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Abstract

In many Cyber-Physical Systems, we encounter the problem of remote state estimation of geographically distributed and
remote physical processes. This paper studies the scheduling of sensor transmissions to estimate the states of multiple remote,
dynamic processes. Information from the different sensors have to be transmitted to a central gateway over a wireless network
for monitoring purposes, where typically fewer wireless channels are available than there are processes to be monitored. For
effective estimation at the gateway, the sensors need to be scheduled appropriately, i.e., at each time instant one needs to decide
which sensors have network access and which ones do not. To address this scheduling problem, we formulate an associated
Markov decision process (MDP). This MDP is then solved using a Deep Q-Network, a recent deep reinforcement learning
algorithm that is at once scalable and model-free. We compare our scheduling algorithm to popular scheduling algorithms such
as round-robin and reduced-waiting-time, among others. Our algorithm is shown to significantly outperform these algorithms

for many example scenarios.

1 Introduction

Cyber-physical systems (CPS) are systems built through
integration of sensors, communication networks, con-
trollers, dynamic (physical) processes and actuators.
They are playing an increasingly important role in
modern society, in areas such as energy, transportation,
manufacturing, and healthcare. The scale of typical
CPS such as smart-grids, vehicular traffic networks
and smart factories is large. The realization of these
systems faces substantial challenges arising in diverse
disciplines, ranging from communications and control
to computing [1]. Supporting estimation and control
applications over wireless networks has posed consider-
able challenges for the operation of networks and the
design of protocols [2].

Figure 1 illustrates an example of a networked cyber-
physical system for the purposes of remote state estima-

* A. Ramaswamy was supported by the German Research
Foundation (DFG) - 315248657. L. Shi was supported by a
Hong Kong RGC General Research Fund 16204218.

Email addresses: alex.leong@upb.de (Alex S. Leong),
arunr@mail.uni-paderborn.de (Arunselvan Ramaswamy),
dquevedo@ieee.org (Daniel E. Quevedo), h.karl@upb.de
(Holger Karl), eesling@ust.hk (Ling Shi).

Preprint submitted to Automatica

Scheduling Command

Wireless

\ Network
""""" "
Channel 1 [}

Process 1 »1 Sensor 1

L]
' —»| Gateway [—p

" Scheduling Command

Process N »] Sensor N

Fig. 1. Remote state estimation with sensor scheduling

tion. A number of processes are observed by sensors, with
the sensors sending information via a shared wireless net-
work (consisting of M wireless channels) to a gateway,
that computes state estimates of each of these processes.
Such situations could, for instance, occur if a central con-
troller wishes to monitor a number of different processes
in an industrial plant. From a networking perspective,
one challenge lies in scheduling transmissions from the
sensors to the gateway, because of both the volatile na-
ture of wireless channels and the need to carefully sched-
ule transmissions over a shared medium [3]. While such
channels provide the opportunity for diversity, they also
aggravate the dynamic scheduling problem: which chan-
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nel should be assigned to which sensor, and when? The
problem of scheduling is further exacerbated by estima-
tion and control requirements, which may be at odds
with typical communications performance parameters
such as waiting times, throughput, etc. [4, 5].

The sensor scheduling problem wherein a single dynamic
process is observed by multiple sensors has been stud-
ied in e.g. [6-9]. More recently, sensor scheduling prob-
lems where multiple processes are observed by different
sensors has also been investigated [10,11]. In the case of
single channel systems (M = 1), optimal sensor schedul-
ing problems without packet drops have been previously
studied in [10]. For the case M > 1 and additionally with
packet transmission length constraints, some structural
results were derived in [11], however numerical results
were only provided for the M = 1 case. The focus of the
current paper is on the case M > 1, where each wireless
channel can also experience packet drops. In particular,
we want to provide computationally scalable methods
for solving optimal sensor scheduling problems.

For the dynamic scheduling problem, the gateway se-
lects at each discrete time instant a subset (of size M)
of the N sensors which communicate the sensor read-
ings to the gateway, to update its estimates. We assume
that the gateway has knowledge of the process dynamics
observed by each sensor, to allow Kalman filter-type es-
timation algorithms to be run. The scheduling decision
could be informed by knowledge about the quality of the
estimates as well as by conjectures about channel state
and probability of success of transmitting the readings
to the gateway. Knowledge of the channel states or chan-
nel statistics is not assumed to be known to the gateway
(i.e. scheduling is done in a model-free manner), as such
knowledge may be expensive to obtain (requiring e.g.
the transmission of pilot signals), and furthermore since
channel statistics are often also time-varying [12].

