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Abstract

This paper presents a heterogeneously parameterized tube-based model predictive control (MPC) design applicable to linear
parameter-varying (LPV) systems. In a heterogeneous tube, the parameterizations of the tube cross sections and the associated
control laws are allowed to vary along the prediction horizon. Two extreme cases that can be described in this framework are
scenario MPC (high complexity, larger domain of attraction) and homothetic tube MPC with a simple time-invariant control
parameterization (low complexity, smaller domain of attraction). In the proposed framework, these extreme parameterizations,
as well as other parameterizations of intermediate complexity, can be combined within a single tube. By allowing for more
flexibility in the parameterization design, one can influence the trade-off between computational cost and the size of the
domain of attraction. Sufficient conditions on the parameterization structure are developed under which recursive feasibility
and closed-loop stability are guaranteed. A specific parameterization that combines the principles of scenario and homothetic
tube MPC is proposed and it is shown to satisfy the required conditions. The properties of the approach, including its capability
of achieving improved complexity/performance trade-offs, are demonstrated using two numerical examples.
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1 Introduction

This paper considers model predictive control (MPC)
of linear parameter-varying (LPV) systems that can
be represented in the state-space form x(k + 1) =
A(θ(k))x(k) + B(θ(k))u(k), where A(·) and B(·) are
affine matrix functions of θ. In an LPV system, the state
transition map is linear, but this linear map depends on
the external scheduling variable denoted by θ. In this
setting, the current value θ(k) can be measured for all
times k, but the future behavior of θ is generally not
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known exactly at time k. Solving a predictive control
problem under uncertainty requires the on-line opti-
mization over feedback policies, leading to a so-called
min-max feedback control problem [1]. This problem
can be solved using dynamic programming (DP) [2], but
typically this is computationally intractable in practice.

Therefore it is useful to search for more conservative, but
implementable, approximations of this difficult problem
[3]. Frequently used approaches for the control of con-
strained LPV systems are based on the on-line synthesis
of linear feedback policies, e.g., [4,5,6,7,8]. Robust MPC
for parametrically uncertain 1 systems furthermore can
be based, e.g., on interpolation [9,10,11] or on lifted “pre-
diction dynamics” [12,13]. In this paper, the focus is on
a different paradigm devised to reduce complexity with
respect to the min-max solution, namely tubemodel pre-
dictive control (TMPC). Compared to the approaches
mentioned previously, an attractive feature of TMPC is
that it allows for the use of arbitrary prediction hori-
zons with a computational complexity that grows lin-
early with the horizon length. In the LPV case, the tube-

1 In this paper, a system with the same mathematical struc-
ture as an LPV system, but with a non-measurable schedul-
ing variable, is called a parametrically or multiplicatively
uncertain system.
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based framework can be used to construct “anticipative”
controllers, i.e., controllers that can take advantage of in-
formation on possible future scheduling trajectories that
becomes available while the system is running [14].

Tube-based approaches were originally proposed to con-
trol constrained linear systems subject to additive dis-
turbances [15,16,17,18,19]. The current paper however
considers tube-based control of LPV systems, where the
uncertainty in the future evolution of the scheduling
variable enters multiplicatively instead of additively. In
[15], the authors discuss the possibility of adapting their
TMPC to parametrically uncertain systems, but with-
out investigating closed-loop stability. Existing TMPC
approaches for multiplicatively uncertain systems are,
e.g., [20,21]. A framework for the construction of “stabi-
lizing” tubes, with application to the predictive control
of linear systems on assigned initial condition sets, was
presented in [22]. An LPV TMPC based on the setting
of [22] was presented in [14]: therein, the constructed
tubes are homothetic to the terminal set, and the on-line
optimization of parameterized feedback policies is done
over vertex controllers. This approach was further ex-
tended in [23], which introduced relaxed finite-step ter-
minal conditions into tube-based MPC.

The properties of a tube-based controller are determined
to a large extent by the selected tube parameterization.
Specifically, the parameterization determines how well
a tube-based controller can approximate the full DP so-
lution. A rich parameterization with many degrees of
freedom (DOFs) makes it possible to achieve good con-
trol performance close to DP, but at a high associated
computational cost. On the other hand, a simple param-
eterization can lead to efficient optimization problems,
but it limits the achievable performance. Hence, a key
question that motivates the work in this paper, is how to
parameterize the tube to strike a good balance between
computational complexity and control performance.

Typically, in the literature, a single tube parameteriza-
tion is selected for the full prediction horizon: e.g., ho-
mothetic tubes with vertex controls in [15,14] or elastic
tubes with additional control actions superimposed onto
a linear state feedback in [21]. The restriction to one sin-
gle parameterization for the full horizon limits the free-
dom that is available for the design of tube parameter-
izations that achieve favorable complexity/performance
trade-offs. In TMPC of linear time-invariant (LTI) sys-
tems subject to additive disturbances, this situation is
mostly resolved because it is also possible to optimize
over disturbance-feedback policies in a computationally
efficient manner [24,18]. However, in the case of an LPV
model, the uncertainty enters multiplicatively, and it is
not possible to formulate the synthesis of disturbance-
feedback policies as a convex optimization problem.

Therefore, to be able to construct tube-based controllers
for LPV systems that can achieve better complex-

ity/performance trade-offs, new approaches for design-
ing tube parameterizations are necessary. To this end,
as the first contribution of this paper, the concept of
heterogeneously parameterized tubes (HpTs) is intro-
duced. In an HpT, the parameterization of the cross
sections and associated controllers can vary along the
prediction horizon. This removes the restriction that
one single parameterization must be selected for the full
prediction horizon. The new design freedom allowed by
this framework can be exploited by the user to design
tube parameterizations that achieve different improved
complexity/performance trade-offs. A number of pa-
rameterizations from the literature can be described
in the proposed framework in a unified fashion, and
can be combined together to synthesize a single HpT.
Possible parameterizations that can be described in
the HpT framework include homothetic- and elastic
tubes [15,17,19,21], but also so-called scenario tubes
[25,26,27,28,29,30]. Based on the introduced HpT con-
cept, a novel LPV MPC algorithm based on repetitive
on-line construction of an HpT is developed. It is worth
to point out that the recent work [31] considers a differ-
ent combination of scenario and tube-based MPC, i.e.,
by using a scenario tree to handle parametric uncertain-
ties and a tube to handle additive disturbances.

The second and main contribution of the paper is the
development of sufficient conditions on the underlying
heterogeneous parameterization, under which the result-
ing controller is recursively feasible and asymptotically
stabilizing. As the third contribution, an implementable
heterogeneous parameterization—called HpT-SF—is
proposed as a specific application of the developed
general HpT framework. This HpT-SF parameteriza-
tion combines the principles of scenario and homoth-
etic TMPC, providing more design DOFs that can be
leveraged to achieve improved complexity/performance
trade-offs.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the necessary preliminaries including
notation, problem setting and the concept of scheduling
tubes. The concept of heterogeneously parameterized
tubes (HpT) is presented in Section 3 and the TMPC al-
gorithm based on these tubes is developed in Section 4.
Conditions such that the algorithm is recursively feasible
and stabilizing are given therein. Subsequently, in Sec-
tion 5, a terminal cost function and an implementable
heterogeneous parameterization are provided that sat-
isfy the required assumptions. Numerical examples are
provided in Section 6 to demonstrate that the HpT can
potentially achieve improved complexity/performance
trade-offs. Concluding remarks are given in Section 7.
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2 Preliminaries

2.1 Notation and basic definitions

The set of real numbers is denoted by R and the set of
non-negative real numbers by R+. Closed and open in-
tervals on R are denoted by [a, b] and (a, b), respectively.
The symbol N is used to denote the set of non-negative
integers (i.e., the integers including zero). Closed and
open index sets on N are defined as [a..b] = {i ∈ N | a ≤
i ≤ b} and [a..b) = {i ∈ N | a ≤ i < b}, respectively. A
set with a non-empty interior that contains the origin is
called a proper set, and a proper set which is also com-
pact and convex is called a PC-set. A polyhedron is a
convex set that can be represented as the intersection of
finitely many half-spaces. A polytope is a compact poly-
hedron and can equivalently be described as the convex
hull of finitely many vertices. The power set of A ⊆ Rn
is the set of all subsets of A (including the empty set
and A itself), and is denoted by 2A. Sequences are de-
noted compactly as {Xi}bi=a = {Xa, Xa+1, . . . , Xb}. The
Minkowski sum of two sets A ⊆ Rn and B ⊆ Rn is
A ⊕ B = {a+ b | a ∈ A, b ∈ B}. If a ∈ Rn is a vector,
define a ⊕ B = {a+ b | b ∈ B}. The N -times Cartesian
product of a set A is AN = A× · · · × A. The Hausdorff
distance between two sets A ⊆ Rn and B ⊆ Rn is

dH (A,B) = max
{

sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
where ‖·‖ can be any vector norm on Rn. The Hausdorff
distance between a setA ⊆ Rn and the origin is therefore

d0
H (A) = dH (A, {0}) = sup

a∈A
‖a‖. (1)

A function f : R+ → R+ is of class K if it is continuous,
strictly increasing, and f(0) = 0. It is in class K∞ if,
next to being in class K, limξ→∞ f(ξ) =∞. A function
g : R+ → R+ is of class L if it is continuous, strictly
decreasing, and limξ→0 g(ξ) = 0. Lastly, a function h :
R+ × R+ → R+ is said to be in class KL if it is class-K
in its first argument and class-L in its second argument.

