

[21] S. Hart and A. Mas-Colell, “A simple adaptive procedure

leading to correlated equilibrium,” Econometrica, vol. 68, no.

5, pp. 1127-1150, 2000.

[22] H.P. Young, “Learning by trial and error,” Games and

Economic Behavior, vol. 65, no. 2, pp. 626-643, 2009.

[23] S. Hart and Y. Mansour, “How long to equilibrium?

The communication complexity of uncoupled equilibrium

procedures,” Games and Economic Behavior, vol. 69, no. 1,

pp. 107-126, 2010.

13

	1 Introduction
	2 Preliminaries
	2.1 State-based games
	2.2 State-based potential games
	2.3 Learning in state-based games

	3 A two-memory better reply learning algorithm
	3.1 Available information
	3.2 The flow of the two-memory better reply learning algorithm
	3.3 Convergence of the proposed learning algorithm

	4 Existence of universal time-efficient learning algorithm
	4.1 Time efficiency
	4.2 A counter example

	5 Conclusion
	A The proposed algorithm and corresponding Markov chain
	B Some lemmas used in proof of Theorem 7
	C The proof of Theorem 7
	References

