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Abstract

We incorporate future information in the form of the estimated value of future gradients in online convex optimization. This
is motivated by demand response in power systems, where forecasts about the current round, e.g., the weather or the loads’
behavior, can be used to improve on predictions made with only past observations. Specifically, we introduce an additional
predictive step that follows the standard online convex optimization step when certain conditions on the estimated gradient
and descent direction are met. We show that under these conditions and without any assumptions on the predictability of
the environment, the predictive update strictly improves on the performance of the standard update. We give two types of
predictive update for various family of loss functions. We provide a regret bound for each of our predictive online convex
optimization algorithms. Finally, we apply our framework to an example based on demand response which demonstrates its
superior performance to a standard online convex optimization algorithm.

Key words: Convex optimization; learning algorithms; machine learning; power systems; renewable energy systems; load
dispatching

1 Introduction

Online convex optimization (OCO) has found applica-
tions in fields like network resource allocation [6–8] and
demand response in power systems [20, 21]. It is used
for sequential decision-makingwhen contextual informa-
tion or feedback is only revealed to the decision maker at
the end of the current round. Theoretical results show-
ing that OCO algorithms have bounded regret guaran-
tee the performance of these algorithms under mild as-
sumptions.

In many applications, the decision maker has access to
both revealed past information and estimates about fu-
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ture rounds. For example, in power systems, weather
forecasts or historical load patterns can be used to es-
timate the future regulation needs [4, 22]. In this work,
we present the predictive online convex optimization
(POCO) framework. POCO works under the assump-
tion that an estimate of the gradient of the loss function
for the next round is available to the decision maker. In
POCO, a standard OCO update is first applied using
past information to compute the next decision. Then,
the decision maker checks the quality of the estimated
information available to them. If the estimated gradient
is considered accurate enough, the decision maker im-
plements an additional projected gradient step based on
the estimated gradient to improve their decision for this
round. This last step is referred as the predictive update.

We introduce explicit criteria for determining if the qual-
ity of the estimated gradient is high enough to guaran-
tee an improvement over a standard OCO step when the
predictive update is applied. A regret bound is obtained
for all our algorithms. We conclude this work by pre-
senting numerical examples where a POCO algorithm is
used to improve on the performance of demand response
with standard OCO. This example is motivated by the
fact that a load aggregator often has access to an esti-
mate of the power imbalance they have to counteract for
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regulation purposes.

Literature review. Recent work in online convex opti-
mization has focused on including prior or future infor-
mation. Reference [28], which builds on [9], assumes that
the problem’s unknown and uncertain parameters fol-
low a predictable process plus some noise [27] for their
OCO algorithm. As in our setting, a second update with
an estimated gradient-like term follows a mirror descent
update. This second update is used by the algorithm
in every step regardless of the quality of the estimated
gradient. For this reason, the algorithm is referred to
as optimistic. Optimistic algorithms were also studied
in [23, 31, 34]. No conditions are provided about the es-
timated gradient in this case except that it comes from
past observations and/or side information via an oracle.
The authors of [28] show that the optimistic mirror de-
scent can lead to a tighter bound than a standard online
mirror descent algorithm if the process is indeed pre-
dictable. In [19], the authors provide a dynamic regret
bound for the optimistic mirror descent. There is, how-
ever, no guarantee that in a given round the optimistic
update does not do worse than the standard OCO up-
date. An algorithm similar to [28] is given in [18]. In their
work, they make the stronger assumption in which the
exact gradient of the next round loss function is avail-
able and then provide a static regret bound for their set-
ting. This differs from our setting in that we provide dy-
namic regret-bounded algorithms and use an estimated
gradient which entails less restrictive assumptions. Sev-
eral other authors have studied different ways to incor-
porate future information in OCO like using state infor-
mation [17] or the direction of the loss function’s gradi-
ent in an online linear optimization setting [10].

The projected gradient descent, inexact gradient de-
scent, and proximal algorithms [1, 2, 29] from conven-
tional convex optimization resemble our setting. These
algorithms differ from ours because they aim to mini-
mize the same objective function throughout all descent
steps. In OCO, weminimize a sequence of objective func-

tions {ft}Tt=1
and at each time t provide a decision to

minimize the current loss function. The loss function in
a given round is only observed after we have committed
to a decision. OCO will be introduced formally in Sec-
tion 2.

