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Abstract

This paper provides the first description of a weak practical super-martingale phenomenon that can emerge in the test statistic in Shiryaev’s
Bayesian quickest change detection (QCD) problem. We establish that this super-martingale phenomenon can emerge under a condition
on the relative entropy between pre and post change densities when the measurements are insufficiently informative to overcome the
change time’s geometric prior. We illustrate this super-martingale phenomenon in a simple Bayesian QCD problem which highlights the
unsuitability of Shiryaev’s test statistic for detecting subtle change events.

Key words: Bayesian Quickest Change Detection; Detection Algorithms; Markov Models; Super-martingale; Maximal Inequality

1 Introduction

Quickly detecting a change in the statistics of a process is
an important signal processing problem with application in
a diverse range of areas including: automatic control [1],
quality control [1–3], statistics [4], target detection [5, 6]
and many more [7, Ch, 1.3]. In the classic Bayesian quick-
est change detection (QCD) problem, it is assumed that a
permanent change in the statistics of an observed process
occurs at some random time (see [7, Ch. 1.2] for a compar-
ison with non-Bayesian QCD). The classic Bayesian QCD
objective is to minimize the average detection delay subject
to a constraint on the probability of a false alarm. When the
change time has a geometric prior, Shiryaev established the
optimal stopping rule as a test of whether the change pos-
terior probability is above a threshold [8]. This paper inves-
tigates the properties of Shiryaev’s famous test statistic in
weak measurement environments.

The main contribution here is to provide the first report
and characterization of a super-martingale phenomenon in
Shiryaev’s Bayesian QCD problem (see [3] and [9] for exten-
sive investigations of martingale phenomenon in other QCD
rules). This paper introduces a new weak practical super-
martingale concept and exploits the maximal inequality for
non-negative supermartingales to characterise of conditions
under which the Bayesian QCD measurements are not suf-
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ficiently informative and Shiryaev’s test statistic is domi-
nated by the change time’s prior. Interestingly, the identified
super-martingale phenomenon appears suddenly once an in-
formation theoretic requirement on the pre and post change
densities holds (rather than emerging as a graceful degrada-
tion). Practically, in applications with weak measurements,
these observations motivate consideration of subtle problem
adjustments, such as in the quickest intermittent signal de-
tection problem [10] which generalizes Shiryaev’s problem
for use in a vision-based aircraft detection application, or
using non-Bayesian QCD such as the Lorden criterion [11].

The specific contributions are:

(i) Establishing a condition in terms of the change time’s
geometric prior and the relative entropy between pre
and post change densities that identifies when measure-
ments are insufficiently informative.

(ii) Establishing that when measurements are insufficiently
informative, Shiryaev’s test statistic can exhibit a super-
martingale phenomenon; that is, the log of no change
posterior is a weak practical super-martingale.

(iii) Providing an example exhibiting this super-martingale
phenomenon to illustrate a situation where Shiryaev’s
Bayesian QCD approach is potentially unsuitable for
detecting subtle change events.

We would expect similar phenomenon to emerge in recent
Bayesian QCD generalizations involving non-ergodic mod-
els [12].
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2 Shiryaev’s Bayesian Quickest Change Detection
Problem and Optimal Solution

For k > 0, let yk ∈ Y be an independent and individually
distributed (i.i.d.) sequence of random variables taking val-
ues in the set Y ⊆ R

M . Initially, the random variables yk
have a pre change (marginal) probability density b1(·) be-
fore, at some random change time ν ≥ 1, switching to hav-
ing a post change (marginal) probability density b2(·). We
will assume for i ∈ {1, 2}, that bi(.) < B for some finite
B < ∞. For k ≥ 0, let random variable Xk ∈ {e1, e2} de-
note a change event process in the sense that Xk = e1 for
k < ν and Xk = e2 for k ≥ ν. Here ei ∈ R2 are indica-
tor vectors with 1 in the ith element, and zero elsewhere.
Let y[1,k] , {y1, . . . , yk} be shorthand for measurement se-
quences.