As previously mentioned, the scale of a CPS is typically
large. For our scheduling problem, this leads to an as-
sociated MDP with large state and action spaces. Tra-
ditional reinforcement learning based algorithms such
as (Q-learning cannot be used to solve such MDPs due
to Bellman’s curse of dimensionality [13]. The curse of
dimensionality can be overcome by the use of function
approximations [14]. Deep Q-Network (DQN) [15,16] is
one such algorithm using deep neural networks as func-
tion approximators, that has shown tremendous promise
in solving large MDPs in a scalable, model-free manner.
Deep reinforcement learning techniques have also been
recently used to study difficult problems arising in con-
trol. The work [17] studies a similar problem in controller
scheduling, however it does not consider packet drops,
and requires extra overhead in the transmission of infor-
mation from the sensors to the scheduler at every time
step. The work of [18] studies event-triggered control
problems where the communication and control policies
are learnt from scratch using an actor-critic approach.

The paper is organized as follows. The system model is
presented in Section 2. The sensor scheduling problem
and associated MDP is described in Section 3, together
with derivation of a stability condition and discussion of
computational issues. The proposed deep reinforcement
learning approach to the scheduling problem is given in
Section 4. Numerical studies can be found in Section 5.

2 System Model
2.1 Sensing model

A diagram of the system model is shown in Fig. 1. We
consider N independent, linear, discrete-time processes
Tikr1 = Ak +wig, i=1,...,N (1)
where z; ; € R"* is the state of process ¢ at time k,
and the process noise w;y is i.i.d. (in time) Gaussian
with zero mean and covariance matrix W; > 0[T] Each
process is measured by a sensor as
Yik = Cixyp +vig, i=1,...,N (2)
where y; , € R™i is the measurement of process ¢ at
time k, and the measurement noise v; j is i.i.d. Gaussian
with zero mean and covariance matrix V; > 0. The noise

processes {w; r} and {v; 1} are assumed to be mutually
independent for all 7 and j.

We assume that each sensor has the computational ca-
pability to run a Kalman filter, i.e., each sensor 7 can
compute local state estimateﬂ and estimation error co-
variance matrices
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PZS»]" é ]E[(Izvk - jf,k)('xivk - i’?,k)Tkyi,O’ cee 7yi,1€]7
using the Kalman filter equations [20]. We will as-
sume that every pair (A;, C;) is observable, and every

pair (4;, Wil/ 2) is controllable. Then, the steady-state
value of P/, for k — oo exists for each sensor, and

will be denoted by P;. For convenience of presen-
tation, we will assume that the local Kalman filters

! For a symmetric matrix X, we say that X > 0 if it is
positive definite, and X > 0 if it is positive semi-definite.

2 In situations where channels experience packet drops,
transmission of local state estimates in general gives better
estimation performance than transmission of raw measure-
ments [19]. It is worth noting that the situation where raw
measurements are transmitted can also be handled using the
deep Q-learning technique considered in the present work.



at the sensors have reached steady statd®] so that
PP =P;,Vi=1,...,N,Vk.

2.2 Scheduling and channel model

The sensors wish to transmit their local state estimates
&7 to a central gateway, which aims to estimate all of
the N processes {x;1},i = 1,..., N. Sensor transmis-
sions are over a shared wireless network with M chan-
nels. In typical applications, M < N due to limited re-
sources. Thus, (at most) only M out of the N sensors
can transmit at any given time. At each time step k, a
scheduler will allocate each of the M channels to one of
the sensors. We assume that each channel is allocated
to a different sensor, although the case where multiple
channels are allocated to the same sensor (e.g. as in [21])
can also be handled using our techniques. Define deci-
sion variables ap, , € {1,..., N} form=1,...,M as

Gm k £ { if sensor i is scheduled to transmit on
channel m at time k. (3)

Channel transmissions can experience packet drops. De-
fine v,k € {0,1} for m =1,..., M such that

1, if transmission on channel m at time k

Ymk = is successfully received at gateway

0, otherwise.

