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Abstract

A nonlinear model predictive control approach is studied, for problems where a fixed terminal instant and corresponding terminal set
to be reached are imposed. The new technique features a shrinking horizon, rather than the most common receding one, and an input
parametrization strategy to reduce computational burden. The property of transferability of the parametrization strategy is introduced.
Under this property, theoretical convergence guarantees in nominal conditions are obtained by construction. Two relaxed techniques are
then proposed to retain recursive feasibility in presence of bounded additive input disturbance. A bound on the constraint violation achieved
by these relaxed techniques as a function of the uncertainty bound is derived, too. The developed strategy is applied to the problem of
energy-efficient operation of trains, in either a fully autonomous mode (with continuous input values) or a driver assistance mode (with
discrete input values, resulting in a nonlinear integer program if no parametrization is used). Realistic simulation results in this context
illustrate the effectiveness of the approach.
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1 Introduction

Model Predictive Control (MPC) is an optimization-based
technique with broad success in industry [14] thanks to its
capability to deal with multivariable systems, state and in-
put constraints, and both tracking and economic objectives.
Research efforts of more than three decades result today in
a mature theory for linear systems [10], [2], and several di-
rections are open for further investigation [13]. In this pa-
per, we provide new results pertaining to MPC for nonlinear
systems and problems where a finite terminal instant is im-
posed, at which the state has to reach a given terminal set.
The resulting MPC formulation features a shrinking horizon
rather than the most common receding one. Moreover, we
consider the use of an input parametrization strategy to re-
duce the computational burden of the underlying optimiza-
tion program, making it possible to deal efficiently with a
long prediction horizon and with discrete input constraints,
which would otherwise result in a nonlinear integer program.
We named the resulting control approach Shrinking horizon
Parametrized Predictive Control (SPPC). To the best of our
knowledge, the combined presence of nonlinear dynamics,
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shrinking horizon, and general input parametrization strate-
gies is new in the literature. The existing works on input
parametrization, such as move-blocking strategies, consider
in fact either linear systems, see, e.g., [6–9,16,17], or nonlin-
ear ones with a receding horizon formulation [3, 12, 18]. In
our context, the relevant question is what property shall the
employed parametrization enjoy for the control strategy to
provide theoretical guarantees. In this respect, we introduce
here the notion of transferability of the parametrization strat-
egy, which is sufficient to obtain recursive feasibility and, in
nominal conditions, satisfaction of the terminal constraints
in closed loop. Then, we present two relaxed approaches,
where state constraints are softened to retain recursive feasi-
bility in presence of bounded additive input disturbance, and
we derive a theoretical result linking the disturbance bound
to the worst-case constraint violation.
Our approach and theoretical analysis are motivated by an
industrial application pertaining to the energy efficient op-
eration of railways (see [15] for a recent review), in col-
laboration with the company Alstom rail transport. MPC
has been already applied in this context [1]. In addition to
the above-mentioned theoretical contributions, we provide
an application-oriented contribution by applying SPPC to
this problem. In particular, for the first time we deal with
both a fully autonomous scenario, where the input takes
any value in a connected compact set, or a driver assis-
tance scenario, where the predictive controller suggests to
the driver one out of a finite discrete set of possible driv-
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ing modes. In both scenarios, we consider the uncertainty
derived from system-model mismatch and control input dis-
cretization/misapplication by the human driver. We present
results obtained with Alstom in-house energy-based detailed
simulation suite, CITHEL.
The paper is organized as follows. In Section 2, the railway
application that motivates our research is described, and a
general problem formulation is abstracted. In Section 3, we
introduce the input parametrization strategies and the nom-
inal SPPC formulation. Section 4 presents the two relaxed
approaches. Section 5 provides realistic simulation results
pertaining to our motivating application. We conclude and
point out future steps in Section 6.

2 Motivating application and problem abstraction

Consider an electric train controlled by a digital control unit
(see for example Fig. 1 depicting the one considered in the
simulations of Section 5). In this application, it is conve-

Fig. 1. One of the Amsterdam metro trains considered in the
simulation example of this paper.

nient to take space (i.e., the train position along the track) as
the independent variable, while time is one of the system’s
states. We discretize space with sampling distance Ds, and
denote with k ∈Z the discrete space variable. The actual po-
sition along the track at each sampling instant is thus equal
to kDs. For practical implementation, the controller has a
high enough sampling rate, such that the discrete space in-
stants can be met with sufficient accuracy. For example, with
a train speed of 25ms−1, a space discretization of 5m, and
a controller sampling rate of 50Hz, the maximum actuation
delay would be equal to 0.5m, i.e., 10% of the sampling dis-
tance. We denote with x(k) = [x1(k), x2(k)]T the state of the
train, where x1 is its travel time and x2 the speed (·T denotes
the matrix transpose operator), and with u(k)∈ [−1,1] a nor-
malized force (our control variable), where u(k) = 1 corre-
sponds to the maximum applicable traction and u(k) = −1
to the maximum allowed braking within passenger com-
fort limits. Physically, u(k) corresponds to the input handle
usually employed by the driver to set the traction/braking
force between zero and its maximum value, which is speed-
dependent.
The train has to move from one station at time x1 = 0 and
reach the next one at time x1 = t f , covering the correspond-
ing distance s f . For a given pair of initial and final stations,
the slope and curvature profiles are known in advance as a
function of k. Thus, in nominal conditions (with rated val-
ues of the train parameters, like its mass and the specifica-
tions of the powertrain and braking systems), according to

