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Abstract

In this paper we show that a slight modification to the widely popular interconnection and damping assignment passivity-based
control method—originally proposed for stabilization of equilibria of nonlinear systems—allows us to provide a solution to
the more challenging orbital stabilization problem. Two different, though related, ways how this procedure can be applied are
proposed. First, the assignment of an energy function that has a minimum in a closed curve, i.e., with the shape of a Mexican
sombrero. Second, the use of a damping matrix that changes “sign” according to the position of the state trajectory relative
to the desired orbit, that is, pumping or dissipating energy. The proposed methodologies are illustrated with the example of
the induction motor and prove that it yields the industry standard field oriented control.
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1 Introduction

In many practical tasks the system under control is re-
quired to operate along periodic motions, i.e., walking
and running robots, path following, rotating electrome-
chanical systems, AC or resonant power converters, and
oscillation mechanisms in biology. As clearly explained
in [16, Section 8.4] the stability analysis of these behav-
iors can be recast as a standard equilibrium stabilization
problem, but this leads to very conservative results. It is
more convenient, instead, to invoke the notion of stabil-
ity of an invariant set, where the latter is the closed orbit
associated to the periodic solution. This approach leads
to the important notion of orbital stability [16, Defini-
tion 8.2].

A large number of papers and books have been devoted
to analysis of orbital stability of a given dynamical sys-
tem, see e.g., [7,11,14]. However, there are only a few
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constructive tools available to solve the task of orbital
stabilization of a controlled system. A popular approach
to address this question is the virtual holonomic con-
straints (VHC) method, which has been tailored for me-
chanical systems of co-dimension one [17,19,27,28]. In
the VHC method a certain subspace of the state-space is
rendered attractive and invariant, leading to a projected
dynamics that behaves as oscillators. This is a particular
case of the framework adopted in the immersion and in-
variance (I&I) technique, first reported for equilibrium
stabilization in [2], and later extended for observer de-
sign and adaptive control in [3]. In [25] it has recently
been shown that I&I can also be adapted for orbital sta-
bilization, leading to a procedure that contains, as par-
ticular case, the VHC designs. The only modification
done to the standard I&I technique is in the definition
of the target dynamics that now should be chosen pos-
sessing periodic orbits, instead of an equilibrium at the
desired point. A main drawback in both the VHC and
I&I methods is that the steady-state behavior cannot be
fixed a priori, but depends on the initial states, see [25,
Remark 2] for a discussion on this matter.

An alternative approach to generate oscillations is re-
ported in [26], where it is proposed to construct pas-
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sive oscillators for Lure dynamical systems using “sign-
indefinite” feedback static mappings, which is a mecha-
nism similar to the pumping-and-damping injection dis-
cussed below. Unfortunately, since the analysis is carried
out applying the center manifold theory—that is a lo-
cal notion—the obtained oscillators are assumed to have
small amplitudes. Orbital stabilization designs, for some
particular controlled plants, have also been reported in
[1,11,29].

The aim of this paper is to show that the widely pop-
ular interconnection and damping assignment passiv-
ity based control (IDA-PBC), originally proposed in
[22,23,24] for stabilization of equilibria, can be easily be
adapted to address the problem of orbital stabilization
of general nonlinear systems. This leads to two new
constructive solutions for this problem that—as usual
in PBC—have a clear interpretations from the energy
viewpoint. First, the assignment of an energy function
that has a minimum in a closed curve, i.e., with the
shape of a Mexican sombrero. Second, the use of a
damping matrix that changes “sign” according to the
position of the state trajectory relative to the desired
orbit, that is, pumping or dissipating energy. As usual
in all constructive nonlinear controller designs, the suc-
cess of the proposed methods hinges upon our ability to
solve a partial differential equation (PDE).

The remaining of the paper is organized as follows. Sec-
tion 2 revisits the standard IDA-PBC. Section 3 intro-
duces the problem formulation of orbital stabilization,
followed by the constructive main results in Section 4.
The application to the induction motor (IM) is reported
in Section 5. Interestingly, we prove that the resulting
controller exactly coincides with the industry standard
direct field-oriented control (FOC) first proposed in
[5]. In Section 6 the orbital stabilization of pendula is
studied. The paper is wrapped-up with conclusions and
future work in Section 7.

Notation. S denotes the unit circle. Given a set A ⊂ Rn
and a vector x ∈ Rn, we denote ‖x‖A := infy∈A |x− y|,
with |x|2 := x>x, andBε(A) := {x ∈ Rn|‖x‖A ≤ ε}. All
mappings are assumed smooth. For a full-rank mapping
g(x) ∈ Rn×m with (m < n), we denote the generalized
inverse as g†(x) := [g>(x)g(x)]−1g>(x), and g⊥(x) ∈
R(n−m)×n a full-rank left annihilator of g(x). We de-
fine the gradient transpose operator as ∇x := (∂/∂x)>.
When clear from the context the arguments of the map-
pings and the operator ∇ are omitted.

Caveat. An abridged version of this paper will be pre-
sented in [31].

 

desired curve 

Fig. 1. The closed-loop Hamiltonian with the target orbit
and the Mexican sombrero in MSEA-PBC

2 Background on IDA-PBC

We consider in the paper systems written in the form

ẋ = f(x) + g(x)u, (1)

with the state x ∈ Rn and the control u ∈ Rm, m ≤
n and g(x) full rank. To solve the orbital stabilization
problem we propose in the paper a variation of the IDA-
PBC method [23], normally used for regulation tasks.
The objective in IDA-PBC is to find a feedback control
law u = û(x) such that the closed-loop dynamics takes
a port-Hamitonian (pH) form, that is,

f(x)+g(x)û(x) =
[
J (x)−R(x)

]
∇H(x) =: fcl(x) (2)

with H(x) ∈ R the desired Hamiltonian and

J (x) = −J>(x), R(x) = R>(x) (3)

the desired (n×n) interconnection and damping matri-
ces, respectively. The matching objective (2) is achieved
if and only if the following PDE (in H(x)) is solved

g⊥(x)f(x) = g⊥(x)
[
J (x)−R(x)

]
∇H(x). (4)

If this is the case, the control law is given as

û(x) = g†(x)
[(
J (x)−R(x)

)
∇H(x)− f(x)

]
. (5)

In regulation tasks, H(x) has a unique minimum at the
desired equilibrium and we choose the matrix R(x) to
be positive semi-definite to inject the damping required
to drive the trajectory towards the equilibrium. In this
paper we show that, for orbital stabilization we select
H(x) to have a minimum at the desired orbit—see Fig.
1. We will refer to this controller as Mexican sombrero
energy assignment (MSEA) PBC.