Before we formally state Shiryaev’s Bayesian QCD prob-
lem, let us first introduce a probability measure space. Let
Fk = σ(y[1,k]) denote the filtration generated by y[1,k]. We

will assume the existence of a probability space (Ω,F , Pν)
where Ω is a sample space of sequences y[1,∞], σ-algebra

F = ∪∞
k=1Fk with the convention that F0 = {0,Ω}, and Pν

is the probability measure constructed using Kolmogorov’s
extension on the joint probability density function of the ob-
servations pν(y[1,k]) = Πν−1

i=1 b
1(yi)Π

k
j=νb

2(yj) where we

define Πk
j=νb

2(yj) = 1 when k < ν. We will let Eν de-
note expectation under Pν and use the probability measure
P∞ and expectation E∞ to denote the special case when

there is no change event. We let D
(

b1(yk)
∣

∣

∣

∣b2(yk)
)

,

E∞

[

log
(

b1(yk)
b2(yk)

)]

denote the relative entropy between pre

and post change densities.

In Bayesian QCD problem the change time ν ≥ 1 that Xk

transitions from e1 to e2 is considered to be an unknown
random variable with prior distribution πk , P (ν = k) for
k ≥ 1. This allows us to construct a new averaged measure
Pπ(G) =

∑∞

k=1 πkPk(G) for all G ∈ F and we let Eπ de-
note the corresponding expectation operation. In Shiryaev’s
problem we consider the special case of the geometric prior

πk = (1 − ρ)k−1ρ for some ρ ∈ (0, 1) (and set πk , 0,
k < 1).

Let τ > 0 be a stopping time with respect to filtrationFk. We
can now introduce the Shiryaev cost criterion [8] to trade-off
average detection delay with probability of false alarm as

J(τ) = cEπ

[

(τ − ν)+
]

+ Pπ(τ < ν), (1)

where (τ −ν)+ , max(0, τ −ν), c is the delay penalty and
the problem is to minimise infτ J(τ).

For i ∈ {1, 2}, let the no change and change posterior prob-

abilities be denoted X̂ i
k , Pπ(Xk = ei|y[1,k]), respectively.

Noting that we can write X̂2
k = 1− X̂1

k , allows us to write

Shiryaev’s optimal stopping rule for this cost criterion in
terms of the no change posterior probability as

τ = inf
{

k ≥ 1 : X̂1
k < 1− h

}

,

where h is a threshold selected to control the probability of
false alarm, as it can be shown that the probability of false
alarm satisfies Pπ(τ < ν) < 1− h [10].

3 The Emergence of the Super-Martingale Phe-
nomenon

To develop conditions under which the test statistic X̂1
k of

Shiryaev’s rule exhibits rapid decrease even in the no change
regime, we first introduce the following result that estab-
lishes how to efficiently calculate it.

Lemma 1 For k > 0, given a sequence of measurements

y[1,k] the no change posterior probability X̂1
k is given by the

scalar recursion

X̂1
k = Nk(1− ρ)b1(yk)X̂

1
k−1 (2)

with X̂1
0 = 1 and the normalization factor

N−1
k = b2(yk) + (1− ρ)

(

b1(yk)− b2(yk)
)

X̂1
k−1. (3)

PROOF. As defined above, Xk is a first order time-
homogeneous Markov chain whose transition probabilities

at each time instant are given by Ai,j , P (Xk+1 =
ei|Xk = ej) for i, j ∈ {1, 2} as

A =

[

1− ρ 0

ρ 1

]

, (4)

whereX0 = e1, andXk is observed via the random variables
yk. Hence, the no change posterior X̂1

k can efficiently be

calculated by hidden Markov model filter [13], where X̂k =

[X̂1
k , X̂

2
k ]

′,

X̂k = Nkdiag([b1(yk), b
2(yk)])AX̂k−1

where Nk = 〈diag([b1(yk), b
2(yk)])AX̂k−1, 1〉

−1 and with

X̂0 = e1. Noting that X̂2
k = 1 − X̂1

k , then simple algebra
lets us write (2). Then we note that

N−1
k = b1(yk)

(

(1−ρ)X̂1
k−1

)

+b2(yk)
(

ρX̂1
k−1+(1− X̂1

k−1)
)

= b1(yk)
(

(1− ρ)X̂1
k−1

)

+ b2(yk)
(

(ρ− 1)X̂1
k−1 + 1

)

= b2(yk) + (1− ρ)(b1(yk)− b2(yk))X̂
1
k−1

giving (3). This completes the proof.
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To facilitate characterization of our test statistic’s behaviour
let us introduce Mk , Nk(1−ρ)b1(yk) ∈ R, noting that we

can write log(X̂1
k) = log(Mk) + log(X̂1

k−1), and establish

the following bound on log(Mk).

