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Variable Method for Continuous-time Systems
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Abstract

In this paper, we analyse the consistency of the Simplified Refined Instrumental Variable method for Continuous-time systems
(SRIVC). It is well known that the intersample behaviour of the input signal influences the quality and accuracy of the results
when estimating and simulating continuous-time models. Here, we present a comprehensive analysis on the consistency of
the SRIVC estimator while taking into account the intersample behaviour of the input signal. The main result of the paper
shows that, under some mild conditions, the SRIVC estimator is generically consistent. We also describe some conditions
when consistency is not achieved, which is important from a practical standpoint. The theoretical results are supported by

simulation examples.
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1 Introduction

Direct continuous-time (CT) identification algorithms
based on sampled data have achieved remarkable suc-
cess in many practical applications [25,27,8,9]. In par-
ticular, the Refined Instrumental Variable method for
Continuous-time systems (RIVC) and its simplest em-
bodiment, the Simplified RIVC (SRIVC) [29] are con-
sidered to be the most reliable algorithms in CT system
identification [8,9] and have been used in practice for
almost 40 years. However, there has been limited theo-
retical support for these algorithms. Most of the discus-
sions with respect to the properties of these estimators,
such as consistency and statistical efficiency, are based
on empirical observations [29,25,8,24,23,28]. By provid-
ing the user with the theoretical properties of the esti-
mator, they will be better informed as to the conditions
necessary to achieve accurate estimates. It is therefore
important for any estimator used in practice to have
solid theoretical support.

The objective of this paper is to provide the theoreti-
cal support in terms of consistency for the SRIVC es-
timator. Based on the theoretical results, the user will
then be able to make conscious decisions when apply-
ing this algorithm in practice with respect to obtaining
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consistent estimates. There have been some attempts in
the existing literature [11,5,26] to examine the consis-
tency property of the SRIVC estimator. However, they
are all based on the well-developed theoretical results in
discrete-time (DT) system identification [18,17,21,20],
which do not provide a mechanism to include the in-
tersample behaviour of the underlying CT system. The
current paper analyses the consistency property of the
SRIVC estimator while taking into account the inter-
sample behaviour of the signals. The theoretical results
we obtain here explicitly inform the user when consis-
tency can be achieved by the SRIVC estimator. The
conditions under which the estimator is not consistent
are clearly stated as well, and suggestions are also given
to alleviate the bias on the estimates in practical situa-
tions. We would like to reiterate that if it is important,
in practice, to have a consistent estimator, then the the-
oretical results presented in this paper clearly describe
how this can be achieved.

As mentioned above, a significant challenge presented
when estimating a CT system is that only sampled input-
output data are available as measurements. Therefore,
the measured input needs to be interpolated in some
manner in order to simulate a CT model output. It has
been discussed in [14,1] that violating the input inter-
sample behaviour assumption of the underlying data
generating process may lead to severe estimation errors.
A simple motivation example has been provided in [14]
to illustrate the modelling error induced in the estima-
tion process when a band-limited input is assumed while
the true system input is a zero-order hold. In some prac-
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tical situations, the input intersample behaviour will be
unknown, e.g. environmental modelling, and some inter-
polation methods have been discussed in [16] to better
approximate the input in these cases. We note that if the
input is applied and controlled by the user, then it gen-
erally can be interpolated exactly. There are, however,
some exceptions, e.g. identification of cascaded systems.
The input signal to the second system in a cascaded sys-
tem will be a continuous function of time that cannot be
interpolated exactly between samples. Hence, an error
will be induced on the modelled output, and this in turn
will affect the estimated parameters. Thus, it is impor-
tant to take into account the intersample behaviour of
the signals when dealing with CT estimators, which has
been somewhat overlooked in the existing literature. We
also note that there are some CT identification meth-
ods that do not require the sampled signals to be inter-
polated. For example, higher order Padé approximation
is used in [6] to approximate a DT filter that produces
the same output as the sampled CT filter output, which
avoids the need to reconstruct the CT input signal, and
CT models are identified in [13] based on second-order
statistics.

The consistency analysis in the current paper has some
similarities to the work in [11] as both analyses are
based on the consistency theorem found in [18, Theo-
rem 4.5] developed for the DT bootstrap instrumental
variable (IV) method. The work in [11] analyses the con-
vergence of the RIVC estimator with an autoregressive
noise model. There are, however, a few shortcomings as-
sociated with the analysis in [11]. An extra filter is in-
troduced for the purpose of discretising the derivatives
of the input signal, which is not part of the RIVC imple-
mentation. We note that this extra filter introduces un-
necessary complexity into the analysis, and its role can
be replaced by filters that are already part of the algo-
rithm. In addition, due to the formulation of the proof
in [11], non-causal filters may arise since the system and
model are allowed to be parameterised as biproper trans-
fer functions. Furthermore, the first step to establish the
convergence, and therefore the consistency of the RIVC
algorithm is to show that a solution of the estimator
exists [11]. This relies on 1) the Sylvester matrices con-
structed from the system and model polynomials being
non-singular, and 2) the expectation of the two filtered
input vectors, denoted by ® in [11], being non-singular.
Firstly, in [11], the non-singularity of the Sylvester ma-
trix does not comply with their given assumptions. The
analysis assumes that the system and model are param-
eterised with monic denominator polynomials. It can be
shown that this implicit assumption, together with As-
sumption A5 in [11] on the model order, results in the
Sylvester matrix constructed from the system polyno-
mials being singular when the degree of the model de-
nominator is greater than that of the system. The proof
of Theorem 1 in [11] with respect to assumption A5
therefore cannot proceed once the Sylvester matrix is
singular. Secondly, it is stated in [11] that showing the

non-singularity of ® relies on the matrix E{UU "} be-
ing non-singular, where U is the vector containing the
input samples with sample size N (see (19) in [11]). We
note that F{UU "} has dimension N x N, and is only
non-singular up to the order of persistent excitation of
the input. Thus, in the asymptotic case, it is not suf-
ficient to conclude that ® is always non-singular under
the persistent excitation assumption given in [11].