An alternative option is to select the “sign” of R(x) to
pump energy or inject damping according to the relative
position of the state with respect to the desired orbit—
this method is called energy pumping-and-damping
(EPD)-PBC. A visual illustration is given in Fig. 2.
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desired curve

Fig. 2. The desired Hamiltonian and the target orbit in
EPD-PBC.

3 Problem Formulation

We are interested in the paper in the generation, via
IDA-PBC, of periodic solutions X : R+ → Rn which are
asymptotically orbitally stable. That is,

Ẋ(t) = fcl(X(t)), X(t) = X(t+ T ), ∀t ≥ 0,

where the closed-loop vector field fcl(x) is given in (2),
and the set is defined by its associated closed orbit

A := {x ∈ Rn | x = X(t), 0 ≤ t ≤ T},

is attractive.

We consider a particular case of periodic motion,
which is defined as follows. First, split the state as
x := col(xp, x`), with xp ∈ R2, x` ∈ Rn−2. We also
partition the matrices J (x) and R(x) conformally as[

(·)pp (·)p`
(·)`p (·)``

]
∼

[
R2×2 R2×(n−2)

R(n−2)×2 R(n−2)×(n−2)

]
.

Then, define the set A as

A = C × {x∗`} ⊂ Rn,

where x∗` ∈ Rn−2 is a constant vector and C is a Jordan
curve, given in implicit form as

C := {xp ∈ R2 | Φ(xp) = 0}, (6)

on which ∇Φ 6= 0 with a smooth function Φ(xp) ∈ R.

Remark 1 It is important at this point to clarify the
difference between our objective of orbital stabilization
and the more classical set stabilization. The latter is
satisfied ensuring limt→∞ ‖x(t)‖A = 0, but this does
not ensure that the desired periodic motion is generated.
Indeed, if the set

O := {x ∈ Rn | ‖x‖A = 0} (7)

contains equilibrium points of the closed-loop dynamics
the periodic motion is not generated. That is, we want

to ensure that the closed-loop vector field (2) satisfies

fcl(x)|x∈O 6= 0. (8)

4 Main Results

We propose in this section two methods to solve the
orbital stabilization problem posed above, MSEA and
EPD-PBC, whose underlying philosophy is described in
Section 2. Connections between these two methods are
also given.

4.1 Mexican sombrero energy assignment PBC

The successful application of the IDA-PBC procedure
described in Section 2 is guaranteed in MSEA with the
following.

Assumption 1 There are mappings (3) with R(x) ≥ 0
and a function H0 : Rn−1 → R verifying

arg min H0(x0, x`) = (0, x∗` ) (isolated), (9)

which are solutions of the PDE (4), where we defined
the function H(x) := H0(Φ(xp), x`).

There are two additional requirements to ensure the suc-
cess of the MSEA design. First, a detectability-like con-
dition to guarantee attractivity of the desired orbit. Sec-
ond, to avoid the scenario discussed in Remark 1, we
impose a constraint on the interconnection matrix, that
ensures there are no equilibrium points in the set O
given in (7). These requirements are articulated in the
assumptions of the following proposition.

Proposition 1 Consider the system (1), verifying As-
sumption 1, in closed-loop with the control law u = û(x)
with û(x) given in (5). Assume the following.

H1 A is the largest invariant set in the set

Q := {x ∈ Rn|∇>H(x)R(x)∇H(x) = 0} ∩Bε(A),

for some ε > 0.
H2 The (1,2)-element of J (x) may be parameterized as

J(1,2)(x) =
c(x)

∇x0
H0(x0, x`)

∣∣∣∣∣
x0=Φ(xp)

(10)

for some c : Rn → R satisfying 0 < |c(x)| <
∞, ∀x ∈ A.

Then, the closed-loop system is asymptotically orbitally
stable.

3



Proof 1 The closed-loop system takes the form

ẋ = [J (x)−R(x)]∇H. (11)

From the isolated minimum condition of H0(x0, x`)
stated in (9), we conclude that the function H(x) has
minima in the set A. Consequently,

∇H(x)
∣∣
x∈A = 0, ∇2H0(x)

∣∣
x∈Bε(A)

> 0 (12)

for some ε > 0. This shows that the set Q—containing
the set A—is non-empty.

From the closed-loop pH dynamics it is clear that

Ḣ = −∇>H(x)R(x)∇H(x) ≤ 0,

implying the boundedness of H(x). Together with (12),
we conclude the Lyapunov stability of the closed-loop
system with respect toA. Thus, given a parameter ε > 0,
there always exists an invariant set E such that A ⊂
E ⊂ Bε(A). Now, from the first equation of (12) we get

∇>H(x)R(x)∇H(x)
∣∣
x∈A = 0.

Applying LaSalle’s invariance principle, taking into ac-
count the trajectory boundedness in E , and the assump-
tion H1, we prove the attractivity of A, that is,

lim
t→∞

‖x(t)‖A = 0, ∀x(t0) ∈ E .

The proof is completed establishing the existence of the
periodic orbit, that is, verifying (8). Consider the term
Jpp(x)∇xp

H(x) of the closed-loop dynamics:

Jpp(x)∇xp
H(x) = Jpp(x)∇x0

H0(x0, x`)∇Φ(xp)

=

[
0 J(1,2)(x)

−J(1,2)(x) 0

]
∇x0

H0(x0, x`)∇Φ(xp)

=

[
0 c(x)

−c(x) 0

]
∇Φ(xp),

where we applied in the first identity the chain rule
∇xp

H(x) = ∇x0
H0(x0, x`)∇Φ(xp), and used assump-

tion H2 in the third one. Considering that∇H(x)
∣∣
x∈A =

0, the residual dynamics is

ẋp =

[
0 c(x)

−c(x) 0

]
∇Φ(xp), ẋ` = 0.