Define the following “set”-gauge function:

Definition 1 [23] The set-gauge function ΨS : 2R
n →

R+ corresponding to a PC-set S ⊂ Rn is

ΨS(X) = sup
x∈X

ψS(x) = inf {γ ≥ 0 | X ⊆ γS} .

2.2 Problem setting

We consider a constrained LPV system, represented by
the following LPV state-space (LPV-SS) equation

x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k), k ∈ N, (2)

with the initial condition x(0) = x0, and where u : N→
U ⊆ Rnu is the input, x : N → X ⊆ Rnx is the state
variable, and θ : N→ Θ ⊆ Rnθ is the scheduling signal.
The sets U and X are the input and state constraint sets,
while Θ is called the scheduling set. The matrices A(θ)
and B(θ) in (2) are affine functions of θ, i.e.,

A(θ) = A0 +

nθ∑
i=1

θiAi, B(θ) = B0 +

nθ∑
i=1

θiBi,

where (Ai, Bi), i ∈ [0..nθ], are conformable matrices.
The following standing assumptions are made.

Assumption 2 The system represented by (2) satisfies:

(i) The values x(k) and θ(k) can be measured at every
time k ∈ N.

(ii) The sets X and U are polytopic PC-sets.

The problem addressed in this paper is to design a con-
troller Kmpc : X × Θ × N → U, such that the origin
is a regionally asymptotically stable equilibrium of the
closed-loop system represented by

x(k + 1) = A (θ(k))x(k) +B (θ(k))Kmpc (x(k), θ(k), k)

= Φ (x(k), θ(k), k)
(3)

with initial condition x(0) = x0. If the origin is an
asymptotically stable equilibrium of (3), then x(k)→ 0
as k → ∞ for all possible signals θ : N → Θ. Because
the system is subject to state and input constraints, this
convergence can typically not be attained for all initial
conditions x0 ∈ X. Therefore, regional asymptotic sta-
bility is considered, which is formally defined as follows.

Definition 3 Let x(k|θ, x0) denote the solution x(k) of
(3) for a given scheduling signal θ : N → Θ and for
the initial state x(0) = x0. The origin is said to be
a regionally asymptotically stable equilibrium of (3), if
there exists a KL-function β and a proper compact set
X ⊆ X ⊂ Rnx such that ‖x(k|θ, x0)‖ ≤ β(‖x0‖, k) for
all possible scheduling signals θ : N→ Θ, for all x0 ∈ X ,
and for all k ∈ N.

Definition 4 A function V : Rnx×N→ R is a (regional,
time-varying) Lyapunov function on an invariant proper
and compact set X ⊆ X ⊂ Rnx for (3) if

(i) There exist K∞-functions v, v such that for all
(x, k) ∈ X × N: v(‖x‖) ≤ V (x, k) ≤ v(‖x‖);

(ii) There exists a K-function δ such that for all
(x, θ, k) ∈ X × Θ × N: V (Φ (x, θ, k) , k + 1) ≤
V (x, k)− δ(‖x‖).

The next lemma is used to verify the regional asymptotic
stability property of Definition 3.
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Lemma 5 [32,33] If there exists a regional time-varying
Lyapunov function satisfying Definition 4, then the ori-
gin is a regionally asymptotically stable equilibrium of
(3) in the sense of Definition 3.

2.3 Scheduling tubes and anticipative control

The value θ(k) of the scheduling variable can be mea-
sured at each time instant k. In principle, for future time
instants k + i, i ∈ [1..∞) it is only known that

θ(k + i) ∈ Θ, (4)

but this assumption can be too restrictive. In many ap-
plications it is known that the scheduling variable can
not jump instantaneously over its full range, but evolves
according to a bounded rate-of-variation (ROV) [7,8].
This means that there is a δθ such that for all k ∈ N,

|θ(k + 1)− θ(k)| ≤ δθ. (5)

Thus, the future values θ(k+ i) are known to belong to a
“cone” expanding outwards from the current point θ(k).

In some other cases, the scheduling variable corresponds
to a signal that is controlled to follow a reference, allow-
ing its future evolution to be predicted with high confi-
dence. This can be described by defining a nominal sig-
nal θ̄ : N→ Θ and an uncertainty ∆ ⊆ Θ such that

∀i ∈ [0..∞) : θ(k + i) ∈
(
θ̄(k + i)⊕∆

)
∩Θ. (6)

If the representation (2) embeds a non-linear system and
its state is controlled to track a reference trajectory, at
each future time instant the state variable belongs to
a set Xi ⊆ X around this reference. In an embedding,
there is a known relation θ = T (x) [34]. This gives a
description of possible future scheduling trajectories

∀i ∈ [0..∞) : θ(k + i) ∈ {T (x) |x ∈ Xi} . (7)

The situations of (4)–(7) represent particular instances
of knowledge on possible future trajectories of θ. To pro-
vide a framework in which these and other cases can be
described, the notion of “scheduling tube” is introduced.

Definition 6 A scheduling tube Θ of length N is a se-
quence of sets Θ = {Θ0, . . . ,ΘN−1} = {Θi}N−1

i=0 where
∀i ∈ [0..N − 1] : Θi ⊆ Θ, or equivalently, Θ ⊆ ΘN .

In the MPC presented in this paper, at each sampling in-
stant k, a new scheduling tube is constructed such that
it contains the expected future variation of the schedul-
ing variable. Due to the availability of the measurement
θ(k), the scheduling tube is typically constructed such
that Θ0 = {θ(k)}. Then it is assumed that at each in-
stant k + i with i ∈ [0..N − 1], θ(k + i) ∈ Θi holds. The

Θ0 = {θ(k)}

Θ1
Θ2

Θ3

|θ(k + i + 1) − θ(k + i)| ≤ δθ

Θ0 = {θ(k)}

Θ1 Θ2

Θ3

Θi =
(
θ̄(k + i) ⊕ ∆

)
∩ Θ

Fig. 1. Example of two different scheduling tubes according
to cases (5) (top) and (6) (bottom).

sets Θi can be generated using any one of (4)–(7), or in
any other way that fits the application (Figure 1).

An operator that can be used to “order” scheduling tubes
is formally defined next.

Definition 7 Let Θ = {Θi}N−1
i=0 ⊆ ΘN and Θ′ =

{Θ′i}
N−1
i=0 ⊆ ΘN be two scheduling tubes of length

N . The relation Θ′ v Θ is satisfied if and only if
∀i ∈ N[0,N−2] : Θ′i ⊆ Θi+1.

In Section 4, Definition 7 will be used in proving recur-
sive feasibility of the MPC scheme. In this paper, for
computational reasons, it is assumed that all sets in a
scheduling tube Θ are polytopes. For notational simplic-
ity it is assumed that these polytopes are all represented
as the convex hulls of equally many vertices:

Assumption 8 Let Θ ⊆ ΘN be a scheduling tube ac-
cording to Definition 6. Then, every set Θi is a poly-
tope described as the convex hull of qθ vertices, i.e., ∀i ∈
[1..N − 1] : Θi = convh{θ̄1

i , . . . , θ̄
qθ
i }.

3 HpTMPC: fundamentals

Section 3.1 introduces the concepts of heterogeneously
parameterized tubes (HpTs), heterogeneous parameter-
ization structure, the tube synthesis problem, and the
notion of a domain of attraction (DOA). Next, the class
of cost functions considered in the developed MPC ap-
proach is introduced in Section 3.2.

3.1 Parameterized tube synthesis

Before proceeding, a few preliminaries need to be cov-
ered. Define the one-step forward reachable set—or im-
age—of a set X ⊂ Rnx for the dynamics (2) under a
given controller, and for a corresponding scheduling set,
as follows.
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Definition 9 The controlled image of a set for a con-
strained LPV system represented by the LPV-SS repre-
sentation with a given controller K : X ×Θ → U is the
map I(·, ·|K) : 2X ×2Θ → 2R

nx defined by I(X,Θ|K) ={
A(θ)x+B(θ)K(x, θ) | x ∈ X, θ ∈ Θ

}
.

The following inclusion result is directly implied from
Definition 9:

Lemma 10 Let K : X × Θ → U. For any subset X ′ ×
Θ′ ⊆ X ×Θ, it holds I(X ′,Θ′|K) ⊆ I(X,Θ|K).