Newton’s laws and using the forward Euler discretization
method, the equations of motion of a reasonably accurate
model of this system read:

x1(k+1) = x1(k)+ Ds
|x2(k)|

x2(k+1) = x2(k)+Ds

(
FT (x(k),u(k))−FB(x(k),u(k))−FR(k,x(k))

M|x2(k)|

)
(1)

where M is the total mass of the train, FT the traction force,
FB the braking force, and FR the resistive force. Functions
FT (x,u), FB(x,u) are nonlinear and depend on the specific
train. They include, for example, look-up tables that link the
traction and braking forces to the train speed and to the con-
trol input value. These functions are derived experimentally
and/or from detailed models of each train and its traction
and braking systems. In our research, they are provided by
the business unit at Alstom. More details on the actual func-
tions are omitted for confidentiality reasons, however for
completeness we employ here scaled versions, provided in
Section 5. The resistive force FR(k,x) is also nonlinear, and
it is the sum of a first term Rv(x2), accounting for resistance
due to the velocity, and a second term Rg(k), accounting for
the effects of slopes and track curvature:

FR(k,x) = Rv(x2)+Rg(k)

Rv(x2) = A+B|x2|+Cx2
2

Rg(k) = Ms

(
ag tan(α(k))+

D
rc(k)

) (2)

where ag is the gravity acceleration, the parameters A,B,C,D
are specific to the considered train, Ms is the static mass of
the train, i.e., the mass calculated without taking into account
the effective inertia of the rotating components, and rc(k)
and α(k) are, respectively, the track radius of curvature and
its slope at position k. For example, an uphill track section
corresponds to α(k)> 0, i.e., a positive slope.
Besides the prescribed arrival time t f and position s f , state
constraints include velocity limits, x2(k), which depend on
k, since a different maximum velocity is imposed for safety
by the regulatory authority according to the track features
at each position. Defining the terminal space step as k f

.
=⌊

s f /Ds
⌋

(where b·c denotes the flooring operation to the
closest integer), the overall state constraints read:

x(0) = [0, 0]T

x(k f ) = [t f , 0]T

x2(k) ≤ x2(k), k = 0, . . . ,k f

The control objective is to minimize the traction energy con-
sumption of the train while satisfying the constraints above.
Applying a constant scaling factor D−1

s , this corresponds to
minimizing the following cost function:

J =
k f

∑
k=0

(FT (x(k),u(k))) .

The braking energy is not included, since in our case we do
not consider energy regeneration. This can be easily added
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by changing the cost function accordingly.
Finally, the train can be operated in the following two modes:

(1) Fully automatic mode: the controller can issue any
value of u in the continuous compact interval [−1,1].
This is typical for example in driverless urban metro
systems.

(2) Driver assistance mode: the controller assists a human
driver with a suggested driving mode, which has to be
selected among the following four possible ones:
• Acceleration: u = 1;
• Coasting: u = 0;
• Cruising: the controller engages a cruise control sys-

tem that keeps a constant speed, i.e., u is computed
by an inner control loop in such a way that FT = FR
for positive slopes and FB = FR for negative slopes;

• Braking: u =−1.

In our research we develop a MPC approach for the de-
scribed problem. When resorting to optimization-based tech-
niques like MPC, the main challenge in both operational
modes is the computational burden, due to model nonlinear-
ity and rather long prediction horizon. For example, in our
simulation study the track is discretized in 220 position val-
ues. Considering the full horizon and all control moves as
free variables, the resulting problem is a medium-size NLP.
In the driver assistance mode, complexity is even larger,
since the optimal control problem becomes a nonlinear inte-
ger program with 220 decision variables, each one with four
possible values. To deal with this issue, we consider the use
of input parametrization strategies, as explained in detail in
Section 3.

2.1 Problem abstraction

The control problem described above can be cast in a rather
standard form:

min
u

k f

∑
k=0

`(x(k),u(k)) (3a)

subject to
x(k+1) = f (x(k),u(k)) (3b)

u(k) ∈U, k = 0, . . . ,k f −1 (3c)
x(k) ∈ X(k), k = 1, . . . ,k f (3d)

x(0) = x0 (3e)
x(k f ) ∈ X f (3f)

where x ∈X⊂Rn is the system state, x0 is the initial condi-
tion, u∈U⊂Rm is the input, f (x,u) :X×U→X is a known
nonlinear mapping representing the discrete-time system dy-
namics, and `(x,u) : X×U→R is a stage cost function de-
fined by the designer according to the control objective. The
symbol u= {u(0), . . . ,u(k f −1)} ∈Rmk f represents the se-
quence of current and future control moves to be applied to
the plant. The sets X(k)⊂ X and U ⊂ U represent the state
and input constraints, and the set X f ⊂ X the terminal state
constraints. Throughout the paper, we consider the follow-
ing assumptions.