Now, from Φ̇ = 0, we conclude that the set C is invariant.
To prove that the set A is a periodic orbit, we compute

the 1-norm of ẋp as

‖fcl(x)‖1 = |c(x)|‖∇Φ(xp)‖1 > 0, ∀x ∈ A.

With the additional Jordan curve assumption, the exis-
tence of a periodic orbit is verified, completing the proof.
222

Remark 2 The minimum condition (9) implies that
∇x0

H0(x0, x) = 0. Consequently, in view of condition
(10), the mapping Jp`(x) is singular along the orbit.
However, the closed-loop dynamics and the feedback law
(5) are well-defined everywhere. If the term J(1,2)(x) is
bounded along the orbit the condition (8) is violated.
Consequently, the “infinite interconnection” condition
H2 is necessary to ensure the orbit exists, otherwise we
only achieve set stabilization—see Remark 1.

4.2 Energy pumping-and-damping PBC

In this subsection, we introduce an alternative orbital
stabilization methodology: EPD-PBC—where the peri-
odic orbit is enforced by regulating the energy level to a
constant value. More precisely, we assume the total en-
ergy of the closed-loop can be decomposed as

H(x) := Hp(xp) +H`(x`). (13)

The function that defines the Jordan curve (6) is given
as

Φ(xp) := Hp(xp)−H∗p , (14)

with H∗p the desired energy level for Hp(xp), which
should be “above” the minimal value of Hp(xp), that is,
it should satisfy

H∗p > min(Hp(xp)).

To enforce the oscillation, the “sign” of the damping
matrix R(x) changes according to the position of the
state x relative to the desired oscillation—whence, to
the set C. See Fig. 2.

Similarly to Assumption 1 for MSEA-PBC, in EPD-
PBC we require that the PDE (4) is solvable, with an
additional constraint on R(x) to implement the energy
pumping-and-damping mechanism.

Assumption 2 There exist functions Hp(xp) and
H`(x`), which have isolated minima in x∗p ∈ R2 and

x∗` ∈ Rn−2, respectively, and mappings (3), with

R(x) = diag{Rpp(x),R``(x`)},

where R``(x`) ≥ 0 and the diagonal matrix Rpp(x) sat-
isfies the pumping-and-damping condition

Rpp(x)Φ(xp) ≥ 0 (15)
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where Φ(xp) is given in (14), and

Rpp(x) = 0 ⇐⇒ Φ(xp) = 0. (16)

In EPD-PBC besides the detectability-like and the inter-
conection conditions, we require a technical assumption
to complete the proof. That is, ∇>Hp(xp)Jp`(x) = 0,
in order to “cut off” the energy flow between x` and xp
partitions.

Proposition 2 Consider the system (1), verifying As-
sumption 2, in closed-loop with the control law u = û(x)
with û(x) given in (5). Assume the following.

H3 {x∗`} is the largest invariant set in the set{
x` ∈ Rn−2

∣∣∇>H`(x`)R``(x`)∇H`(x`) = 0
}
.

H4 The matrix J (x) satisfies

J(1,2)(x) 6= 0, ∇>Hp(xp)Jp`(x) = 0.

H5 For some ε∗ > 0

∇2Hp|xp∈Bε∗ (x∗
p) > 0, maxBε∗ (x∗

p)Hp(xp) > H∗p .

Then, the closed-loop system is asymptotically orbitally
stable with respect to the orbit A ∩Bε∗(x∗) .

Proof 2 The closed-loop dynamics takes the form (11)
with ∇H = col(∇Hp(xp),∇H`(x`)). From which it is
clear that

Ḣ` = −∇>H`

(
R``(x`)∇H` + J>p`(x)∇Hp

)
= −∇>H`R``(x`)∇H` ≤ 0,

where we have used the assumption H4. Applying
LaSalle’s invariance principle and using the assumption
H3, we have

lim
t→∞

x`(t) = x∗` .

For Hp(xp) we have

Ḣp = −∇>Hp

(
Rpp(x)∇Hp − J>p`(x)∇H`

)
= −∇>HpRpp(x)∇Hp,

where we used again the assumption H4.

Consider the function V (xp) := 1
2Φ2(xp), we have

V̇ = −∇>Hp[Φ(x)Rpp(x)]∇Hp ≤ 0,

where the inequality is the consequence of the pumping-
and-damping condition (15). Invoking LaSalle’s invari-

ance principle, the state ultimately converges into the
largest invariant set of the set

Q = {x ∈ Rn|x` = x∗` , [Φ(x)Rpp(x)]∇Hp(x) = 0}.

There are three cases of [Φ(x)Rpp(x)]∇Hp(x) = 0,
namely,

i) [Φ(x)Rpp(x)] = 0;
ii) ∇Hp(x) = 0;
iii) Φ(x)Rpp(x) 6= 0 and ∇Hp(x) 6= 0 with

∇Hp(x) ∈ Ker(Φ(x)Rpp(x)) = Ker(Rpp(x)).

First consider Case iii) with the definition

Qiii := {x ∈ Rn|x` = x∗` and x satisfies Case iii)}.

We will prove that Qiii is not an invariant set by contra-
diction. Assume Qiii is invariant along the closed-loop
dynamics. On Qiii the residual dynamics is

ẋp = [Jpp(x)−Rpp(x)]∇Hp(xp)

with x` = x∗` . Since ∇Hp(xp) ∈ Ker(Rpp(x)), we have

ẋp = Jpp(x)∇Hp. (17)

Assumption H4 ensures det(Jpp(x)) 6= 0, hence from
(17) we conclude that there are no equilibrium points in
Qiii. From (17) we also conclude that

Hp(xp(t)) ≡ const, ∀x ∈ Qiii, t ≥ 0. (18)

Noticing the diagonal condition ofRpp(x), together with
det(Rpp) = 0, Rpp 6= 0 for Case iii) and ∇Hp(x) ∈
Ker(Rpp(x)), we then have ∇xp1

Hp ≡ 0 or ∇xp2
Hp ≡ 0,

that contradicts the identity (18). Therefore, the setQiii
is not invariant, excluding the possibility of Case iii).

For Case i), from (16) we have

Φ(x)Rpp(x) = 0 ⇒ Φ(xp) = 0.