In what follows, it is useful to consider controllersK(·, ·)
that satisfy some additional properties. These properties
are summarized here under the name of continuous and
positively homogeneous of degree one (CH1):

Definition 11 A controller K : X × Θ → U is CH1 if
it is (i) a continuous function 2 of its input arguments
(x, θ) ∈ X×Θ, and (ii) positively homogeneous of degree
one in the sense that ∀α ∈ R+ : K(αx, θ) = αK(x, θ).

Because the representation (2) is also homogeneous, the
limitation to CH1 controllers is not restrictive. In the
definition of a tube, so-called second-order functions will
be used to describe parameterized control policies:

Definition 12 A function f : A → B is called first-
order if both A and B are subsets of real vector spaces.
The function f is called second-order if it returns another
first-order function, i.e., if A is a subset of a real vector
space but B is a subset of all first-order functions g : C →
D (i.e., with C, D being subsets of real vector spaces).

Higher-order functions are widely used in computer sci-
ence as useful abstractions [35, Chapter 1.3]. A simple
second-order function is g : R → (Rn → Rn), g(c) =
(x 7→ cx). It is then possible to say, e.g., h = g(2) mean-
ing that h is the function h : Rn → Rn, h(x) = 2x.

The concept of a tube can now be defined.

Definition 13 Let Θ ⊆ ΘN be given according to Def-
inition 6. A tube of length N is a pair T =

(
X,K

)
=(

{Xi}Ni=0 , {Ki}N−1
i=0

)
whereXi ⊆ Rnx are sets and where

Ki : Xi ×Θi → U are CH1 control laws such that for all
i ∈ [0..N − 1], the condition I(Xi,Θi|Ki) ⊆ Xi+1 ∩ X
holds. Each set Xi is called a cross section.

The length N of the tube in Definition 13 is called the
prediction horizon. The cross sections Xi are not nec-
essarily subsets of the state constraints. Requiring this
would be conservative, because the cross sections are
supersets of the sets of reachable states given by I(·, ·|·)

2 Continuity of K(·, ·) ensures that u = K(x, θ) is well-
defined (i.e., single-valued) for all (x, θ) on its domainX×Θ.

[22]. Therefore, in Definition 13, only the reachable
states given by I(·, ·|·) are required to satisfy the state
constraints. The following should also be kept in mind:

Remark 14 It is important to remember the difference
between a “tube” (a synthesized sequence of sets in the
state space with associated controllers, Definition 13) and
a “scheduling tube” (a sequence of sets describing possible
future values of the scheduling variable, Definition 6).

As all necessary notions have been introduced, a hetero-
geneously parameterized tube is defined next.

Definition 15 Let T be a tube according to Defini-
tion 13. For all i ∈ N[0,N ], introduce parameter sets
P(i) = Px(i) × Pk(i). A tube T is a heterogeneously
parameterized tube (HpT) if it satisfies:

(i) For all i ∈ N[0,N ], there is a set-valued function
P x (·|i) : Px(i)→ 2R

nx and there exists a parameter
px
i ∈ Px(i) such that Xi = P x

(
px
i |i
)
.

(ii) For all i ∈ N[0,N−1], there is a second-order func-
tion P k (·|i) : Pk(i) →

(
Xi × Θi → U

)
and there

exists a parameter pk
i ∈ Pk(i) such that Ki =

P k
(
pk
i |i
)
.

Furthermore, define the shorthand

P (p|i) =
(
P x
(
px|i

)
, P k

(
pk|i

))
where p =

(
px, pk

)
.

The distinguishing feature of the parameterization pro-
posed in the above definition, and the reason why it is
called a heterogeneous parameterization, is that the sets
P(i) and functions P (·|i) can be different for every pre-
diction time instant i ∈ N[0,N ]. If the sets and functions
in Definition 15 are chosen to be independent of i, the
setup of [14] (equivalently, the setup of [23] withM = 1)
is recovered. With the above definition, a heterogeneous
parameterization structure can be associated.

Definition 16 A heterogeneous parameterization struc-
ture PN is defined as the sequence of pairs

PN =
{

(P(0), P (·|0)) , . . . , (P(N), P (·|N))
}
.

The parameterization structure PN has to be selected
during the control design and determines the compu-
tational complexity and the achievable performance of
the resulting controller. In what follows, a tube is called
feasible if it satisfies an initial condition constraint and
a terminal constraint. Given a structure PN , the set of
such feasible tubes TN (·, ·|PN ) can be defined as

TN (x,Θ | PN ) =
{
T | T satisfies Def. 15 with

X0 = {x} and XN ⊆ Xf

}
(8)

5



Xf
X0 = {x}

X1

X2
X3

X4 ⊆ Xf

I (Xi,Θi |Ki) ⊆ Xi+1 ∩ X

Fig. 2. A “feasible” tube T ∈ TN (x,Θ|PN ) in a two-dimen-
sional state space with N = 4. Recall that Θ = {Θi}N−1

i=0 .

whereXf ⊆ X is a terminal set. An example of a feasible
tube is depicted in Figure 2. Selecting from this set a
single tube that optimizes a given performance criterion
is done by solving the tube synthesis problem

V (x,Θ | PN ) = min
T

JN (T,Θ)

subject to T ∈ TN (x,Θ | PN ) ,
(9)

where

JN (T,Θ) =

N−1∑
i=0

` (Xi,Ki,Θi) + F (XN ) (10)

is a finite-horizon cost function with `(·, ·, ·) being the
stage cost and F (·) being the terminal cost. The terminal
cost F (·) must be chosen such that closed-loop stability
is guaranteed. The function V (·, ·|·) in (9) is called the
value function, and an optimizer of (9) is denoted as

T? =
(
{X?

i }
N
i=0 , {K

?
i }
N−1
i=0

)
, (11)

where by definition, V (x,Θ|PN ) = JN (T?,Θ). The
DOA is the set of initial states for which a feasible tube
T ∈ TN (x,Θ|PN ) exists, and is formally defined as fol-
lows.

Definition 17 For a given sequence Θ ⊆ ΘN , the do-
main of attraction (DOA) of the closed-loop system (3)
under a controller defined by (9) is

XN (Θ | PN ) = {x ∈ X | TN (x,Θ | PN ) 6= ∅} . (12)

3.2 Cost function design

In this section, the class of stage cost functions used
in the developed MPC approach is presented. Sufficient
conditions on the terminal cost F (·) under which the
value function V (·, ·|·) can be bounded by a pair of K∞-
functions are provided. The norm-based stage cost

` (X,K,Θ) = max
(x,θ)∈X×Θ

(‖Qx‖c + ‖RK(x, θ)‖c) (13)

is proposed where ‖·‖ can be any vector norm, c ≥ 1, and
(Q,R) ∈ Rnq×nx×Rnr×nx are full column rank matrices

corresponding to tuning parameters. Several properties
of (13) are important to guarantee stability of the MPC
algorithm presented in this paper. These are summarized
in the following proposition.

Proposition 18 In what follows, let K : X×Θ→ U be
a CH1-controller.

(i) For all subsets X ′ × Θ′ ⊆ X × Θ, it holds that
`
(
X ′,K,Θ′

)
≤ `
(
X,K,Θ

)
.

(ii) There exists a K∞-function ` such that
`
(
d0
H

(
X
))
≤ `(X,K,Θ).

(iii) The stage cost is homogeneous of degree c in
the sense that for all α ∈ R+, `(αX,K,Θ) =
αc`(X,K,Θ).

PROOF. Proof of (i). This follows from the definition
of (13) in terms of the maximum over a compact set.

Proof of (ii). From (13), maxx∈X ‖Qx‖c ≤ `
(
X,K,Θ

)
.

As Q is assumed to be full column rank, x 7→ ‖Qx‖
is a norm (in particular, ‖Qx‖ = 0 if and only if
x = 0). All norms in finite-dimensional vector spaces
are equivalent, hence ∃α > 0 : α‖x‖ ≤ ‖Qx‖, implying
that αmaxx∈X ‖x‖ = αd0

H(X) ≤ maxx∈X ‖Qx‖. This
directly leads to

(
αd0

H(X)
)c ≤ (

maxx∈X ‖Qx‖
)c

=

maxx∈X ‖Qx‖c, proving the statement with `
(
ξ
)

=

(αξ)
c.

Proof of (iii). This is direct from the CH1-property of
K(·, ·) combined with homogeneity of the norm ‖ · ‖. �

To prove closed-loop stability of a predictive controller,
the usual approach is to show that the value function
V (·, ·|·) of (9) is a Lyapunov function in the sense of
Definition 4. An important first step, then, is to show
that the value function satisfies Definition 4.(i), i.e., to
show that it can be upper- and lower bounded by a pair
of K∞-functions. The remainder of this section is de-
voted to proving, under some assumptions, the existence
of these bounds. Besides the stage cost (13), the finite-
horizon cost function (10) also contains a terminal cost.
An explicit construction of a suitable terminal cost will
be given later in Section 5. For now, the following nec-
essary assumptions on the terminal cost are made.