Assumption 1 X(k), U and X f are compact.

Recall that a continuous function a : [0,∞)→ [0,∞) is a K -
function (a ∈K ) if it is strictly increasing and a(0) = 0.

Assumption 2 Functions f and ` enjoy the following con-
tinuity properties, where ax f , au f , ax` , au` ∈K :

‖ f (x1,u)− f (x2,u)‖ ≤ ax f

(
‖x1− x2‖

)
, ∀x1,x2 ∈ X,u ∈ U

‖ f (x,u1)− f (x,u2)‖ ≤ au f

(
‖u1−u2‖

)
, ∀u1,u2 ∈ U,x ∈ X

‖`(x1,u)− `(x2,u)‖ ≤ ax`
(
‖x1− x2‖

)
, ∀x1,x2 ∈ X,u ∈ U

‖`(x,u1)− `(x,u2)‖ ≤ au`
(
‖u1−u2‖

)
, ∀u1,u2 ∈ U,x ∈ X.

In Assumption 2 and in the remainder of this paper, any
vector norm ‖·‖ can be considered. Assumptions (1)-(2) are
reasonable in most real-world applications, and they hold in
the train control problem considered here.

3 Input parametrization strategies and nominal SPPC

To solve (3) and additionally include a feedback control
strategy, we resort to Nonlinear Model Predictive Control
(NMPC), however with two differences as compared to the
standard formulation. First, since in our problem the termi-
nal space k f is fixed, the resulting strategy features a shrink-
ing horizon rather than a receding one. Indeed, here the
goal is to satisfy the terminal constraint X f in the required
finite time, and not asymptotically as usually guaranteed
by a receding horizon approach. Second, we adopt an in-
put parametrization strategy, motivated by applications like
the one described in Section 2, featuring large values of k f
and/or possible integer optimization variables. The theoret-
ical question we address next is about a sufficient condition
on the input parametrization to guarantee recursive feasibil-
ity. To this end, we introduce the notion of transferability.

3.1 Input parametrization strategy and transferability

We consider a parametrization strategy that is generally de-
pendent on k. For a given k ∈ Z[0,k f−1], let N(k) be the
number of parameters to be optimized, denoted with θk =
{θ(1), . . . ,θ(N(k))} ∈ RN(k). Moreover, for a generic vec-
tor variable y, let us denote with y( j|k) the future value at
instant j+ k, predicted at instant k. We call a parametriza-
tion strategy P a sequence of functions gk(θk, j) that link,
at each step k and for each j = 0, ...,k f − k− 1, the opti-
mization variables θk with the predicted input u( j|k):

P = {gk}, k = 0 . . . ,k f −1

gk : RN(k)×N→ U
u( j|k) = gk(θk, j)

Next, we define the transferability property. In practice, a
transferable strategy is such that one can always recover,
at instant k+ 1, the tail of the input sequence predicted at
instant k, through suitable values of the optimization vari-
ables θk+1. This property is clearly sufficient for recursive
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feasibility in nominal conditions, i.e., when the model and
the system dynamics coincide. In [11], parametrizations of
a multirate nonlinear predictive control strategy are consid-
ered, which enjoy a similar property.

Definition 1 (Transferability) A parametrization strat-
egy P is transferable if for any k ∈ {0, . . . ,k f − 1}, any
θ̄k ∈RN(k) and any j ∈ {0, . . . ,k f −k−1}, ∃ θ̄k+1 such that
gk+1(θ̄k+1, j) = gk(θ̄k, j+1).

Having defined the transferability property, in the remainder
we consider the following assumption.

Assumption 3 The chosen parametrization strategy P is
transferable.

We present next two parametrization strategies enjoying
transferability.

3.1.1 Shrinking horizon move blocking parametrization

This is a modification of the well-known move-blocking
strategy (see, e.g., [6]), adapted to the case of shrinking hori-
zon. The prediction horizon is divided in intervals, each one
featuring a fixed input value. Let us denote with L the max-
imum length of each interval. In particular, each interval
contains exactly L blocked moves, except for the first one,
which can contain a number between 1 and L of blocked in-
put vectors as the index k increases. In this way, for a given
value of k ∈Z[0,k f−1], the number N(k) of optimization vari-

ables is equal to N(k) = m
⌈

k f−k
L

⌉
, where d.e denotes the

ceiling operation to the closest integer, see Fig. 2 for a graph-
ical representation. The vector of optimization variables θk

is defined as θk
.
=
[
θ(1)T , . . .θ(N(k))T

]T , where θ(i) ∈Rm

is the input value applied in the i−th interval. At each k, the
values of u( j|k) are then computed as u( j|k) = gk(θk, j) .