Together with Φ̇ = 0 for all x ∈ A, it implies the invari-
ance of Case i). For Case ii), it yields x = col(x∗p, x

∗
` ) :=

x∗. In summary, the largest invariant set inQ isA∪{x∗}.

We consider the function W (x) = Φ(x), and, for some
small ε > 0, it follows

Ẇ = −∇>HpRpp(x)∇Hp ≥ 0, ∀xp ∈ Bε(x∗p).

Therefore, the isolated equilibrium point x∗ is unstable.
On the other hand, the set A is attractive.

We proceed now to verify the existence of a periodic

5



orbit. Since x∗ is a minimum of H(x) we have that

∇H(x)
∣∣
x=x∗

= 0, ∇2H(x)
∣∣
x∈Bε(x∗)

> 0.

If x ∈ Bε(x∗), the function V(x) := H(x) − H(x∗)
qualifies as a Lyapunov function (for the dynamics ẋ =
F (x)∇H(x) with F (x) > 0). According to [6, Theorem
4.1], the set C ∩Bε∗(x∗p) defines a Jordan curve. On the
set A ∩Bε∗(x∗) the residual dynamics is

ẋp =

[
0 J(1,2)(x)

−J(1,2)(x) 0

]
∇Hp, ẋ` = 0.

We conclude |fcl(x)| 6= 0, completing the proof. 222

Remark 3 The condition H4 is similar, in nature, to
H2, but excluding equilibria on the orbit A ∩Bε∗(x∗).
Noticing that |∇Hp| 6= 0 on the desired orbit, only “fi-
nite interconnection” is adequate in the EPD method
for the purpose of orbital stabilization. An example of
energy regulation without adequate interconnection is
given in our previous work [30], which solves the open
problem—using smooth, time-invariant state-feedback
to achieve almost global asymptotic regulation of three-
dimensional nonholonomic systems.

Remark 4 A trivial selection of the mapping Rpp is
diag(0,Φ(xp)), but it is non-unique. This indeed pro-
vides an additional degree of freedom to solve the PDE,
and the possibility to regulate the speed of convergence.

4.3 Comparison of MSEA-PBC and EPD-PBC

In this section we compare the two methods and clar-
ify the parallel between them. To simplify the presenta-
tion we relabel the various mappings used in the meth-
ods with fonts mathcal (J ,R,H) for MSEA-PBC and
mathbf (J,R,H) for EPD-PBC. We have the following.

Proposition 3 Consider the system (1), verifying all
the assumptions in Proposition 1. Assume the matrix R
is diagonal, R`` is a function of x`, and Rpp is non-zero.
If the mapping H0 : Rn−1 → R can be decomposed as

H0(x0, x`) = H1(x0) +H`(x`), (19)

and ∇>Φ(xp)Jp`(x) = 0, then all the assumptions in

Proposition 2 are satisfied by selecting the mappings 1

Hp(xp) = Φ(xp), H`(x`) = H`(x`)

J(x) =

[
H′1Jpp Jp`
−J>p` J``

]
, R(x) =

[
H′1Rpp 0

0 R``

]
,

(20)
and H∗p = 0. Furthermore, the MSEA and EPD methods
yield the same feedback law.

Proof 3 We first verify the solvability of the matching
PDEs—equivalently the coincidence of two closed-loop
dynamics. The closed-loop dynamics in Proposition 1 is

ẋ =
[
J (x)−R(x)

]
∇H0(Φ(xp), x`)

=

[
Jpp(x)−Rpp(x) Jp`(x)

−J>p`(x) J``(x)−R``(x)

][
H′1∇Φ

∇H`

]

=

[
H′1(Jpp(x)−Rpp(x)) Jp`(x)

−J>p`(x) J``(x)−R``(x)

][
∇Φ

∇H`

]
=
[
J(x)−R(x)

]
∇H(x),

where we have used the assumption∇>Φ(xp)Jp`(x) = 0
in the third equality. It is obvious that the closed-loop
dynamics in Proposition 2 is exactly the same with the
one in Proposition 1. The matching PDE in Proposition
2 is thus solvable.

Second, we will verify the assumptions in Proposition 2.
With the decomposition (19), we have

(9) ⇐⇒
{

arg min H1(x0) = 0

arg min H`(x`) = x∗` ,
(21)

satisfying the convex properties of H`(x`) in Proposition
2. We then need to prove that there exists a point x∗p
such that

∇Hp(x
∗
p) = 0, ∇2Hp(x)

∣∣
x∈Bε(x∗

p)
> 0. (22)

with Hp(xp) = Φ(xp). To this end, we notice that C is
diffeomorphic to the unit circle, and thus there exists
a smooth mapping T : R2 → R2 such that Φ(xp) =
|T (xp)|2−1,with∇T 6= 0 and its inverse mapping T−1(·)
is well-defined. By fixing x∗p = T−1(0), we then have

∇Hp

∣∣∣
x=x∗

p

= 2(∇T )>T (T−1(0)) = 0

∇2Hp

∣∣∣
x∈Bε(x∗

p)
= 2(∇T )>∇T + 2

2∑
i=1

Ti(xp)∇2Ti > 0

1 The notation H′
1 represents the derivative of H1(x0) with

respect to x0. We also have H′
1(x0) = ∇x0H0(x0, x`) accord-

ing to (19).
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for some small ε > 0, where in the latter inequality we
have used the continuity of the mapping and the fact
Ti(x

∗
p) = 0. Thus we have verified the property of the

Hamiltonian H(x) in Proposition 2.

To verify the condition (15), we have

Rpp(x) = 0 ⇐⇒ H′1Rpp(x) = 0

⇐⇒ H′1(x0)
∣∣∣
x0=Φ(xp)

= 0

⇐⇒ Φ(xp) = 0,

where we have used the assumption Rpp(x) 6= 0 in the
second implication, and the fact H′1|x0=0 = 0 in the last
one. Therefore, the equation (16) is satisfied. According
to the property of H1, for sufficiently small |x0| we have
H′1(x0) < 0 for x0 < 0 and H′1(x0) > 0 if x0 > 0. It
yields

Rpp(x)Φ(xp) = Rpp(x)
[
H′1(Φ(xp))Φ(xp)

]
≥ 0.

