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Abstract

This work deals with the problem of estimating a photovoltaic generation forecasting model in

scenarios where measurements of meteorological variables (i.e. solar irradiance and temperature)

at the plant site are not available. A novel algorithm for the estimation of the parameters of the

well-known PVUSA model of a photovoltaic plant is proposed. Such a method is characterized

by a low computational complexity, and efficiently exploits only power generation measurements,

a theoretical clear-sky irradiance model, and temperature forecasts provided by a meteorological

service. An extensive experimental validation of the proposed method on real data is also presented.

Keywords: Energy systems, Model fitting, Forecasting, Photovoltaic generation.

1. Introduction

The electrical grid can be no longer considered a unidirectional means of distributing energy

from conventional plants to the final users, but a Smart Grid, where strong interaction between pro-

ducers and users takes place [1]. A major challenge in the integration of renewable energy sources

into the grid [2] is that power generation is intermittent, difficult to control, and strongly depen-

dent on the variation of weather conditions. For this reason, forecasting of renewable distributed

generation has become a fundamental requirement in order to reliably manage conventional power

plant operation, grid balancing, real-time unit dispatching [3], demand constraints [4], and energy

market requirements. In this respect, renewable generation forecasts on different time horizons are

of special interest to various players that operate in the active grid, in particular to Distribution
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System Operators (DSO) and Transmission System Operators (TSO) (see [1, 5, 6] and references

therein).

Concerning photovoltaic (PV) power generation, researchers have devoted much attention to the

problem of obtaining accurate generation forecasts over different time horizons, e.g., day-ahead and

hour-ahead [7, 8]. Most contributions, however, focus on the problem of solar irradiance prediction

[9, 10, 11, 12]. To tackle this problem, several approaches based on Artificial Neural Networks

(ANNs) [13, 14, 15] or Support Vector Machines [16] can be found in the literature. Alternatively,

classical linear time series prediction methods are used in [17, 18, 19], where the considered time

series is typically the global horizontal irradiance (GHI) [20, 21]. GHI forecasts are typically used

along with temperature forecasts in a simulation model of the PV plant [22] in order to calculate

generated power predictions. In all cases, computing reliable forecasts from predicted meteorological

variables hinges upon the availability of an accurate model of the plant, be it physical or estimated

from data.

Unfortunately, in many common scenarios, neither a plant model, nor direct on-site measure-

ments of solar irradiance and other meteorological variables (e.g., temperature) are available. This

is always the case with a DSO dealing with hundreds or thousands of heterogeneous, independently

owned and operated PV plants; in this case, the only available data consists of generated power

measurements provided by electronic meters, and of irradiance and temperature forecasts provided

by a meteorological service. The problem of forecasting power generation in this case is addressed

in [23] by means of a neural network and in [24, 25] using a parametric model. In these approaches,

however, further information on the cloud cover index at the plant site is assumed to be available. In

[26, 27], a heuristic method for the estimation of the parameters of well-known PVUSA model [28]

based on theoretical clear-sky irradiance is presented, while in [29], a recursive procedure based on

the clear-sky criteria proposed in [30] is devised. However, the former approach does not allow for

capturing possible parameter variations or seasonal drifts, and moreover both approaches require

trial-and-error in order to manually tune a number of algorithm parameters whose values may vary

significantly according to the climate zone.

1.1. Paper contribution

In this paper, a novel approach to the problem of estimating the parameters of the PVUSA model

in the partial information case is presented. The only historical data used by the method consist of

generated power, and temperature (but not irradiance) forecasts. Parameter estimates are obtained
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by carefully exploiting the information contained in portions of the generated power data which turn

out to be meaningful if combined with theoretical clear-sky irradiance over the same period. More

specifically, we introduce three tests to be performed on generated power data in order to detect

portions of such data that were generated under clear-sky conditions. The information contained in

such portions is then exploited in a recursive parameter estimation algorithm in combination with

theoretical clear-sky irradiance provided by a suitable model. The method proposed in this paper

improves over [26, 27, 29], since it is able to adapt to parameter variations and requires the tuning

of a single threshold coefficient whose physical role can be interpreted in terms of the cloud cover

factor (CCF) [31].

The paper is structured as follows: in Section 2 the modeling tools are introduced; in Section 3

the proposed clear-sky detection tests are developed; the model estimation procedure is presented in

Section 4. In Section 5, the relevant forecasting problems are recalled, and performance evaluation

criteria are discussed in Section 6. Experimental validation results are reported in Section 7, and

conclusions are drawn in Section 8.

2. Models and methods

2.1. The PVUSA photovoltaic plant model

A PV plant can be efficiently modelled using the PVUSA model [32], which expresses the

instantaneous generated power as a function of irradiance and air temperature according to the

equation:

P = µ1I + µ2I
2 + µ3IT, (1)

where P , I, and T are the generated power (kW), irradiance (W/m2), and air temperature (◦C),

respectively, and µ1, µ2, µ3, are the model parameters. It is important to notice that model (1) is

linear in the parameters. For the purpose of this work, it is useful to express (1) in the form

P = µ1 · α(I, T ) · I, (2)

where

α(I, T ) = 1 + η2I + η3T, (3)

being

η2 = µ2/µ1, η3 = µ3/µ1. (4)
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From (2), it is apparent that µ1 represents the main power/irradiance gain of the plant, while α(I, T )

in (3) can be seen as correction term. In this respect, it is worth noticing that the ratios η2 and η3

in (4) are characterized by well-established variability ranges among different PV technologies (see

