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a b s t r a c t

This paper considers a synthetic counter-measure, combining transmission scheduling and defensive
deception, to defend against jamming attacks in remote state estimation. In the setup studied, an
attacker sabotages packet transmissions from a sensor to a remote estimator by congesting the
communication channel between them. In order to efficiently degrade the estimation accuracy, the
intelligent attacker tailors its jamming strategy by reacting to the real-time information it collects. In
response to the jamming attacks, the sensor with a long-term goal will select the transmission power
level at each stage. In addition, by modifying the real-time information intentionally, the sensor creates
asymmetric uncertainty to mislead the attacker and thus mitigate attacks. Considering the dynamic
nature of the process, we model the strategic interaction between the sensor and the attacker by a
general stochastic game with asymmetric information structure. To obtain stationary optimal strategies
for each player, we convert this game into a belief-based dynamic game and analyze the existence of
its optimal solution. For a tractable implementation, we present an algorithm that finds equilibrium
strategies based on multi-agent reinforcement learning for symmetric-information stochastic games.
Numerical examples illustrate properties of the proposed algorithm.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Cyber–physical systems (CPSs), merging communication net-
works and computational elements into feedback systems, pro-
vide great robustness and stability, real-time monitoring and
efficient controls to physical processes (Kim & Kumar, 2012).
These capabilities impel the utilization of CPSs in various realms,
including smart grids, transportation systems, critical infrastruc-
tures (e.g., gas supply and water pollution monitoring systems)
and ubiquitous wearable medical devices. Despite the enormous
advantages brought by communication and information tech-
nologies, some cyber components have unfortunately exhibited
vulnerabilities for malicious adversaries to exploit, leaving CPS
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security a great concern (Mo, Kim, Brancik, Dickinson, Lee, Per-
rig, & Sinopoli, 2012). Deliberate attackers can gain access to
wireless connections among sensors, estimators and actuators
to launch cyber attacks. For example, the Ukraine blackout has
been regarded as the first power outage accident in the world
caused by cyber attackers (SANS, 2016). Two typical classes of
cyber attacks on CPSs, as summarized in Cardenas, Amin, and
Sastry (2008), are: integrity attack and denial-of-service (DoS)
attack. DoS attacks compromise the availability of resources, and
compared with other cyber attacks, they are most accomplishable
and common in practical CPSs (Feng & Tesi, 2017). In this paper,
we investigate a remote state estimation problem under reactive
jamming attacks, which is a type of DoS attack in Grover, Lim,
and Yang (2014). To be more specific, the attacker targets on
jeopardizing the transmission of measurements from a sensor to
a remote estimator, see Fig. 1.

Literature review of defense mechanisms against jamming attacks
and motivation. Security against jamming threats has been amply
investigated in traditional communication and information sys-
tems (Grover et al., 2014). In summary, existing anti-jamming so-
lutions range from physical-layer defenses (e.g., using directional
antennas to maintain communication connectivity in multi-hop
wireless networks (Noubir, 2004) or spread spectrum to tolerate
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Fig. 1. System model.

interference in Pickholtz, Schilling, and Milstein (1982), to link-
layer defenses (e.g., coordinated spatial–temporal randomization
in Pajic and Mangharam (2009) and channel hopping in Khattab,
Mosse, and Melhem (2008), Lazos, Liu, and Krunz (2009) and
Navda, Bohra, Ganguly, and Rubenstein (2007) to improve jam-
ming resiliency in networks), and even network-layer defenses
(such as spatial retreats in Xu, Wood, Trappe, and Zhang (2004)).
However, these defensive approaches could be insufficient to
fully address the security challenges in CPSs, since they leave
out a particularly crucial characteristic of CPSs, namely, the tight
coupling between the cyber domain and physical processes. A key
point to note is that, jamming security in cyber/communication
literature is confined to study stationary data sources, rather
than dynamic physical systems in CPSs, and hence might struggle
to take possible consequences of attacks on physical dynamical
systems.

Many existing works in the networked control systems com-
munity have made great efforts to analyze and evaluate the
vulnerabilities of CPSs to jamming attacks (Cardenas et al., 2008;
Zhang, Cheng, Shi, & Chen, 2015). Generally, the designed defense
mechanisms are ad hoc in order to fulfill various control objec-
tives for the specific physical systems. For example, a family of
impulsive controllers was proposed in Feng and Tesi (2017) to
guarantee the closed-loop stability of a linear time-invariant sys-
tem under a jamming attack with limited frequency and duration.
The authors in Befekadu, Gupta, and Antsaklis (2015) derived
an optimal stochastic control policy for the risk-sensitive control
problem in the presence of a Markov-modulated jamming attack
and De Persis and Tesi (2015) provided transmission scheduling
under restricted jamming attacks to preserve input-to-output sta-
bility of a closed-loop system. Taking into account transmission
power limitations, Qin, Li, Shi, and Yu (2018) designed an optimal
transmission scheme to improve the remote estimation accuracy
under jamming attacks. Note that, in practice, the jammer is
capable to obtain real-time information of systems and tailor its
jamming schemes accordingly. To avoid such intelligent jammers
from degrading estimation performance, Ding, Li, Quevedo, Dey,
and Shi (2017) adopted a game-theoretic approach to design an
optimal channel-hopping defensive policy. Common to the ap-
proaches mentioned above is that it is assumed that the attacker
has genuine information about the system. Motivated by this, an
emerging concept—defensive deception (Wang & Lu, 2018) was
proposed to prevent cyber attacks. The key idea is to manipulate
the attacker’s behavior via a carefully-crafted deception scheme.

Defensive deception mechanism and contributions. In our cur-
rent paper, besides a transmission scheme resilient to jamming
attacks, we propose an ad-hoc deceptive defense mechanism to
disrupt potential jamming attacks in remote state estimation.
The key of deceptive defense is to provide plausible-looking, yet
misleading, real-time information of the system to deceive the
attacker, and thereby cause it to waste jamming resources. The

details of our deceptive defense are as follows: the sensor decides
its transmission energy based on the acknowledgment signals
(ACKs) sent back from the remote estimator, which may also be
intercepted by the attacker to adjust its jamming policy deliber-
ately (Ding et al., 2017; Li, Shi, Cheng, Chen, & Quevedo, 2015);
in order to confuse the attacker, the sensor may modify the ACKs
by sending an ACK-reverse instruction to the estimator before
packet transmission/jamming. Assuming the attacker follows a
pre-determined jamming tactic, our previous work (Ding, Ren,
& Shi, 2016) investigated an optimal deception scheme for the
sensor. However, the obtained deception scheme is insufficient.
In particular, if the transmission strategies and the coupled de-
ception scheme are jointly considered by the attacker, then it may
modify its jamming tactic accordingly. Thus, a sophisticated inter-
action between the sensor and the attacker is investigated in our
current work. Considering an infinite-time horizon, we formulate
the strategic interaction as an asymmetric-information stochas-
tic game, in which the attacker needs to handle the unknown
environment dynamics induced by the deception ‘‘tricks".