Lemma 2 (X̂k dependent bound on log(Mk)) For any δ >

0, there is a hδ > 0 such that for any X̂1
k−1 < hδ we have

Eπ

[

log(Mk)
∣

∣

∣
X̂1

k−1

]

< log(1−ρ)+D
(

b1(yk)
∣

∣

∣

∣b2(yk)
)

+δ.

PROOF. We define

γk , log
(

b2(yk)
)

− log
(

b2(yk) + (1− ρ)(b1(yk)− b2(yk))X̂
1
k−1

)

.

Using (3) lets us write

Eπ

[

log(Nk)
∣

∣

∣
X̂1

k−1

]

=

−Eπ

[

log
(

b2(yk)+(1−ρ)(b1(yk)−b2(yk))X̂
1
k−1

)
∣

∣

∣
X̂1

k−1

]

= −Eπ

[

log
(

b2(yk)
)

∣

∣

∣
X̂1

k−1

]

+ Eπ

[

γk

∣

∣

∣
X̂1

k−1

]

. (5)

It then follows from (5) and the definition of Mk that

Eπ[log(Mk)|X̂
1
k−1] = log(1− ρ)

+Eπ

[

log(Nk)
∣

∣

∣
X̂1

k−1

]

+ Eπ

[

log(b1(yk))
∣

∣

∣
X̂1

k−1

]

= log(1− ρ) + Eπ

[

log(b1(yk))
∣

∣

∣
X̂1

k−1

]

−Eπ

[

log
(

b2(yk)
)

∣

∣

∣
X̂1

k−1

]

+ Eπ

[

γk

∣

∣

∣
X̂1

k−1

]

= log(1− ρ) + Eπ

[

log

(

b1(yk)

b2(yk)

)

∣

∣

∣
X̂1

k−1

]

+Eπ

[

γk

∣

∣

∣
X̂1

k−1

]

. (6)

Noting that log(x) is a continuous (monotonic increasing)
in x and that bi(.) < B are finite gives that for any δ > 0,

there is a hδ > 0 such that for any X̂1
k−1 < hδ we have

Eπ

[

γk

∣

∣

∣
X̂1

k−1

]

≤ δ, and therefore (6) gives that

Eπ[log(Mk)|X̂
1
k−1]< log(1− ρ)

+Eπ

[

log

(

b1(yk)

b2(yk)

)

∣

∣

∣
X̂1

k−1

]

+ δ. (7)

Then usingPπ(yk|X̂
1
k−1) = Pπ(Xk = e1|X̂

1
k−1)Pπ(yk|Xk =

e1, X̂
1
k−1) + Pπ(Xk = e2|X̂

1
k−1)Pπ(yk|Xk = e2, X̂

1
k−1)

and Pπ(Xk = e1|X̂
1
k−1) = (1− ρ)X̂1

k−1 gives

Eπ

[

log

(

b1(yk)

b2(yk)

)

∣

∣

∣
X̂1

k−1

]

=

(1 − ρ)X̂1
k−1

∫

Y

b1(yk) log

(

b1(yk)

b2(yk)

)

dyk

+(1− (1− ρ)X̂1
k−1)

∫

Y

b2(yk) log

(

b1(yk)

b2(yk)

)

dyk

= (1− ρ)X̂1
k−1E∞

[

log

(

b1(yk)

b2(yk)

)]

−(1− (1− ρ)X̂1
k−1)

∫

Y

b2(yk) log

(

b2(yk)

b1(yk)

)

dyk

= (1− ρ)X̂1
k−1D

(

b1(yk)
∣

∣

∣

∣b2(yk)
)

−(1− (1− ρ)X̂1
k−1)E0

[

log

(

b2(yk)

b1(yk)

)]

< D
(

b1(yk)
∣

∣

∣

∣b2(yk)
)

(8)

because (1 − ρ)X̂1
k−1 < 1, (1 − (1 − ρ)X̂1

k−1) ≥ 0 and

E0

[

log
(

b2(yk)
b1(yk)

)]

≥ 0. Substitution of (8) into (7) gives the

lemma result.

Recall that we can write log(X̂1
k) = log(Mk)+ log(X̂1

k−1).
Hence Lemma 2 provides a bound on the test statistic in-
crement log(Mk) which allows us to investigate conditions
under which the measurements are insufficient to overcome
the geometric prior information log(1−ρ) < 0, and log(X̂1

k)
becomes a weak practical super-martingale in the following
sense:

Definition 3 (Weak practical super-martingale) If for any
arbitrarily small δp > 0 there exists a hs > 0 such that if

X̂1
k < hs then

Pπ

(

for all n ≥ k,Eπ[log(X̂
1
n+1)|log(X̂

1
n)]<log(X̂1

n)
)

> 1− δp.

and the log of the no change posterior probability log(X̂1
k)

is called a weak practical super-martingale.