[32]). Such ranges are given by:

η2 ∈
[

η
2
, η2

]

=
[

−2.5× 10−4,−1.9× 10−5
]

,

η3 ∈
[

η
3
, η3

]

=
[

−4.8× 10−3,−1.7× 10−3
]

.
(5)

This property will be exploited in the proposed estimation procedure. It is also appropriate to

represent (1) also in the standard regressive form

P = φ′(I, T ) µ, (6)

where the regressor is given by

φ(I, T ) = [I I2 IT ]′, (7)

and the parameter vector is

µ = [µ1 µ2 µ3]
′. (8)

The PVUSA model can be fruitfully exploited for the purpose of computing forecasts of gen-

erated power on the basis of predicted meteorological variables. Indeed, once a correct estimate

µ̂ of the parameter vector is available, a reliable power generation forecast P̂ can be obtained by

substituting predicted irradiance Î and temperature T̂ , provided by a meteorological service, into

the model equation (6), i.e.,

P̂ = φ′(Î , T̂ )· µ̂. (9)

Similarly, generation forecasts under clear-sky conditions can be obtained by using the theoreti-

cal irradiance Ics at the plant location, as provided by a suitable model, and temperature forecasts,

i.e.,

P̂ cs = φ′(Ics, T̂ )· µ̂. (10)

Notice that clear-sky generation forecasts provide an upper bound on the power that can be gen-

erated by a plant, and as such they can be used by the DSO, for instance, when scheduling the

maintenance of the portion of the grid where the plant is located. Despite its simplicity, very

good forecasting accuracy is obtained from the PVUSA model when the parameter vector µ is

estimated using measured irradiance and temperature data via, e.g., standard least squares fitting

(see, e.g., [26]).
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A DSO that manages a high number of independent generation facilities may not have access

to time series of irradiance and temperature measured on the premises of each plant, while power

generation data are always available through meters. In order to estimate model parameters,

replacing the measured values of I and T with forecasts Î and T̂ provided by a meteorological

service is not a viable solution, due to the fact that forecasting errors on the irradiance are in

general too large. On the contrary, temperature forecasts are quite reliable and can be used in

place of actual measurements (see [26, 27] for details).

2.2. Clear-sky irradiance model

In this paper, a theoretical estimate of the global clear-sky irradiance on a given surface is

required. To this aim, although several different models are present in the literature [33], the

Heliodon simulator model [34] is used. This model is characterized by a high degree of simplicity

and allows to compute the theoretical global clear-sky normal irradiance (W/m2) from the solar

altitude h, i.e., the angle over the horizon (rads), as:

Ics,n =











A · 0.7(
1

sinh )
0.678

if 0 < h < π/2

0 otherwise,

(11)

where A = 1353 W/m2 denotes the apparent extraterrestrial irradiance. Given the theoretical

clear-sky normal irradiance Ics,n, the clear-sky irradiance on an inclined panel surface Ics can be

derived from Ics,n and the orientation of the surface with respect to the sun position. Denoting by

ζ the surface azimuth and ψ the surface tilt angle, one has that

Ics = [sin(ψ) cos(h) cos(ζ − γ) + cos(ψ) sin(h)] Ics,n, (12)

where γ is the solar azimuth. Clearly, Ics can be computed for given values of ζ and ψ from latitude,

longitude and time of day. For ψ = 0, the irradiance on a horizontal surface is obtained.

In this study, it is assumed that the exact orientation of the PV panel surfaces of the considered

plant is not known a-priori. However, it is reasonable to suppose that the plant is efficiently oriented

for the specific latitude according to, e.g., the guidelines given in [35]. Therefore, the value of (12)

with (ζ, ψ) taken from the above guidelines will be used as a reference for the theoretical clear-sky

irradiance Ics for a given plant.
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3. Clear-sky data detection

In this paper, the following key idea is exploited for the purpose of estimating the parameters

of the PVUSA model (1) of a PV plant without resorting to on-site irradiance measurements.

Given a time series composed of generated power measurements and temperature forecasts (or

measurements, if available), suitable tests can be performed on the data in order to detect portions

of the power curve which have been generated under a clear-sky condition; this allows for fitting

the parameters of the PVUSA model to such data by using theoretical clear-sky irradiance (e.g.,

via the model (11),(12)) in the regressor of (7) in place of the actual measured irradiance. This

section deals with the derivation of such tests, which will be referred to as CS tests in the sequel.

In view of (5), suitable bounds can be derived on α(I, T ) and P in the PVUSA model (2)-(3).

Indeed, from (3) and (5), it is easily checked that

α(I, T ) ≤ α(I, T ) ≤ α(I, T ), (13)

where

α(I, T ) =











1 + η
2
I + η

3
T, if T ≥ 0

1 + η
2
I + η3T, if T < 0

(14)

α(I, T ) =











1 + η2I + η3T, if T ≥ 0

1 + η2I + η
3
T, if T < 0.