Assumption 19 Consider the terminal cost function
F (·) : 2R

nx → R+ in (10).

(i) Let c have the same value as in (13). The function
F (·) is homogeneous of degree c in the sense that
for all α ∈ R+, F (αX) = αcF (X).

(ii) There exist K∞-functions F , F such that for all
X ⊆ Xf , F

(
d0
H

(
X
))
≤ F

(
X
)
≤ F

(
d0
H

(
X
))
.

By Proposition 18.(iii) and Assumption 19.(i), the func-
tion JN (·, ·) is homogeneous of degree c in the sense that
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∀α ∈ R+ : JN (αT,Θ) = αcJN (T,Θ). Define the scalar
multiple of a tube as αT =

(
{αXi}Ni=0 , {Ki}N−1

i=0

)
. The

main result of this section can now be proven.

Proposition 20 Assume that Xf in (9) is a PC-set.
Then, there exist K∞-functions v, v such that for all x ∈
X and Θ ⊆ ΘN for which (9) is feasible, it holds that
v
(
‖x‖
)
≤ V

(
x,Θ|PN

)
≤ v
(
‖x‖
)
.

PROOF. The lower bound is established trivially as
V (x,Θ|PN ) ≥ ` (‖x‖). Let ∂S denote the boundary of a
set S and let φ(x) = ψXN (Θ)(x). The domain of attrac-
tion XN (Θ) of (9) for a given sequence Θ is proper and
compact. Representation (2) is homogeneous of degree
one in (x, u), and (Xf ,X,U) are PC-sets. Therefore, the
existence of a T ∈ TN (x,Θ|PN ) implies that for all α ∈
[0, 1], there exists a T◦ = αT ∈ TN (αx,Θ|PN ). Hence,
for any x ∈ XN (Θ) it holds that x ∈ φ(x)∂XN (Θ), and

V (x,Θ|PN ) ≤ max
x∈φ(x)∂XN (Θ)

V (x,Θ|PN )

= max
x∈∂XN (Θ)

V (φ(x)x,Θ|PN ) .
(14)

Because the cost function is homogeneous of degree c, it
follows that JN (T◦,Θ) = αcJN (T,Θ). Now note that,
for all x ∈ XN (Θ), φ(x) ∈ [0, 1] holds, and that the
solution T◦ is feasible but not necessarily optimal for the
initial state αx. Combining these facts with (14) yields

V (x,Θ|PN ) ≤ max
x∈∂XN (Θ)

V (φ(x)x,Θ|PN )

≤ φc(x) max
x∈∂XN (Θ)

V (x,Θ|PN ) .
(15)

Because (Xf ,X,U) are compact, it can be assumed that
there exists a constant V̂ > 0 such that

max
x∈∂XN (Θ)

V (x,Θ|PN ) ≤ V̂ . (16)

As φ(·) is the gauge function of a proper and compact
set, there exists a K∞-function φ such that for all x ∈
Rnx : φ(x) ≤ φ(‖x‖) [23, Lemma 1]. Combining this
with (15)-(16) gives that v(ξ) = (φ(ξ))cV̂ is a K∞-upper
bound on V (·,Θ|PN ). �

4 HpTMPC: prototype algorithm

In this section, the HpTs introduced previously are used
to construct a stabilizing MPC algorithm.

4.1 Parameterization conditions

In this subsection, a number of conditions is presented
that allows for the derivation of a recursively feasible
and stabilizing MPC algorithm. These conditions come

as a set of assumptions on (i) the existence of a terminal
set and local controller, (ii) the parameterization struc-
ture PN , and (iii) the cost function JN (·, ·). First, two
preliminary definitions are provided.

Definition 21 A PC-set X ⊆ X is called controlled λ-
contractive for an LPV-SS representation (2), if there
exists a local CH1-controller K : X × Θ → U such that
λ = inf{µ ≥ 0 | I(X,Θ|K) ⊆ µX} < 1.

Given a controllerK : X×Θ→ U, it will turn out to be
useful to consider controllers that are “the same” asK on
a subset of the original domain X×Θ. Formally, the set
of restrictions of a controller can be defined as follows.

Definition 22 Let K : X ×Θ→ U. The set of restric-
tions of K to the subset X ′ ×Θ′ ⊆ X ×Θ is

R (K |X ′,Θ′) =
{
K ′ : X ′ ×Θ′ → U |

∀(x, θ) ∈ X ′ ×Θ′ : K ′(x, θ) = K(x, θ)
}
.

The first set of assumptions required for deriving a recur-
sively feasible and stabilizing MPC can now be stated.

Assumption 23 The terminal set Xf in (9) is con-
trolled λ-contractive in the sense of Definition 21. (Recall
that a local controller which renders Xf λ-contractive in
this sense, is denoted as Kf : Xf ×Θ→ U.)

WithAssumption 23 in place, the first step towards prov-
ing recursive feasibility can be made. The next lemma
on the existence of “successor tubes” is required first.

Lemma 24 Let N ∈ N[1,∞), let PN be a heterogeneous
parameterization structure according to Definition 16,
and let (x, θ) be the current state and scheduling variable
values. Furthermore, let Θ =

{
{θ}, {Θi}N−1

i=1

}
⊆ ΘN

and Θ+ =
{

Θ+
i

}N−1

i=0
⊆ ΘN be two scheduling tubes

satisfying Θ+ v Θ. Suppose that there exists a tube T ∈
TN
(
x,Θ | PN

)
. Then, there always exists a γ ∈ [0, 1] and

a sequence of sets X+ =
{
X+
i

}N
i=0

that satisfies

∀i ∈ N[0,N−2] : X+
i ⊆ Xi+1, (17a)

X+
N−1 ⊆ γXf , (17b)

X+
N ⊆ λγXf , (17c)

∀i ∈ N[0,N−2] : I(X+
i ,Θ

+
i |Ki+1) ⊆ X+

i+1 ∩ X, (17d)
I(X+

N−1,Θ
+
N−1|Kf) ⊆ X+

N . (17e)

PROOF. By construction of T, X+
0 = {A(θ)x +

BK0(x, θ)} ⊆ X1. Recall that Θ+ v Θ means that
Θ+
i ⊆ Θi+1 for all i ∈ N[0,N−2]. From Lemma 10,

it follows I(X+
0 ,Θ

+
0 |K1) ⊆ I(X1,Θ1|K1). Because
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I(X1,Θ1|K1) ⊆ X2 ∩ X, there exists a X+
1 ⊆ X2 such

that I(X+
0 ,Θ

+
0 |K1) ⊆ X+

1 ∩ X. Repeating this argu-
ment for all subsequent time instances i ∈ N[1,N−2]

yields the existence of a sequence satisfying (17a)
and (17d). Next, let γ = inf{γ′ ≥ 0 |XN ⊆ γ′Xf}.
By construction, XN ⊆ Xf , therefore γ ∈ [0, 1]. It
was previously shown that X+

N−2 ⊆ XN−1. Thus,
I(X+

N−2,Θ
+
N−2|KN−1) ⊆ XN ⊆ γXf , giving (17b). Ho-

mogeneity of (2) combined with Assumption 23 imply
that for all γ ∈ [0, 1] the inclusion I(γXf ,Θ|Kf) ⊆ λγXf

holds. Because X+
N−1 ⊆ γXf and Θ+

N−1 ⊆ Θ, this yields
(17c) and (17e), completing the proof. �

Lemma 24 establishes the existence of a successor tube
that satisfies certain properties, but without construct-
ing one. As apparent from the proof, a sequence X+ that
satisfies the stronger condition X+

N−1 ⊆ X+
N ⊆ γXf in-

stead of just (17b) exists. However, for proving recursive
feasibility and stability, condition (17b) is sufficient and
less restrictive in terms of the permissible designs of PN .

Remark 25 Two particular constructions of the se-
quence X+ from Lemma 24 are the following. First, it
is possible to set “⊆” in (17d)-(17e) to “=”: then, condi-
tions (17a)-(17c) are directly implied. Second, it is also
possible to replace inclusion with equality in (17a)-(17c)
which, in turn, implies the satisfaction of (17d)-(17e).
This second option is analogous to “shifting the sequence”
in standard MPC. In this paper, both constructions will
be used to prove recursive feasibility of the heterogeneous
parameterization that will be proposed in Section 5.2.

Under the condition that a feasible tube T exists,
Lemma 24 established the existence of a successor tube
T+, but without considering if T+ can be parameter-
ized in the structure PN . To ensure that this is the case,
the following set of assumptions is invoked.

Assumption 26 Suppose that the hypotheses of
Lemma 24 hold true. Assume that PN is designed such
that at least one of the possible sequences X+ fulfilling
(17) satisfies the following conditions:

(i) For all i ∈ N[0,N ], there exists a px+
i ∈ Px(i) with

P x
(
px+
i | i

)
= X+

i .
(ii) For all i ∈ N[1,N−2], there exists a pk+

i ∈ Pk(i) such
that P k

(
pk+
i | i

)
∈ R

(
Ki+1 |X+

i ,Θ
+
i

)
.