Thus, the pumping-and-damping condition—inequality
(15)—has been proved. The remaining assumptions H3
and H4 are trivially verified. 222

4.4 Discussions

The following remarks are in order specifically empha-
sizing the connections between the proposed methods
and existing methods.

Remark 5 In the problem formulation, we impose the
two-dimensional partition of xp. It may be argued to be
peculiar and stringent. We should underscore that, in
many cases, orbital stabilization tasks can be translated
in to our case. We take the widely studied VHC method,
though with a different mechanism from the proposed
designs, for instance, and consider an Euler-Lagrange
system with states q ∈ RN and q̇ ∈ RN the generalized
coordinates and velocities. The simplified control task
in VHC is to stabilize the invariant manifold

M := {(q, q̇) | q̄ = α(qN )}, q̄ := col(q1, . . . , qN−1),

with some mapping α : R → RN−1, and guarantee the
zero dynamics to admit non-trivial periodic solutions. It
is clear that on the manifold we have ˙̄q = η(qN , q̇N ) :=
∇α>(qN )q̇N . The above-mentioned task appropriately
adopts to our problem formulation with n = 2N and
the change of coordinate xp = col(qN , q̇N ), x` = col(q̄−
α(qN ), ˙̄q − η(qN , q̇N )).

Remark 6 A main drawback of VHC and I&I orbital
stabilization technique is that the steady-state behav-
ior cannot be fixed a priori, but depends on the initial
states with a notable exception [19]. The drawback can

+

-

passive system

Fig. 3. Lure system with sign-indefinite feedback

be circumvented with the IDA methods, but with an ad-
ditional difficulty in solving PDEs.

Remark 7 In [1,8,13] a similar MSEA approach is
adopted for some specific dynamical systems. In partic-
ular, in [8] the MSEA is imposed to the potential energy
in a path following task for fully actuated mechanical
systems.

Remark 8 In [4] the pumping-and-damping injection
is applied to stabilize pendula at the upright equilib-
rium almost globally. Some works on energy regulation
of nonlinear systems, though not aiming at oscillation
generation, can be found in [11,12,29].

Remark 9 In [26] passive oscillators is constructed for
Lure dynamical systems using “sign-indefinite” feedback
static mappings, see Fig. 3. After assigning the linearized
system with a unique pair of conjugated poles on the
imaginary axis, the “sign-indefinite” feedback is adopted
to regulate the energy achieving periodic oscillations. In-
deed, [26, Theorem 2] can be regarded as an EPD con-
troller. It should be underscored that the center manifold
theory is applied in the analysis where the center man-
ifold plays the exactly same role as the invariant man-
ifold in VHC. Since the analysis of the latter is carried
out applying the center manifold theory—whose nature
is intrinsically local—the oscillators resulting from [26,
Theorem 2] are assumed to have small amplitudes. On
the other hand, they circumvent the daunting task of
solving PDEs. Whereas, the proposed EPD method has
the ability to shape behaviors of the closed-loop dynam-
ics, making it instrumental in engineering practice.

Remark 10 The assumptions in Proposition 4 on the
equivalence between two proposed methods are rela-
tively mild, namely, the diagonalization ofR(x) and the
decomposition of H0(x). Despite the equivalence, the
realms of applicability of the methods are slightly dif-
ferent. For instance, if a controlled plant endows a pH
form, it may be easier to generate oscillations via EPD
without solving PDEs; on the other hand, for some sys-
tems it is simple to shape the Hamiltonian, e.g., fully-
actuated mechanical systems, thus the MSEA method
is preferred.
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5 Induction Motor Example

5.1 Dynamic model and control objective

We consider the practical example of speed regulation
of current-fed IMs. The normalized dynamics of the IM
in the fixed frame is described by

ψ̇r = −Rψr + ωJψr +Ru

ω̇ = u>Jψr − τL, J :=

[
0 −1

1 0

]
,

(23)

where ψr ∈ R2 is the rotor flux, ω ∈ R is the rotor
angular speed, τL ∈ R is the constant load torque,R > 0
is the rotor resistance, u ∈ R2 is the stator current,
which is assumed to be the control and, without loss of
generality, we have taken the rotor inertia to be equal
to one—see [21,18] for further details. To show the basic
idea, we make the assumption that τL = 0, which can be
removed adding an integral in the control action [21,18].

The control objective is to ensure the asymptotic orbital
stabilization of the set

A := {x ∈ R3| Φ(xp) = 0, x` = ω?}, (24)

where we introduced the notation xp := ψr, x` := ω,
defined the function

Φ(xp) := |xp| − β?, (25)

and β? > 0, ω? ∈ R, ω? 6= 0 are the desired (constant)
references. Intuitively, we may fix the desired Hamilto-
nian as (27) then solving the PDE.

5.2 Orbital stabilization of the IM via MSEA-PBC

In the following proposition we show that the afore-
mentioned regulation problem of IMs can be solved via
MSEA-PBC.

Proposition 4 Consider the fixed-frame current-fed
IM model (23) and the target set (24), (25).

P1 Assumption 1 is satisfied with the choices

R =


R 0 0

0 R 0

0 0 k
β?
|xp|

 ,J =


0 − x`|xp|

|xp|−β?

kR
β?

x2

|xp|

∗ 0 −kRβ?

x1

|xp|

∗ ∗ 0


(26)

and

H0(x0, x`) =
1

2
x2

0 +
1

2
(x` − ω?)2. (27)

P2 The controller (5) takes the form

u =
[
β?I2 −

k

β?
(x` − ω?)J

] xp
|xp|

, k > 0. (28)

P3 All the assumptions of Proposition 1 are satisfied.

Consequently, the closed-loop system is asymptotically
orbitally stable with respect to (24). Moreover, the con-
vergence is exponential.

Proof 4 The fact that Assumption 1 is satisfied
with (26)-(28) is easily verified. Assumption H2 is
also satisfied, with c(x) = −x`|xp|, which evaluated
in A yields −β?ω? 6= 0. The largest invariant set in
{x ∈ R3|∇>H(x)R(x)∇H(x) = 0} is A ∪ {0}. Some
basic Lyapunov analysis shows that the origin is an
unstable equilibrium. According to Proposition 1, we
conclude that the closed-loop system is almost globally
asymptotically orbitally stable.