(15)

Moreover, for realistic values of I and T , it always holds that α(I, T ) > 0 and α(I, T ) < 1. From

(13) and (2), the following bound on P is obtained:

µ1 · I · α(I, T ) ≤ P ≤ µ1 · I · α(I, T ). (16)

Let us now consider a time series {P (j), I(j), T (j)} of the variables in (1), where j represents

a discrete time index. The increment of P (j) can be expressed as

∆P (j) = P (j)− P (j − 1)

= µ1 [I(j − 1)∆α(j) + ∆I(j)α(I(j), T (j))] ,
(17)

where

∆I(j) = I(j)− I(j − 1),

∆α(j) = α(I(j), T (j)) − α(I(j − 1), T (j − 1)).
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Let ∆T (j) = T (j) − T (j − 1). Taking into account (14)-(15), it is easily checked that the

following bounds on ∆α(j) hold:

∆α(j) ≤ ∆α(j) ≤ ∆α(j), (18)

where




∆α(j)

∆α(j)



 = Q(j)





∆I(j)

∆T (j)



 (19)

and the matrix Q(j) depends on the signs of ∆I(j) and ∆T (j) according to the following table:

Q(j) ∆T (j) ≥ 0 ∆T (j) < 0

∆I(j) ≥ 0





η
2

η
3

η2 η3









η
2

η3

η2 η
3





∆I(j) < 0





η2 η3

η
2

η
3









η2 η3

η
2

η3





In view of (17), this allows to derive the following bounds on ∆P (j):

µ1δP (j) ≤ ∆P (j) ≤ µ1δP (j), (20)

where




δP (j)

δP (j)



 = R(j)





I(j − 1)

∆I(j)



 (21)

and the matrix R(j), depending on the sign of ∆I(j), is given by

R(j)

∆I(j) ≥ 0





∆α(j) α (I(j), T (j))

∆α(j) α (I(j), T (j))





∆I(j) < 0





∆α(j) α (I(j), T (j))

∆α(j) α (I(j), T (j))





The bounds (16) and (20) allow to devise the sought CS tests. Let us consider a time interval

J , and the following associated time series

PJ = {{Pm(j), T (j), P cs(j)} , j ∈ J }, (22)
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where, for each time instant j, Pm(j) represents the measured plant power reported by meters, T (j)

is a temperature forecast (or measurement), and P cs(j) is the clear-sky generated power predicted

by a PVUSA model characterized by given values of the parameters µ1, µ2, and µ3, i.e.,

P cs(j) = µ1I
cs(j)α (Ics(j), T (j)) , (23)

where the clear-sky irradiance Ics(j) is computed, e.g., via (11). Clearly, by (16),

µ1 · I
cs(j) · α (Ics(j), T (j)) ≤ P cs(j)

≤ µ1 · I
cs(j) · α (Ics(j), T (j)) .

(24)

Now let

jmax = argmax
j∈J

{Ics(j)}, (25)

Icsmax = Ics(jmax), (26)

P cs
max = P cs(jmax) = µ1I

cs
maxα (Icsmax, T (jmax)) . (27)

The quantities Icsmax, P
cs
max, and jmax define, respectively, the maximum clear-sky irradiance, the

maximum predicted clear-sky generated power, and the time index for which this maximum value

occurs within the given time window J .

Normalizing (24) with respect to P cs
max yields

Ics(j) · α (Ics(j), T (j))

Icsmax · α(Icsmax, T (jmax))
≤
P cs(j)

P cs
max

≤
Ics(j) · α (Ics(j), T (j))

Icsmax · α (Icsmax, T (jmax))
,

(28)

and hence the following bounds on the ratio P cs(j)
P cs

max
hold:

γ
1
(j) ≤

P cs(j)

P cs
max

≤ γ1(j), (29)

where

γ
1
(j) =

α(Ics(j), T (j))

α(Icsmax, T (jmax))
·
Ics(j)

Icsmax

,

γ1(j) =
α(Ics(j), T (j))

α(Icsmax, T (jmax))
·
Ics(j)

Icsmax

.

(30)

It is important to observe that (29)-(30) define bounds on the clear-sky power time series which do

not depend on the model parameters. Condition (29) can be exploited in order to classify a time

window J of measured power data points as generated under clear-sky conditions. Indeed, given

the time series {Pm(j),T (j), j ∈ J }, the following test is introduced:
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CS Test 1.

γ
1
(j) ≤

Pm(j)

Pm(jmax)
≤ γ1(j), ∀j ∈ J . (31)

The satisfaction of CS test 1 is in general not sufficient to classify power data within J as

having been generated under a clear-sky condition. Specifically, if the sky is partially cloudy during

the time interval J , the measured power may heavily oscillate, but could remain quite close to

the clear-sky power at the maximum [30], thus satisfying (31). To overcome this issue, a further

condition on the normalized increment of the power time series is derived. Let δcsP (j) and δ
cs

P (j)

be defined by (21) evaluated for I(j) = Ics(j) and ∆I(j) = ∆Ics(j) = Ics(j) − Ics(j − 1). The

increment of P cs(j) is given by

∆P cs(j) = P cs(j)− P cs(j − 1)

and satisfies

µ1δ
cs
P (j) ≤ ∆P cs(j) ≤ µ1δ

cs

P (j) (32)

by (20). Normalizing (32) with respect to P cs
max, the following bounds on the normalized increment

∆P cs(j)
P cs

max
are obtained:

δcsP (j)

Icsmaxα(jmax)
≤

∆P cs(j)

P cs
max

≤
δ
cs

P (j)

Icsmaxα(jmax)
, (33)

i.e.,

γ
2
(j) ≤

∆P cs(j)

P cs
max

≤ γ2(j) (34)

where

γ
2
(j) =

δcsP (j)

α(jmax)
·

1

Icsmax

γ2(j) =
δ
cs

P (j)

α(jmax)
·

1

Icsmax

.

(35)

Note that the bounds (34)-(35), similarly to (29)-(30), do not depend on the model parameters.

Condition (34) provides the second criterion for classifying a time window J of measured power

data points as clear-sky. The following test is introduced:

CS Test 2.