Other work related to consistency such as [5] assumes
that the model structure is exactly known and does not
take into account the intersample behaviour of the input
as part of the analysis. The work in [26] describes a uni-
fied Refined Instrumental Variable (RIV) approach for
estimating DT or CT transfer functions characterised
by a unified operator that can be interpreted in terms
of a backward shift, derivative or delta operator. This
unified RIV [26] is suggested to be optimal in maxi-
mum likelihood, prediction error minimisation and in-
strumental variable terms under the Box-Jenkins model
structure for both discrete and continuous-time. How-
ever, only limited theoretical analysis is provided with
respect to the consistency of the estimates by using an
incremental implementation of the algorithm with no
explicit mention of the intersample behaviour of the sig-
nal. By neglecting the intersample behaviour as part of
the analysis, the results in [11,26,5] have overlooked the
possibility that the converging point of the estimator no
longer corresponds to the true system parameters when
the system input cannot be interpolated exactly.

In this paper, we analyse the consistency property by in-
corporating the intersample behaviour of the input, the
output and the instrument signals. The main result of
the paper shows that the SRIVC estimator is generically
consistent under some mild conditions in the presence of
additive coloured noise on the measured output. In the
proof of the consistency theorem, the use of an additional
filter, such as in [11], is avoided by discretising the deriva-
tives of the input signal with filters that are already part
of the SRIVC implementation. The denominator of the
model is parameterised as a non-monic polynomial. This
ensures that the Sylvester matrix is always non-singular
for model orders satisfying the condition for the exis-
tence of a unique solution, i.e. when the model orders
are equal to the system orders, or when one of the model
polynomial degrees is greater than that of the system.
Two common interpolation methods, namely the first-
order hold (FOH) and the zero-order hold (ZOH), are
considered for the true system input to conduct the con-
sistency analysis in the main theorem and the corollaries.
In addition, in the first part of the consistency theorem
where the existence of a solution is shown, we employ
the notion of generic consistency [18, Theorem 4.1], i.e.
the set of normal matrices of the SRIVC method yield
inconsistent estimates has Lebesgue measure zero. This
implies that there are rare cases where a certain com-
bination of the input and system parameters can make
the normal matrix singular even though all the assump-



tions are satisfied. We show the generic non-singularity
of the normal matrix through the use of analytic func-
tions by following the method presented in [7, Lemma 1].
Furthermore, we have shown that the intersample be-
haviour of the input in the instrument vector does not
influence the consistency of the SRIVC estimator; how-
ever, in order for the SRIVC estimator to be generically
consistent, the intersample behaviour of the input in the
regressor vector must match that of the true system in-
put. We also note that the intersample behaviour of the
output in the regressor vector does not impact on the
consistency of the SRIVC estimator at the converging
point of the iterative algorithm. The practical implica-
tions of this paper are to inform the user of the condi-
tions necessary to achieve consistency of the SRIVC es-
timator and also of the conditions that may lead to an
inconsistent estimate.

This paper is organised as follows. Section 2 provides
system and model definitions as well as a description of
the SRIVC estimator and the definition of generic con-
sistency. This is followed by Section 3, where the the-
oretical results of the paper, including the consistency
theorem and its related corollaries and remarks, are pre-
sented. Section 4 provides simulation results that sup-
port the theoretical analysis, and the paper is concluded
in Section 5.

2 Preliminaries

In this section, we define the structure of the continuous-
time single-input single-output system and model and
provide a brief description of the SRIVC estimator and
the definition of generic consistency.

The true system is described as a proper transfer func-
tion given by
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where the circles (%) signify that the signals are associ-
ated with the true system. The numerator and denomi-
nator polynomials are coprime with degrees given by m*
and n* respectively, i.e.

B*(p) = bip™ +bip™ T4 b
A*(p) = afp"* + aép”t1 +--tar.p+1

2)

with p being the differential operator, i.e. p'z(t) = %.

The additive noise on the output is coloured and ex-
pressed as
v(t) = H(p)e(t), 3)

where H(p) is an inversely stable filter and e(t) a zero-
mean Gaussian noise, i.e. e ~ N(0,02). The output ob-

servation equation of the CT system (1) at sample in-
stance tj, is given by

Y(te) = £(tr) + v(tr),

where Z(tj) is the unobserved, noise-free output. It is
well known that CT white noise does not have a finite
variance [2], which makes computing its time-derivatives
particularly difficult. Due to this difficulty and the DT
nature of the sampled signals, we only consider DT noise
in this paper. The true system and the nature of sam-
pling are shown in Fig. 1.
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Fig. 1. Continuous-time system including the sampling and
signal notations.