The concept of defensive deception has been developed in
cyber security recently. For example, the authors in Carroll and
Grosu (2011) employed camouflage in a network by disguising
honeypots as real systems or revealing real systems as honeypots.
They used a static signal game to quantitatively analyze the
interaction between the defender and the attacker. Different from
this space-domain deception in Carroll and Grosu (2011), our
defensive deception in the current work is to schedule the ACK-
reverse instruction in a temporal manner. The survey (Pawlick,
Colbert, & Zhu, 2017) provided a taxonomy that defines six types
of defensive deception in cyber security and classified preliminary
works on defensive deception based on their game-theoretic
models. Most of them focus on simple game models, such as
static Nash games in Zhu and Başar (2013), Stackelberg games
in Feng, Zheng, Mohapatra, and Cansever (2017) or signaling
games in Pawlick and Zhu (2015), while excluding advanced
dynamic games (in which the strategic interaction between the
attacker and the defender occurs over multiple stages). The recent
work (Horák, Zhu, & Bošanskỳ, 2017) considers the sequential
nature of attackers, and utilizes a zero-sum one-sided partially
observed stochastic game, played in an infinite-time horizon un-
der deterministic transition, to design optimal dynamic deception
approaches for computer networks.

Compared with existing works about defensive deception, our
game model is more sophisticated. First, our work concerns a
dynamic game with twofold actions for the sensor (i.e., the cou-
pled ACK-deception and transmission scheduling). In each stage,
the sensor/attacker with a long-term goal will select the trans-
mission/jamming power level strategically. In addition, the sen-
sor may disclose ACKs truthfully or deceptively to manipulate
the attacker’s belief to prevent it from jamming efficiently and
thus minimize the damage. Second, we employ a more general
framework of an asymmetric-information stochastic game, es-
pecially with nonzero-sum payoffs and randomized transitions.
The generality poses challenges to prove the existence of equilib-
ria (Madani, Hanks, & Condon, 1999). In contrast to Horák et al.
(2017) where equilibrium analysis is absent, we provide a mathe-
matical framework to solve this general asymmetric-information
stochastic game via resorting to the Markovian belief-state tech-
nique. The latter is conventionally used in reformulating a par-
tially observable Markov decision process (POMDP) to a Markov
decision process (MDP). Also, we propose an algorithm based
on multi-agent reinforcement learning to find optimal defensive
deception strategies.

In summary, the main contributions of our work are twofold:
(1) Compared with existing works on anti-jamming techniques,
we propose a synthetic defense mechanism that combines defen-
sive deception and transmission scheduling to alleviate jamming
effects on remote estimation accuracy.
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(2) Compared with game models in previous works on defen-
sive deception, we use a general asymmetric-information dy-
namic game to model the infinite-time strategic interactions
between the sensor and the attacker. Moreover, we develop an
equivalent belief-based stochastic game to obtain the optimal
stationary strategies for each agent. This equivalent game has
continuous state space and infinite action space. Therefore, an-
alyzing the game solution becomes very involved. In Theorem
Theorem 3.2, we prove the existence of optimal strategies. More-
over, a grid-based multi-agent reinforcement learning algorithm
is proposed in Section 3.4, in which each agent gradually learns its
optimal strategies through interactions with both the opponent
and the (unknown) dynamic environment.

Outline. The remainder of the paper is organized as follows.
Section 2 contains mathematical models of the remote state
estimation setup of interest. It also presents our anti-jamming
scheme, which combines defensive deception and transmission
strategies. The framework of the stochastic game between the
sensor and the attacker is presented in Section 3, where the
existence of an optimal solution is proved and a multi-agent re-
inforcement learning algorithm is provided to obtain the optimal
strategies. Some examples and concluding remarks are presented
in Sections 4 and 5, respectively.

Notations: Rn is the n dimensional Euclidean space. Sn
+

(or
Sn

++
) is the set of n by n positive semi-definite matrices (or pos-

itive definite matrices). Let N denote the set of natural numbers.
When X ∈ Sn

+
(or X ∈ Sn

++
), we write X ≥ 0 (or X > 0). For

functions h, g , h◦g is defined as the function composition h(g(·)).
E[·] is the expectation of a random variable, ∆(·) refers to the
probability measure space over a set, and Pr(·) refers to prob-
ability. Tr(·) denotes the trace of a matrix. The superscripts ⊤

and ⋆ stand for transposition and optimal solution, respectively,
while the superscripts/subscripts 1 and 2 denote the sensor and
the attacker, respectively. The superscripts ‘‘e" and ‘‘c" in aek and
ack stand for energy and cheating actions, respectively. The use
of bold, bold capital and calligraphic letters follows the conven-
tion in the strategic form games (Fudenberg & Tirole, 1991). We
represent the sets by calligraphic letters, random variables by
bold capital letters and particular realizations by bold lowercase
letters. yk0 stands for the sequence {y0, . . . , yk}. 1(·) is the indicator
function and the Dirac delta function is defined as:

δkj =

{
1, if k = j;
0, others.

2. Problem formulation

As depicted in Fig. 1, the sensor transmits state information
of the process to the remote estimator under jamming attacks. In
this section, we introduce the essential components of the overall
system structure.

2.1. Kalman filter preliminaries

Consider the following discrete-time linear process:

xk+1 = Axk + wk, yk = Cxk + vk, (1)

where the state vector of the system at time k is xk ∈ Rn, and
the noisy measurement obtained by the sensor is yk ∈ Rm. The
process noise wk ∈ Rn and the measurement noise vk ∈ Rm are
mutually independent zero-mean i.i.d Gaussian random processes
with E[wkw

⊤

j ] = δkjQ (Q ≥ 0), E[vkv
⊤

j ] = δkjR (R > 0), and
E[wkv

⊤

j ] = 0, ∀j, k. We assume that the initial state x0 is a zero-
mean Gaussian random vector with covariance Σ0 ≥ 0, and it
is uncorrelated with wk and vk. It is further assumed that the
time-invariant pair (A, C) is detectable and (A,

√
Q ) is stabilizable.

A smart sensor (Hovareshti, Gupta, & Baras, 2007) is adopted
in Fig. 1: instead of sending the raw measurements yk0 directly,
the sensor in Fig. 1 computes the optimal estimate of state xk
by running a Kalman filter locally. The obtained minimum mean-
squared error (MMSE) estimate of the process state is given by
x̂1k = E[xk|yk0], with its corresponding estimation error covariance
P1
k ≜ E[(xk − x̂1k)(xk − x̂1k)

⊤
|yk0]. Intuitively, a local estimate con-

tains all the ‘‘useful" information of the historical measurements,
which can lead to better performance. This is indeed verified
in Gupta, Hassibi, and Murray (2007), where sending the estimate
results in better estimation performance at the receiver compared
to sending the measurements (all else being equal).

These terms are computed recursively by means of a Kalman
filter (Anderson & Moore, 2012). For notational simplicity, we
define the Lyapunov and Riccati operators h and g̃ : Sn

+
→ Sn

+

as

h(X) ≜ AXA⊤
+ Q , g̃(X) ≜ X − XC⊤

[CXC⊤
+ R]−1CX .