=

θ

(⌊
j+k−b k

LcL
L

⌋
+1
)

. Transferability is easily checked by

taking θk+1 equal to θk, if N(k+1) = N(k), or θk+1 equal
to θk without the first m entries, if N(k+1) = N(k)−1, i.e.,
θk+1 = [0N(k+1)×m IN(k+1)×N(k+1)]θk.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Fig. 2. Example of shrinking horizon move blocking parametriza-
tion with L = 20, m = 1 and k f = 60: possible trajectories of
predicted (scalar) input at instants k = 0 (‘◦’), k = 10 (‘+’), and
k = 20 (‘∗’). When k = 20, N(k) reduces from 3 to 2.

Remark 1 Another transferable move-blocking approach
features initially a constant value of N(k) = N(1), and the

number of blocked input values in each interval is adjusted
as k increases, up until the value k = k f −N(1) is reached,
after which each predicted input vector is a free variable
and N(k) shrinks at each k. This strategy has the advantage
to retain more degrees of freedom in the optimization as k
approaches its final value.

3.1.2 Shrinking horizon switching parametrization

This second strategy is effective in problems with discrete
optimization variables, such as the driver assistance scenario
described in Section 2. The idea is to first split the whole
prediction horizon into a finite number of sectors. In each
sector, a pre-defined switching sequence is imposed, and the
corresponding switching instants are optimization variables.
In this way, we retain a continuous nonlinear program, thus
improving the computational efficiency, while still provid-
ing the controller with enough degrees-of-freedom to opti-
mize the predicted system behavior. Let us indicate the total
number of sectors with sn ∈ N. The i−th sector has length
Γi, such that ∑

sn
i=1 Γi = s f . The switching parametrization is

best explained resorting to our train control application. The
choice of sectors can be carried out by considering prior in-
formation such as the presence of constant velocity limits
and of slopes and track curvature changes, see, e.g., Fig. 3.
The chosen switching sequence, udi , features four phases:

0 500 1000 1500
kD

s
(m)

-5

0

5

10

15

 
1  

2 4 75 6 
3

Fig. 3. Example of sector choice for a track with s f = 1500 and
sn= 7. Possible sectors based on similar characteristics, such as
velocity limits and Rg values, are depicted.

udi = { u(i,1), u(i,2), u(i,3), u(i,4) }
= { 1, uCR, 0, −1 }, ∀i ∈ [1, . . . ,sn]

(4)

where u(i,κ) is the input issued in the κ−th phase of the
i−th sector (κ ∈ {1,2,3,4}) and uCR is the input applied in
the cruising mode (see Section 2). The optimization vari-
ables are the switching space instants, or more precisely the
length δ s(i,κ) of each phase within each switching sequence.
These variables must be compliant with the following linear
constraints:

0≤ δ s(i,κ) ≤ Γi

4

∑
κ=1

δ s(i,κ) = Γi.
(5)

As an example, (δ s(i,1),δ s(i,2),δ s(i,3),δ s(i,4)) = (0,0,Γi,0)
corresponds to the train coasting throughout sector i, and
so on. At each k ∈ Z[1,k f ], the set of indexes identifying the
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current and future sectors, from the current position kDs un-
til the end of the track s f , is given by {i : i(k)+1≤ i≤ sn},
where

i(k) .
=

max
i≥1

i s.t.
i

∑
i=1

Γi < kDs, if Γ1 < kDs

0, otherwise

The number N(k) of free variables to be computed cor-
responds to the number of remaining sectors, equal
to (sn − i(k)), times the number of modes in each
sector, i.e., four in our example. Therefore, we have
N(k) = 4(sn − i(k)). We denote the vector of opti-
mization variables with θk

.
= {θ(1), . . . ,θ(N(k))}T =

{δ s(i(k)+1,1), . . . ,δ s(i(k)+1,4), . . . ,δ s(sn,4)}
T ∈ RN(k), and we

define the switching parametrization strategy gk(θk, j) as:

u( j|k) = gk(θk, j) .
= u(î( j,k),κ̂(θk, j,k))

,

where (compare with (4))

î( j,k) .
= min

i=1,...,sn

i s.t.
i

∑
i=1

Γi ≥ (k+ j)Ds

and

κ̂(θk, j,k) .
= min

κ=1,...,4
κ

s.t.
î( j,k)
∑

i=1
Γi +

κ

∑
κ=1

δ s(î( j,k),κ) ≥ (k+ j)Ds.

Evaluating the switching parametrization is very efficient,
since it just amounts to finding, for each predicted instant
k+ j, the index of the corresponding sector and phase and
then to apply the pre-defined driving mode from (4). Trans-
ferability of this strategy is checked by taking, at time k+1,
the same future switching intervals as those issued at k.