Model predictive control (MPC) [3, 14] is another
widely-used sequential decision-making framework. In
MPC, the decision maker solves to optimality a reced-
ing horizon optimization problem that relies on models
of future round loss functions. This thus requires signif-
icantly more contextual information and computational
resources. These limitations are absent in OCO, making
it a more suitable tool for real-time decision making
with small computational resources.

Because we characterize conditions under which the
predictive step improves performance, we guarantee

improvement over conventional OCO and require no
predictability assumptions. These conditions can be
checked at each round of OCO, and if satisfied, the pre-
dictive update is implemented. In sum, in this work we
make the following contributions:

• We introduce a novel predictive online convex opti-
mization framework and provide conditions for when
to use side information.

• We propose a predictive update with a predetermined
step size for loss functions that have a Lipschitz gra-
dient. We show that this update leads to a strict
improvement over an OCO update when used (Sec-
tion 4).

• We give a predictive update with backtracking line
search that applies to a broader family of problems.
We show that it leads to strict improvement over an
OCO update (Section 5).

• We obtain sublinear regret bounds in the number of
rounds for all algorithms.

• We apply our framework to demand response in power
systems and find that it outperforms a standard OCO
algorithm (Section 6).

2 Background

In OCO, one must make a decision at each round to min-
imize their cumulative loss [15,30]. The current round’s
loss function and any other round-dependent parame-
ters are not available at the moment when the decision
is made. Only information about previous rounds can be
used to make the decision. Once the decision has been
made, information about the current round is observed.

Let t denote the current round index and T be the time
horizon. Let X ⊂ R

N , N ∈ N, be the decision set, and
let xt ∈ X be the decision variable at time t. We denote
the differentiable convex loss function by ft(xt) for t =
1, 2, . . . , T . Let ‖ · ‖ be the Euclidean norm. We denote
the projection operator onto the set Y as projY(x) ∈
argmin

y∈Y ‖x− y‖.

The goal of the decision maker is to sequentially solve
the following sequence of problems:

min
xt∈X

ft(xt) (1)

for t = 1, 2, . . . , T . The decision maker observes the loss
function ft after choosing xt. For this reason, even if the
loss function has a simple form, an analytical solution
to the round optimization problem (1) is not obtainable.
The decision xt is computed using a gradient descent-
based [35], mirrored descent-based [13] or Newton step-
based rule [16]. For example, in the online gradient de-
scent (OGD) [35] algorithm, the decision at round t + 1,
xt+1, is given by the update:

xt+1 = projX (xt − η∇ft(xt)) , (2)
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where η ∝ T−1/2 to guarantee a sublinear upper bound
on the dynamic regret of OGD [35, Theorem 2].

Throughout this work, we make the following assump-
tions [15, 30, 35].

Assumption 1 The set X is convex and compact.

The decision set X represents all constraints on xt. In
this version of OCO, we only consider time-invariant
constraints.

Assumption 2 The loss function is B-bounded:
|ft(xt)| ≤ B for t = 1, 2, . . . , T and B < ∞.

Assumption 3 The gradient of the loss function is G-
bounded: ‖∇ft(xt)‖ ≤ G for t = 1, 2, . . . , T andG < ∞.

As a consequence of Assumption 1, the decision variable
is also X-bounded: ‖xt‖ ≤ X for t = 1, 2, . . . , T . We
define the diameter of the compact set X as diam X =

sup
{

‖x− y‖
∣

∣

∣
x,y ∈ X

}

and let D = diam X , a positive

scalar. The remainder of the assumptions will be stated
when a specific technical result requires it.