From the detectability and stabilizability assumption, the es-
timation error covariance P1

k converges exponentially to a unique
fixed point P of g̃ ◦ h (Anderson & Moore, 2012). Without loss of
generality, we ignore the transient periods and assume that the
Kalman filter at the sensor has entered steady state; i.e.,

P1
k = P, k ≥ 1. (2)

The steady-state error covariance P has the following property (Li
et al., 2015): for 0 ≤ t1 < t2,

Tr[P] ≤ Tr[ht1 (P)] < Tr[ht2 (P)]. (3)

2.2. Communication model and anti-jamming scheme

As demonstrated in Fig. 1, the sensor transmits the local es-
timate x̂1k as a data packet to the remote estimator through a
scalar dropout channel, which is vulnerable to jamming attacks.
By emitting high-power signals to occupy the communication
channel, the attacker is able to sabotage the state information
delivery, and hence degrade the estimation quality.

With limited power supplies, each time the sensor intelli-
gently selects the transmission power, denoted by a1,k, from the
value set E1. Analogously, the attacker chooses the jamming
power taking account of the energy-consumption constraints. Let
a2,k ∈ E2 denote the power choice made by the attacker at
time k. We consider finite discrete value sets; namely, E1 =

{o(1)1 , . . . , o
(m)
1 } and E2 = {o(1)2 , . . . , o

(n)
2 } with o(1)1 ≤ · · · ≤ o(m)

1
and o(1)2 ≤ · · · ≤ o(n)2 . For example, if o(1)1 = 0 and o(1)2 = 0, then
it is possible that the sensor is at inactive status and no jamming
attack is launched.

Suppose that the point-to-point communication network is
a memoryless lossy channel. We characterize the packet arrival
by a binary random process (Bernoulli process) ηk with ηk =

0 representing the occurrence of packet loss. Considering the
influence imposed by the attacker, we adopt a general function
q(·) to characterize the packet arrival rate:

Pr(ηk = 1|aek = ae) ≜ q(ae), (4)

where we denote aek ≜ (a1,k, a2,k) as the energy pair selected by
the sensor and the attacker. Generally, q(·) is non-decreasing in
a1,k and non-increasing in a2,k, and its specific form depends on
the channel model, modulation and coding techniques used (Tse
& Viswanath, 2005).1 Note that the packet-loss information (i.e.,

1 For example, the function q(·) adopts the form q(x1, x2) = 1 −
1
2 (1 −√

x
1+x ) for Rayleigh fading scalar channel, in which x ≜ L h1x1

h2x2+n0
with channel

parameters L, h1, h2 and n0 .
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ηk), as depicted in Fig. 1, will be causally sent to the sensor
via a short ACK frame through a reliable feedback channel. This
scenario is typical. For example, the transmission control protocol
(TCP) adopts ACK mechanism to achieve transmission reliability
and provide flow control. Moreover, equipped with jamming
antennas, a powerful attacker is capable of capturing the ACK
information by channel eavesdropping technologies and mean-
while use this information to adaptively launch pertinent random
noises to override transmitted packets (Zhang et al., 2015).

Next, we present our anti-jamming scheme, which is two-fold:

• Transmission scheduling. With the collected ACK information,
the sensor can develop a comprehensive understanding of
the receipt of packets at the estimator, and then elabo-
rate a real-time transmission schedule resilient to jamming
attacks, i.e., a1,k depends on the previous ACK sequence
ηk−1
0 (Li et al., 2015).

• Defensive deception. Since the behavior of the attacker de-
pends on the real-time information (ACKs), the sensor will
take actions to deceive the attacker into developing a false
belief of ACKs and further mitigate the damage of jamming
attacks. As for general communication protocols, the event
ηk = 0 represents packet loss, which is common knowledge
shared by the three agents (i.e., the sensor, the estimator
and the attacker). A ‘‘trick" is played by the sensor and
the estimator to confuse the attacker: the sensor inserts
an additional bit ack containing an ACK-reverse instruction
into the preamble and transmits it reliably2 to the estima-
tor simultaneously when sending the packet x̂1k; then, the
estimator sends back the modified ACK, denoted by η̃k:

η̃k = ηk ⊕ ack, ack ∈ C ≜ {0, 1}, (5)

where ⊕ represents the XOR operation. For instance, if the
packet is lost and ack = 1, the attacker overhears the fake
ACK η̃k = 1 and then believes that the packet has been re-
ceived successfully. On the other hand, the real information
ηk can be obtained by the sensor.

Note that the transmission scheduling is a well-studied de-
fense reacting to jamming attacks in remote state estimation (Li
et al., 2015), and motivated by the deceptive defense concept in
cyber security (Pawlick et al., 2017), we introduce ACK-deception
as an emerging defense technology. Different from traditional
encryption techniques focusing on information hiding, defensive
deception may disclose true information and fake information
selectively to protect the crucial information (i.e., ηk) and mislead
the attacker at the same time. Note that the disclosure of true
information may make the deception scheme more convincing
to the attacker. Moreover, it might be difficult to implement ex-
pensive protection of ACKs through encryption techniques, since
off-the-shelf sensors in CPSs have limited resources. In general,
encryption algorithms require additional overheads other than
computational resources. For example, the use of public key
cryptography requires setting up, sharing and maintenance of
public key infrastructure, which consumes extra communication
resources and program memory and may lead to a prohibitive
cost in Rifa-Pous and Herrera-Joancomartí (2011).

2 Due to its simple one-bit structure, we shall assume that the ACK infor-
mation can be transmitted reliably by an error correction coding (ECC) with a
sufficient coding rate (Kurose & Ross, 2012). Under the ACK reliability assump-
tion, this work provides a benchmark to analyze the asymmetric information
structure between the sensor and the attacker, specifically when the sensor has
full knowledge of the ACK information. Whereas, the analysis under ACK dropout
is more complicated and lies beyond the scope of this paper.

2.3. Remote estimation

Let x̂k denote the MMSE estimate of the process xk generated
by the remote estimator, with error covariance matrix Pk. Similar
to Ding et al. (2017), a simple recursion of x̂k is obtained given by
x̂k = ηkx̂1k + (1 − ηk)Ax̂k−1.

Moreover, the error covariance Pk at time k is

Pk ≜ E[(xk − x̂k)(xk − x̂k)⊤]

=

{
P, ηk = 1,
h(Pk−1), otherwise, (6)

where P stands for the steady-state error covariance defined in
(2). For notational brevity, we define a random variable sk ∈ Z as
the holding time3:

sk ≜ k − max
0≤l≤k

{l : ηl = 1}, (7)

which represents the intervals between the present moment k
and the most recent time that the data packet has been suc-
cessfully received by the estimator. Based on (6), it is easy to
obtain that Pk = hsk (P), and the iteration of the holding time,
sk = (1 − ηk)(sk−1 + 1). Without loss of generality, we suppose
that the initial packet x̂10 is obtained by the estimator, i.e., P0 = P
and s0 = 0. Hence, for any given time k, sk takes values from the
countable set Sk = {sk : 0, 1, 2, . . . , k}.

At time k, provided the pair of jamming power and transmis-
sion power {a1,k, a2,k}, the evolution of Pk (or equivalently sk) can
be described using a Markov chain. Here, we define the state
of the Markov chain as the holding time sk, and the transition
law among the states is characterized by a transition probability
matrix:

T(a1,k, a2,k) =

⎛⎜⎝ qk 1 − qk
qk 1 − qk
...