3.2 Nominal Shrinking horizon Parametrized Predictive
Control

At each step k ∈Z[0,k f−1], we formulate the following Finite
Horizon Optimal Control Problem (FHOCP):

min
θk

k f−k

∑
j=0

`(x( j|k),u( j|k)) (6a)

subject to
u( j|k) = gk(θk, j), j = 0, . . . ,k f − k−1 (6b)

x( j+1|k) = f (x( j|k),u( j|k)), j = 0, . . . ,k f − k−1 (6c)
u( j|k) ∈U, j = 0, . . . ,k f − k−1 (6d)
x( j|k) ∈ X(k), j = 1, . . . ,k f − k (6e)

x(0|k) = x(k) (6f)
θk ∈Θk (6g)

x(k f − k|k) ∈ X f (6h)

where (6g) takes into account possible constraints on
the optimization variables, such as (5). We denote
with θ∗k a locally optimal solution of (6). Moreover,

we denote with x∗(k) = {x∗(0|k), . . . ,x∗(k f − k|k)} and
u∗(k) = {u∗(0|k), . . . ,u∗(k f − 1 − k|k)} the correspond-
ing predicted sequences of state and input vectors, where
x∗(0|k) = x(k), x∗( j + 1|k) = f (x∗( j|k),u∗( j|k)), and
u∗( j|k) = gk(θ

∗
k , j).

Algorithm 1 Nominal SPPC strategy

(1) At instant k, get x(k) and solve (6);
(2) Apply to the plant the input u(k) = u∗(0|k) = gk(θ

∗
k ,0);

(3) Repeat from 1) at the next sampling instant.

Algorithm 1 defines the feedback control law u(k) =
µ(x(k)) = u∗(0|k), and the resulting model of the closed-
loop system is x(k+ 1) = f (x(k),µ(x(k)). Under Assump-
tion 3, when no disturbance or model mismatch are present
(hence the term “nominal” SPPC), recursive feasibility and
satisfaction of the terminal constraint are established by
construction. In the next section, we deal with the uncertain
case by introducing two possible variations of Algorithm 1.

4 Relaxed SPPC approaches: algorithms and proper-
ties

To model the uncertainty/disturbance, we consider an ad-
ditive term d(k) acting on the input vector (the so-called
matched uncertainty), and denote with ũ(k) .

= u(k)+ d(k)
the disturbance-corrupted input applied to the plant. In our
motivating application, d(k) accounts for the effects of un-
certainty in the train mass, drivetrain specs, track slope and
curvature, as well as space and input discretization and/or
misapplication by the human operator in a driver assistance
scenario.

Assumption 4 ∀k ∈ Z[0,k f ], ‖d(k)‖ ≤ d ∈ (0,+∞).

This assumption holds in most practical cases and in the
considered train application as well. We indicate the per-
turbed state trajectory due to the presence of d as x̃(k+1) =
f (x̃(k), ũ(k)), k = 0, . . . ,k f , with x̃(0) = x(0). Referring to
Section 3.2, the recursive feasibility property can be eas-
ily lost when d(k) 6= 0, due to the deviation of the per-
turbed trajectory from the nominal one. As commonly done
in standard NMPC, to retain recursive feasibility we there-
fore soften the state constraints. For the sake of simplicity,
here we consider softening only the terminal state constraint
in (3f), i.e., x(k f ) ∈ X f . We do so without loss of generality,
since the results and approaches below can be extended to
any state constraint in the control problem. This is realistic
in the train control application where, as a matter of fact,
the maximum velocity limits never pose feasibility issues,
since the braking force is always large enough to decrease
the train speed within its bound notwithstanding possible
extra accelerations, caused by, e.g., uncertain track slope or
lower mass than the assumed one.
However, relaxation does not guarantee that, in closed-loop
operation, the operational constraints are satisfied, or even
that the constraint violation is uniformly decreasing as the
worst-case disturbance bound d gets smaller.
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Let us denote the distance between a point x and a set X as
∆(x,X)

.
= min

y∈X
‖x− y‖. Then, we want to derive a modified

SPPC strategy with softened terminal state constraint that
guarantees a property of the following form in closed loop:

∃β ∈K ,s.t., ∆(x̃(k f ),X f )≤ β (d). (7)

That is, the distance between the terminal state and the ter-
minal constraint set is bounded by a value that decreases
uniformly to zero as d → 0. We introduce next a relaxed
SPPC approach with a two-step constraint softening proce-
dure, which we prove to enjoy property (7).