(iii) There exists a pk+
N−1 ∈ P(N − 1) such that

P k
(
pk+
N−1 |N − 1

)
∈ R

(
Kf |X+

N−1,Θ
+
N−1

)
.

In Assumption 26, it can be argued that conditions
(ii)-(iii) could be replaced by P k

(
pk+
i | i

)
= Ki+1 and

P k
(
pk+
N−1 |N − 1

)
= Kf , respectively. This is, how-

ever, more restrictive. Suppose for instance that, for

some i, Xi is a set with 2 vertices and Xi+1 is a struc-
turally different set with 4 vertices (this exact situation
occurs, e.g., in the “scenario”-parameterization intro-
duced later). If the corresponding controllers (Ki,Ki+1)
are parameterized as vertex controllers on these sets,
then Pk(i) is a set in dimension 2nu whereas Pk(i + 1)
is a set in dimension 4nu. It is therefore clearly im-
possible to find a parameter pk

i ∈ P(i) such that
P k
(
pk+
i | i

)
= K+

i = Ki+1. In contrast, a parameter
pk
i ∈ P(i) could exist such that P k

(
pk+
i | i

)
is a con-

troller K+
i that produces the same control inputs as

Ki+1 for arguments from the subset X+
i ⊆ Xi+1. This

is precisely the less restrictive condition which, in As-
sumption 26, is captured formally in terms of sets of
restrictions R(·|·, ·).

With Assumption 26 in place, it is already possible to
establish recursive feasibility of an MPC based on (9).
The proof is given together with the proof of closed-loop
stability in the proof of Theorem 29. However, for the
stability proof, the following set of assumptions on the
cost and value function is needed first.

Assumption 27 Let K : X × Θ → U be a controller
and assume the following properties:

(i) There exist K∞-functions F , F such that for all
X ⊆ Xf , F

(
d0
H

(
X
))
≤ F

(
X
)
≤ F

(
d0
H

(
X
))
.

(ii) Let Kf : Xf × Θ → U be the local controller from
Assumption 23. Then, for all X ⊆ Xf , it holds that
F
(
I(X,Θ|Kf)

)
− F

(
X
)
≤ −`

(
X,Kf ,Θ

)
.

(iii) For any set X ⊆ Xf and any subset X ′ ⊆ X,
F (X ′) ≤ F (X). Further, let γ ∈ [0, 1] be the infi-
mal γ such that X ⊆ γXf . Then, F (X) = F (γXf).

(iv) There exist K∞-functions v, v such that for all x ∈
Rnx and Θ ⊆ ΘN for which (9) is feasible, it holds
v
(
‖x‖
)
≤ V

(
x,Θ | PN

)
≤ v
(
‖x‖
)
.

Assumptions 27.(i)-(ii) can be seen as “set-based ver-
sions” of the standard set of assumptions on the termi-
nal set and cost in nominal MPC [36]. A construction for
the terminal cost is provided, together with an imple-
mentable tube parameterization that satisfies Assump-
tion 26, in Section 5. From Definition 22 and Proposi-
tion 18.(i), the next result follows:

Corollary 28 For all subsets X ′×Θ′ ⊆ X×Θ, it holds
that `

(
X ′,K,Θ′

)
= `
(
X ′,K ′,Θ′

)
≤ `
(
X,K,Θ

)
for any

K ′ ∈ R
(
K|X ′,Θ′

)
.

4.2 Main result

The complete receding-horizon heterogeneously param-
eterized TMPC algorithm is given in Algorithm 1. In
Step 4 of the algorithm, a scheduling tube containing
the possible future trajectories of the scheduling vari-
ables is constructed. Examples of possible constructions
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were described in Section 2.3. In the next theorem, the
main properties of Algorithm 1 are proven. For brevity
and consistency with previous notation, the time in-
dices k shown in Algorithm 1 are not explicitly written
in the theorem: the notation (Θ,Θ+) corresponds to
(Θk,Θk+1) in the algorithm.

Algorithm 1 The receding-horizon HpTMPC algo-
rithm.
Require: N ∈ N[1,∞) and a structure PN .
Assume: Step 5 is feasible at k = 0, i.e.,
TN (x(0),Θ0 | PN ) 6= ∅.

1: Θ−1 ← ΘN

2: k ← 0
3: loop
4: Construct Θk =

{
{θ(k)},

{
Θi|k

}N−1

i=1

}
⊆ ΘN

such that Θk v Θk−1

5: Solve (9) to obtain T? ∈ TN (x(k),Θk | PN )
6: Apply u(k) = K?

0 (x(k), θ(k)) = u?0 to (2)
7: k ← k + 1
8: end loop

Theorem 29 Let the hypotheses of Lemma 24 and As-
sumptions 26–27 be satisfied. Let XN (Θ) be the domain
of attraction such that for all x ∈ XN (Θ), there exists a
solution T? =

(
{X?

i }
N
i=0 , {K?

i }
N−1
i=0

)
∈ TN

(
x,Θ | PN

)
.

Then, if x(k) ∈ XN (Θ), Algorithm 1 achieves the follow-
ing properties:

(i) After applying u(k) = K?
0 (x(k), θ(k)) to the sys-

tem, there exists a guaranteed feasible solution
T+ ∈ TN

(
x(k + 1),Θ+ | PN

)
.

(ii) The system (2) in closed-loop with the controller
defined by (9) is regionally asymptotically stable on
XN (Θ).

PROOF. Proof of (i). From Definition 22, it follows
that for any controllerK : X×Θ→ U and for arbitrary
subsets (X ′ ×Θ′) ⊆ (X ×Θ), we have that for all K ′ ∈
R (K |X ′,Θ′) there holds I(X ′,Θ′|K ′) = I(X ′,Θ′|K).
Thus, with the sequence X+ =

{
X+
i

}N
i=0

that is shown
to exist in Lemma 24, it is possible to associate a se-
quence of restricted controllers K+ =

{
K+
i

}N−1

i=0
where

∀i ∈ N[0,N−2] : K+
i ∈ R

(
K?
i+1 |X+

i ,Θ
+
i

)
,

K+
N−1 ∈ R

(
Kf |X+

N−1,Θ
+
N−1

)
.

Then, T+ = (X+,K+) satisfies the initial condition and
terminal constraints and Condition (i) of Definition 15.
By Assumption 26, there exists a selection of X+ such
that, under the given parameterization structure PN ,
conditions (ii)-(iii) of Definition 15 are also satisfied.
Therefore, there exists a T+ ∈ TN

(
x(k + 1),Θ+ | PN

)
.

Proof of (ii). The standard approach to show that
the value function of (9) is a Lyapunov function for

the closed-loop system is used. Recall that T? =(
{X?

i }
N
i=0 , {K?

i }
N−1
i=0

)
∈ TN

(
x(k),Θ | PN

)
was the tube

synthesized at the initial time instant k. Introduce
∆Vk = V

(
x(k + 1),Θ+ | PN

)
− V

(
x(k),Θ | PN

)
. Then

∆Vk ≤ JN
(
T+,Θ+

)
− JN (T?,Θ)

=

N−1∑
i=0

`
(
X+
i ,K

+
i ,Θ

+
i

)
−
N−1∑
i=0

` (X?
i ,K

?
i ,Θi)

+ F
(
X+
N

)
− F (X?

N ) . (18)

Using (17a)-(17c), Θ+ v Θ, and Proposition 18.(i):

N−1∑
i=0

`
(
X+
i ,K

+
i ,Θ

+
i

)
≤
N−1∑
i=1

` (X?
i ,K

?
i ,Θi)

+ `
(
X+
N−1,K

+
N−1,Θ

+
N−1

)
.

Substituting this in (18) yields

∆Vk ≤
N−1∑
i=1

` (X?
i ,K

?
i ,Θi) + `

(
X+
N−1,K

+
N−1,Θ

+
N−1

)
−
N−1∑
i=0

` (X?
i ,K

?
i ,Θi) + F

(
X+
N

)
− F (X?

N )

= −` (X?
0 ,K

?
0 ,Θ0) + `

(
X+
N−1,K

+
N−1,Θ

+
N−1

)
+ F

(
X+
N

)
− F (X?

N ) . (19)

It is known that both X+
N−1 ⊆ γXf and X?

N ⊆ γXf ,
so K+

N−1 ∈ R(Kf |X+
N−1,Θ

+
N−1) ⊆ R(Kf |γXf ,Θ

+
N−1).

Invoking Proposition 18.(i) then gives

`(X+
N−1,K

+
N−1,Θ

+
N−1) ≤ `(γXf ,Kf ,Θ

+
N−1).