The design tool of OCO algorithms is the regret [15,30].
In this work, we use the dynamic regret [8, 19, 24, 35]:

RegdT =

T
∑

t=1

ft(xt)− ft(x
∗
t ), (3)

where x∗
t ∈ argmin

x∈X ft(x). The dynamic regret com-
pares the loss suffered by the decision maker to opti-
mal performance in each round. Other versions of the
regret exists, e.g., static regret [15, 30, 35], which is de-
fined in terms of the optimal stationary decision, x∗ ∈
argmin

x∈X
∑T

t=1
ft(x) in (3). In this work, we only con-

sider the dynamic regret because it yields a stronger
theoretical guarantee. This theoretical guarantee is also
more relevant in the context of time-varying optimiza-
tion. For this reason, we refer to the dynamic regret,
RegdT , simply as the regret. Note that a bounded dy-
namic regret implies a bounded static regret [8]. The
goal when designing an OCO algorithm is to show that
the regret is sublinearly bounded above in the number of
rounds. An OCO algorithm with a sublinearly bounded
dynamic regret in the number of rounds will on average
perform as well as the round optimal decision at each
round [15, 16, 30].

We conclude this section by defining the quantity VT =
∑T

t=2

∥

∥x∗
t − x∗

t−1

∥

∥. The term VT quantifies the variation
of the optimal predictions through all rounds.

3 Predictive OCO

We now introduce our POCO framework. We let xt+1 ∈
X be the decision computed by an OCO algorithm in

round t. This OCO algorithm can be, for example, the
aforementioned OGD. The decision xt+1 is then given by
the update (2). In POCO, we consider an ǫ-forecaster
introduced in Assumption 4. Let gt(xt+1) ∈ R

N be the
estimated gradient of the loss function ft+1 at xt+1.

Assumption 4 (ǫ-forecaster) The ǫ-forecaster has
access to an estimate of the gradient of the next
round’s loss function evaluated at xt+1, gt (xt+1),
and the maximum estimation error, ǫ > 0, such
that ‖gt (xt+1) − ∇ft+1(xt+1)‖ ≤ ǫ for all time
t = 1, 2, . . . , T .

In other words, we consider a forecaster that has access
to limited information about the next round in the form
of gt (xt+1). This could represent a prediction based on
historical data, e.g., a weather or demand forecast. The
decision maker uses this information to improve on the
OCO update. For conciseness, we denote the estimated
gradient by gt. We omit its dependency on xt+1 because
it is always evaluated at the OCO update output, xt+1,
and no other points. The decision maker can meet As-
sumption 4 by relying on an exogenousmodel to estimate
the gradient ∇ft+1 (xt+1). In the context of demand re-
sponse, historical data of the load’s consumption and
generator outputs patterns, weather history and the his-
torical values of the gradient, for example, can be used
to build a statistical model to estimate the value of the
∇ft+1 at the decision given by OCO update. The pa-
rameter ǫ can then be set according to, for example, a
high confidence interval or a worst-case performance pa-
rameter. The forecaster would then provide gt using this
model.

Then, if certain conditions are met, the following update
rule for our proposed POCO algorithm is used.

Definition 1 (Predictive update) Let βt > 0 be an
appropriately chosen step size. The predictive update is

xt+1 = projX (xt+1 − βtgt) . (4)

The predictive update is to be used directly after the
OCO update and will lead to a strict improvement over
the OCO update under certain conditions. The afore-
mentioned conditions will be discussed in the next sec-
tions and depend on the properties of the loss function.
If the conditions are not met, xt+1 is directly used. Let
δ > 0 be the desired improvement when using the pre-
dictive update. We define the counter ct:

ct+1 =

{

ct + 1 if ‖xt+1 − xt+1‖ ≥ δ

ct otherwise

with c0 = 0. The variable ct represents the number of
predictive updates as described in Definition 1. Let ν =
cT /T be the ratio of rounds using the predictive update
to the total number of rounds.
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Depending on the loss function, any regret-bounded
OCO update can be used in the POCO framework.
Back to the OGD example, the predictive OGD uses the
update (2) and if certain conditions are met, xt+1 is
provided by (4) and if not, xt+1 = xt+1. We write
xt+1(βt) = projX (xt+1 − βtgt) as a function of the
step size βt > 0 and let dt+1 = xt+1(βt) − xt+1 be the
descent direction.

Next, we provide sufficient conditions for the estimated
gradient gt to be a feasible descent direction. Later, we
consider the step size selection problem. Particularly,
two cases are considered where (i) the step sizes are con-
stant and chosen a priori based on a property of the loss
functions, or (ii) the step sizes are selected through the
application of a backtracking line search that enforces a
modified online version of the Armijo condition [2].

The following lemma introduces a sufficient condition
for the estimated gradient gt to be a descent direction
of the OCO problem (1).