. . .

⎞⎟⎠ , (8)

where the entry Ti,j represents the transition probability from
state sk = i to sk+1 = j, and the other default entries are 0. Notice
that the probability qk ≜ q(a1,k, a2,k) according to (4).

Notice that in practice by employing low-energy micro-
controllers and limited random access memory (RAM), the com-
putational and memory of wireless nodes are typically restricted.
These limitations preclude the sensor (or the attacker) from
adopting innumerable states (i.e., Sk with k = ∞) to generate
its transmission and cheating schemes (or jamming schemes).
To circumvent this, we truncate the state space Sk=∞ as S ≜
{sk : 0, . . . ,N}, in which the final state N represents all the
state sk ≥ N . For the simplified problem, the effect of the
truncation on the system performance, measured by the estima-
tion gap D(N) ≜

∑
+∞

k=0 |Tr[E(Pk|Sk)] − Tr[E(Pk|S)]|, is ignorable.
The reasons are as follows. Here, we consider the scenario in
which the non-truncated Markov chain is bounded4 under the
sensor’s transmission and attacker’s jamming strategies. That is,∑

+∞

k=0 |Tr[E(Pk|Sk)] < ∞. Moreover, we have Tr[E(Pk|Sk)] −

Tr[E(Pk|S)] = 0 for any k < N and otherwise greater than zero
based on (3). Hence, D(N) ≤

∑
+∞

k=0 Tr[E(Pk|Sk)] goes to zero as
N → ∞.

As for the attacker, by processing its collected information η̃k
following (7), it can obtain the manipulated holding time denoted

3 In the rest of this paper, we will omit the subscript of sk when the
underlying time index k is obvious from the context; when it is ambiguous,
the subscript will be included.
4 If the accumulated estimation performance is unbounded under a pair of

policies adopted by the sensor and the attacker, the attacker can dominate
the game trivially by using the corresponding jamming scheme to obtain an
unbounded benefit.
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Fig. 2. Dynamic game with asymmetric information.

by s̃k. Therefore, the sensor has knowledge about the ongoing
state information. However, due to the deception ‘‘tricks", the
attacker is uncertain about the current state, which induces the
aforementioned information asymmetry.

2.4. Problem of interest

As mentioned previously, the attacker, uses the feedback in-
formation (i.e., ACKs) to deteriorate the estimation accuracy by
disrupting the forward communication channel between the sen-
sor and the remote estimator; while, the sensor aimed at allevi-
ating reactive jamming attacks, adopts an ACK deception-based
transmission strategy. Notice that, in the previous discussion
the attacker has no precise information about the underlying
states, which, however, can be captured by the sensor. With
these considerations, a dynamic game formulation with an asym-
metric information structure can be formulated. In this work,
we focus on the game solution (i.e., the equilibrium point). As
the asymmetric information structure raises difficulties to the
existence of the optimal strategies and their calculation, we de-
velop a belief-based stochastic game with symmetric information
and translate the design of optimal strategies for the original
asymmetric-information game to this equivalent one.

3. Dynamic sensor–attacker game with cheating information

A dynamic game is played between the sensor and the attacker
with the property that, at each time k, two players simultane-
ously select actions that will be revealed at the end of time k.
Notice that the sensor can access more information about the
state than the attacker does, in particular, the accurate ACKs. In
each iteration of the game, if the jammer’s power allocation is
pre-determined, then the game degenerates to a classical trans-
mission scheduling problem, which is solved unilaterally from
the perspective of the sensor based on Markov decision process
(MDP) theory (see Ding et al. (2016)). On the other hand, since the
attacker cannot directly obtain the true state with the involve-
ment of cheating actions, we can formulate the decision making
process at the attacker’s side as a partially observable Markov
decision process (POMDP). Synthesizing each side, however, the
problem remains difficult as the strategy interaction depends on
the choice of two agents with different information sets.

To overcome the aforementioned difficulty, we can capitalize
on the conventional technology in the POMDP via generating its
equivalent belief-state MDP problem. Specifically, the attacker,
based on its observations, develops a probability distribution over

the underlying state, called as belief B. As illustrated in Fig. 2,
at each stage, the belief is updated by the state estimation (SE)
device from B to the next one denoted by B′, where the transition
probability is a function of the current belief and of the observed
signals (including the actions selected by the two agents and the
modified ACKs). Notice that the belief state B is a sufficient statis-
tic. By viewing the belief B as the new state, we can formulate
an equivalent MDP with continuous state space and study its
solution. Regarding this dynamic sensor–attacker game, we can
also transform the original stochastic game with an asymmet-
ric information structure into an symmetric-information Markov
game in a similar way. Notice that in the transformed game both
the state space and the action space are probability measure
spaces, which causes difficulties in analyzing its solution, i.e., the
stationary Nash equilibrium (SNE). The main existence result of
SNE is given in Theorem 3.2, and a tractable implementation is
provided to find the SNE for each player.

3.1. Belief-based stochastic game definition

We introduce a belief-based sensor–attacker cheating game,
which is characterized by a quintuplet: GS ≜ (I,B,A,Q, r); the
specific components are defined in the following:

3.1.1. Player
I = {0, 1, . . . ,N + 1} is the set of generalized players. The

private information collected by the sensor is the holding time
sk, which is called type of the sensor (as it is closely related to
the objective function of the sensor). Here, we treat each type of
the sensor as a temporary player/agent.5 By labeling these agents,
i = N + 1 represents the attacker, and the others are the type
agents for the sensor, who share the same preferences of the
sensor. Furthermore, assume each agent i ∈ I is rational.

At the beginning of the game, all the type agents plan their
ex ante strategies,6 and a temporary agent i is responsible for
choosing the action for its original player (i.e., the sensor) when
the process of game reaches an interim status (i.e., sk = i). As
a whole, at each stage, the sensor will be informed of the type
(i.e., sk) and adopted type-contingent strategies accordingly.

3.1.2. Belief state space
B = ∆(S) represents the continuous belief state space, which

is a collection of probability distributions over S = {0, . . . ,N}.
To be more specific, we denote by Bk(sk = m) the probability
that sk equals m. As Bk is common knowledge shared by all
players, we can develop a behavioral strategy (b.s.) for each player
based on this shared information structure, which overcomes the
asymmetry within the Markov-chain state sk in the original game.
Let B be endowed with the topology of weak convergence, then
it is a Polish space (i.e., a complete and separable metric space,
see Billingsley (2013)).