The model is also parameterised as a proper transfer
function

where u(tx) = u(t) at the sampling instants, and the nu-
merator polynomial with degree m and the denominator
polynomial with degree n are given by

B(p) = bop™ +bip™ 4+ + by,
Alp) = a1p™ + aop™ "+ -+ +anp + 1.

(5)
The unknown parameter vector is then defined as

T
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Note that in the sequel when a mixed notation of CT
operators and DT data is encountered in the analysis
such as in (4), it implies that the input w(tx) in (4) is
interpolated in some manner, e.g. using either a zero-
order or a first-order hold, and the resultant output is
sampled at tj.
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The SRIVC estimator minimises the sum of squares of
the generalised equation error (GEE) [22] (), which



is given by

ety) = y(tr) — z(tr)

— B(p)uy(tr), (6)

() = i), and g (1) = su(t). (7

Due to the iterative nature of the SRIVC method, the
(j 4 1)-th iteration of the SRIVC estimate [29,8] based
on parameters estimated in the j-th iteration is given by

N -1 LN
0j+1 = [NZ_: (te)e ) tk)] lNkz_: (tr)y s (tr ]
(8)

where
1) = o [ #i00) . i)
prulty) ... u(tk)}T, 9)
and
Pr(t) = [ ()= 2P0 w0 (0]
- Ajl(p) [_iﬁgigp"“(tk) L = pulte)

-
prulty) (i) | (10)
The algorithm is stopped either when a maximum num-
ber of iterations is reached or when the relative error be-
tween the previous and current estimate is smaller than
a prefixed constant, i.e.

011 — 05l

< €. 11
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Next, we provide a definition of generic non-singularity [18]
and relate it to the definition of generic consistency.

Definition 1 Consider an n X n matriz R(p), which
depends on a finite-dimensional vector p. Then, R is
generically non-singular with respect to p if the set {p :
rankR(p) < n} has Lebesgue measure zero.

Definition 2 The SRIVC estimator (8) is generically
consistent if the term in the matriz inverse in (8) is

generically non-singular, and for all j > 1, the set of pa-
rameter values for which the estimates do not converge
to the true parameters as the sample size tends to infinity
has Lebesgue measure zero.

‘We note that all the filtering operations are performed in
discrete-time within the implementation of the SRIVC
estimator, hence the need to explicitly consider the in-
tersample behaviour of the signals in any analysis. A
block diagram depicting the SRIVC algorithm is shown
in Fig. 2. In the following section, we investigate the ef-
fect of the intersample behaviour of the sampled data
on the consistency of the SRIVC estimator. It will be
shown that the input signal in the regressor vector, i.e.
the model input, is required to have the same intersam-
ple behaviour as the input applied to the true system for
the SRIVC estimator to be generically consistent. This
intersample behaviour is circled in Fig. 2.
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Fig. 2. Implementation of the SRIVC algorithm. Note that
we use the notation 1™ (te) = p"ulte).

3 Theoretical Results

In this section, we develop a theorem that establishes
the consistency of the SRIVC estimator, as well as some
corollaries and remarks that examine the consistency
with respect to different intersample conditions. Some
additional lemmas required by the proof of the consis-
tency theorem are presented in the Appendix.

For simplicity, the analysis will be presented for the case
of a single-input single-output (SISO), linear, time in-
variant (LTT), asymptotically stable system with regu-
larly sampled data. We note that the analysis can be eas-
ily extended to multi-input single-output (MISO) sys-
tems, though the extension may be difficult for multi-
input multi-output (MIMO) systems.

We next state the assumptions required in Theorem 1
for the SRIVC estimator to be generically consistent.



Assumption 1 The true system i:g; is proper (n* >

m* ) and asymptotically stable with A*(p) and B*(p) be-
ng coprime.

Assumption 2 The input u(ty) and disturbance v(ts)
are stationary and mutually independent for all k and s.

Assumption 3 The input u(ty) is persistently exciting
of order no less than 2n + 1.

Assumption 4 All the zeros of A;(p) have strictly neg-
ative real parts, n > m, with A;(p) and B;(p) being co-
prime.

Assumption 5 The degrees of the polynomials in the
model satisfy min(n —n*,m —m*) = 0.

Assumption 6 The intersample behaviour of the input
u(t) applied to the true system is known ezxactly.

Assumption 7 The sampling frequency is more than
twice of the largest imaginary part of the zeros of

Aj(p)A*(p).

When estimating the parameters of a transfer function,
unstable zeros in the denominator polynomial may arise
within the iterations of the algorithm. A simple way to
deal with this is to reflect the unstable zeros by the imag-
inary axis. Hence, Assumption 4 is commonly satisfied
in practice. Note that Assumption 5 ensures a unique
solution for the model parameters [18]. Also note that
in the proof of Theorem 1, we assume the intersample
behaviour in Assumption 6 to be a FOH to conduct the
analysis. We could have equally chosen to use a ZOH to
model the intersample behaviour of the input as shown
in Corollary 2. Furthermore, the prefilters for the output
are assumed to be discretised with the same hold as the
intersample behaviour of the input, i.e. a FOH in Theo-
rem 1. Assumption 7 avoids the problem of aliasing and
ensures a meaningful model to be obtained according
to the Shannon-Nyquist theorem. Next, we present the
main theorem of the paper on the generic consistency of
the SRIVC estimator.