4.1 Two-step relaxed SPPC

At step k, we solve two optimization problems in sequence:

a) compute the smallest achievable distance between the
terminal state and the terminal set, starting from the
current perturbed state x̃(k):

γ(k) .
= min
θk ,γ

γ (8a)

subject to
u( j|k) = gk(θk, j), j = 0, . . . ,k f − k−1 (8b)

x( j+1|k) = f (x( j|k),u( j|k)), j = 0, . . . ,k f − k−1 (8c)
u( j|k) ∈U, j = 0, . . . ,k f − k−1 (8d)
x( j|k) ∈ X(k), j = 1, . . . ,k f − k (8e)

x(0|k) = x̃(k) (8f)
θk ∈Θk (8g)

∆(x(k f − k|k),X f )≤ γ (8h)

b) optimize the input sequence using the original cost
function, and softening the terminal constraint by γ(k):

min
θk

k f−k

∑
j=0

`(x( j|k),u( j|k)) (9a)

subject to
u( j|k) = gk(θk, j), j = 0, . . . ,k f − k−1 (9b)

x( j+1|k) = f (x( j|k),u( j|k)), j = 0, . . . ,k f − k−1 (9c)
u( j|k) ∈U, j = 0, . . . ,k f − k−1 (9d)
x( j|k) ∈ X(k), j = 1, . . . ,k f − k (9e)

x(0|k) = x̃(k) (9f)
θk ∈Θk (9g)

∆(x(k f − k|k),X f )≤ γ(k) (9h)

By construction, both problems are always feasible. More-
over the second can be warm-started at a feasible point with
the solution of the first. We denote with θr

k, xr(k) and ur(k)
the sequences of decision variables, state and inputs corre-

sponding to a (locally) optimal solution of (9):

xr(k) = {xr(0|k), . . . ,xr(k f − k|k)} (10a)
ur(k) = {ur(0|k), . . . ,ur(k f −1− k|k)} (10b)
where

xr(0|k) = x̃(k) (10c)
xr( j+1|k) = f (xr( j|k),ur( j|k)) (10d)

ur( j|k) = gk(θ
r
k, j) (10e)

Algorithm 2 Two-stage relaxed SPPC strategy

(1) At instant k, get x̃(k) and solve in sequence (8)-(9). Let
θr

k be the computed solution;
(2) Apply to the plant the input u(k) = ur(0|k) = gk(θ

r
k,0);

(3) Repeat from 1) at the next sampling instant.

Algorithm 2 defines the feedback control law u(k) =
µr(x̃(k)) .

= ur(0|k), and the resulting closed-loop dynamics
are given by:

x̃(k+1) = f (x̃(k),µr(x̃(k))+d(k)). (11)

We show next that the closed-loop system (11) enjoys a uni-
formly bounded accuracy property of the form (7), provided
that the nominal SPPC problem (6) is feasible at k = 0.

Theorem 1 Let Assumptions 1- 4 hold and let (6) be feasible
at space step k = 0. Then, the terminal state x̃(k f ) of system
(11) enjoys property (7) with

∆(x̃(k f ),X f )≤ β (d) =
k f−1

∑
k=0

βk f−k−1(d) (12)

where β0(d)= au f (d) and βk(d)= au f (d)+ax f (βk−1(d)), k=
1, . . . ,k f −1.

Proof 1 See the Appendix.

Theorem 1 indicates that Algorithm 2 yields ∆(x̃(k f ),X f ) =

0 for d = 0, and a uniformly increasing bound otherwise.
The result is conservative, since in practice such a bound
is much larger than ∆(x̃(k f ),X f ), yet it still provides a the-
oretical support to the use of Algorithm 2, which, on the
other hand, can be solved rather efficiently, as it involves
nominal predictions only. The theoretically possible alter-
natives would be to consider closed-loop predictions with
some preliminary controller (to reduce conservativeness of
the bound), and/or to design a robust predictive strategy. The
first approach could actually fit in the presented setup with
minor modifications, since it would entail a change of the
model equations to include the preliminary controller and the
analysis of its effects on the exogenous input d, e.g., with a
small-gain assumption. The second approach might be very
challenging from the computational point of view, since we
are dealing with general nonlinear systems, and eventually
the obtained guarantees could still be conservative. For these
reasons, here we decided to opt for Algorithm 2, analyze its
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qualitative behavior with Theorem 1, and evaluate the actual
performance, which are indeed very promising, in accurate
simulations of our real-world application in Section 5.

4.2 Multi-objective relaxed SPPC strategy

Multi-objective minimization is an alternative to the two-
step approach:

min
θk,γ

k f−k

∑
j=0

`(x( j|k),u( j|k))+ωγ (13a)

subject to
u( j|k) = gk(θk, j), j = 0, . . . ,k f − k−1 (13b)

x( j+1|k) = f (x( j|k),u( j|k)), j = 0, . . . ,k f − k−1 (13c)
u( j|k) ∈U, j = 0, . . . ,k f − k−1 (13d)
x( j|k) ∈ X(k), j = 1, . . . ,k f − k (13e)

x(0|k) = x̃(k) (13f)
θk ∈Θk (13g)

∆(x(k f − k|k),X f )≤ γ (13h)

where ω is a positive weight on the scalar γ . Problem (13)
can be solved in Algorithm (2) in place of problems (8)-(9).
In this case, a trade-off between constraint relaxation and
economic performance can be set by tuning ω . Regarding the
guaranteed bounds on constraint violation, with arguments
similar to those of [4], under Assumptions 1-2 one can show
that, at each k ∈ Z[0,k f−1], for any ε > 0 there exists a finite
value of ω such that the distance between the terminal state
and the terminal set is smaller than γ(k f − k− 1)(d) + ε .
Thus, with large-enough ω , one can recover the behavior
obtained with the two-step relaxed SPPC approach (see also
[5, Thm. 14.3.1]). The theoretical derivation is omitted for

the sake of brevity, as it is a rather minor extension of the
results of [4].