To establish the exponential orbital stability claim we
refer to [15], where it is shown to be equivalent to prove
that the transverse coordinate z := col(Φ(xp), x` − ω?)
exponentially converges to (0, 0). The proof of Proposi-
tion 1 shows that we can always find some invariant com-
pact sets containing A. In these compact sets, |xp| ≥ c1
for some c1 > 0. Thus in the neighborhood ofA, we have

ż2 = − k

β?
|xp|z2,

then yielding the exponential convergence of z2 to zero.
Now we have

ż1 = −R|∇Φ|2z1 + εt,

where εt is an exponentially decaying term caused by
z2(0). The Jordan curve Φ(x) = 0 implies ∇Φ 6= 0 in
the neighborhood of A, from which we conclude the ex-
ponential stability of the transverse coordinate z. 222

Remark 11 It can also be shown that the closed-loop
system takes the pH form (11) with

R(x) =


R(|xp| − β?) 0 0

0 R(|xp| − β?) 0

0 0 k
β?
|xp|



J(x) =


0 −ω|xp| kR

β?

x2

|xp|

∗ 0 −kRβ?

x1

|xp|

∗ ∗ 0


H(x) =

1

2
|xp|2 +

1

2
(ω − ω?)2, H?

p =
1

2
β2
? .

(29)
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and satisfies all the assumptions of Proposition 2. Hence,
the IM can be orbitally stabilized with the EPD-PBC
also.

5.3 FOC of the IM is an MSEA-PBC

In this subsection we prove that the MSEA controller of
Proposition 4 exactly coincides with the industry stan-
dard direct FOC first proposed in [5]—see also [18, Chap-
ter 2.2] and [21, Chapter 11.2.1].

Corollary 1 The MSEA controller (28) of Proposition
4 yields, after a state and input change of coordinates,
the classical direct FOC.

Proof 5 To prove that (28) coincides—modulo a coor-
dinate change—with the direct FOC we introduce the
change of coordinates

ψr := eJθλ, u := eJθv, θ̇ = ω, (30)

that, applied to (23) (with τL = 0), yields the well-known
current-fed IM dynamics in the rotating frame

λ̇ = −Rλ+Rv, ω̇ = v>Jλ. (31)

Now, we write (31) in polar coordinates (β, ρ) as

β̇ = −Rβ +Rid, ρ̇ =
R

β
iq, ω̇ = βiq

where we have defined

λ := β

[
cos ρ

sin ρ

]
,

[
id

iq

]
:= e−Jρv.

It is easy to see from the equations above that the ob-
jective β(t)→ β?, ω(t)→ ω?, which is equivalent to the
asymptotic stabilization of the set 2 A, is achieved with
the simple control

v = eJρ

[
β?

k
β?

(
ω? − ω

)] , (32)

with k > 0. This is the famous direct FOC for induction
motors. It is a simple exercise to show that (28) is ob-
tained applying to (32) the change of coordinates (30).
222

Remark 12 It is interesting to note that, expressed in
the rotating coordinates, the direct FOC does not gen-
erate a periodic orbit, but only ensures set stability.

2 Notice that |ψr| = |λ| = β.

Remark 13 The application of the main idea of FOC of
IMs for smooth regulation of Brockett’s non-holonomic
integrator was first reported in [10], and later adopted
in [9,20] for control of nonholonomic systems.

6 Pendulum Example

6.1 Local design

We consider a benchmark in nonlinear control—the pla-
nar inverted pendulum, which is related to various appli-
cations, e.g., the attitude control of space boosters and
walking robots. The normalized model given by [4]

θ̇ = ω, ω̇ = sin θ − u cos θ, (33)

where θ ∈ S and ω ∈ R denote the angular position and
velocity, and the input u is the acceleration of the pivot.
In this representation, the angles 0 and π correspond to
the upright and downright positions, respectively.

We are interested in asymptotically stabilizing the pen-
dulum oscillating around its upright equilibrium. We de-
fine x = xp := col(θ, ω) in the absence of the x` parti-
tion. The first design is a local result as follows.

Proposition 5 Consider the model (33) in closed-loop
with the control law

u = 2 sin θ + ωP (θ, ω) cos θ (34)

with 1
γP (θ, ω) = −(cos θ− 1

2 )2 + 1
2ω

2−H∗p , whereH∗p :=

−(cos θ∗ − 1
2 )2, γ > 0, and θ∗ ∈ (−π3 ,

π
3 ), the system is

locally asymptotically orbitally stable. Furthermore, the
angle θ ultimately oscillates between [−θ∗, θ∗].

Proof 6 We first define

Φ(x) = Hp −H∗p .

The closed loop takes the pH form (11) with 3

J (x) =

[
0 1

−1 0

]
, R(x) =

[
0 0

0 γ(cos θ)2Φ(x)

]

Hp(x) = −
(

cos θ − 1

2

)2

+
1

2
ω2.

The Hamiltonian functionHp(x) admits an isolated local
minimal point at (0, 0). Define A = {x ∈ R2|Φ(x) = 0},
and the periodic orbit is

A ∩ {x ∈ R2||x1| <
π

3
},

3 The Hamiltonian function is motivated by [4].
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which is a Jordan curve.

The fact
Φ̇ = −ω2(cos θ)2Φ.

implies that the set

Ω = {x ∈ R2||Φ(x)| < ε, |x1| <
π

3
}

is invariant for some ε > 0. It is easy to verify the as-
sumptions H3-H5 in the set Ω. We complete the proof
by applying Proposition 2. 222

We underscore that the level set Φ(x) = 0 containing
two disconnected parts. Hence, the restriction |x1| <
1
3π is indispensable. We give the simulation results in
Fig. 5 with initial values (0.1π, 0) and (0.3π, 0), where
γ = 5 and Hp∗ = −0.0429. In this figure we show the
evaluation of the (2,2)-element of R(x), illustrating the
pumping-and-damping mechanism.

Fig. 4. The dynamics behaviour in Proposition 5.

6.2 Almost global design

The following proposition is an almost global design.