Theorem 1 (Generic consistency) Consider  the
SRIVC estimator described in (8), and suppose Assump-
tions 1-7 hold. Then, for a first-order hold (FOH) input,
the following statements are true:

1) The matriz E{p(ty)p} (te)} is generically non-
Prite) Py
singular.
(2) The true parameter 0* is the unique converging
point.
(8) Asthe sample size N approaches infinity, 8,11 in (8)
converges to 0* for j > 1.

Proof of Theorem 1, Statement 1. By substituting

B*(p)

y(t) = A (p)

u(ty) + v(tg)

into (9), we can express the regressor vector as

1 1
where

PTEQ? (12)

Qreg = {—p”B*(p)u(tk) .

P A (p)ulty) -

—pB* (p)u(tr)

T
A (pute) ]

and

.
Preg = [p"o(ts) ... po(te) 0... 0] . (13)

The highest order derivative in Q.4 that satisfies As-
sumption 5 is max(n + m*,n* + m) = n + m. The
vector (Qrey can then be expressed as a product of an
(n+m+1) x (n+m+ 1) Sylvester matrix and a vector
containing the derivatives of u(tx), i.e.

Qreg = S(_B* (p)7 A (p))Udu

where
'_bs _bT _b;"n* 0 0
o 0 by —bf --- b 0
aq Ao Ay 1 0
i 0 a’lk a; a:* 1
(14)

and
T

Udgu = [u(”“”)(tk) u () () |- (15)

The Sylvester matrix given in (14) is non-singular when
B*(p) and A*(p) are coprime [18]. We require (14) to re-
main non-singular under the three conditions imposed
by Assumption 5, i.e. 1) the order of the true system is
known exactly, 2) the numerator of the model is overfit-
ted, and 3) the denominator of the model is overfitted.

We note that there are n rows of the numerator co-
efficients and m + 1 rows of the denominator coeffi-
cients. Now, condition 1 corresponds to (14). Under con-
dition 2, when the numerator polynomial is overfitted,
i.e. m —m* = [ for all positive integers [, the first [
columns of the top half of (14) are filled with zeros. Sim-
ilarly, under condition 3, n — n* = [ for all positive in-
tegers [, the first I columns of the bottom half of (14)
are filled with zeros. Nevertheless, in all three cases, (14)
does not lose rank since it is guaranteed that there is
at least one non-zero entry in each column due to the
non-monic model denominator assumption. Therefore,
S(—B*(p), A*(p)) is non-singular under Assumption 5.




Now, the regressor vector in (12) can be written as

S(=B*(p), A*(p))

Aj(p)A*(p) U =

pr(te) =

Similarly, the instrument vector in (8) can be written as

st = SEBPAE g, )

where S(—B;(p),Aj(p)) is an (n + m + 1) x (n +
m + 1) Sylvester matrix defined in the same way
as (14) with af,...,a%.,0},...,b},« replaced by
A1y...,0n,b0,...,b,. From now on, we omit the ar-
gument p in the Sylvester matrices for simplicity of

notation.

It has been shown [15] that, as N — oo, the sums in (8)
can be replaced by their expectations, provided ¢¢(tx),
@JI (tx) and yy(tx) are jointly stationary stochastic pro-
cesses. Now, substituting (16) and (17) into the matrix
inverse term in (8), we obtain

E{@s(tr)ef (te)}

= S(_Bj7Aj)(I)ST(_B*aA*) — S(=Bj, 4;)V¥,
18)
where
d=F U ! Ug, (19)
A(p) A (A (p) M
and

1
\I/:E{AQ( )UduA (p)P;g}. (20)

According to Lemma A3.1 in [18], the Sylvester matrices
S(—B,,A;) and S(—B*, A*) are non-singular provided
that B;(p) and A;(p) are coprime and B*(p) and A*(p)
are coprime. For (18) to be non-singular, it is sufficient
to show that ® is non-singular, and ¥ = 0.

Consider ¥ in (20). An arbitrary entry in the first n
columns of ¥ can be written in the form of

n+m-+1—1 n+1-—1
U, = E{p ) u(tk)ij(p) v(tk)}

_ L7 B Dt
o Az(eﬂ‘”) Aj(e=w)

bup(W)dw,  (21)

where BZ/AJQ and D/ A; are the FOH equivalents of their
CT transfer functions respectively, i = 1,...,n+m+1,
I =1,...,n, and ¢,,(w) is the cross-spectrum of u(ty)

and v(t). Since the input and noise are uncorrelated,
duv(w) = 0. Thus, ¥ = 0.

Now, consider ® in (19). Similarly, an arbitrary entry of
this matrix can be written as

n+m+1—1i n+m+1—1
oy :E{p 0 ) u(tk)j(p)A*(p)u(tk)}

/ Bl(e_jw)
A2 eiv)

(e~ J‘*’)A*(e jw)
where i,l =1,...,n+m+ 1, and F,(w) is the spectral
distribution of ().

dF,(w),

(22)

We have shown in Lemma 7 (see Appendix) that &
is positive definite when evaluated at the true system
parameters. By Lemma 9 (see Appendix), we have also
shown that for a fixed input signal, every entry of ® is
an analytic function of the model parameters. Hence, by
Lemma A2.3 of [18], we can conclude that ® is generically
non-singular. Since S(—Bj, A;) and S(—B*, A*) are
non-singular, and ¥ = 0, E{gof (tk)cpf (tr)}is generlcally
non-singular.