We now establish our theorem which provides conditions un-
der which measurements are insufficiently informative and
this super-martingale phenomenon emerges.

Theorem 4 (Insufficiently informative measurements) If the
relative entropy between probability densities b1(·) and b2(·)
is sufficient small, namely

D
(

b1(yk)
∣

∣

∣

∣b2(yk)
)

< log(1/(1− ρ)) (9)

then the measurements are insufficiently informative in the

sense that log(X̂1
k) is a weak practical super-martingale (cf.

Definition 3).
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PROOF. From Lemma 2, the bound (9) gives that there

exists a hδ > 0 such that for X̂1
k−1 < hδ we have

Eπ[log(Mk)|X̂
1
k−1] < 0 and hence that log(X̂1

k) satisfies
the super-martingale property

Eπ [log(X̂
1
k)| log(X̂

1
k−1)] < log(X̂1

k−1) (10)

notingEπ[log(X̂
1
k)| log(X̂

1
k−1)] = Eπ[log(Mk)| log(X̂

1
k−1)]+

log(X̂1
k−1) and that conditioning on log(X̂1

k−1) and X̂1
k−1

are equivalent. It remains to establish if X̂1
k−1 remains

trapped in [0, hδ) or escapes.

Let us introduce hs , βhδ and hm , βηhδ, with some
β, η < 1 as bounding parameters to manage our possibly

unbounded log(X̂1
k−1) super-martingale process. We define

a new process Zk , max(log(X̂1
k/hm), 0). We now note

that (10) gives that Zk is a non-negative super-martingale
and hence by the maximal inequality for non-negative super-
martingales (cf. [14, Lemma 1]) we have, for any k. that

Pπ

(

max
n≥k

Zn ≥ (log(hδ/hm))

)

≤
Eπ[Zk]

log(hδ/hm)
.

Noting that Zn ≥ log(X̂1
n/hm) and that if X̂1

k < hs then
Eπ[Zk] < log(hs/hm) gives

Pπ

(

max
n≥k

log(X̂1
n) ≥ log(hδ)

)

<
log(hs/hm)

log(hδ/hm)
.

Rewriting in terms of the complimentary set for the maximal

event gives, if X̂1
k < hs that

Pπ

(

max
n≥k

log(X̂1
n) < log(hδ)

)

> 1− δl

where δl , log(hs/hm))/ log(hδ/hm) can be writ-
ten as δl = log(η)/ log(βη). We note that the event

maxn≥k log(X̂
1
n) < log(hδ) implies for all n ≥ k that

X̂1
n < hδ and hence by Lemma 2 that (10) holds for all

n ≥ k. The theorem result follows by noting that for any
δp > 0 we can find a β (or equivalently a hs > 0) so that
δl ≤ δp and the Definition 3 property holds.

Theorem 4 establishes that unless the relative entropy be-
tween pre and post change densities D

(

b1(yk)
∣

∣

∣

∣b2(yk)
)

is

sufficiently large, the no change posterior X̂1
k is a weak

practical super-martingale under Eπ and hence there exists

a trap defined by the interval X̂1
k < hδ where Shiryaev’s

test statistic becomes increasingly confident that the change
has occurred even if it has not. Further, we note that on
sufficiently long sequence of measurements there is non

zero probability of entering the interval X̂1
k < hδ. A test

statistic that can exhibit such incorrect increasing confi-
dence on non-pathological sequences is problematic in a
practical setting and hence we interpret the existence of this
interval trap under the condition of Theorem 4 as mean-
ing the measurements are insufficiently informative. To un-
derstand the behaviour of Shiryaev’s rule and the role of
the relative entropy D

(

b1(yk)
∣

∣

∣

∣b2(yk)
)

first consider the

limit case b1(·) = b2(·). In this case, D
(

b1(yk)
∣

∣

∣

∣b2(yk)
)

is

zero, the posterior is given by X̂1
k = (1 − ρ)k, Shiryaev’s

rule becomes the deterministic rule to stop at the earliest
time at or after log(1 − h)/ log(1 − ρ) and hδ = 1. In-
formally, a similar geometric prior (1 − ρ)k mechanism is
driving the super-martingale phenomenon that occurs when
D

(

b1(yk)
∣

∣

∣

∣b2(yk)
)

is non-zero but less than log(1/(1−ρ)),

with hδ ∈ (0, 1). Finally, we note that as D
(

b1(yk)
∣

∣

∣

∣b2(yk)
)

increases towards the critical value of log(1/(1 − ρ)) then
hδ decreases towards 0, and the probability of entering the
trap interval decays.