Each channel is modelled using the Gilbert-Elliott (or
Markovian packet drop [22]) model, with

m = P(’Ym,k = Oh/m,kfl = ]-)a

dm £ IP)('Ym,/’c = 1|'Ym,k—1 = 0)7 M

m=1,..., M,
and with the channels being independent of each other.
Pm and gy, are also known respectively as the failure rate
and recovery rate. As mentioned in the Introduction, we
will not assume knowledge of the channel parameters
DPmy,Gm,m = 1,..., M at the scheduler. We note that
our model-free approach can also be readily extended to

handle more general finite state Markov channels [23,24].
2.8  Protocol assumptions

Scheduling is assumed to be done at the gateway, with
the decisions a1 fed back to the sensors{”|We assume

3 Convergence to steady state in general occurs at an expo-
nential rate [20].

4 Scheduling can also be done inside the network (e.g., at
a wireless access point) provided 7y, x—1 are fed back to the
network to allow P;x_1,7 = 1,..., N to be reconstructed.
This makes no difference for the approach considered here.

that this (downlink) transmission from gateway to sen-
sor works without errors. We justify this by using all
M stochastically independent channels to transmit this
signalling information, resulting in an exponentially re-
duced error probability. Error performance can be fur-
ther improved by coding across channels (rather than
just simple repetition coding) and time (since signalling
information is relatively small, time overhead can be in-

vested) [3,25].

After these channel assignments have been received by
the sensors, they send their respective data (local state
estimates) to the gateway. Once these (uplink) transmis-
sions are complete, we move to the next time period k+1.

2.4 Remote Estimation at Gateway

At the gateway, state estimates and estimation error co-
variances of each of the processes are computed similar
to [19,26], as follows:

Sr, ifdmst.amr=1and vy =1
ik = {Aiii,k_l, otherwise
. { Pi,  ifdmst amy =iand vy =1
’ hi(P; k1), otherwise,
(4)

where h;(.),i =1,..., N, is defined as

hi(X) & A X AT +W;. (5)
As mentioned in the Introduction, the gateway is as-
sumed to have knowledge of the parameters for each of
the N processes, which allows (4) to be (causally) com-
puted for each process.

3 Problem Description

The gateway wishes to find a scheduling policy to mini-
mize the average sum of the trace of the estimation error
covariance matrices across all sensors and all times. We
will formulate a Markov decision process (MDP) to solve
the associated sequential decision making problem:

T—-1 N

ZZ trP; (6)
k=0 i=1

min lim sup E
{(a1,ks-anmk)} T—o0

We assume that the channel allocations at time k can
depend on
simk-1),  (7)

(Prk—1-- s PNe—1V1,k=1, - - -



namely the estimation error covariances and channel
transmission outcomes at the previous time step, which
is information that is available to the gateway. From (4)
we see that P is always of the form Al (P;) for some
n € N, where hl’(.) denotes the n-fold composition of
hi(.) given in (5), with hY(.) being the identity. Define
the holding time of sensor ¢ at time k as

Tiok £ min{r >0:3Im s.t. U h—r =1 and Yy p—r = 1},

which represents the amount of time since the last suc-
cessful transmission of sensor i to the gateway. Then we
can express P ;, as

P =h;""(P,;),
and therefore the channel allocations at time k can,
equivalently, depend on
(TLk—1y- s TN =15 V1,k—1s - - » YM,k—1)5 (8)
which is of smaller dimension than (7), as each 7; ;—1
is scalar while each P;;_1 is a matrix. Below we will
describe more formally problem (6) as an MDP.

3.1  Formulation as a Markov Decision Process

State space: From the discussion above, the vector (8)
can be regarded as the stat@ of the MDP (6) at time
k, and thus the state space is NV x {0,1} (where we
include 0 in the natural numbers N).

Action space: Next, we have a finite action space

{(al,k, ..

S ank)|a1 K, - - -y an e all distinet},

corresponding to the (Nfiz'w)! different ways of allocating
the M channels to the NV sensors.

Cost function: Finally, the single stage cost at time k is

N
Je =) tePi. (9)
i=1

Remark 1 As the channel parameters pp,,Qqm,m =
1,..., M are assumed to be unknown, we do not include
the transition probabilities in our formulation of the
MDP, and indeed their knowledge is not required when
solving the MDP using reinforcement learning methods.

5 Note that the state of the MDP is different from the states
xi, of the processes. From now on we will mostly use the
word “state” to refer to the state of an MDP.