3.1.3. Action
A = {Ai, i ∈ I} denotes the joint action space. For each type

agent i ∈ S , they share the same action set Ai = ∆(Es × C).
The action set for the attacker is AN+1 = ∆(Ea). We denote by
Ai,k ∈ Ai the action played by player i at stage k: the type agent
i ∈ {0, . . . ,N} selects the transmission energy a1,k ∈ E1 and
chooses cheating action ack ∈ C simultaneously w.p. Ai,k(a1,k, ack);

5 This representation refers to the agent-normal form proposed by Selten to
cope with the possible information states of the original players (i.e., the senor
and the attacker), see Haurie, Krawczyk, and Zaccour (2012) for details.
6 Ex ante means that a player makes a decision before knowing the particular

actions of other players. Interested readers are referred to Pearce (1982) for more
details.
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B+

k (s
+) ≜ Pr(sk = m+

|Bk = b,Ak = a, aek = ae, η̃k = η) (9)

=
Pr(sk = m+, aek = ae, η̃k = η|Bk = b,Ak = a)∑N
m=0 Pr(sk = m, aek = ae, η̃k = η|Bk = b,Ak = a)

=
Pr(aek = ae, η̃k = η|sk = m+,Bk = b,Ak = a)Pr(sk = m+

|Bk = b,Ak = a)∑N
m=0 Pr(a

e
k = ae, η̃k = η|sk = m,Bk = b,Ak = a)Pr(sk = m|Bk = b,Ak = a)

=
ψ1(aek = ae, η̃k = η, sk = m+,Bk = b,Ak = a)b(m+)∑N
m=0 ψ1(aek = ae, η̃k = η, sk = m,Bk = b,Ak = a)b(m)

,

Q(b′
|b, a) =

{
Pr(aek = ae, η̃k = η|Bk = b,Ak = a), if b′

= ϕ2(ϕ1(b, a, ae, η), a, ae, η) for some {ae, η} ∈ E1 × E2 × C

0, otherwise.

=

{ ∑N
m=0 ψ1(ae, η,m, b, a)b(m), if b′

= ϕ2(ϕ1(b, a, ae, η), a, ae, η) for some {ae, η} ∈ E1 × E2 × C

0, otherwise.
(10)

Box I.

and AN+1,k(a2,k) indicates the probability of the jamming power
a2,k ∈ E2 taken by the attacker i = N + 1. For brevity, the joint
action at stage k is denoted by Ak ≜ {A0,k, . . . ,AN+1,k}. Moreover,
we define a = {a0, . . . , aN+1} as the aggregated actions chosen by
all the players. As for the belief state space, we let Ai be endowed
with the topology of weak convergence. The metric for action
space A is then defined as d(a, a′) = maxi∈I{dP (ai, a′

i)}, where
dP (·, ·) is the Prohorov metric (Billingsley, 2013) that induces the
weak convergence topology for Ai.

3.1.4. Transition probability
The law of the movement for the belief state is given by a

transition function: Q : B × A × B H⇒ [0, 1] with the transition
probability: Q(b′

|b, a) ≜ Pr(Bk+1 = b′
|Bk = b,Ak = a). That is,

Q(·|·) describes the probability of the next belief state given the
current belief state and the joint action.

The update of the belief state, involving the correction and
prediction steps, is given as follows.

Correction: At each stage k, based on the probabilistic action
Ak, player i chooses the energy level (with/without the cheating
action) randomly. Notice that, the attacker knows that the ACKs
may be fake, and the joint energy aek ≜ {a1,k, a2,k} is assumed to be
monitored perfectly by each player. Thereafter, conditional on aek
and the collected ACK signal η̃k, the attacker is capable to correct
its a priori probability distribution Bk following the Bayes’ rule.
The corrected belief state, denoted by B+

k ≜ ϕ1(Bk = b,Ak =

a, aek = ae, η̃k = η), is computed in (9) given in Box I.The function
ψ1(aek, η̃, sk,Bk,Ak) in (9) is defined as

ψ1(ae, η,m+, b, a) (11)
≜ Pr(aek = ae, η̃k = η|sk = m+,Bk = b,Ak = a)
= Pr(aek = ae|sk = m+,Ak = a)·

Pr(η̃k = η|aek = ae, sk = m+,Bk = b,Ak = a)

= aN+1(a2,k = a2)
∑
ac∈C

am+ (a1,k = a1, ack = ac)·[
Pr(ηk = η|aek = ae)am(a1,k = a1, ack = 0)∑

ac∈C am+ (a1,k = a1, ack = ac)

+
Pr(ηk = η ⊕ 1|aek = ae)am(a1,k = a1, ack = 1)∑

ac∈C am+ (a1,k = a1, ack = ac)

]
= aN+1(a2,k = a2)

[
Pr(ηk = η|aek = ae)am+ (a1, 0)

+ Pr(ηk = η ⊕ 1|aek = ae)am+ (a1, 1)
]
,

in which am(a1,k = a1, ack = ac), for example, indicates the
probability that transmission energy a1 and cheating action ac are
adopted simultaneously by player m. Obviously, the probability
Pr(ηk = η|aek = ae) can be calculated according to the packet-
drop rate q(aek) in (4). The third equation is derived based on the
assumption that each player takes actions independently.

Prediction: Based on the a posterior belief state b+ and the
observations {ae, η}, we can predict the probability over the orig-
inal state sk+1 for the next stage: Bk+1(m) ≜ Pr(sk+1 = m|B+

k =

b+,Ak = a, aek = ae, η̃k = η). As mentioned in Section 2.3,
the transition of the original state sk is deterministic provided
the ACK information ηk. With the absence of ηk, the attacker
generates a corrected transition probability (or prediction) matrix
based on the modified ACK η̃k:

T̃(b+, a, ae, η) =

⎛⎜⎝ q̃(0) 1 − q̃(0)
q̃(1) 1 − q̃(1)
...

. . .

⎞⎟⎠ , (12)

in which q̃(m) = (1 − η)ψ2(ack = 1, sk = m,B+

k = b+,Ak =

a, aek = ae, η̃ = η) + ηψ2(0,m, b+, a, ae, η). Here, the function
ψ2(ack, sk,B

+

k ,Ak, aek, η̃) is:

ψ2(ac,m, b+, a, ae, η)
≜ Pr(ack = ac |sk = m,Bk = b+,Ak = a, aek = ae, η̃ = η)

=
Pr(ηk = η ⊕ ac |aek = ae)am(a1,k = a1, ack = ac)∑

ãc∈C

Pr(ηk = η ⊕ ãc |aek = ae)am(a1,k = a1, ack = ãc)
.

Then, the next belief state is

Bk+1 ≜ ϕ2(B+

k = b+,Ak = a, aek = ae, η̃ = η)

= B+

k T̃(b
+, a, ae, η).

(13)

Therefore, the belief state Bk transits deterministically given
the public observations, and the explicit representation of the
transition probability is given in (10). Suppose that the initial
state m0 is known by the two original players, therefore the initial
belief state is B0(s1) = 1m0 (s1).

3.1.5. Payoff
Let ri : B × A → R denote the one-stage reward function for

each player i ∈ I. The sensor attempts to improve the estimation
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quality at the remote estimator without wasting energy. Hence,
for i ≤ N , we have:

ri(Bk = b,Ak = a) (14)

≜
∑
a1∈E1

∑
a2∈E2

ai(a1)aN+1(a2)[ui(a1, a2) − δ1a1],

in which ui(a1, a2) ≜ −Tr[q(a1, a2)P + (1 − q(·))hi+1(P)] repre-
sents the estimation performance, a1 is the transmission energy
consumed by player i, and δ1 ≥ 0 represents the proportion
of the energy term in the reward function. Moreover, ai(a1) ≜∑

ac∈C ai(a1,k = a1, ack = ac). The one-stage reward function for
the attacker is:

rN+1(Bk = b,Ak = a) (15)

≜
∑
a1

∑
a2

N∑
i=0

ai(a1)aN+1(a2)b(i)[−ui(a1, a2) − δ2a2],

in which δ2 ≥ 0 is the weight parameter. Notice that the cheat-
ing action ac does not affect the reward functions explicitly; it
impacts the reward of the attacker indirectly through tampering
the feedback information and further disturbing the belief state
developed by the attacker.