4 Example: Bayesian Quickest Change Detection With
Gaussian Densities

Proposition 5 Consider Shiryaev’s Bayesian quickest
change detection problem with pre and post change
(marginal) probabilities densities b1(yk) =

1
2π exp(−y2k/2)

and b2(yk) =
1
2π exp(−(yk −m)2/2). Consider the set

M(ρ) ,

{

m :
m2

2
< log(1/(1− ρ))

}

. (11)

M(ρ) is non-empty. Further, there exists a mc such that
M(ρ) has a threshold structure in the sense of M(ρ) =

{m : 0 < m < mc}, where mc =
√

2 log(1/(1− ρ)). Fi-
nally, when m ∈ M(ρ), then the measurements are insuf-

ficiently informative in that log(X̂1
k) is a weak practical

super-martingale (cf. Definition 3).

PROOF. To establish that M(ρ) is non-empty we note that
for any ρ > 0 there exist a ǫ > 0 such that log (1/(1− ρ)) >

ǫ. As limm→0

[

m2

2

]

= 0 then for any ǫ > 0, there must be

at least one m > 0 such that m2

2 < ǫ and hence this m > 0
as an element of the non-empty M(ρ). The interval result
follows by noting that if m ∈ M(ρ) then βm ∈ M(ρ) for
all 0 < β ≤ 1, and this means the set M(ρ) can be described
as the interval {m : 0 < m < mc} with some critical largest
element mc. Algebra and the monotonic increasing nature of

m2/2 gives that mc =
√

2 log(1/(1− ρ)). The final result
follows from Lemma 2 and noting that the relative entropy

between these two Gaussians is given by m2

2 [1, Example
4.1.9] .

Simulation: Consider a geometric prior ρ = 0.05 and
note from Proposition 5 that the phenomenon emerges below

4



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

-150

-100

-50

0

m=0.4
m=0.23

Fig. 1. Example of the super-martingale phenomenon. Pre and
post change densities are unit variance Gaussians with means of 0
and m, respectively; ρ = 0.05. The super-martingale phenomenon
emerges when the measurements are insufficiently informative
(m = 0.23) compared to more reasonable behaviour when the
measurements are informative (m = 0.4).

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 2. Illustration of behaviour transition at the critical value.

Mean value of X̂1

5000 when no change event (1000 trials, ρ = 0.05,
mc = 0.32). The stars mark the m value cases studied in Figure 1.

mc = 0.32. Figure 1 illustrates two simulated examples of
the posterior’s behaviour on a sequence prior to the change
time (m = 0.40 and m = 0.23 representing examples of
informative and non-informative measurements). The sig-
nificantly different behaviour seen is an illustration of the
super-martingale phenomenon discussed in this paper.

To illustrate the transition in the behaviour of Shiryaev’s
test statistic, for each value of m = 0.1, 0.15, . . . , 0.6 we
conducted a Monte-Carlo study of 1000 trials of 5000 long
random variable sequences with no change. In Figure 2 the

mean value of X̂1
5000 (ρ = 0.05) illustrates that below the

critical value mc = 0.32 the test statistic exhibits the super-
martingale phenomenon and becomes incorrectly convinced
that a change has occurred, when it has not.

5 Discussion

The super-martingale phenomenon emerges in Bayesian
QCD as a consequence of the non-ergodic nature of the
underlying signal model. That the class of post-change den-
sities exhibiting the phenomenon can by parameterized by
an interval set suggests this is a systemic issue of the prob-
lem rather than the result of a pathological noise realisation.
Potential remedies in applications with weak measurements
include using quickest intermittent signal detection [10] or
using non-Bayesian QCD such as the Lorden criterion [11].
Finally, we would expect similar phenomenon to arise in
more complex Bayesian QCD or filter problems involving
non-ergodic models with weak observations.

Acknowledgment. The authors express many thanks to an
anonymous reviewer who helped correct the proof of Lemma
2.
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