Proof of Theorem 1, Statement 2. Here we will show
that, upon convergence, the limiting point of the SRIVC
estimator corresponds to the true parameters. Suppose
6 is a limiting point of the iteration in (8), and the cor-
responding polynomials of the model are given by

The polynomials B(p) and A(p) are coprime since 6 sat-
isfies the conditions in Statement 1, and one of the con-
ditions is that the Sylvester matrix is non-singular. Now,
at the converging point 0, as N — oo, the SRIVC ex-
pression in (8) implies that

)} E{@f tr,0)e(te,0)} =0,
(23)

E{¢s(tr, 0)p; (tr, 0

where e(ty,0) is the GEE evaluated at the converging
point. Since the matrix inverse in (23) is non-singular
by Statement 1, the second expectation in (23) must be
Zero, i.e.

E{@(tkﬁ)e(tk, é)} = 0. (24)
The GEE in (6) can be rearranged as

1

9 = T34 )

B(p)A* (p)]ul(tr)
+o(ty). (25)

[A(p)B*(p) —



Let A(p)B*(p) — B(p)A*(p) = hop” + hup" ™" + -+ + Iy,
where r = max(n + m*,n* + m) = n + m. Then, the
GEE can be expressed as

_ 1
“(t6:0) = For ) [u(n-i-m)(tk) U(tk:)} H—s—v((t;)),
where T

H=[hy oo o] - (27)

Now, substituting (17) for ¢(tx,0) and (26) for e(ty, )
into (24), we obtain

B, A)BH + S(—B, A)¥,

_ (28)
where ® is (19) evaluated at the converging point, and

E{ A;( )Uduv(tk)}

By following the same procedure as the proof of State-
ment 1, we can show that ® is generically non-singular
and ¥ = 0. Thus, for (28) to be zero, H = 0, which
implies

B{(tx, 0)e(tr, 0) | = (-

?(p) _ B*(p)
A(p)  A*(p)’
i.e. 6% is the unique limiting point. O

Proof of Theorem 1, Statement 3. Let § be the lim-
iting point, then, as N — oo,

011 —0 = f1(0;)f2(9)),

where

f1(05) = E{ @ (te, 0;)0] (tr, 0, }7

and

F2(05) = E{ @5 (tr, 07) (ys (th, 05) — of (tk,0,)0)} -
To examine how the SRIVC estimate behaves around
the limiting point, we can linearise 6,11 around 6 using
a first order Taylor series, i.e.

b =0~ 000+ (G po)
7o) 22 0,0

At the limiting point, f2(f) = 0 as given by (24). Hence,

8 _
b~ 0~ 10 29 g, ()
i lo;=o
where
df2(05) 0%y (tk, 05) N T A\g
=F (y (tkae) - (tlm 9)9)
- 96; |y5 !
) Ay (te, doj (t,0;)|
+E S &y(tn,0) yfégk : ) f@g, 0
J =0 7 0;=0
=V + WU, (30)

After some vector differentiations and substituting the
expression

yr(te,0) — o (te,0)0 = ys(te, 0%) — @ (tr, 0%)0"

= ’U(tk)
into (30), we can express ¥, as

Uy = E{Mu(tg)v(te)},

where
_ pn B B B 4T
L [ 2p"B..-—2pB pmA ... A
A3(p) [ ]
p —
— 2p"B---—2pB pmA A
M A3(p) [ N ]
- L [p" = p0 - 0]
A2(p)
= p0 - ()
— —pte--=0p e
L A2(p) |

(31)
Similar to the procedure undertaken in Statement 1,
each element of ¥; can be expressed as

o |G e

where G represents the FOH equivalent of the transfer
functions in (31). Since the input and noise are uncorre-

lated, ®,, = 0. Hence, ¥; = 0.

Now, after some further vector differentiations, W,
n (30) can be written as

_ 1 1
\112 = —?(—B,A)E {WUdu/umP;g}

=0
:()7



where W is (20) evaluated at the converging point. Hence,
(30) is equal to zero. Therefore, according to (29), 641
asymptotically converges to 8* for 5 > 1, and this com-
pletes the final part of the proof. a

Corollary 2 When the FOH used in Theorem 1 is re-
placed with a ZOH, and the intersample behaviour of
the true system input u(t) satisfies Assumption 6, state-
ments 1, 2 and 3 in Theorem 1 still hold.

Proof of Corollary 2. The proof follows the same pro-
cedure as that shown in Theorem 1. Note that, in this
case, when the system and model transfer functions are
strictly proper, the numerator degree of the DT transfer
function is at most n — 1. Thus, the persistent excitation
order in Assumption 3 can be relaxed to 2n according
the reasoning provided in Remark 8 (see Appendix). O

Theorem 1 and Corollary 2 have established consistency
when the intersample behaviours of the input signals in
both the regressor and instrument vectors as well as the
output signal are assumed to be the same as that of the
true system input. Next, Corollary 3 examines the ef-
fect on the consistency of the SRIVC estimates when an
incorrect intersample behaviour is assumed for 1) the
input in the instrument vector, and 2) the input in the
regressor vector (the model input). Again, the true sys-
tem input 4(t) is assumed to have an FOH for discreti-
sation purposes, and an incorrect intersample behaviour
means that the signal has an intersample behaviour that
is different from the true system input.