Hence, we formulate the interaction between the sensor and
the attacker under deception actions as a stochastic game. To
solve this coupled optimization problem, we focus on stationary
strategies, which are defined as time-independent mappings from
the belief state space into the players’ actions: π : B → A.
Suppose b is the belief state at time k. When adopting the joint
strategy π , we specify the probability πi(b)[a,ac ] of taking energy
choice a ∈ E1 and deception choice ac ∈ C jointly by type agent
i ∈ {0, . . . ,N} at state b, and also define by πi(b)[a] the probability
of interference energy a ∈ E2 played by the attacker i = N + 1.

Considering future effects brought by the current actions, the
infinite-time discounted payoff for player i under the stationary
strategy π is:

Ji(b0, π ) =

∞∑
k=0

δkri(Bk = b, π (b)), i ∈ {0, . . . ,N + 1}, (16)

in which δ ∈ [0, 1) is the discount factor. The generalized players
will take a joint policy π such that a long-term performance
objective is maximized for each player.

3.2. Equilibrium analysis

We next study the equilibrium solution of the stochastic game
GS introduced in Section 3.1. As mentioned previously, we limit
our attention to the set of stationary strategies. The stationary Nash
equilibrium (SNE) is defined as follows:

Definition 3.1. For the stochastic game GS , a stationary policy
π ⋆i ,∀i ∈ I is a stationary Nash equilibrium if and only if no
player can unilaterally improve his expected payoff by deviating
his equilibrium strategy; namely, for all player i ∈ I and any
initial state B0 ∈ B,

J ⋆
i ≜ Ji(B0, [π

⋆
i , π

⋆
−i]) ≥ Ji(B0, [ψ(π ⋆i ), π

⋆
−i]), (17)

in which ψ(π ⋆i ) represents a meta-strategy when player i is
suggested to take π ⋆i at the equilibrium point and J ⋆

i is the
corresponding game value for the ith player. ■

Many previous works have investigated the existence of SNE
in stochastic game with a finite number of states and actions.
However, our stochastic game GS is with continuous state space
and action set, of which the existence of SNE is much harder to
analyze. Now, we show the main result about SNE existence for
GS in the following theorem.

Theorem 3.2. The game GS has a stationary Nash equilibrium.

Proof. By Sobel (1973), in order to prove Theorem 3.2, it is
sufficient to verify the following conditions.
C1 (State Space): B is a compact metric space.
C2 (Action Space): Ai is a compact metric space for every i ∈ I.
C3 (Reward Functions): ri(·, ·) is continuous on B × A for every
i ∈ I.
C4 (Transition Probability): Q is weakly continuous on B×A, i.e., if
(bn, an) → (b, a), then Q(·|bn, an) converges weakly7 to Q(·|b, a).

We next verify the conditions one by one.
C1 and C2: Since B and Ai all are probability measure spaces
on a finite set, then by Billingsley (2013, Theorem 6.4), they are
compact metric spaces.
C3: For probability measures µ,µn, n ∈ N, we write µn w

→ µ if
µn converges weakly to µ. By the definition of the metric defined
for the action space A, one sees that as an → a, ani

w
→ ai,∀i ∈ I

holds. Since either S,E1 × C,E2 is a finite set, of which each
subset is a continuity set, then by the Portmanteau Theorem
in Billingsley (2013), one obtains that for 0 ≤ i ≤ N:

ani
w
→ ai ⇐⇒ ani (α) → ai(α),∀α ∈ E1 × C,

anN+1
w
→ aN+1 ⇐⇒ anN+1(α) → aN+1(α),∀α ∈ E2,

bn w
→ b ⇐⇒ bn(i) → b(i),∀0 ≤ i ≤ N,

where ⇐⇒ means equivalence. The dominated convergence the-
orem yields that, as (bn, an) → (b, a), ri(bn, an) → ri(b, a) for
every i ∈ I. The continuity of reward functions is thus verified.

C4: Notice that given the current state b and action a, the pos-
sible values of the next state are finite. Again by the Portmanteau
Theorem, to verify this condition, it suffices to prove that for any
{ae, η} ∈ E1 × E2 × C, if (bn, an) → (b, a), then

ϕ2(ϕ1(bn, an, ae, η), an, ae, η) w
→ϕ2(ϕ1(b, a, ae, η), a, ae, η),

N∑
m=0

ψ1(ae, η,m, bn, an)bn(m) →

N∑
m=0

ψ1(ae, η,m, b, a)b(m).

This can be done using similar arguments to those employed for
the previous C3 verification. ■

Notice that, the original asymmetric game is transformed to
an equivalent symmetric one GS and the corresponding stationary
Nash equilibrium is also a solution of the original one.

We now outline the computation of the channel power and
the estimation performance when the game is in the stationary
Nash equilibrium schemes π ⋆. Notice that under the stationary
equilibrium, the sequence of random variables {Bk, k ≥ 0} es-
tablishes a controlled Markov chain with the transition function
denoted by Qπ (b′

|b). For a belief state b, we denote by re(b) and
rp(b) the expected estimation error covariance and the expected
transmission power for the sensor. Hence, we have

re(b) ≜
N∑
i=0

b(i)Tr[hi(P)],

rp(b) ≜
N∑
i=0

b(i)
∑
ai∈E1

ai
∑
ac∈C

π (b)[ai,ac ].

With a slight abuse of notation, we call Qπ , re and rp the transition
probability matrix, the estimation vector and the power vector

7 Interested readers are referred to Billingsley (2013) for more details of weak
convergence of probability measures.



8 K. Ding, X. Ren, D.E. Quevedo et al. / Automatica 113 (2020) 108680

corresponding to the stationary equilibrium π ⋆. According to Tay-
lor (2012, Theorem 7.1), the expected total discounted estima-
tion error covariance and transmission power of the equilibrium
schemes can be calculated using the formulas

Eπ
⋆
[

∞∑
k=0

δkTr[Pk]] = (I − δQπ )−1re,

Eπ
⋆
[

∞∑
k=0

δka1,k] = (I − δQπ )−1rp.

3.3. Stability condition

Owing to the malicious jamming attacks and packet losses,
the estimator cannot guarantee a successful transmission within
a finite time. In this section, we will study the stability conditions
under which the expected error covariance at the remote estima-
tor will converge. According to (11), the transition probabilities
of the holding time sk (equivalently, the error covariance Pk)
depend on the transmission power and jamming power, instead
of the cheating actions. Denote by Θ1 ≜ {Z1,k, k ≥ 0} (or Θ2 ≜
{Z2,k, k ≥ 0}) the transmission (or jamming) scheme for the
sensor (or the attacker), in which Z1,k ∈ ∆(E1) and Z2,k ∈ ∆(E2).
The corresponding equilibrium strategies for the sensor and the
attacker are denoted by θNE1 and θNE2 , respectively. Consider the
averaged expected estimation error covariance denoted by

F (Θ1,Θ2) ≜ lim
T→+∞

1
T

T∑
k=0

E(Pk|Θ1,Θ2).