Assumption 27.(iii) yields F (X?
N ) = F (γXf) and

since X+
N ⊆ λγXf , also F (X+

N ) ≤ F (λγXf) =
F (I(γXf ,Θ|Kf)). Making the appropriate substitutions
in (19) leads to

∆Vk ≤ −` (X?
0 ,K

?
0 ,Θ0) + `

(
γXf ,Kf ,Θ

+
N−1

)
+ F (I(γXf ,Θ|Kf))− F (γXf) ,

and using that Θ+
N−1 ⊆ Θ subsequently gives

∆Vk ≤ −` (X?
0 ,K

?
0 ,Θ0) + ` (γXf ,Kf ,Θ)

+ F (I(γXf ,Θ|Kf))− F (γXf) .

From Proposition 18.(ii) and Assumption 27.(ii) it fol-
lows finally that

∆Vk ≤ −` (X?
0 ,K

?
0 ,Θ0)

≤ −`
(
d0
H (X?

0 )
)

= −` (‖x(k)‖) .
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This, with Assumption 27.(iv), is sufficient to conclude
that V (·, ·|PN ) is a regional Lyapunov function on
XN (Θ) in the sense of Definition 4. By Lemma 5, this
implies that the origin is a regionally asymptotically
stable equilibrium of the closed-loop system. �

5 HpTMPC: tractable parameterizations

In this section, implementable constructions of a termi-
nal cost and tube parameterization are proposed, that
satisfy the conditions under which the HpTMPC ap-
proach was shown to be recursively feasible and asymp-
totically stabilizing in Section 4.

5.1 The HpT terminal cost

This subsection proposes a terminal cost function such
that Assumption 27 is satisfied, giving a stabilizingMPC
according to Theorem 29. Using Definition 1, the termi-
nal cost is defined in terms of the set-gauge ΨXf

(·) as

F (X) =
¯̀

1− λc
Ψc
Xf

(X) , (20)

where c has the same value as in (13), Xf and λ are
according to Assumption 23, and where

¯̀= ` (Xf ,Kf ,Θ) (21)

is a constant. In the next proposition, it is shown that
the cost functions (13) and (20) satisfy Assumption 27,
and therefore lead to a stable closed-loop system.

Proposition 30 The stage and terminal cost (20) to-
gether satisfy Assumptions 27.(i)-(iii). Furthermore, the
value function V (·, ·|PN ) is K∞-bounded in the sense of
Assumption 27.(iv).

PROOF. Satisfaction of Assumption 27.(i). Because
(20) is simply the set-gauge function of the PC-set Xf

raised to the power c ≥ 1 and multiplied with a constant
scalar factor, this property follows directly from the ex-
istence of the bounds sψ, sψ stated in Lemma 1 of [23].

Satisfaction of Assumption 27.(ii). By λ-contractivity of
Xf (Assumption 23.(i)), ΨXf

(
I(X,Θ|Kf)

)
≤ λΨXf

(
X
)
.

Also, because of the homogeneity of Kf (Assump-
tion 23.(ii)), the stage cost (13) is positively homoge-
neous of degree c in the sense that for any X ⊆ Xf ,

` (X,Kf ,Θ) ≤ ` (ΨXf
(X)Xf ,Kf ,Θ)

= Ψc
Xf

(X) ` (Xf ,Kf ,Θ)︸ ︷︷ ︸
¯̀

.

Thus we have the inequality

F (I(X,Θ|Kf))− F (X)

=
¯̀

1− λc
(
Ψc
Xf

(I(X,Θ|Kf))−Ψc
Xf

(X)
)

≤
¯̀

1− λc
(
λcΨc

Xf
(X)−Ψc

Xf
(X)

)
= −¯̀Ψc

Xf
(X) ≤ −` (X,Kf ,Θ) .

Satisfaction of Assumption 27.(iii). This property is im-
mediate from the definition of ΨXf

(·), see Definition 1.

Satisfaction of Assumption 27.(iv). Under the three
properties proven above, this property has already been
proven in Proposition 20. �

5.2 The HpT-SF parameterization

In this subsection, one possible design of the parame-
terization structure PN that satisfies Assumption 26 is
proposed. As a preliminary, the following definition of
convex multipliers is introduced. This can be used to
compactly describe vertex control laws later.

Definition 31 Let W = convh
{
w̄1, . . . , w̄qw

}
⊂ Rn.

Then convm (·|W ) : W → Rqw+ is the function

convm (w|W )

= arg inf
η∈Rqw

+

{
‖η‖

∣∣∣∣∣
qw∑
i=1

ηiw̄
i = w,

qw∑
i=1

ηi = 1

}
.

In general the multipliers η are non-unique, but in Def-
inition 31 a unique choice is made by minimizing the
norm ‖η‖. Define a “vertex control” policy as follows:

Definition 32 Let X = convh
{
x̄1, . . . , x̄qx

}
⊂ Rnx

and, likewise, let Θ = convh
{
θ̄1, . . . , θ̄qθ

}
. Let

pk =
(
u(1,1), . . . , u(qx,1), . . . , u(qx,qθ)

)
∈ Uqθqx

be a list of corresponding control actions. Then
vertpol (·|X,Θ) : Uqθqx → (X ×Θ→ U) is a second-
order function defined such that

vertpol
(
pk |X,Θ

)
(x, θ)

=

qx∑
i=1

[convm (x|X)]i

qθ∑
j=1

[convm (θ|Θ)]j u
(i,j),

where [v]i denotes the i-th element of a vector v.

10



To develop an implementable parameterization that
leads to a convex finite-dimensional optimization prob-
lem (9), non-convex constraints must not arise due to
the multiplication of a parameter-dependent input ma-
trix with a controller (i.e., a decision variable) which is
dependent on the same scheduling parameter. This is
guaranteed by the following assumption.

Assumption 33 Assume that for all k, every set in the
scheduling tube constructed in Step 4 of Algorithm 1 is a
polytope. Denote Ki = P k

(
pk
i |i
)
for some pk

i ∈ P(i). Let
the elements of Θ be partitioned as

θ =

[
θ̃1

θ̃2

]
, where θ̃1 ∈ Θ̃1 ⊆ Rnθ1 , θ̃2 ∈ Θ̃2 ⊆ Rnθ2 ,

where nθ1 + nθ2 = nθ, and with Θ̃1 and Θ̃2 being the
projections of Θ onto the first nθ1 and last nθ2 dimen-
sions respectively. Assume that PN is such that for all
i ∈ N[1,N−1] and for all

(
pk
i , θ
)
∈ P(i) × Θ the product

B(θ)Ki(x, θ) equals B(θ)Ki(x, θ) = B(θ̃1)Ki(x, θ̃2).

Assumption 33 requires that if the input matrix B(·) of
the LPV representation depends on a scheduling variable
θ1, then the synthesized controllers are independent of
θ1. They can, however, depend on any other scheduling
variable θ2 that is not related to B(·).

Remark 34 Two “extreme” possibilities that guarantee
satisfaction of Assumption 33 are the following:

(i) B(·) in (2) is constant, i.e., ∀θ ∈ Θ : B(θ) = B.
(ii) The structure PN is such that the controllers Ki :

Xi ×Θi → U are independent of θ.

IfB(·) is dependent on the scheduling variables θ1, and if
it is not possible to make the controller parameterization
independent of θ1, Assumption 33 can not be satisfied.
In that case, it is an option to expand the system (2) by
adding a pre-filter which makes the input matrix of the
expanded system parameter-independent [37].

Under Assumption 33, a so-called full scenario tube can
be described in the HpT framework of Definition 15.

Definition 35 (HpT-S) A tube T ∈ TN (x,Θ|PN ) is
a scenario tube or HpT-S if ∀i ∈ N[0,N−1] : Xi+1 =
I(Xi,Θi|Ki) and each Ki is parameterized as a vertex
controller on the setXi×Θi. Let qx(i) = q

max{0,i−1}
θ and

qk(i) = qiθ. Equivalently, in terms of Definition 15 and
under Assumption 33, a tube is called an HpT-S if the
parameterization structure PN satisfies

(i) For all i ∈ N[0,N ], it holds that Px(i) = Rnxqx(i),

px
i =

(
x̄1
i , . . . , x̄

qx(i)
i

)
, andP x (px | i) = convh {px}.

(ii) For all i ∈ N[0,N−1], it holds that Pk(i) =

Rnuqk(i), pk
i =

(
ū1
i , . . . , ū

qk(i)
i

)
, and P k

(
pk|i

)
=

vertpol
(
pk |Xi,Θi

)
.

Scenario tubes as alternative solutions for the min-max
feedback control problem were proposed in [25,26] for
non-linear systems subject to discrete-valued distur-
bances, for LTI systems subject to additive disturbances
in [27,28], and for general uncertain linear systems in
[29,30]. An HpT-S is non-conservative, but the number
of vertices of the sets Xi increases exponentially as each
set has qθ times more vertices than the preceding set. In
[25,26,38], it is proposed to avoid this growth by assum-
ing that the uncertainty resolves after N0 prediction
steps, at which point the tree stops branching. If this
assumption is not met in reality, the scheme loses its
feasibility and stability properties. Here the exponen-
tial growth is avoided differently: namely, by switching
from a scenario parameterization to a parameterization
with fixed-complexity cross sections after N0 prediction
steps. In this way, feasibility and stability guarantees
are retained under a more realistic handling of the
uncertainty. The considered fixed-complexity parame-
terization is defined next.