γ
2
(j) ≤

∆Pm(j)

Pm(jmax)
≤ γ2(j), ∀j ∈ J , (36)
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where ∆Pm(j) is the increment of the measured power, i.e., ∆Pm(j) = Pm(j)− Pm(j − 1).

CS tests 1 and 2 detect deviations in the shape of the normalized power curve from the clear-

sky condition caused by cloudiness in different scenarios. However, due to normalization, such

conditions may turn out to be fulfilled on a given time window J when the corresponding data are

generated under perfectly uniform cloudiness, i.e., when the actual irradiance satisfies

I(j) = βIcs(j) ∀j ∈ J , (37)

where 0 < β < 1 is a constant that represents a uniform cloud cover factor (see [36]) in the time

window J . If the data collected within such a time window are used to perform a model parameter

adaptation step in a recursive estimation procedure, the algorithm may tend to underestimate the

power/irradiance gain of the plant at such step. This fact may be detrimental when a long series

of data collected under uniform cloudiness is processed. To mitigate this effect, a further test is

introduced. Suppose that a current estimate µ̂ of the model parameters is available. Accordingly,

a current estimate of the generated power under clear-sky conditions is given by

P̂ cs(j) = φ′ (Ics(j), T (j)) · µ̂ = µ̂1 · I
cs(j) · α̂ (Ics(j), T (j)) .

Let P̂ cs
max be the peak value of P̂ cs(j) in J , i.e.,

P̂ cs
max = P̂ cs(jmax).

Provided that CS tests 1 and 2 are passed by the data in time window J , the following further

condition is introduced, which involves a comparison of the maximum currently predicted clear-sky

power P̂ cs
max with the corresponding generated power Pm(jmax) as follows:

CS Test 3.

Pm(jmax)

P̂ cs
max

≥ 1− ǫ, (38)

where 0 < ǫ < 1 is a parameter chosen by the designer, typically a number slightly higher than 0,

whose role and choice is discussed later on. CS test 3 has the specific role of detecting, under the

condition that CS tests 1 and 2 are satisfied, whether the peak value of measured power within the

considered time window lies above a given fraction of the clear-sky power currently estimated by

the model. Condition (38) can be satisfied in the following cases:

•
Pm(jmax)

P̂ cs
max

≥ 1: in this case the model is currently underestimating clear-sky power;
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• 1− ǫ ≤ Pm(jmax)

P̂ cs
max

< 1 and the current model is overestimating the generated power by a small

amount;

• 1− ǫ ≤ Pm(jmax)

P̂ cs
max

< 1 and uniform cloudiness is present within the given time window, so that

generation is marginally lower than the clear-sky power currently predicted by the model.

With the exception of the latter case, the simultaneous satisfaction of CS tests 1,2, and 3 requires

that the model parameters be adapted in order to fit the measured power series with the predicted

one within J .

Remark 1. The parameter ǫ plays a key role in detecting whether the clear-sky curve provided

by the model matches or underestimates power data satisfying CS tests 1 and 2, which are related

to the shape of the normalized power curve. Setting this value very close to zero allows for good

adaptation when the model is underestimating the clear-sky power (for this reason it is advisable

to choose an underestimate of µ1 as the initial guess in the estimation procedure, as detailed in

the next section). Higher values, on the other hand, allow for adjusting the model when it is

overestimating; the latter case is very important for capturing possible slow parameter drifts as

well as seasonal variations in the accuracy of the theoretical clear-sky model. However, increasing ǫ

may cause adaptation to long series of data generated under uniform cloudiness. To further clarify

this aspect, let us assume that the true plant is described by a PVUSA model (2) characterized by

µ1 = µ0
1 and α(I, T ) = α0(I, T ), and that uniform cloudiness is present within J so that (37) holds

for some 0 < β < 1. It follows that

Pm(jmax) = µ0
1 · β · Icsmax · α0 (Icsmaxβ, T (jmax)).

Therefore condition (38) becomes:

β ·
µ0
1

µ̂1
·
α0 (Icsmaxβ, T (jmax))

α̂ (Icsmax, T (jmax))
≥ 1− ǫ. (39)

For given ǫ, a rough estimate of the values of the uniform cloud cover factor β for which CS test 3

is satisfied can be obtained by observing that
α0(Ics

maxβ,T (jmax))
α̂(Ics

max,T (jmax))
≈ 1 (especially for β close to 1) and

that a rough approximation of the main power/irradiance gain µ0
1 is given by the ratio Pnom/1000,

where Pnom denotes the nominal plant power in kW. In view of (39), CS test 3 is passed when β

approximately satisfies

β ' µ̂1 ·
1000

Pnom

· (1− ǫ) . (40)
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The relationship (40) provides an interpretation of the parameter ǫ and represents a possible guide-

line for tuning such parameter on the basis of the minimum value of the cloud cover factor for

which the designer allows data generated under uniform cloudiness to be considered for parameter

adaptation. However, the effect of the choice of ǫ will be extensively discussed on the basis of real

data in the experimental section of this paper.

4. Model estimation

According to the observations in the previous sections, we now introduce the proposed PVUSA

plant model estimation method, which yields an on-line update of the parameter vector estimate µ̂

by relying only on the information contained on a time series composed by measured power Pm and

forecast (or measured) temperature T . The model estimation procedure is recursive, and combines

CS tests 1 − 3 with a standard Recursive Least-Squares (RLS) algorithm using a dynamical time

window.