3.2 Stability Condition

We will derive a sufficient condition on when the opti-
mal solution to the MDP (6) has bounded average cost,
expressed in terms of the process and channel parame-
ters. Such a stability condition is important for reliable
monitoring of all of the processes. We first make the fol-
lowing assumption:

Assumption 1 Define ppax = max;—1,. n p(4;) and
Gmax = MaXm=1,... M qm, where p(A;) denotes the spec-
tral radius of A;. We assume that

piqax(l — Gmax) < 1. (10)

Theorem 1 Under Assumption 1, the optimal solution
to the MDP (6) has bounded average cost.

Proof See the appendix. |

Remark 2 For the case of a single process and a single
Gilbert-Elliott channel (with transition parameters p and
q), when local state estimates are transmitted, a necessary
and sufficient condition for bounded expected estimation
error covariance is that q satisfies [27]:

p(A)*(1—q) < 1. (1)

The condition (10) can be regarded as a generalization
of (11) to multiple processes and multiple channels, and
intuitively says that the overall system has bounded cost
provided the best channel (in terms of having the largest
recovery rate ¢, ) can keep the expected estimation error
covariance of the most unstable process (i.e., having the
largest spectral radius) bounded.

3.3 Computational Issues

Considering first the case where the channel parameters
Pmyqm,m = 1,..., M are known, numerical solution of
(6) using dynamic programming techniques (e.g. using
policy iteration or relative value iteration) is in princi-
ple possible, after truncating the countable state space
NV x {0,1}M to a finite state space. However in practice,
even for relatively small N and M, the sizes of both the
state and action spaces can still be considerable, making
exact numerical solution infeasible. For the case M =1
without packet drops (and relatively small N in numer-
ical computation), a similar average cost problem has
been previously studied [10]. For M > 1 and additionally
also considering packet transmission length constraints,
some structural results were derived in [11], however nu-
merical results were only provided for the M = 1 case.

If the channel parameters p,,, ¢m,m = 1,..., M, are un-
known (and hence the MDP transition probabilities are



also unknown), as is assumed in the current work, then
standard dynamic programming approaches for solving
MDPs cannot be used.

In order to overcome the above mentioned problems of
large state space and unknown channel parameters, we
will use recently developed reinforcement learning (Q-
learning) methods utilizing deep neural networks for
function approximation [15,16], which will be described
in the next section.

4 Sensor Scheduling Using Deep Reinforcement
Learning

Consider the discounted cost problem

T—-1 N

ZZ Kt P, ), (12)
k=0 i=1

min limsup E
{(a1,ks-am,k)} T—o0

where 6 < 1 is a discount factor. In this paper we will
approximate the solution to problem (6) by solving (12)
using reinforcement learning techniques, with a discount
factor ¢ close to 1 [28]. While Q-learning type algorithms
for average reward maximization problems exist [29,30],
most reinforcement learning algorithms assume a dis-
counted setting, in particular the deep reinforcement
learning techniques of [15,16]. A more formal justifica-
tion for solving the discounted cost problem will be given
in Section 4.2.

4.1 Solving the discounted cost problem using deep re-
inforcement learning

Let us rewrite (12) as the equivalent discounted reward
maximization problem:

T-1 N
max hm inf E —5* trP;, 13
{(a1,k,--an,k)} T—o0 |J;) =1 b ( )

The @Q-factor or action-value function Q(s, a) represents
the expected future reward associated with taking action
a when at state s [14,29]. The Q-factor version of the
Bellman equation for problem (13) is:

Q*(s,a) =E [r + dmax Q*(s',d’)[s,al ,

where s’ represents the value of the next state given
the current state s and action a, and Q*(.,.) are the
optimal @Q-factors. If we know Q*(.,.), then we can find
a corresponding optimal stationary policy, with action
a*(s) for each state s as follows:

a*(s) = argmax, Q" (s, a).

The well-known @Q-learning algorithm will, in principle,
converge to the optimal Q-factors, but in practice the
convergence is rather slow and requires both the state
and action spaces to be small in order for the method
to be feasible. For large MDPs one can approximate
Q*(s,a) by a function Q(s, a;0) parameterized by a set
of weights 6 [14], and then learning these weights. Deep
reinforcement learning refers to the case where the func-
tion approximation Q(s,a;#) uses a (deep) neural net-
work, which has been crucial in recent key breakthroughs
in artificial intelligence such as in the playing of Go [31].
The deep Q-learning techniques introduced in [15, 16]
also included a number of important innovations aimed
at stabilizing the learning algorithm, in particular 1) the
notion of experience replayi% (see step 9 of Algorithm
1 below) and 2) fixing the target Q-network at regular
mterval (see step 12 of Algorithm 1). Based on these
ideas, our approach to solving problem (13) is given as
Algorithm 1 below.