Corollary 3 The SRIVC estimator;

(1) remains generically consistent if an incorrect as-
sumption on the intersample behaviour is used for
generating the filtered signals in the instrument vec-
tor ¢ (tx) (this includes the generation of the noise-
free model output x(ty), the filtered noise-free model
output x¢(tx), and the filtered input signal wys(ty)
in (10)); and

(2) is generically not consistent if an incorrect assump-
tion on the intersample behaviour is used for filter-
ing the input signal in the regressor vector ¢¢(ty).

Proof of Corollary 3, Statement 1. The input used
to form the instrument vector is assumed to have a
ZOH. Statement 1 of Theorem 1 still holds since the only
change is that the FOH discretisations of the first trans-
fer functions in (21) and (22) are replaced by their ZOH
equivalents, and this does not affect the way analytic-
ity of U is shown. Statement 2 in Theorem 1 remains
unchanged since the incorrect intersample behaviour as-
sumption of the input in the instrument does not affect
the formulation of the equation error in (25). For the

same reason, Statement 3 of Theorem 1 also remains un-
changed. Therefore, when an incorrect intersample be-
haviour for the input signal in the instrument vector
$¢(tr) is assumed, the SRIVC estimator remains generi-
cally consistent. ]

Proof of Corollary 3, Statement 2. Let the input in
the regressor vector, indicated by (ty), have a differ-
ent intersample behaviour from that of the true system
input. Statement 1 of Theorem 1 remains unchanged,
however, we will show that Statement 2 of Theorem 1
has been affected. Consider the GEE at the limiting so-
lution 6

“(0.0) = i) ~ G )
B, oty B0
N A*(p) (tk) + (tk) A(})) (tk)
B By)
= A* (p) U(tk) + U(tk) - mu(tk) —+ 5u(tk)>
1 o A
= 1A A)B" ®) ~ Bo)A )t

+ ’U(tk) — Eu<tk>. (32)

We have introduced an input-dependent term e, (¢) into
the modelled output in (32) to account for the interpo-
lation error. At the limiting point, (24) holds. Substitut-

ing (17) for $y(tx,0) and (32) for e(ty, ) into (24). By
using the same definition of H from (27), we obtain

_ S(—B.A)BH — S(—B, A)E {A,j(p)vdugum}

=S(—B,A)dH — S(-B, AV,
=0. (33)

Since the error €,(ty) is input dependent, U, does not
go to zero in general. The matrix ® is generically non-
singular by Statement 1 of Theorem 1. Therefore, we can
obtain the coefficients of H(p) by solving

H = [S(—B,A)3] ' $(—B, A)T,. (34)

Now,

(p) _B*(p) _H)
A(p)A*(p)’

(35)

where the parameters of the polynomial H(p) are given
by (34). The expression in (35) shows that the true pa-
rameters are no longer the limiting solution of the SRIVC
estimator, i.e. 6 #£ 0*.



It is implied by (24) that the input is uncorrelated with
the GEE evaluated at the converging point. There-
fore, 6; 41 asymptotically converges to the new limiting
point € given in (35) for j > 1. Together with § # 6*,
we can conclude that §;; does not converge to the true
parameters 6* if an incorrect intersample behaviour
is assumed for the input signal in the regressor vec-
tor @y (tx). Hence, the SRIVC estimator is generically
not consistent when the true system input cannot be
interpolated exactly. O

For discretisation purposes, the true system input is as-
sumed to have an FOH for the analysis above. We note
that Corollary 3 holds for any input that cannot be in-
terpolated exactly, as stated in the following remark.

Remark 4 When the input to the real system u(t) is a
continuous function of time that cannot be interpolated
ezactly, the SRIVC estimator is not consistent. This fol-
lows from Corollary 3.

We note that in situations where the input cannot be in-
terpolated exactly, e, (tx) will be non-zero, and the bias

on the estimates is captured by % in (35). Since

the polynomial H (p) is proportional to the interpolation
error €,(ty), which will decrease if the signals are sam-
pled faster, this implies that the bias on the estimates
will generally decrease with the sampling period.

Next, we examine the effect of the intersample behaviour
of the sampled output on the consistency of the SRIVC
estimator in the following remark.

Remark 5 Consider the GEE e(ty). At each SRIVC it-
eration j, £(ty) can be expressed as

E(tk, OJ)
1 1

= 4;(p) <Aj1(p)fl(fk)) — B;(p) <Aj1(p)u(tk)> :
(36)

Upon convergence, the expression in (36) becomes

c(00) = A9) (5i00) ) = Bo) (i=utwn)).

Hence, the intersample behaviour of the measured out-
put y(ti) does not affect the GEE as the discretisation
of 1/A(p) cancels with that of A(p) at the converging
point, and thus it does not influence the consistency of
the SRIVC estimator.

Note it has been empirically observed that even though
the intersample behaviour of ¢(t;) does not affect the
consistency of the SRIVC estimator, a better interpo-
lation of this signal, e.g. using a FOH as opposed to a
ZOH, can speed up the rate of convergence of the SRIVC
iteration.

4 Simulation Results

Monte Carlo simulations are performed for a second or-
der system to support the theoretical analyses developed
in the previous section. The second order system is cho-
sen to be )

G*(p) = ,
P) = Somr T 02p 11
and the true parameters are given by

0" = [0.04 0.2 I}T.