The following definitions are instrumental for building up the procedure:

• k: present time index;

• d: present day;

• Id = [kd, kd]: time interval corresponding to light hours in day d, i.e., Ics(k) > 0 for all

kd ≤ k ≤ kd;

• Jk,l: set of time indices corresponding to a time window of given length l ending at k, i.e.,

Jk,l = {k − l + 1, . . . , k};

• µ̂(k): estimate of the parameter vector at time k, being µ̂(0) the initial guess;

• Ics(j): theoretical clear-sky solar irradiance at time step j, computed according to (11),(12),

or a different model for the plant site;

• T (j): temperature forecast (or measurement, if available) at time j at the plant site, provided

by a meteorological service;

• Pm(j): measured generated power at time j;

• D(j) = {Pm(j), T (j), Ics(j)}: data sample at time j;

12



• D(J ) = {D(j), j ∈ J }: data set pertaining to time window J ;

• ǫ: fixed threshold value (0 < ǫ < 1);

• lmin: minimum time window length.

The estimation algorithm is constructed as follows (see Figure 1). The procedure is reset on each

day d at time k = kd. The current parameter estimate µ̂(kd) is initialized with the last estimate

obtained on day d − 1. An initial data set D(Jk,lmin
) is constructed at time k = kd + lmin − 1

corresponding to an initial time window Jk,lmin
of length lmin. If D(Jk,lmin

) does not pass CS tests

1 − 3, then the procedure is reset at time k = kd + 1. Otherwise (i.e., if D(Jk,lmin
) is recognized

as generated under clear-sky), a new data sample D(k) is acquired at each following step k and

added to the current data set D(Jk,l), incrementing the length of the time window Jk,l by one.

Then, CS tests 1 − 3 are performed on D(Jk,l). If tests are passed, then further data samples are

added to the data set until one of the tests fails (or the end of the day is reached) at some time k′.

When this occurs, the data set D(Jk′−1,l−1) is deemed to be generated under clear-sky conditions

and an RLS adaptation step is performed using such data in order to obtain an updated parameter

estimate µ̂(k′). Then, the algorithm is reset at time k = k′ and repeated. A detailed description of

the procedure is reported in Algorithm 1.

Concerning the selection of the initial parameter guess µ̂(0), the following observations are in

order.

• As previously stated, a good guess for the main power/irradiance gain µ1 is represented by

µ̂1(0) = Pnom/1000, where Pnom denotes the nominal plant power [24, 27]. As pointed out in

Remark 1, it is appropriate to start with an underestimate of this value, e.g., 75%, to ensure

faster parameter adaptation.

• As for the initial values µ̂2(0) and µ̂3(0), it is convenient to choose them so that µ2(0)/µ1(0)

and µ3(0)/µ1(0) are equal to the central values of the intervals S2 and S3 in (5), respectively

[24].

5. Forecasting

In this section, we briefly describe how the estimated PVUSA model can be used in order to

provide the generation forecasts used in the experimental part of this work. Let k be a generic

13



Algorithm 1 Parameter estimation

1: On each day d

2: k′ ← kd

3: while k′ + lmin − 1 ≤ kd do

4: for k = k′ : k′ + lmin − 1 do ⊲ Get the initial data set D(Jk,lmin
)

5: Acquire D(k)

6: end for

7: if D(Jk,lmin
) does not satisfy CS 1-3 then

8: k′ ← k′ + 1 ⊲ D(k′) is rejected and the algorithm is reset at time k′+ 1

9: else

10: l← lmin

11: do ⊲ Try to increase the window length by one

12: k ← k + 1

13: l← l + 1

14: Acquire D(k)

15: while D(Jk,l) satisfies CS 1-3 and k ≤ kd

16: Compute updated parameter estimate µ̂(k) via RLS using D(Jk−1,l−1)

17: k′ ← k + 1

18: end if

19: end while

14
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Figure 1: Visual representation of Algorithm 1. On the left, measured power data are sketched. On the right,

the construction of the data set D(Jk,l) is shown. Note that D(Jkd+4,5) is not classified as clear-sky data, while

D(Jkd+3,4) is, and parameters are adapted using the latter. At k = kd + 7 the day ends. In this particular case

lmin = 3.

time instant in which a forecast is supposed to be computed and submitted, e.g., to the DSO. For a

given time instant j ≥ k, let Ŵ (j|k) = {Î(j|k), T̂ (j|k)} denote the weather forecast (irradiance and

temperature) relative to time j available at time k, where the irradiance forecast is projected on

the panel surface using a-priori information on the plant orientation, if available, or a guess thereof

taken from guidelines such as those in [35]. The prediction of generated power for time instant j,

computed at time k using the parameter vector estimate µ̂(q) available at time q ≤ k, is given by

P̂ (j|k; q) = φ′
(

Î(j|k), T̂ (j|k)
)

· µ̂(q). (41)

In the following section, the forecasting performance of the PVUSA model estimated using the

procedure detailed in Section 4 will be evaluated on the widely used Day-Ahead (DA) and Hour-

Ahead (HA) forecasts [37]. The DA forecast is usually submitted at 6 am on the day before each

operating day, which begins at midnight on the day of submission, and covers all 24 hours of that

operating day. The HA forecast is usually submitted 105 minutes prior to each operating hour and

provides an advisory forecast for the 7 hours of light (or the remaining ones, if less) of the same day

after the operating hour. The time series representing the DA and HA forecasts can be constructed

from the pointwise forecast (41) by letting j and q vary in suitable sets. The details are omitted

15



here for the sake of brevity and the reader is referred to Section 5 of [24].