Proposition 6 Considering Proposition 5, if we select

P (θ, ω) = (
3

2
cos θ +

1

2
ω2 − 3

4
)Q(θ, ω)

and

Q(θ, ω) :=

 γ1(Hp(θ, ω)−H∗p ), θ ∈ (−π
3
,
π

3
)

γ2, θ ∈ [−π, π
3

] ∪ [
π

3
, π)

then there exist γ1, γ2 ∈ R+ such that the state asymp-
totically converges to the orbit A ∩ {x ∈ R2||x1| < π

3 }
or the saddles (π3 , 0), almost globally on S× R.

Proof 7 The closed-loop is the same with the one in
Proposition 5, but with a different function P (θ, ω).
We draw the curves of P (θ, ω) = 0 (the red one) and
Hp(θ, ω) = 0 (the green one) in Fig. 5. They divide the
manifold S×R into 9 portions, where each set is defined
as an open set. Intuitively, in the set

Ωp := cl(S) ∪D1 ∪ cl(U1) ∪ cl(U2) ∪ cl(U3) ∪ cl(U4)

the pumping-and-damping matrix is a pumping matrix,
and in the set

Ωd := Q1 ∪Q2 ∪D2

it acts as a damping one.

¼¡¼

A B! S S

U1 U2

U3 U4

Q1

Q2

D1 D2

Fig. 5. The partition of the space S× R.

It is clear that

Ḣp = (∇Hp)
>

[
0 0

0 −(cos θ)2P (θ, ω)

]
∇Hp.

We now consider three possible cases of the initial con-
dition.

1) In the set

Ωp −D1/{(π, 0), A,B}

we have Ḣp > 0, thus this connected set is a re-
peller. Noticing that the boundary of the set S is
the contour Hp(x) = 0, thus all states in the set
Ωp−D1/{(π, 0), A,B} will leave into cl(U1)∪cl(U2)∪
cl(U3)∪cl(U4), which contains two equilibria A and B.
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2) It is also easy to show the set

cl(D2) ∪ cl(D1)/{A,B}

is invariant. In this set, we need to prove that the control
law regulates the state to the desired energy level Hp =
H∗p

4 . To this end, we define the function

V =
1

2
Φ(x)2.

Its derivative along the closed-loop dynamics is

V̇ = −(∇Hp)
>

[
0

Z(θ, ω)

]
∇Hp ,

with

Z(θ, ω) =

(
3

2
cos θ +

1

2
ω2 − 3

4

)
·
(

cos θΦ
)2
,

which is positive semi-definite in cl(D2)∪cl(D1)/{A,B}.
We have the set {(θ, ω)|V̇ = 0} equal to {(θ, ω)|Hp(θ, ω) =
Hp?} ∪ (0, 0), and the equilibrium (0, 0) is unstable.
Thus invoking LaSalle’s invariance principle, if the ini-
tial state is in cl(D2) ∪ cl(D1)/{A,B, (0, 0)}, it will
asymptotically converge to the desired periodic orbit.

3) For the set cl(U1) ∪ cl(U2) ∪Q1 or the set cl(U3) ∪
cl(U4)∪Q2, it is relatively complicated. For convenience,
we define the set

Ω3 := Q1 ∪Q2 ∪ cl(U1 ∪ U2 ∪ U3 ∪ U4).

Since the set cl(S) is a repeller, the states which star in
Ω3 have two possible trajectories:

3a) converging to the compact set cl(D2), and then it
can be analyzed as case 2).

3b) staying in the set Ω3 for all t > 0.

Following the proof in [4] with some complicated analy-
sis, we can prove the energy dissipation in Ω3 thus rul-
ing out the case 3b) except two equilibria A and B. It
completes the proof. 222

Fig. 6 gives the simulation results to illustrate Proposi-
tion 6 with the x(0) = (π, 0.01), γ1 = 20, γ2 = 2, θ∗ = π

4
and Hp∗ = −0.0429. The figure illustrates the almost
global property with the angle ultimately oscillating be-
tween [−π4 ,

π
4 ].

4 It should be noticed that the contour Φ(x) = 0 has two
unconnected parts.

 

Fig. 6. The dynamics behaviour nin Proposition 6.

7 Concluding Remarks

It has been shown that the IDA-PBC design methodol-
ogy can be adapted to address the problem of orbital sta-
bilization of nonlinear systems. We propose two differ-
ent, but related, IDA-PBC designs: MSEA and EPD—
whose application, as usual in IDA, requires the solution
of a PDE. In the former, the closed-loop Hamiltonian
function is shaped to have minima at the desired orbit.
For the latter, we regulate the energy to a desired value
using a pumping-and-damping dissipation matrix. To
ensure asymptotic orbital stability, and not just set at-
tractivity, some constraints are imposed on the intercon-
nection matrix. We then establish connections between
the above-mentioned methods.

Currently research is carried out in the following direc-
tions.

• The problem of path following—in a time parameterization-
free manner—for mechanical systems. It has been
observed that this is closely related to the orbital
stabilization problem studied in this paper.

• The connection between the proposed method and the
indirect version of FOC is still an open, and interest-
ing, topic.

• Application of the proposed methods to solve some
periodic motion control problems in mechanical and
power electronic systems, e.g. in walking robots and
AC (or resonant) power converters.

Acknowledgements

This paper is supported by the NSF of China (61473183,
U1509211, 61627810), National Key R&D Program of

11



China (SQ2017YFGH001005), China Scholarship Coun-
cil and by the Government of the Russian Federation
(074U01), the Ministry of Education and Science of Rus-
sian Federation (GOSZADANIE 2.8878.2017/8.9, grant
08-08).

References

[1] J. Aracil, F. Gordillo and E. Ponce, Stabilization
of oscillations through backstepping in high-dimensional
systems, IEEE Trans. Automatic Control, vol. 50, pp. 705-
710, 2005.

[2] A. Astolfi and R. Ortega, Immersion and invariance: A
new tool for stabilisation and adaptive control of nonlinear
systems, IEEE Trans. Automatic Control, vol. 48, pp. 590-
606, 2003.

[3] A. Astolfi, D. Karagiannis and R. Ortega, Nonlinear and
Adaptive Control with Applications, Springer-Verlag, Berlin,
Communications and Control Engineering, 2008.

[4] K.J. Astrom, J. Aracil and F. Gordillo, A family of smooth
controllers for swinging up a pendulum, Automatica, vol. 44,
pp. 1841-1848, 2008.