In Algorithm 1,
ay = (al,t7 ey a/]V[,t)a

c.f. (3), corresponds to the allocation of the M channels
at time ¢, and the single stage reward is given by

N

ry = Z —trPi’t.

i=1

The state s; could be chosen as

St = (Tl,t—h <o TNt—15V1,t—1y - - - "YM,t—l)
as in Section 3.1, however for the simulations in Section 5

we further augment the state to

st = (Tre-1,- - TN e—1, tr(h1 (Pry—1)), - - -,
tr(hn(Pni—1))s =1, - s Yp—1),  (14)

where tr(h;(P;;—1)) is directly related to the reward
function at time ¢t when we don’t receive transmission
from sensor ¢, which we have found in some cases gives
faster convergence for the algorithm. For details of the
hyper-parameters for Algorithm 1 used in this paper, see
Section 5. We note that Algorithm 1 can be run online,
and is model-free in that it does not need knowledge of
the channel parameters p,,, gm,m =1,..., M.

5 In experience replay we store the agent’s experiences at
each time-step, pooled over many episodes, into a replay
memory. During the minibatch updates, random samples
from the replay memory are drawn. Such a technique can
reduce correlations in the observation data.

" This technique can reduce correlations between the Q-
factors and the target.



Algorithm 1 Deep Q-network for wireless sensor
scheduling

1: Initialize replay memory D to capacity K
Initialize network @ with random weights 6,
Initialize target network Q with weights 6~ = 6,
Initialize sg
fort=0,1,...,7 do
With probability e select a random action ay,
otherwise select a; = argmax,Q(st, a; 0;)
Execute a;, and observe r; and s;41
Store (8¢, at, rt, S¢41) in D
9: Sample random mini-batch of transitions
(sj,a5,75, 8541) fromD
10: Set z; = r; + dmaxy Q(sj41,a’;07) for each
sample in mini-batch
11: Perform a mini-batch gradient descent step on
(z; — Q(sj,a;4;0t))? to obtain ;44
12: Every c steps set 6~ =6,
13: end for

4.2 Relationship to average cost problem

As stated in Section 3, the aim of the scheduler is to find
a scheduling policy that minimizes the average estima-
tion error covariances, i.e., solves an associated average
cost problem. If the communication channels satisfy As-
sumption 1, then it follows from Theorem 1 that there
exists a scheduling policy that ensures that the cost is
bounded. In this subsection, we show that the policy
found by solving the associated discounted cost problem

is an e-optimal policy for the average cost problemE

Further, e can be made arbitrarily small by controlling
the discount factor, 4, of the associated MDP.

Recall that Ji given by (9) is the single stage cost as-
sociated with problem (6). Before proceeding, we state
Abel’s theorem [28] for our setting:

Theorem 2 (Abel) Let {J;}r>0 be a sequence of pos-

itive real numbers. Then

lim inf — Z Ji < hmlnf 1-— Zéka

T—o0

k=0 k=0
=
< limsup(l —§ Zéka<hmsup—ZJk
511 o T—00 o

From Theorem 1 it follows that there exist (stabilizing)
scheduling policies with finite associated average costs.
It now follows from Abel’s theorem that:

Tlgnoo—ZJk —hm 1-9 Zé’“Jk <oo. (15)

8 Note that € here is different from the exploration param-
eter ¢ of Algorithm 1.

Furthermore, given € > 0, there exists an §(e) ~ 1, de-
pendent on €, such that:

m Z sk, <

) i 5(e)* Iy + e,
k=0

oo

= lim - Z Tr < (1=5(e) Y _d(e)"
k=0

In addition to €, d(¢) also depends on the actual realiza-
tions of the single stage cost sequences {Ji }x>0. If one
wishes to find an e-optimal policy, then one can choose
a discount factor 6(e), provided the “orders” of these
single stage costs are known. In our problem, the single
stage costs are unbounded. However, it is clear that the
discount factor 6 T 1 as € | 0. Hence, in our numerical
experiments, we choose a discount factor close to 1.

lim(1 —§

Ji + €.