Definition 36 (HpT-F) A tube T ∈ TN (x,Θ|PN ) is
an HpT-F, if for all i ∈ N[0,N−1], Xi = zi ⊕ αiXf where
αi ∈ R+ is the corresponding cross-section scaling and
zi ∈ Rnx is the cross-section center. Equivalently, in
terms of Definition 15, a tube is called an HpT-F if the
parameterization structure PN satisfies

(i) For all i ∈ N[0,N ], it holds that Px(i) = R1+nx ,
px
i = (zi, αi), and P x

(
px | i

)
= z ⊕ αXf .

(ii) For i ∈ N[1,N−1], the sets Pk(i) and func-
tions P k(·|i) are such that if ∃pk

i ∈ Pk(i) with
P k
(
pk
i | i
)

= K, then ∃pk
i−1 ∈ Pk(i − 1) satisfying

P k
(
pk
i−1 | i− 1

)
= K.

In the HpT-F, as the cross-sections Xi are scaled and
translated versions of the same set Xf , it is said that the
cross sections are homothetic to Xf . The parameteriza-
tion of the associated control laws is still allowed to be
time-varying along the prediction horizon, i.e., the sets
and functions (Pk(·), P (·|·)) are dependent on i. Thus,
an HpT-F satisfying 36 is still called “heterogeneous”.
The condition of Definition 36.(ii) is required to ensure
that an HpT-F satisfies Assumption 26.(ii)-(iii), so that
it leads to a recursively feasible MPC. In Table 1, some
control parameterizations are listed for illustration.

Next, the HpT-S and HpT-F are combined into a single
tube. Such a tube which will be called an HpT-SF (where
“SF” stands for “scenario/fixed-complexity”).

Definition 37 (HpT-SF) Let N ∈ N[2,∞) and
N0 ∈ N[1,N ]. A heterogeneously parameterized tube
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Parameterization DOF

1 Ki(x, θ) = ci +Kf(x− zi, θ) 1

2 Ki(x, θ) = ci(θ) +Kf(x− zi, θ) qθ

3 Ki(x, θ) = vertpol
(
pki |Xi,Θi

)
(x, θ) qθqf

Table 1
Example control parameterizations fitting in the HpT-F
framework of Definition 36. One control DOF corresponds
to nu decision variables in the tube synthesis problem, and
qf is the number of vertices required to represent the set Xf .

T ∈ TN (x,Θ|PN ) satisfying Definition 15 is an HpT-
SF, if it can be decomposed as T =

(
T0,T1

)
with

T0 =
({
X0
i

}N0−1

i=0
,
{
K0
i

}N0−1

i=0

)
,

T1 =
({
X1
i

}N
i=N0

,
{
K1
i

}N−1

i=N0

)
,

(22)

where T0 is an HpT-S according to Definition 35 and T1

is an HpT-F according to Definition 36.

In the above definition, since both sections T0 and T1

are heterogeneously parameterized according to Defini-
tion 15, it follows directly that the same holds for the
complete tube T =

(
T0,T1

)
. To clarify the concept, a

graphical representation of an example HpT-SF is given
in Figure 3. For the first prediction time instances, the
HpT-S structure is employed. The number of vertices of
these cross sections doubles at every prediction step after
the first one. Then, at prediction step N0 = 4, a transi-
tion is made to the HpT-F structure: from this point on,
the complexity of the tube cross sections remains con-
stant as they are all homothetic to the same polytope.

The next proposition shows that the HpT-SF prediction
structure satisfies Assumption 26, and therefore leads to
a recursively feasible MPC as proven in Theorem 29.

Proposition 38 Suppose Assumption 33 is satisfied.
Then, the HpT-SF structure of Definition 37 satisfies
Assumption 26.(i).

PROOF. First, consider the HpT-S part T0. In ref-
erence to Lemma 24, recall that X+

0 ⊆ X1 is a sin-
gleton. Applying the first construction of Remark 25
for i ∈ N[0,N0−1] (and noting that Θ+

0 = {θ(k + 1)}),
gives a sequence

{
X+
i

}N0−1

i=0
where the amount of ver-

tices of the i-th set equals qx(i) = q
max{0,i−1}
θ . This

is in accordance with Definition 35: hence, for all
i ∈ N[0,N0−1], there exists a px+

i : P x
(
px+
i | i

)
= X+

i .
Next, for all i ∈ N[0,N0−1], the restricted controllers
K+
i ∈ R

(
Ki+1 |X+

i ,Θ
+
i

)
are the vertex controllers

on the sets X+
i , which also agrees with Definition 35.

Because X+
i ⊆ Xi+1, the corresponding vertex control

actions in pk+
i ∈ P(i) can be taken as convex combi-

nations of the elements of pk
i+1 ∈ P(i + 1). Therefore,

for all i ∈ N[0,N0−1], the existence of pk+
i ∈ Pk(i) such

that P
(
pk+
i | i

)
= K+

i is guaranteed. Second, consider
the HpT-F part T1. Applying the second construc-
tion of Remark 25 for i ∈ N[N0,N−1] gives the se-
quence

{
X+
i

}N
i=N0

where
{
X+
i

}N−2

i=N0
= {Xi}N−1

i=N0+1,
X+
N−1 = γXf , and X+

N = λγXf . Because all sets in{
X+
i

}N
i=N0

can be represented as X+
i = zi ⊕ αiXf ,

it follows immediately from Definition 36 that for all
i ∈ N[N0,N ], there exists a px+

i : P x
(
px+
i | i

)
= X+

i .
From this construction, it also follows that for i ∈
N[N0,N−2], K+

i = Ki+1 ∈ R
(
Ki+1 |X+

i ,Θ
+
i

)
and

that K+
N−1 ∈ R

(
Kf | γXf ,Θ

+
N−1

)
. Thus, Definition 36

guarantees that, for all i ∈ N[N0,N−1], there exist
pk+
i : P

(
pk+
i |i

)
= K+

i . This concludes the proof. �

The HpT-F part in the HpT-SF structure can be im-
plemented similarly as in [14]. Hence, for fixed N0, the
number of variables and constraints in the tube synthe-
sis (9) will be in the order of O(N). For variable N0, the
complexity of the tube synthesis problem is in the order
O(qN0

θ ): a remaining question is how to select N0. To
obtain the least conservative control law for a given pre-
diction horizon N , one can choose N0 ≤ N as large as
computational resources allow. Another approach is to
compare the complexity of an HpT-S of length N0 with
the complexity of an HpT-F of the same length. The last
cross-sectionXN0−1 of an HpT-S of lengthN0 has qN0−2

θ
vertices. Then, if the set Xf from Definition 36 has qf

vertices, one can select N0 such that qN0−2
θ ≈ qf , i.e.,

N0 = round

(
log qf

log qθ

)
+ 2. (23)

The value (23) is the approximate value where the
complexity—in terms of the number of vertices of the
cross sections—of the HpT-S part grows beyond that of
the HpT-F part, so that it is advantageous to switch to
the HpT-F parameterization after N0 prediction steps.

Note that the tractable parameterizations in this sec-
tions were based on tubes with polytopic cross sections.
In the presented framework, it would be possible to de-
velop parameterizations that use ellipsoidal cross sec-
tions. Generally, the representation complexity of ellip-
soids scales better in the state dimension, but synthe-
sizing ellipsoidal tubes requires solving an semi-definite
program (SDP) instead of a linear program (LP).

6 Numerical examples

In this section, two numerical examples are provided to
demonstrate the HpTMPC algorithm. It is shown how
different choices in the parameterization structure affect
properties such as the DOA size and computation time.
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X0 = {x} X2 X3 X4 X5 X6 ⊆ Xf

I (X3,Θ3 |K3) HpT-S

HpT-F

X1

Fig. 3. Example of a HpT-SF prediction structure in a two-dimensional state space (N = 6).

6.1 Parameter-varying double integrator

Consider the LPV-SS representation

x(k+1) =

([
1 1

0 1

]
+

[
0.1 0

0 0.1

]
θ1(k)+

[
0.5 0.5

0 0

]
θ2(k)

+

[
0 0

0 0.2

]
θ3(k)

)
x(k) +

[
0.5

1

]
u(k)

with the constraint and scheduling sets given as

X =
{
x ∈ R2

∣∣ ‖x‖∞ ≤ 6
}
,

U = {u ∈ R | |u| ≤ 1} ,Θ =
{
θ ∈ R3

∣∣ ‖θ‖∞ ≤ 1
}
.