[5] F. Blaschke, The principle of field orientation as applied to
the new TRANSVEKTOR closed loop control system for
rotating field machines, Siemens Review, vol. 39, pp. 217-220,
1972.

[6] C.I. Byrnes, On Brockett’s necessary condition for
stabilizability and the topology of Liapunov functions on Rn,
Communications in Information and Systems, vol 8, pp. 333-
352, 2008.

[7] D. Cheban, Global Attractors of Non-Autonomous
Dissipative Dynamical Systems, , World Scientifc Publishing
Co. Pte. Ltd., Singapore, 2004.

[8] V. Duindam and S. Stramigioli, Port-based asymptotic
curve tracking for mechanical systems, European Journal of
Control, vol. 10, pp. 411-420, 2004.

[9] W.E. Dixon, D.M. Dawson, E. Zergeroglu and F. Zhang.
Robust tracking and regulation control for mobile robots.
Int. J. on Robust and Nonlinear Control, 10:199–216, 2000.

[10] G. Escobar, R. Ortega and M. Reyhanoglu, Regulation and
tracking of the nonholonomic double integrator: A field-
oriented control approach, Automatica, vol. 34, pp. 125-131,
1998.

[11] A.L. Fradkov, A.Y. Pogromsky, Introduction to Control of
Oscillations and Chaos, World Scientifc Publishing Co. Pte.
Ltd., Singapore, 1998.

[12] G. Garofalo and C. Ott, Energy based limit cycle control of
elastically actuated robots, IEEE Trans. Automatic Control,
vol. 62, pp. 2490-2497, 2017.

[13] F. Gomez-Estern, A. Barreiro, J. Aracil and F. Gordillo,
Robust generation of almost-periodic oscillations in a class of
nonlinear systems, Int. J. on Robust and Nonlinear Control,
vol. 16, pp. 863-890, 2006.

[14] J. Guckenheimer and P. Holmes, Nonlinear Oscillations,
Dynamical Systems, and Bifurcations of Vector Fields,
Springer, NY, 1983.

[15] J. Hauser and C.C. Chung, Converse Lyapunov functions
for exponentially stable periodic orbits, Systems & Control
Letters, vol. 23, pp. 27-34, 1994.

[16] K.H. Khalil, Nonlinear Systems, Prentice-Hall, NJ, 3rd ed.,
2002.

[17] M. Maggiore and L. Consolini, Virtual holonomic constraints
for Euler-Lagrange systems, IEEE Trans. Automatic Control,
vol. 58, pp. 1001-1008, 2013.

[18] R. Marino, P. Tomei and C. Verrelli, Induction Motor Control
Design, Springer Verlag, London, 2010.

[19] A. Mohammadi, M. Maggiore and L. Consolini, Dynamic
virtual holonomic constraints for stabilization of closed orbits
in underactuated mechanical systems, Automatica, vol. 94,
pp. 112-124, 2018.

[20] P. Morin and C. Samson. Practical stabilization of driftless
systems on Lie groups: The transverse function approach.
IEEE Trans. Automatic Control, 48:1496–1508, 2003.

[21] R. Ortega, A. Loria, P. J. Nicklasson and H.
Sira-Ramirez, Passivity-Based Control of Euler-Lagrange
Systems, Springer-Verlag, Berlin, Communications and
Control Engineering, 1998.

[22] R. Ortega, M. Spong, F. Gomez and G. Blankenstein,
Stabilization of underactuated mechanical systems via
interconnection and damping assignment, IEEE Transactions
Automatic Control, vol. AC-47, no. 8, pp. 1218-1233, 2002.

[23] R. Ortega, A.J. van der Schaft, B. Maschke and G. Escobar,
Interconnection and damping assignment passivity-based
control of port-controlled Hamiltonian systems, Automatica,
vol. 38, pp. 585-596, 2002.

[24] R. Ortega and E. Garcia-Canseco, Interconnection and
damping assignment passivity-based control: A survey,
European J of Control, vol. 10, pp. 432-450, 2004.

[25] R. Ortega, B. Yi, J.G. Romero and A. Astolfi, Orbital
stabilisation of nonlinear systems via the immersion and
invariance technique, Int. J. on Robust and Nonlinear
Control, submitted, 2018. arXiv:1810.00601

[26] G.-B. Stan, R. Sepulchre, Analysis of interconnection
oscillators by dissipativity theory, IEEE Trans. Automatic
Control, vol. 52, pp. 256-270, 2007.

[27] A.S. Shiriaev, J.W. Perram and C. Canudas-de-Wit,
Constructive tool for orbital stabilization of underactuated
nonlinear systems: Virtual constraints approach, IEEE
Trans. Automatic Control, vol. 50, pp. 1164-1175, 2005.

[28] A.S. Shiriaev, L.B. Freidovich and S.V. Gusev, Transverse
linearization for controlled mechanical systems with several
passive degrees of freedom, IEEE Trans. Automatic Control,
vol. 55, pp. 893-906, 2010.

[29] M.W. Spong, The swing up control problem for the Acrobot,
IEEE Control Systems Magazine, vol. 15, pp. 49-55, 1995.

[30] B. Yi, R. Ortega and W. Zhang, Smooth, time-varying
regulation of nonholonomic systems via energy pumping-
and-damping, Systems & Control Letters, submitted, 2019.
arXiv:1812.11538

[31] B. Yi, R. Ortega, D. Wu and W. Zhang, Two constructive
solutions to orbital stabilization of nonlinear systems via
passivity-based control, IEEE Conference on Decision and
Control, submitted, 2019.

12


	1 Introduction
	2 Background on IDA-PBC
	3 Problem Formulation
	4 Main Results
	4.1 Mexican sombrero energy assignment PBC
	4.2 Energy pumping-and-damping PBC
	4.3 Comparison of MSEA-PBC and EPD-PBC
	4.4 Discussions

	5 Induction Motor Example
	5.1 Dynamic model and control objective
	5.2 Orbital stabilization of the IM via MSEA-PBC
	5.3 FOC of the IM is an MSEA-PBC

	6 Pendulum Example
	6.1 Local design
	6.2 Almost global design

	7 Concluding Remarks
	Acknowledgements
	References