Let ρ(A) represent the spectral radius of A. Based on the prop-
erty of A,Q and the packet-dropout rate, we have the following
theorem:

Theorem 3.3. Under the equilibrium schemes (θNE1 , θNE2 ), F (θNE1 ,

θNE2 ) converges if and only if

ρ2(A)[1 − q(a1,k = o(m)
1 , a2,k = o(n)2 )] < 1, (18)

in which o(m)
1 and o(n)2 correspond to the greatest transmission power

and jamming power for the sensor and the attacker.

Proof. Define two special schemes (in which the estimation
packets are transmitted or jammed by the sensor or the attacker
with their highest power levels constantly) as θH1 ≜ {Z1,k(o

(m)
1 ) =

1, k ≥ 0} and θH2 ≜ {Z2,k(o
(n)
2 ) = 1, k ≥ 0}.

Sufficiency: If (18) is satisfied, then we have F (θH1 , θ
H
2 ) < ∞

based on Ren, Cheng, Chen, Shi, and Zhang (2014, Lemma 3). For
any given transmission strategies Θ1, ΘH

2 is the worst jamming
attacks and it corresponds to the largest packet-dropout rate,
from (8) we have

F (θH1 , θ
H
2 ) ≥ F (θH1 , θ

NE
2 ).

The proof is based on the majorization theory similar to the proof
in our previous work (Ding et al., 2016, Theorem 4). Due to the
space limitation, we ignore the details here.

Next, we prove F (θNE1 , θNE2 ) < +∞ by contradiction. If
F (θNE1 , θNE2 ) is unbounded, the equilibrium payoff for the sensor
is −∞. Notice that F (θH1 , θ

NE
2 ) < +∞, and the energy-related

term in the payoff function is bounded as the highest energy level
o(m)
1 is finite. Hence, adopting θH1 will improve the performance

of the sensor if the attacker keeps its equilibrium strategy θNE2
unchanged. It contradicts the definition of equilibrium.

Necessity: For unstable systems, if (18) is not satisfied, the
attacker can adopt a trivial jamming scheme (i.e., θH2 ) to obtain an
unbounded expected error covariance. Actually, it corresponds to

a dominated strategy for the attacker to obtain infinite benefit no
matter what defensive strategies are adopted by the sensor. That
is, θNE2 = θH2 and then F (θNE1 , θNE2 ) = ∞ ■

3.4. Practical design

We now present an implementation of the stationary strategy
of the stochastic game GS . To cope with the continuous state
space, we first discretize the belief state space and build a look-
up table about the pairs of discrete state and optimal strategy.
When the actual game is in some continuous-valued state, each
player executes the action w.r.t. the discretized state. We sample
the state space with a regular grid (for details, see Section 4).

With a slight abuse of notation, the discretized game and its
corresponding state space are also denoted by GS and B. One
inevitable difficulty of the practical implementation stems from
the fact that there exist multiple equilibria for the discretized
game GS . An advanced method can be adopted to find all station-
ary equilibria of this game (Iskhakov, Rust, & Schjerning, 2016).
Nevertheless, this approach suffers from a curse of dimensionality
that originates both from an exponential increase in the number
of directional components of the state space and also from the
number of equilibria (which may increase with the total number
of states). To circumvent this, among the set of equilibria, we
focus on finding only one of them so that the optimal strategies
for the sensor and the attacker can be well designed. Numerical
algorithms have been proposed to solve stochastic games with
finite state space, such as, Shapley value iteration, policy itera-
tion algorithm and Newton-type methods (Haurie et al., 2012).
These approaches assume that players have knowledge of the
parameters of the game (i.e., the reward and transition prob-
ability functions), which unfortunately may not be available in
real applications. To overcome this limitation, we present an
algorithm to find the NE of GS using a reinforcement learning
method (Greenwald, Hall, & Serrano, 2003; Hu & Wellman, 2003).
The discretized stochastic game GS also satisfies the Bellman
equation, that is, for a given stationary equilibrium policy π ⋆, the
expected payoff value (i.e., game value) for each player has the
following recursive property:

J ⋆
i (b) = vali{Q ⋆

0 (b, a), . . . ,Q
⋆
N+1(b, a)},

Q ⋆
i (b, a) = ri(b, a) + δ

∑
b′∈B

Q(b′
|b, a)J ⋆

i (b
′), (19)

in which Q(b′
|b, a) is the probability of transition from the cur-

rent state b to state b′. The operator vali computes the value
of states b for the ith player by solving a one-stage game with
parameters {Q ⋆

0 (b, a), . . . ,Q
⋆
N+1(b, a)}. That is, in this game, for

the ith player, its payoff with respect to action a is Q ⋆
i (b, a), and

its NE strategy is π ⋆(b) = argmaxai∈Ai Q
⋆
i (b, [ai, π

⋆
−i(b)]). There-

fore, vali{Q ⋆
0 (b, a), . . . ,Q

⋆
N+1(b, a)} = Q ⋆

i (b, [π
⋆(b), π ⋆

−i(b)]). The
notion of Q ⋆(b, a) represents the expected cumulative discounted
reward of action a taken in state b and following the optimal
policy π ⋆ afterwards. Notice that the number of possible values
Q ⋆(b, a) is innumerable since a ∈ A. With some abuse of notation
Q ⋆
i (·), we define the Q -value over the pair of the discretized state

and the finite choices (composed of the joint energy action pairs
aek = ae and the cheating action ack = ac) as Q ⋆

i (b, a
e, ac). Notice
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Table 1
Summary for parameters.
System parameters Channel Discount

A Q C R Es Ea δ

1.3 0.6 0.8 0.6 {0.5, 0.6} {0.2, 0.4} 0.96

that Q ⋆
i (b, a) =

∑
ae,ac Pr(a

e, ac |b, a)Q ⋆
i (b, a

e, ac). Based on (19),
we have

J ⋆
i (b) = vali{Q ⋆

0 (b, a
e, ac), . . . ,Q ⋆

N+1(b, a
e, ac)},

Q ⋆
i (b, a

e, ac) = ri(b, ae, ac) + δ
∑
b′∈B

Q(b′
|b, ae, ac)J⋆i (b

′),

in which Q(b′
|b, ae, ac) is given in

Q(b′
|b, ae, ac)

=

{
Pr(η̃k = η|b, ae, ac), if b′

= ϕ2(ϕ1(b, a, ae, η), a, ae, η);
0, others.

and

ri(b, ae, ac) =

{
ui(a1, a2) − δ1a1, if i ≤ N;∑N

i=0 b(i)[−ui(a1, a2) − δ2a2], others.

Notice that ri(b, ae, ac) is indifferent to ac and for simplicity we
use ri(b, ae) instead in what follows.