5 Simulation results

We tested the proposed strategies using the Alstom simulator
CITHEL, featuring coupled mechanical, electric and ther-
mal calculations of the full train with its electro-mechanical
back-end (incl. detailed models of the drives and electric mo-
tors), able to provide accurate time and energy consumption
predictions. The tests pertain to the section of the Amsterdam
metro rail between Rokin and Central Station. The train pa-
rameters are (see (1)-(2)) M = 142403kg, Ms = 131403kg,
A = 3975.9N, B = 24.36Nsm−1, C = 4.38Ns2m−2

and D = 800Nm. The maximum traction and braking
forces as a function of train speed, FT max(x2), FBmax(x2),
are presented in Fig. 4. The actual forces are then
computed as FT (x(k),u(k)) = FT max(x2(k))u(k), and
FB(x(k),u(k)) = FBmax(x2(k))u(k). The following equations
provide approximate mathematical models of these forces:
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Fig. 4. Simulation parameters. Upper plot: maximum traction force
FT max(dashed) and braking force FBmax (dotted) for the considered
metro train. Lower plot: slopes of the considered Amsterdam metro
track segment.

FT (x(k),u(k)) =


FT maxu(k), for 0≤ 3.6x2(k)≤ 26

FT maxu(k)
(3.6x2(k)−26)0.25 , for 27≤ 3.6x2(k)≤ 50

FT maxu(k)
2(3.6x2(k)−50)0.05 , for 51≤ 3.6x2(k)≤ 80


FB(x(k),u(k)) =

{
FBmaxu(k), for 0≤ 3.6x2(k)≤ 45

FBmaxu(k)
(3.6x2(k)−45)0.1 , for 46≤ 3.6x2(k)≤ 80

}

The considered track has zero curvature, slopes as plotted
in Fig. 4, and velocity limits reported in Fig. 6. The track
length is s f = 1106m and the nominal arrival time t f = 76s.
We take a sampling distance Ds = 5m, resulting in k f = 221.
Table 1 shows the computational times obtained with a
non-parametrized NMPC approach and with the SPPC
techniques. The results have been obtained using Matlabr

fmincon and a laptop equipped with Intelr Core i7-6700Hq
processor at 2.6 GHz and 8 GB of memory. All the func-
tions were implemented in Matlabr. The non-parametrized
NMPC was computationally feasible only in the fully auto-
matic scenario, since in the driver assistance one at k = 0 an
intractable optimization problem arises, with 221 discrete
decision variables, each with four possible values. The rela-
tive comparison among the results in Table 1 indicates that
the SPPC approaches achieve computational times that are
two orders of magnitude smaller than the non-parametrized
NMPC. We did not carry out any particular attempt to
optimize the solver; the obtained results indicate that a real-
world, fully optimized implementation at 100Hz sampling
rate is possible. The real-world implementation and testing
of the approach are subject of ongoing development.
Fig. 5 presents the input courses obtained in both the fully
automatic scenario (comparing NMPC without parametriza-
tion with move-blocking SPPC with L = 20 and L = 45)
and in the driver assistance one, while the obtained veloc-
ity courses are shown in Fig. 6. The latter also presents
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Table 1
Simulation results with CITHEL. Computational time per time
step (s) of NMPC and SPPC approaches.

Non parametrized, continuous input 2.40

Non parametrized, discrete input -

Move-blocking L = 20, two step 0.040

Move-blocking L = 45, two step 0.010

Move-blocking L = 20, multi-objective 0.025

Move-blocking L = 45, multi-objective 0.006

Switching sequence, two step 0.050

Switching sequence, multi-objective 0.030
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Fig. 5. CITHEL Simulation results. Upper plot: fully automated
scenario, input handle vs. train position with no move-blocking
(dotted line) and with move-blocking SPPC with L = 20 (dashed)
and L = 45 (dash-dot). Lower plot: driver assistance scenario,
input handle as a function of the train position obtained with the
switching-sequence SPPC strategy, multi-objective approach.

the “all-out” solution (the one giving the shortest arrival
time compatible with the system parameters and speed con-
straints) for comparison. The results show how the SPPC
strategies favor coasting, thus exploiting the downhill slope
of the track to save energy. The performance of SPPC
strategies in terms of energy consumption and arrival time
are summarized in Table 2, providing a comparison with
the all-out solution and with Alstom current eco-drive strat-
egy, based on genetic algorithm optimization. The SPPC
strategies are able to reduce significantly the energy con-
sumption, at the cost of a tolerable delay of 2s with respect
to the nominal arrival time t f . Note that the use of CITHEL
already introduces a mismatch with respect to the model (1)
used in the predictive controllers. Moreover, we ran Monte
Carlo simulations with parameter uncertainty of ±10%
of each model parameter, always obtaining energy con-
sumption and arrival times in the range of ±0.5% of those
of Table 2. Finally, note that SPPC with move-blocking
parametrization achieves slightly better results than with
switching parametrization. This is reasonable, since the
move-blocking one can still exploit the continuous input

constraint set [−1, 1], while the switching parametrization
is bound to discrete driving modes.
Table 2
Comparison of performance obtained with Alstom simulation tool
CITHEL, normalized with respect to Alstom “all-out” solution.
The actual energy values are not provided for confidentiality rea-
sons.