6. Performance evaluation

In this section we introduce the performance assessment indices that will be used to evaluate

the efficacy of the proposed method in the forecasting problems sketched in the previous section.

6.1. Error measures

For the sake of simplicity, a generic definition of the performance indices that will be used is

given here. Details on how such indices are computed using a predictor such as (41) in the specific

contexts of DA or HA forecasting are provided in [24]. Let P̂ (j) represent the forecasted power and

Pm(j) the corresponding measured value. The following standard error measures are considered:

RMSE =

√

1

K

∑

j∈K

(

Pm(j) − P̂ (j)
)2

MBE =
1

K

∑

j∈K

(

P
m(j)− P̂ (j)

)

MAPE =
1

K

∑

j∈K

∣

∣

∣

∣

∣

Pm(j)− P̂ (j)

Pm(j)

∣

∣

∣

∣

∣

· 100

NRMSE =

√

√

√

√

√

∑

j∈K

(

Pm(j) − P̂ (j)
)2

∑

j∈K

(

Pm(j)− P̄
)2

R
2 = 1−NRMSE

2

RMSENP =
RMSE

Pnom

MAPENP =
1

K

∑

j∈K

∣

∣

∣

∣

∣

Pm(j) − P̂ (j)

Pnom

∣

∣

∣

∣

∣

· 100.

where K = {1, . . . ,K} denotes the time span of the data set and P̄ is the sample mean of the

measured power. The last two indices, i.e., RMSENP and MAPENP , are normalized with respect

to the nominal plant power Pnom and are of practical interest for network operation. In particular,

values lower than 10% are considered acceptable for network operation [38, 8].
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6.2. Benchmarks

As an additional evaluation tool, the performance indices achieved using the proposed approach

will be compared to those obtained using:

• ODNP: the One-Day-ahead Naive Predictor, i.e.,

P̂ (j) = P̂ODNP (j) = Pm
d−1(j), (42)

where Pm
d−1(j) denotes the measure of generated power recorded during the day before at the

same time of day,

• SRLS: a PVUSA model estimated via a standard RLS algorithm in the complete information

case, i.e., using actual measurements of generated power, irradiance and temperature.

7. Experimental results

In this section an extensive validation of the proposed procedure is presented. Two experiments

have been run to evaluate the performance of the algorithm. In the first one, both model estimation

and validation have been conducted using measured data (power and temperature for estimation,

irradiance and temperature for forecasting) in order to assess the performance of the estimation

procedure net of errors due to inaccuracies of weather forecasts. In the second, meteorological

predictions have been used both for model parameter fitting and generation forecasting. The latter

scenario corresponds to a typical DSO use case.

7.1. Experiment set up

For the two experiments performed, the following data sets have been used, respectively:

D1: data from a PV plant P1 with nominal power Pnom = 960kWp located in the campus of

the University of Salento, in Monteroni di Lecce, Puglia, Italy (see [39] for details). Data,

ranging from March 5th, 2012 to December 31st, 2013, consist of hourly samples of averaged

measured power, air temperature and normal irradiance (the latter used only for comparison

in the SRLS benchmark) ;

D2: data from a PV plant P2 with nominal power Pnom = 920kWp located in Sardinia. Data,

ranging from February 2nd, 2012, to May 1st, 2012, consist of hourly samples of averaged
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RMSE MAPE MBE R2 NRMSE

Î 148W/m2 77% 29.1W/m2 0.808 0.438

T̂ 1.9 ◦C 23% 0.9 ◦C 0.849 0.389

Table 1: Quality indices of irradiance and air temperature forecasts for data set D2.

measured power, one day-ahead forecasts of air temperature and one day-ahead forecasts of

normal irradiance. Information about the quality of such forecasts is reported in Table 1.

Therefore the data sets used for model estimation in the two cases are given by:

D1 =
{

{Pm(k), Tm(k), Ics(k)}, ∈ K1

}

,

D2 =
{

{Pm(k), T̂ (k), Ics(k)}, ∈ K2

}

,

where the sets of time indices K1 and K2 span the entire periods reported above for D1 and D2,

respectively, with a sampling time τs = 1h, and Ics(k) is generated using (11),(12). Clearly, only

time indices k corresponding to hours of light were considered.

The initial parameter vector has been chosen according to the criteria in Section 4, i.e., µ̂1(0) =

0.75 Pnom/1000, µ̂2(0) = −1.34× 10−4 · µ̂1(0), and µ̂3(0) = −3.25× 10−3 · µ̂1(0). Concerning

the panel orientation angles (ζ, ψ) used in (12), they have been chosen using a-priori knowledge:

measurements of the panel angles and location, for P1 and P2, respectively. In particular, plant P1

is actually composed of two arrays with different orientations; for this plant an equivalent orientation

has been estimated by averaging the respective angles, considering the nominal powers as weights.

The parameters just described are summarized in Table 2.

µ̂1(0) µ̂2(0) µ̂3(0) ψ ζ

P1 0.72 −9.68× 10−5 −2.34× 10−3 10.6° −10°

P2 0.690 −9.28× 10−5 −2.24× 10−3 27° 12.5°

Table 2: Initial parameters and panel orientation angles.
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Concerning the choice of ǫ, it is worth recalling (see Remark 1) that in order for CS test 3 to

reject uniformly cloudy data with a CCF β ≤ β0, ǫ can be chosen approximately as

ǫ = 1−
Pnom

1000
·
1

µ̂1
· β0, (43)

where µ̂1 represents the currently available estimate of µ1. Therefore, we find it convenient to fix

the CCF bound β0 and adjust ǫ dynamically via (43) as soon as a new estimate µ̂1 is computed.