The measured signals are sampled at 7' = 0.1 s, and the
input is chosen to be a random binary signal uniformly
exciting the system from 0 Hz up to the Nyquist fre-
quency. The input applied to the true system (t) has
a zero-order hold intersample behaviour. The additive
noise on the output is an i.i.d. Gaussian sequence with
a variance of 0.1. The consistency of the SRIVC estima-
tor is investigated by examining the mean and variance
of the estimates in a Monte Carlo simulation study as
the sample size N increases. Here, N is adjusted from
50 to 200000 in a logarithmic scale, where a total of 100
different sample sizes are used. Three hundred Monte
Carlo simulations are performed for each value of N with
the mean and variance of the three parameter estimates
calculated. The maximum number of iterations of the
SRIVC algorithm is set to 200, and the relative error
bound € in (11) is set to 10~7. The mean and variance
of the estimated parameters with respect to an increas-
ing sample size are examined under four different cases
by changing the intersample behaviour of the measured
signals when discretising different filters in the SRIVC
algorithm. These cases include

e matching the intersample behaviour of all the signals
in the algorithm with that of «(t), which is a ZOH,

e setting only the intersample behaviour of u(ty) in the
regressor vector to FOH,

e setting only the intersample behaviour of u(ty) in the
instrument vector to FOH, and

e setting only the intersample behaviour of y(tx) to
FOH.

These cases correspond to the first four instances in
Fig. 3 and Fig. 4.

In another simulation, a multisine input, given by
u(t) = sin(0.5¢) + sin(2t) + sin(5t) + sin(7t),

is used to excite the true system G*(p). The noiseless
output is computed analytically by assuming that it cor-
responds to the system output at stationary state, i.e.

4
w(t) = Y |G (jws)| sin(wit + £G* (juws)),

i=1



where {wy, ws, w3, ws} = {0.5,2,5,7}. The CT input and
output are also sampled at 7" = 0.1 s, and the additive
noise on the measured output is an i.i.d. Gaussian se-
quence with a variance of 0.1. The same Monte Carlo
studies as described previously for the random binary
input are performed for the multisine input. The model
input is interpolated using a FOH to approximate u(t) as
close as possible. The mean and variance of the estimates
for each sample size are calculated to examine the con-
sistency of the SRIVC estimator in situations when the
input cannot be interpolated exactly. This corresponds
to the fifth instance in Fig. 3 and Fig. 4.
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Fig. 3. Mean of the estimated parameters.

The mean and variance of the estimated parameters
for the five instances described previously are shown in
Fig. 3 and Fig. 4 respectively. The three subplots in
both figures correspond to the parameters in the order
of 0.04,0.2,1. The true parameters are plotted with a
dotted line in the three subplots of Fig. 3. We can see
in Fig. 4 that the variance of the SRIVC estimates de-
creases with an increasing sample size in all cases. More
oscillations in the mean values are observed for small
sample sizes, but the estimates eventually converge to
the true parameters after approximately 10000 samples
in situations where we have matched the intersample be-
haviour of u(t;) in the regressor vector with that of the
input applied to the true system, i.e. instances 1, 3 and
4. Together with the decreasing variance, this provides
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empirical evidence to the consistency result in Theo-
rem 1. In addition, changing the intersample behaviour
of the input in the instrument vector or the output does
not seem to affect the consistency of the SRIVC esti-
mates, which aligns with statement 1 of Corollary 3 and
Remark 5 respectively. We can also see that when the
model input does not match the true system input, the
estimates do not converge to the true parameters with
an increasing sample size. The SRIVC estimator is not
consistent in this case, which has been shown theoreti-
cally in statement 2 of Corollary 3. Furthermore, when a
CT signal, which cannot be interpolated exactly, is used
as the true system input, the SRIVC estimator can also
be seen to be inconsistent. We do note that the bias on
the SRIVC estimates can be reduced if more sophisti-
cated interpolation methods other than a ZOH or FOH
are used to reconstruct the input signal, and the bias will
decrease with a decreasing sampling period as shown in
statement 2 of Corollary 3.

5 Conclusion

In this paper, we have analysed the consistency of the
SRIVC estimator by taking into account the intersam-
ple behaviour of the input signal, and conducted simu-
lation experiments to provide empirical observations to
the theoretical results. The main result of the paper is
that the SRIVC estimator is generically consistent when
the intersample behaviour of the input signal applied to
the continuous-time system is known exactly and used
adequately in the implementation of the algorithm. It



has been shown that when the intersample behaviour of
the input signal in the regressor, i.e. the model input,
does not match that of the true system input, the unique
converging point of the estimator no longer corresponds
to the true parameters, and thus the SRIVC estimator is
generically not consistent. On the other hand, the inter-
sample behaviours of the input signal in the instrument
vector or the output signal in the regressor vector do not
affect the consistency of the estimator.

6 Appendix

Lemma 6 The mapping between the CT parameters
(a1,...,ay) and the DT parameters (aq,...,q,) is an-
alytic in {(a1,...,a,) € C" : a3 # 0}.