5 Numerical Studies

We consider an example with N = 6 sensors and
M = 3 channels. Each process has state dimension
2 (i.e. ny, = 2,4 = 1,...,N) and scalar measure-
ments (n,, = 1,4 = 1,...,N). The process parameters
A;, Ci, W;, Vit =1,..., N and channel transition prob-
abilities pm, gm,m = 1,..., M are randomly generated.
The eigenvalues of A; are drawn uniformly from the
range (0,1.3). The entries of C; are drawn uniformly
from the range (0,1), and W; and V; are generated by
random orthogonal transformations of a diagonal matrix
with random diagonal entries drawn uniformly from the
range (0.2, 1.0). The channel transition probabilities p,,
and ¢, are uniformly generated from the range (0, 1).

The following hyper-parameters for Algorithm 1 are used
in our simulations. In the deep-Q) network, the aug-
mented state (14) of dimension 2N + M is fed in as in-
put, i.e. there is an input layer with 2N + M = 15 nodes.
We use two hidden layers, with each hidden layer having
1024 nodes, and a fully connected layer with outputs for
each of the N!/(N — M)! = 120 actions. The discount
factor is set to § = 0.95. The experience replay memory
has size K = 20000. The exploration parameter ¢ in step
6 of Algorithm 1 is attenuated from 1 to 0.01 at the rate
0f 0.999, i.e. € < max(0.999¢, 0.01) after every iteration.
In the neural network training (step 11 of Algorithm 1)
the ADAM optimizer [32] is used with an initial learn-
ing rate of e* and a learning rate decay of 0.001E The
size of each mini-batch is 32. The target Q-network is
updated once every ¢ = 100 time steps.

Algorithm 1 is run to train our deep @-network. In or-
der to get a better idea of the training quality over time,
we will reset the process after each T' = 500, which we

9 If oy represents the learning rate at iteration t, ag the

initial learning rate, and d the decay, then a; = %.
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Fig. 2. Empirical average cost over different training
episodes. The long term average performances of other sub-
optimal algorithms are also shown for comparison.

will refer to as an episode [14]. Running on a standard
Intel Core i7 4790 with 8 Gb RAM (without GPU),
each episode of training when using the above hyper-
parameters took around 30 seconds to complete. The
empirical average cost

T—

1 N
T Ztrpiyk
k=0 i=1

[u

over different episodes for one randomly generated set
of parameters is plotted in Fig. 2.

We stopped training after 200 episodes. We then use the
trained Q(., .; #) to generate a policy according to

a*(s) = argmax,Q(s, a;0).

Using the trained policy, simulating the process over
50000 time steps then gives an empirical average cost
of around 17.8. We compare this performance with the
following policies:

(1) A random policy that at each time k randomly al-
locates M out of the N sensors to the M channels.

(2) A round robin policy where M successive sensors
(modulo N) are randomly allocated to the M chan-
nels at every time instance

(3) A greedy policy on the holding times, where at each
time k we allocate the M sensors with the largest
Ti.k—1 (in the case of ties we take the sensors with
smallest indices) randomly to the M channels.

(4) A greedy policy on the error covariance, where at
each time k we allocate the M sensors with the
largest trP; 1 randomly to the M channels.

10 Round robin schedules are similar to periodic schedules
commonly studied in the control literature when there are
no packet drops [7,8].

Simulation over 50000 time steps gives an empirical av-
erage cost of around 62.7 for the random policy, 42.7
for the round robin policy, 31.3 for the greedy policy on
holding times, and 22.4 for the greedy policy on error
covariances. The performances of these policies are also
shown in Fig. 2 for comparison. We see that our deep re-
inforcement learning approach consistently outperforms
these policies after around 40-50 episodes of training.

In Table 1 we report further comparisons between the
random policy, round robin policy, greedy policies, and
the performance using deep reinforcement learning,
for 10 different randomly generated sets of parameters
AivchWiaV;l?pvamai = 17~"7N7m: ]-7"'7M (mak'
ing sure that condition (10) is satisfied), while keeping
N = 6 and M = 3. The same hyper-parameters for
training the deep Q-network as in the above was used.
We can see that the random policy and round robin
policy generally do not perform well (although the per-
formance of the round robin policy seems to be better
than the purely random policy), and in fact appears to
lead to instability in some of the scenarios. The greedy
policy on the error covariances performs better than the
greedy policy on the holding times, due to the use of
more knowledge of the system parameters. We also see
that in each scenario the approach using deep reinforce-
ment learning performs significantly better than all the
other considered policies. The last column of Table 1
gives the performance when the techniques from [15,16]
of experience replay and fixing the target Q-network are
not used. We see that without using these techniques,
while in some cases the performance is similar, in other
cases there is a significant performance loss.