Strategy Energy (%) x1(k f ) (s)

All-out 100 73

Genetic algorithm Eco-drive 69 77

Non parametrized continuous NMPC 43 76

Move-blocking SPPC L = 20 45 78

Move-blocking SPPC L = 45 78 78

Switching-sequence SPPC 47 78
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Fig. 6. CITHEL Simulation results. Velocity limits (thin solid
line) and velocity profiles as a function of the train position for
the “all-out” solution (thick solid line), Alstom genetic algorithm
eco-drive (dotted line), move-blocking SPPC with L= 20 (dashed),
and switching-sequence SPPC (dash-dot).

6 Conclusions and future work

We proposed a parametrized shrinking horizon predictive
control approach to solve problems where a finite termi-
nal instant and corresponding state constraint set are im-
posed. Under the assumption of transferable parametrization
strategies, we derived a result supporting the use of relax-
ation to deal with matched uncertainty. We tested two re-
laxed approaches on a sophisticated train simulator by Al-
stom Rail Transport, proving improved energy consumption
performance and feasible computation. The current research
is aimed to implement the approach on a real train, and to
extend it to the case of cooperative trains that are able to
regenerate and exchange braking energy when connected to
the same substation.
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Appendix - Proof of Theorem 1

Start at k = 0 and consider the relaxed optimized sequences
xr(k), ur(k) (10). For a sequence of disturbances d(k), k =
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0, . . . ,k f −1, the corresponding open-loop input and state trajec-
tories are:

ũ(k) = ur(0|k)+d(k), k = 0, . . . ,k f −1

x̃(0) = xr(0|k)
x̃(k+1) = f (x̃(k), ũ(k)), k = 0, . . . ,k f −1

From Assumption 2, we have:

‖x̃(1)− xr(1|0)‖= ‖ f (x(0), ũ(0))− f (x(0),ur(0|0))‖ ≤
au f (‖ũ(0)−ur(0|0)‖)≤ au f

(
d
)
= β0

(
d
)

And, for the perturbation 2-steps ahead:

‖x̃(2)− xr(2|0)‖= ‖ f (x̃(1), ũ(1))− f (xr(1|0),ur(1|0))‖=
‖ f (x̃(1), ũ(1))− f (x̃(1),ur(1|0))+
f (x̃(1),ur(1|0))− f (xr(1|0),ur(1|0))‖ ≤
au f

(
d
)
+ax f (‖x̃(1)− xr(1|0)‖)≤ au f

(
d
)
+ax f

(
β0
(
d
))

= β1
(
d
)
.

By iterating until k f −1 we obtain:

‖x̃(k f )− xr(k f |0)‖ ≤ βk f−1
(
d
)
,

where βk f−1 ∈K since it is given by compositions and summa-
tions of class-K functions. Since the FHOCPs (6) is feasible,
we have γ(0) = 0, i.e., ∆(xr(k f |0,X f ) = 0. Thus, by applying the
triangular inequality to the distance operator:

∆(x̃(k f ),X f ) ≤ ‖x̃(k f )− xr(k f |0)‖+∆(xr(k f |0),X f )

≤ βk f−1(d).

Now consider k = 1 and the FHOCP (8). Under Assumption 3,
the optimizer can be always initialized with a parameter vector θ̄1
such that the tail of the previous optimal sequence ur(0) is applied
to the system, the corresponding minimum γ in (8) results to be
upper bounded by βk f−1(d) derived above.The optimal value γ(k)
is therefore not larger than this bound as well:

γ(1)≤ βk f−1(d). (14)

Now take the optimal sequences xr(1) and ur(1) computed by
solving the FHOCP (9). By applying the same reasoning as we
did for k = 0, we have (compare with (14)):

‖x̃(k f )− xr(k f |1)‖ ≤ βk f−2(d).

Moreover, equation (14) implies:

∆(xr(k f |1),X f )≤ γ(1). (15)

From (14)-(15) we have:

∆(x̃(k f ),X f )≤ ‖x̃(k f )− xr(k f |1)‖+∆(xr(k f |1),X f )≤

βk f−2(d)+βk f−1(d) =
1
∑

k=0
βk f−k−1(d).

By applying recursively the up to k = k f −1, we eventually obtain
the bound (12). �
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