In this respect, we observe that the range of variability of the CCF depends on the climate of

the macro-area where the plant is located, which is usually available. For the Italian case, typical

values of the CCF range from 0.5 to 1 [40]. In the experiments of this section, we choose β0 = 0.9.

However, higher/smaller values of β0 within the typical variability range make the CS detection

algorithm more/less selective. Therefore, an evaluation of this effect is also in order.

7.2. Validation on measured data (D1)

The proposed method (denoted as CSD) has been evaluated with reference to day-ahead (DA)

forecasts [24] by taking actual measurements of meteorological variables as the respective forecasts.

The performance is compared with that of both the ODNP and the SRLS. Initialization data are

summarized in Table 3.

Data set ID D1

PVUSA µ̂(0) =
[

0.72, 9.68× 10−5, −2.34× 10−3
]′

β0 0.9

Table 3: Algorithm parameters for validation on measured data (D1)

The time evolution of the parameters estimated using CSD and SRLS algorithms are shown in

Figure 2. Since the two algorithms use different data, namely theoretical irradiance for CSD and

measured irradiance for SRLS, it is not surprising that parameters tend to slightly different values.

As far as the forecasting performance is concerned, all error measures on DA predictions were

computed over the period starting from day 28, in order to guarantee at least a rough adaptation of

the model parameters. In Table 4 the performance indices achieved by the proposed CSD approach

are compared with SRLS and ODNP. Errors computed on CSD and SRLS are comparable and
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Figure 2: PVUSA parameters estimation using the CSD algorithm (red line) and a SRLS algorithm (blue line).

Performance

Indices
CSD SRLS ODNP

D
A

F
o
re
ca
st

RMSE (kW) 31.0 23.1 143.2

MAPE 31% 26% 109%

MBE (kW) −7.01 −6.73 3.00

R2 0.98 0.99 0.65

NRMSE 0.13 0.10 0.59

RMSENP 0.032 0.024 0.15

MAPENP 2.2% 1.5% 8.4%

Table 4: Performance comparison of CSD, SRLS and ODNP computed starting from day 28 (D1).

clearly show better performance with respect to the ODNP. In Figure 3, the time evolution of the

daily RMSE (RMSEd) is, shown .
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Figure 3: (D1): RMSEd on DA forecast. CSD (red), SRLS (blue) and ODNP (green). Black line represents the

standard deviation of the measured power.

A visual representation of the algorithm behavior with special attention to clear-sky detection
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is shown in Figure 4. In those graphs, sequences of red markers denote time windows in which

the measured power is detected as being generated under a clear-sky condition. The adaptation of

model parameters is apparent from a comparison of the measured and predicted power in successive

clear-sky periods. With reference to Figure 4, in day 8 the first clear-sky window is detected: note

that P̂ cs is much lower then Pm. During day 9 the second clear-sky window is detected, in this case

the model overestimates the actual generated power. On day 10 the model fit has largely improved.

The remaining plots show other three, non consecutive days: days 32 and 419 are completely clear-

sky; day 91 is a partially clear-sky day, in which about a half of the samples is rejected by the

algorithm.
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Figure 4: Visual representation of an algorithm run (D1). Measured power is in blue, current predicted clear-sky

power is in green, red markers denote detected clear-sky windows.

Finally, in Figure 5, DA forecasts provided by CSD and SRLS during three different days and

under three different weather conditions are compared with the measures of generated power.

7.3. Influence of β0

To show the influence of the choice of β0 on the behavior of the algorithm, the following ex-

periment on data set D1 has been performed. The presence of a certain amount of power data

generated under uniform cloudiness has been simulated by scaling down a given fraction of the

power data collected during days which appeared to be clear-sky by inspection. The power curve

related to each of such days has been scaled by a factor ranging from 0.5 to 0.9. Three different

datasets have been generated, each containing a different fraction of scaled data, as described in
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Figure 5: (D1): Comparison between the measured power (dash dot line), DA CSD forecast (red line) and DA SRLS

forecast (blue line). From right to left, a clear-sky day, an overcast day and a partially clear-sky day.

Table 5. For each data set, the model estimation experiment has been repeated several times by

varying β0 from 0.40 to 0.95 with steps of 0.05. For the sake of fairness, original data from D1 have

Data set ID D1 D11 D12

POD 0% 5% 14%

Table 5: Data sets used in the evaluation of the effect of β0. POD denotes the percentage of scaled clear-sky data

introduced.

been used in all cases to compute forecasting errors.

Figure 6 shows the percentage of generated power measurements detected as clear-sky by the

algorithm in the different data sets for varying β0. Figure 7 depicts the corresponding value of the

MAPENP on DA forecasts. When β0 increases, the CSD algorithm becomes more selective. This

fact is reflected in the MAPENP , which is lower in general for higher β0. For given β0, the error

increases with the percentage of uniformly cloudy days. This phenomenon becomes less apparent

as β0 increases.

In Figure 8, the evolution of the parameter estimates performed on D12 for varying β0 is reported.

Parameter estimates tend to become almost stationary in all cases. Mean values and variances of

µ̂ are reported in Table 6. Notice that µ̂1 shows lower sensitivity to β0 compared to µ̂2 and µ̂3.