Proof of Lemma 6. Since a; # 0, we can write

a _ Q.
Alp)=p"+ —=p" P4+ pt —
aq ay 1
=p" a4 a_pta

where we note that the mapping (a1,as,...,a,) —
(a},dh,...,al) is analytic for a; # 0. Let the state ma-
trix of the CT system 1/A’(p) be A.. The state matrix
of the DT equivalent is then Ay = exp(A.T'), where T
is the sampling period. The exponential is also analytic
in the variables (a}, ab, ..., al). Finally, we can express
A(z) = det(zI — Ay). Tt is known that the coefficients
of this characteristic polynomial are polynomial expres-
sions in the entries of the matrix Ay (see e.g. [4]). This
implies that {«; }; are analytic functions of the entries
of A;. The lemma then follows from the composition of

analytic functions. m]

Lemma 7 Consider a FOH sampling, and Assump-
tions 1-7 hold. Then, the matriz ® in (19) evaluated at
the true system parameters, i.e.

1 1
o = E{ Udu UTu} >0,
A2 (p) M A2 (p) 1

1s positive definite.

(37)

Proof of Lemma 7. Let z € R*™+1, We can write

B.(p)

2 Otz — E { (A*Q(p)u(tk))Q} >0  (38)

where B, (p) is an arbitrary polynomial of degree n + m.
In the frequency domain, (38) can be written as

(e |

1 [T | B,
A ()

7z d'z = —
2r J_,

dFy(w)  (39)
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where B, and A** are the FOH equivalent polynomials
of B,(p)/A**(p), and F,(w) is the spectral distribution
of {u(tz)}. Note that B, is in general a 2n degree poly-
nomial.

We can also write (38) as

T

T & * 1

_ . Jwy |2 3
z' Oz 5 _Tr\BZ(e )|FdFs(w) (40)

where the support of the spectral distribution function
¢g consists of at least 2n + 1 points since filtering u(ty)
by 1/ A¥ gives a signal which is also persistently exciting
of order at least 2n + 1. By the definition of persistence
of excitation, z' ®*z = 0 implies B,(e’*) = 0 [12, The-
orem 1] and hence z is a zero vector. This means that
B,(p)/A*" (p) gives a sampled model equal to zero at all
sampling instants.

Bz* (p) u(tk) —

Now, assume that there exists az, such that 3%5 )

0. Thus, by linearity, for all z we have

By (p) B, (p) + Bz, (p)
A*2(p) A*2(p)

This means that, if B, (p) were non-zero, the CT model
is not uniquely determined by the DT model. However,
this is not true under the sampling condition of the state-
ment (see [10]). Therefore, it is not possible for a polyno-
mial B, (p) different from zero to give a sampled model
equal to zero. This means that (38) is strictly positive for
any non-zero vector z. Hence, ®* is positive definite. O

u(ty) = u(t)- (41)

Remark 8 Note that even though there are n +m + 1
parameters in the CT transfer function to be identified,
the input is required to have a persistent excitation of
order 2n + 1 instead of n +m + 1 for a first order hold
discretisation of the input. The reason behind this is that
the numerator polynomial B,(p) gets mapped to a subset
of a larger space, namely a subset of the space of 2n
polynomials. Hence, singularity of ®* can be obtained by
an unfortunate choice of the frequency lines of {u(ty)}.
If the input is persistently exciting of an order less than
2n + 1, the frequency lines of the input could match the
zeros of B,(e7%), leading to z' ®*z = 0 when z # 0.

Lemma 9 Fach element of the matriz ® in (19) is an
analytic function of ay,...,an for (ai,...,a,) € Q,
where Q) denotes the subset of C™ consisting of parameter
vectors (a1, .. .,an) such that A;(p) has all zeros strictly
in the left half-plane.

Proof of Lemma 9. Define the FOH equivalent of the
model denominator as

Aj(q) =q "+ a1g "+ o+ ap,



and denote €24 as the subset of C" consisting of param-
eter vectors (aq,...,a,) such that A;(q) has all zeros
strictly inside the unit circle. By Lemma 6, there is an
analytic mapping between (aq,...,a,) and the DT pa-
rameter vector (aq,...,a,). Now, fixing as,...,a, al-
lows us to define a region Q41 C C where @1 € Q41 im-
plies (a1, g, ...,a,) € Q4. Note that the integrand in
(22) is an analytic function of vy in Qg;, and from now
on, we denote this integrand as f(&,w).

Let C be a closed contour in 47 such that &, is interior
to C. Then,

_ f(alv )
= —— ~da 42
fan,w) = 2mi Jo oq — (42)
As a result,
f (o, w
i d dF,(w). 4
(@) 271'/ 2 o] — g a1 (W) (43)

Since the function being integrated is bounded on
[—7, 7] x C, the order of integration can be changed by
Fubini’s Theorem [19, p. 961], which yields

1

- [ — F,

o Cal—a127r/ Jlar,w)dF,(w)den

:L/ Py (a)
211 C

ap — o
from which we conclude that ®;(c;) is analytic in a
neighbourhood around oy = @;.

dOél (44)

Repeating this process for every «;, ¢ = 2,...,n, we
obtain that ®;; is an analytic function of the variables
Q1,Qo, ..., ay separately. Since ®;; is a continuous func-
tion of (aq,...,a,) in Q4, ®; is an analytic function of
the joint variables (aq, ..., a,) by Osgood’s Lemma (3,
p. 139]. Hence, each element of ® is an analytic function
ofay,...,ay, for (ay,...,a,) € Q. O
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