The set Θ is a hypercube in 3 dimensions and therefore
has 8 vertices. The purpose of this example is to demon-
strate the effect of changing the heterogeneous parame-
terization structure. Therefore, all other design param-
eters are kept fixed based on the following choices:

• The prediction horizon is set to N = 10.
• The scheduling tubes Θk ⊆ ΘN are constructed such
that Θk = {{θ(k)},Θ, . . . ,Θ} for all k. In this way, at-
tention is focused on the effect of changing the hetero-
geneous parameterization structure, and not on dif-
ferent possible ways of constructing a scheduling tube
(see Section 2.3 for some possible constructions).
• The tuning parameters are set to Q = I and R = 1.
• The terminal set Xf is computed to be 0.95-

contractive with respect to a robust LTI terminal
controller Kf(x, θ) = Kfx. This set is computed using
[39] and is described by 10 vertices. The restriction to
an LTI terminal controller in this case yields a set Xf

with a relatively small volume, but also with a rel-
atively low number of vertices. Furthermore, in this
example, the relatively small volume of the set allows
to illustrate more clearly the effect of the tube param-
eterization on the DOA of the resulting controllers.
• Themaximal “worst-case” DOA isX 0

N = Xmax
N (Θworst)

where Θworst = {Θ, . . . ,Θ}. This corresponds to the
largest DOA that can be achieved by any possible
controller. It is also computed using [39].

Three tube-based controllers based on different param-
eterization structures PN are compared in terms of the

Design DOA vol. DOF

1 (X 1
N ) 12.5 1 + (N − 1)qθqf = 721

2 (X 2
N ) 7.51 N = 10

3 (X 3
N ) 13.2

(
1 + qθ + q2θ

)
+ 3qθqf + 4 = 317

Table 2
Comparison of the three designs in Example 1. Note qf is
the number of vertices of the terminal set, to which the tube
cross sections in the HpT-F part are homothetic.

achieved DOA and the number of required control DOFs:

Design 1 (X 1
N ) Homothetic tube with vertex controls,

i.e., a tube satisfying Definition 36 with control pa-
rameterization 3 from Table 1. This is the same as the
controller in [14].

Design 2 (X 2
N ) Homothetic tube with “simple” control

parameterization, i.e., a tube satisfying Definition 36
with parameterization 1 from Table 1.

Design 3 (X 3
N ) A heterogeneous design, consisting of a

scenario tree for the first 3 prediction time instances, a
homothetic tube with vertex control parameterization
for the next 3 instances, and a homothetic tube with
the simple control parameterization 1 of Table 1 for
the remaining prediction steps.

The realized DOAs for the three designs were approxi-
mated by gridding the state space 3 and are displayed
in Figure 4. These DOAs are all computed with respect
to a scheduling tube Θworst = {Θ, . . . ,Θ}. The associ-
ated set volumes and the number of control DOF are dis-
played in Table 2. Closed-loop trajectories for an initial
state at which all the designs are feasible is shown in Fig-
ure 5. The scheduling trajectory was a randomly time-
varying signal generated by drawing, at each instant k,
a value θ(k) uniformly from Θ. For this initial state, the
closed-loop inputs are slightly different, but the result-
ing state trajectories are virtually indistinguishable.

For illustration of the resulting computational complex-
ity of the different designs, a summary of the compu-
tation times for the closed-loop simulations is given in
Table 3. Note that Design 2 has only 10 DOF, but that
the complexity of the tube synthesis problem is domi-
nated by the number of constraints necessary to verify

3 Exact computation of the DOAs using multi-parametric
linear programming is intractable given the sizes of the LPs.
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-5 0 5
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-1

0
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2

Fig. 4. Realized (estimated) DOAs for the three designs in
Example 1. Here, X 0

N = Xmax
N (Θworst), whereas X iN is the

DOA corresponding to Design i for i ∈ {1, 2, 3}.
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0.6

0.8

1

Fig. 5. Illustrative closed loop trajectories in Example 1.

the tube set inclusions in that case. The simulations were
executed on a computer with a Intel Core i7-4790 pro-
cessor at 3.60 GHz and 8 GB RAM, with Gurobi 7.0.2
being the LP solver.

Out of the three compared designs, the heterogeneously
parameterized controller achieves the largest DOA vol-
ume while requiring the lowest average computation
time. Therefore, this example has shown that the pro-
posed heterogeneous tube parameterization has the
potential of improving the trade-off between computa-

Design Avg. time [ms] Max. time [ms]

1 (X 1
N ) 55 69

2 (X 2
N ) 42 45

3 (X 3
N ) 37 44

Table 3
Solver time per sample in the simulation of Example 1.

tional complexity and control performance.

It is emphasized that the DOAs in this example were
computed with respect to all possible initial scheduling
values θ ∈ Θ. For a specific initial scheduling value θ(k),
the tube synthesis might also be feasible for initial states
outside of these domains. Also, the scheduling tubes were
constructed in a “worst-case” sense: whenever knowledge
is available to construct refined scheduling tubes Θ ⊆
ΘN (see Section 2.3), the DOAs can become larger.

6.2 Parameter-varying third-order system

Consider a third-order LPV system described by

x(k + 1) =

I + τ


0 1 0

−0.7θ1(k) −0.4 0.2

0 −0.3 −0.1θ2(k)


x(k)

+ τ
[
0 0 1

]>
u(k)

and with the constraint and scheduling sets

X =
{
x ∈ R3

∣∣ |x1| ≤ 0.5, |x2| ≤ 0.1, |x3| ≤ 0.2
}
,

U = {u ∈ R | |u| ≤ 0.2} ,
Θ =

{
θ ∈ R2

∣∣ θ1 ∈ [0.5, 1.5], θ2 ∈ [0.8, 1.2]
}
.

In what follows, the sampling time is set to τ = 0.36 s.
Similar to the previous example, all design parameters
except the parameterization structure are kept fixed:

• The prediction horizon is set to N = 8.
• The scheduling tubes Θk ⊆ ΘN have been con-

structed such that Θk = {{θ(k)},Θ, . . . ,Θ} for all k.
As in the previous example, this means that attention
is focused on the effect of changing the heterogeneous
parameterization structure, and not on different pos-
sible scheduling tube constructions (see Section 2.3).
• The tuning parameters are set to Q = I and R = 5.
• The terminal set Xf is computed—using [39]—to be

0.98-contractive with respect to an LTI terminal con-
troller Kf(x, θ) = Kfx. This set is described by 48
vertices and, equivalently, by 28 hyperplanes.

Now, three tube-based controllers based on different pa-
rameterization structures PN are compared in terms of
the achieved DOA and the number of control DOFs:
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Fig. 6. Realized (estimated) DOAs for the three designs in
Example 2: projection on the (x1, x2)-space.

Design DOA vol. DOF

1 (X 1
N ) 3.13 · 10−3 1 + (N − 1)qθqf = 1345

2 (X 2
N ) 2.43 · 10−3 N = 8

3 (X 3
N ) 3.23 · 10−3

(
1 + qθ + q2θ + q3θ

)
+ 4 = 95

Table 4
Comparison of the three designs in Example 2.

Design Avg. time [ms] Max. time [ms]

1 (X 1
N ) 613 778

2 (X 2
N ) 310 342

3 (X 3
N ) 317 360

Table 5
Solver time per sample in the simulation of Example 2.

Design 1 Homothetic tube with vertex controls, i.e., a
tube satisfying Definition 36 with parameterization 3
from Table 1.

Design 2 Homothetic tube with “simple” control pa-
rameterization, i.e., a tube satisfying Definition 36
with control parameterization 1 from Table 1.

Design 3 A heterogeneous design, consisting of a sce-
nario tree for the first 4 prediction time instances, and
a homothetic tube with the simple control parameter-
ization 1 of Table 1 for the remaining prediction steps.

A projection on the (x1, x2)-space of the estimated
DOAs realized by the three designs is shown in Fig-
ure 6 (plotting the full three-dimensional sets would be
illegible). The volumes of the estimated DOAs and the
number of control DOFs are summarized in Table 4. An
illustration of the computation times required to solve
the tube synthesis problems for the three different de-
signs is given in Table 5. These times were obtained by
simulating the closed-loop system with an initial state
x0 = [0.05 0 0]

>. As remarked before, it should be
possible to improve these times by considering a more
efficient linear programming implementation.

Out of the compared designs, the heterogeneously pa-

rameterized controller achieves the largest DOA volume,
while requiring a computation time that is only slightly
higher than the “simple” controller. As in the previous
example, this confirms that the heterogeneous tube pa-
rameterization proposed in this paper provides an im-
proved trade-off between computational complexity and
control performance as measured by the DOA volume.

7 Concluding remarks

In this paper, a framework for the construction of MPC
schemes for LPV-SS models was developed, based on the
construction of so-called heterogeneously parameterized
tubes. Possibilities for future research include the exten-
sion of the framework to handle LPV models also af-
fected by additive disturbances, the implementation of
tube parameterizations based on ellipsoids, and the in-
vestigation of algorithmic approaches to systematically
design heterogeneous parameterization structures.
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