Here, the operation vali is similar to searching NE in a one-
stage game, except that the optimal value Q ⋆

i (b, a) is unknown. A
reinforcement learning process is proposed to replace the sum
over belief state space with a Monte Carlo approximation. To
be specific, at stage k, players know the current state b, and
each possesses an evaluation function over the state–choice pairs,
denoted by Q k

i (b, a
e, ac). The Q -value summarizes the learning

result from past experience, and is used to estimate the model as
mentioned previously. Specifically, a new random experiment is
organized by each player, resulting in a pair of choices, a reward
and a new state. Then, the Q -values with the actually visited
states are updated via temporal difference methods. The iteration
of the Q -value for each player is developed as follows

J k
i (b) = vali{Q k

0 (b, a
e, ac), . . . ,Q k

N+1(b, a
e, ac)}, (20)

Q k+1
i (b, ae, ac) = (1 − γk)Q k

i (b, a
e, ac)

+ γk[r(b, ae) + δJki (b
′)], (21)

where γk is the learning rate. To guarantee the convergence of
the learning algorithm, the learning rate should satisfy two con-
ditions (for details see Ding et al. (2017)). It is sufficient to satisfy
Condition 1 by a large number of iterations and adopting random
actions in the learning process. The specific design of the learning
rate satisfying the decaying condition (Condition 2) is provided in
the simulation part. The learning algorithm provably converges to
the NE if either every stage game during learning has a globally
optimal strategy or a saddle point (Hu & Wellman, 2003), which
does not hold in our problem. However, these conditions are not
necessary as shown in many experiments on a standard test bed
of Markov games (Greenwald et al., 2003). We test this algorithm
on GS under different tuples of parameters, and the results all
show that the Q -value will converge empirically, which previous
multiagent reinforcement learning algorithms have not achieved.
The algorithm for searching NE of the game GS is summarized in
Algorithm 1. Notice that ∥ · ∥ is a matrix norm and ϵ represents
the accuracy condition.

4. Examples

In this section, we illustrate the practical implementation out-
lined in Section 3.4 using some examples. Consider the follow-
ing scalar system with parameters shown in Table 1. Assume

Algorithm 1 Nash Equilibrium Q-learning algorithm

1: Initialization:
2: k = 0 and set the initial state b ∈ B
3: Initialize the Q-value Q k

i (b, a
e, ac) for all states b and arbitrary

joint choices {ae, ac}, where i ∈ I
4: While ||Q k+1(·) − Q k(·)||< ϵ

5: At stage k, find the NE (i.e., optimal mixed strategies a for the
current state bk based on (20) through linear programming

6: Randomly select the energy and cheating choices {ae, ac}
based on the optimal mixed strategy profiles a

7: Compute the next state b′ based on the observations and
update the Q-value for each player according to (21)

8: Update the state: bk = b′ and decay the learning rate γk
9: k := k + 1

10: End

that the channel in Fig. 1 is wireless fast-fading channel with
q(x1, x2) = 1− ( x1

0.5x2+0.1 )
−2. To reduce the computational burden,

we restrict the possible values of state sk to be finite: sk ∈

{0, 1, 2, 3}. The belief state space is discretized by a regular grid
with resolution rate 0.05. The learning rate is γk =

10
15+o(b,ae,ac ) ,

in which o(b, ae, ac) is an occupation counter of the state–choice
pair (b, ae, ac) from stage 0 to stage k. Some parameter settings
for the (transmission/jamming) power levels and the reward
function are shown in Table 1, and the weights are δ1 = δ2 = 1.
For each learning stage, there may exist multiple Nash equilibria
for the general-sum multi-player games. Our method attempts to
find an equilibrium as an example instead of designing an equilib-
rium selection mechanism. We tested the algorithm under around
15000 iterations. The performance of the learning algorithm is as
described below.

• As depicted in Fig. 3, J k
i (·) converges to an expected value

J ⋆
i (·) for each player i ∈ {0, . . . , 4} within around 10000

iterations. Here, in order to describe the convergence result
for the entire belief states, we use maxb∈B Ji(b) instead of
considering that value for each state. Also, we observe that
the converged value maxJ ⋆

i is positive for the attacker (i =

4) and negative for the type agents8 of the sensor, which is
intuitive.

• A partial iteration of the belief state is represented in Fig. 5,
w.r.t. the original state shown in Fig. 4. Notice that the
probabilities for sk = 0 and sk = 1 are always greater
than the others, which is consistent with the state iteration
shown in Fig. 4. When k = 26, sk = 3 and sk = 1 are more
likely to happen, while actually s26 = 0. We conclude that
the attacker may develop a rough guess about state value
sk based on the historical information. However, due to the
cheating actions adopted by the sensor, the guess may not
be accurate even as the collected information increases.

• Taking b = [1 0 0 0] as an example, the optimal strategies
are concluded in Table 2. The entries of Table 2 are explained
as follows. If the discretized version of the belief state is
b = [1 0 0 0], then the attacker will play according
to the last row of Table 2, that is, adopting the jamming
power a2 = 0.2 with probability one; as the sensor has the
interim status of the game (i.e., sk = i), it will execute the
ith type agent ’s optimal strategy in Table 2. For example,
if i = 0, then the sensor may select the power a1 = 0.6
for transmission and randomly modify the ACK information

8 Recall that in the belief-based game GS , the possible values of private
information (that is, sk ≜ {0, . . . , 3} in this example) possessed by the sensor is
regarded as an individual player.
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Fig. 3. Converged maximum J-value for each player.

Fig. 4. Iteration of actual state sk .

Fig. 5. Iteration of belief state Bk .

Table 2
Optimal mixed strategies for the sensor and the attacker under the belief state
b = [1 0 0 0].
Type agent i Action choice (a1, ac )

(0.5, 0) (0.6,0) (0.5, 1) (0.6, 1)

Sensor

0 0 0.43 0 0.57
1 0 0.45 0 0.55
2 0 0.18 0.81 0.01
3 0 0 0 1

Attacker 4 a2 = 0.2 a2 = 0.4
1 0

with probability 0.55. Recall that the attacker will adopt a
deterministic policy under this belief state. It follows the
intuition that the attacker believes the last data packet to
be received successfully (i.e., sk = 0), and the transmitted
data at time k contains less valuable information. Hence, in
order to save energy, it is not urgent to jam the data with
the highest power level. The sensor’s optimal strategies are
computed as a solution to the game, and do not have an
immediate simple intuitive explanation.

5. Conclusion

This paper investigated a security issue in remote state estima-
tion, in which a sensor transmits the data packet to the remote
estimator through a vulnerable communication channel suffering
from jamming attacks. To against them, we considered a new
defensive deception mechanism and wanted to foster its emerg-
ing promise as a tool for CPS security. Specifically, the sensor
will play a deception trick to manipulate the attacker’s belief
and further alleviates the damage to estimation performance. As
deceptive interactions are strategic confrontations between the
tactical sensor and attacker, a general asymmetric-information
stochastic game model is utilized to analyze their strategic in-
teraction. To solve it, this game was converted into an equivalent
symmetric-information one using a partially observable Markov
decision process (POMDP) approach.
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