Figure 9 depicts measured power and predicted clear-sky power during three uniformly cloudy

days belonging to D12 for β0 = 0.9. All data satisfy CS tests 1 and 2. CS test 3 is satisfied only

for the last day, in which power data was obtained using a scaling factor greater or equal to 0.9.
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Figure 8: Parameter estimates vs. iteration for different choices of β0. Values of β0 are depicted using a color map

which ranges from red to yellow, denoting the minimum and the maximum, respectively. Model identification is

performed using D12.

7.4. Validation on predicted data (D2)

In this section a typical DSO scenario is reproduced, in which it is assumed that measurements

of weather variables are not available at the plant site. Therefore, measured power and temperature
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β0 Mean of µ̂ Standard deviation of µ̂

0.40
[

0.970 −8.07× 10−5 −9.587× 10−3
]′ [

4.82× 10−2 2.55× 10−5 3.14× 10−3
]′

0.65
[

1.026 −5.96× 10−5 −1.078× 10−2
]′ [

2.82× 10−2 2.67× 10−5 2.09× 10−3
]′

0.90
[

1.015 −1.07× 10−4 −6.533× 10−3
]′ [

1.66× 10−3 2.06× 10−5 7.83× 10−4
]′

Table 6: Mean values and standard deviations of the parameters estimated using D12 and three different values of

β0 (computed from day 28).
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Figure 9: Visual representation of the role of CS test 3 with β0 = 0.9 using data in D12. Plots show three different

days in which tests 1 and 2 are satisfied. Measured power is in blue, theoretical clear-sky generated power is in green,

red markers denote detected clear-sky windows.

forecasts are used to estimate the plant parameters, while irradiance and temperature forecasts are

used to cast predictions of generated power. The algorithm configuration parameters are reported

in Table 7.

Data set ID D2

PVUSA µ(0) =
[

0.69, 9.28× 10−5, −2.24× 10−3
]′

β0 0.9

Table 7: Algorithm parameters

In this scenario, the performance of the proposed method has been evaluated with reference to

both day-ahead (DA) and hour-ahead (HA) forecasts, and compared with the performance achieved

by SRLS and ODNP. Forecasting error measures are reported in Table 8 and Figure 10. While

ODNP still has the worst performance indices, CSD performs even better then SRLS. However, it
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Performance

Indices
CSD SRLS ODNP

D
A

F
o
re
ca
st

RMSE (kW) 117.9 118.5 193.3

MAPE 58.8% 55.2% 85.6%

MBE (kW) −7.69 35.6 −5.6

R2 0.799 0.797 0.458

NRMSE 0.448 0.451 0.736

RMSENP 0.128 0.129 0.201

MAPENP 8.3% 9.8% 12.4%

H
A

F
o
re
ca
st

RMSE (kW) 138.2 136.2 -

MAPE 52.1% 46.0% -

MBE (kW) −25.8 33.0 -

R2 0.655 0.665 -

NRMSE 0.588 0.579 -

RMSENP 0.150 0.148 -

MAPENP 10.0% 11.9% -

Table 8: Performance comparison of CSD, SRLS and ODNP computed starting from day 28 (D2).

should be observed that forecasting errors in this case are to a large extent due to the quality of

weather reports (see Table 1).

Three examples of DA forecast computed using CSD approach and SRLS during different

weather conditions are shown in Figure 11.

7.5. Further remarks

With reference to Tables 4 and 8, it is important to observe that the normalized errors (MAPENP )

computed on DA forecasts are below 10%, which demonstrates viability for network operation. Fur-

thermore, the performance indices achieved by CSD are very close to those obtained by SRLS, i.e.,

via a PVUSA model estimated using measured irradiance.

Concerning the role of the tunable parameter β0, results in Section 7.3 show that the estimate of

the main power/irradiance gain µ1 is quite robust with respect to β0, and moreover the parameter

estimates µ̂ tend to converge regardless of the value of β0. Even for small β0, i.e., when the algorithm
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Figure 10: RMSEd on DA forecast (top figure) and HA forecast (bottom figure). CSD algorithm is in red, SRLS in

blue and ODNP in green. The black line represents the standard deviation of the measured power.

is not selective and CS test 3 is satisfied even for heavy uniform cloudiness, CSD is able to provide

reasonably accurate forecasts. Increasing the values of β0, the algorithm tends to reject more and

more data measured under a uniformly cloudy sky, resulting in an improvement of the forecast

quality.

The proposed algorithm has been implemented in Scilab [41]. Each iteration took on average

less than one second on an i7 2.6 Ghz processor, thus demonstrating that the approach carries an

extremely low computational burden.

8. Conclusions

In this paper, an efficient technique for estimating a forecasting model of photovoltaic power

generation from limited information has been proposed. The approach is based on a set of tests
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Figure 11: (D2): Comparison between measured power (dash dot line), DA CSD forecast (red line) and DA SRLS

forecast (blue line). From right to left, a clear-sky day, an overcast day and a uniformly overcast day.

performed on power data combined with a recursive estimation framework. It only exploits the time

series of generated power and forecasts of temperature, the latter obtained from a meteorological

service. The procedure especially fits the typical scenario where the network operator has no access

to on-site measurements of irradiance and temperature, due to the large number of plants connected

to the grid.

The algorithm has been extensively validated on two plants located in Italy, both on measured

data and on forecasts of weather variables. The latter case reproduces a typical DSO scenario. Ex-

periments worked out show very good forecasting performance, with limited computational burden.

Ongoing work addresses the aggregation of several plants covering large geographic areas. Due

to a better quality of weather forecasts in this case, a significant accuracy improvement is expected.

The integration of PV power generation forecasting in smart buildings and in microgrids will also

be considered.
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