Remark 3 FEzisting mnon-control aware scheduling
strategies include random, round robin, or greedy strate-
gies with respect to a given parameter, which are also
used to, e.g., reduce waiting/holding times. However, in
estimation and control applications such strategies do
not perform as well as strategies which take into account
the dynamics of the processes, as can be seen in Table 1.

6 Conclusion

This paper has studied a sensor scheduling problem for
allocating wireless channels to sensors, for the purposes
of remote state estimation of multiple dynamical sys-
tems. With the aim of providing a method which can
handle larger problems than previous work in the lit-
erature, we have proposed an approach based on mod-
ern deep reinforcement learning ideas. The resulting
scheduling algorithm can be run online, and is model-
free with respect to the wireless channel parameters.
Numerical results have demonstrated that our approach
consistently and significantly outperforms other sub-
optimal sensor scheduling policies. Future work will
include the study of model-based reinforcement learn-
ing techniques [33], to possibly improve the speed of



Table 1

Empirical average costs for 10 randomly generated sets of parameters

Param. Set Random Round Robin  Greedy holding time  Greedy error covariance Deep RL  No replay,
no target Q
1 29151 954 55.7 26.2 21.5 22.1
2 1612 415 80.8 49.4 36.4 41.2
3 2358 722 80.4 51.7 32.8 44.3
4 136 82.7 47.4 39.9 34.3 36.7
5 102 42.8 17.1 13.5 10.4 10.6
6 119 34.9 19.3 18.1 15.7 16.8
7 10097 2576 58.4 42.1 35.8 39.5
8 65630 12555 136 77.4 28.7 29.3
9 37.2 30.7 25.9 23.2 21.8 22.5
10 29321 9049 99.4 64.6 36.7 37.7

learning when additional knowledge about the channel
parameters is available.

A  Proof of Theorem 1

In the case pmax < 1, condition (10) is always satisfied.
Indeed, in this case each process is stable and so the
MDP (6) has bounded average cost even when there are
no sensor transmissions.

Thus we concentrate on the case pmax > 1. Let

* A
m* £ arg max )
7gn:1,...,]qu

First assume a single channel system where only channel
m™ is available. Consider a suboptimal policy where at
each time instant the sensor with the largest holding time
is chosen to transmit, provided that this holding time
is greater than some L > 2N [21]. Using an argument
similar to the proof of the first part of Theorem 3 in [21],

we can show that this policy has bounded average cost if

2 Pt <, (A1)

pmax

where Pr, can be expressed as

P = Z P(n successful transmissions in L time steps).

n<N

The rest of the argument in Theorem 3 of [21] assumes
i.i.d. packet dropping channels. To extend the argument
to Markovian packet drops as considered in the current
work, we make the following observation: Given that
there are n successful transmissions, then there will be
L —n failed transmissions in these L time steps. Of these

L—n failed transmissions, at most n of them will have fol-
lowed a successful transmission (or equivalently at least
L —2n of them will have followed a failed transmission).
From this observation, we have

P, = Z P(n successful transmissions in L time steps)
n<N

L
(max(gm=, 1 — pm=))"
= (1) omstan 1 -
X (max(pm*v]- - Qm*))n(l - qm*)
L

-0 ) g

IA

L—2n

IN

(A.2)

In the first inequality in (A.2), the term (max (g, 1 —
Pm~))"™ upper bounds the probability of having n suc-
cessful transmissions, while the term (max(p,~,1 —
Gm=))"(1 = @m=)*~2" upper bounds the probability of
having L — n failed transmissions, with at least L — 2n
also having the previous transmission fail. The second
inequality in (A.2) holds as (ﬁ) < (Nﬁl) foralln < N
if L > 2N. Taking limits in (A.2) gives

1/L

(1*Qm* )(L72n)/L

L
lim P/t < lim (V1) (N 1)
— 00 —_—

L—oo

:17qm*

Then by Assumption 1, the condition (A.1) can always
be satisfied for L sufficiently large, and so the suboptimal
policy has bounded average cost. Thus the MDP (6) with
only the single channel m* has bounded optimal average
cost. As utilizing additional channels does not increase
the optimal average cost, the result follows.
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