Lemma 1 (Estimated descent direction) The vec-
tor −gt provided by the ǫ-forecaster is a descent direction
for ft+1(xt+1) if ‖gt‖ > ǫ.

The proof of Lemma 1 is presented in Appendix A. The
next lemma is adapted from [2] and ensures that the
predictive step follows a feasible descent direction.

Lemma 2 (Feasible estimated descent direction)
For all βt > 0 and xt+1 ∈ X , if ‖gt‖ > ǫ and
xt+1(βt) 6= xt+1 , then xt+1(βt) − xt+1 is a feasible
descent direction at xt+1 and g⊤

t (xt+1(βt)− xt+1) ≤
− 1

βt

‖xt+1(βt)− xt+1‖2 .
Similarly, the proof of Lemma 2 is given in Appendix B.

4 POCO with fixed step size

We now present a predictive update where step sizes βt

are fixed and based on a propriety of the sequence of loss
functions. We conclude this section by providing regret-
bounded algorithms using these updates. In this section,
we add the following assumption:

Assumption 5 Let L < ∞. The loss function ft(x)
has an L-uniformly Lipschitz-continuous gradient:
‖∇ft(x) −∇ft(y)‖ ≤ L‖x − y‖ for all t = 1, 2, . . . , T
and x,y ∈ X .

We propose a predictive update with fixed step size next.
We state sufficient conditions that guarantee a strict im-
provement over an OCO update. These sufficient condi-
tions can be checked at each round to determine if the
estimated information is accurate enough, and therefore
if the predictive update should be used in the current
round.

Lemma 3 (Predictive update with fixed step size)
Suppose that Assumption 5 holds and ‖gt‖ > ǫ. If

β ≤ 1

L and ‖dt+1‖ = ‖ projX (xt+1 − βtgt) − xt+1‖ ≥
ǫ
L +

√

ǫ2

L2 + 2δ
L , then the predictive update (4) used by

the ǫ-forecaster strictly improves on the OCO update
and the improvement is bounded below by δ > 0.

The proof of Lemma 3 is provided in Appendix C. We
now present regret bounds for POCO algorithms. This
algorithm uses the predictive update with fixed step size
to improve the performance of OCO algorithms.

Theorem 1 (POCO regret bound) Consider an
OCO algorithm with a sublinear regret upper bound.
Suppose that the forecaster uses the predictive update (4)
only at rounds t when the estimated gradient gt and feasi-
ble descent direction dt+1 = projX (xt+1 − βtgt)− xt+1

satisfy the assumptions of Lemma 3. If the ratio of rounds
satisfying these assumptions is greater than ν, then the
regret of the POCO algorithm is bounded above by

RegdT (POCO) ≤ RegdT (OCO) − Tνδ.

The proof of Theorem 1 is presented in Appendix D. This
theorem leads to the following corollarywhich provides a
regret bound for the OGDwith predictive updates (POGD).

Corollary 1 (O
(√

T
)

regret bound for POGD)

Suppose that the ratio ν of rounds that respects the as-
sumptions of Lemma 3 is ν > 1√

T
. Then the predictive

OGD algorithm’s regret is bounded above by

RegdT (POGD) ≤ RegdT (OGD)− δ
√
T ,

=

(

7X2

4
+

G2

2
+XVT − δ

)√
T ,

which is sublinear and tighter than the OGD regret bound.

The corollary follows from substituting RegdT (OGD)

from [35] and ν > 1/
√
T in Theorem 1.

5 POCO with backtracking line search

In this section, we do not require Assumption 5 to hold.
We however use the following proposition:

Proposition 1 The loss function ft(x) is ∆-time-
Lipschitz with ∆t(x),∆ < ∞, that is:

|ft(x) − ft+τ (x)| ≤ ∆t(x)|τ | ≤ ∆|τ |

for all τ ∈ { i ∈ Z| 0 ≤ t+ i ≤ T } at all t = 1, 2, . . . , T ,
and all x ∈ X .

Proposition 1 always holds because Assumption 2 im-
plies that ∆ = 2B/ |τ | is sufficient. Under Proposition 1,
we consider functions that are (t,x)-locally and glob-
ally Lipschitz in their time argument, respectively, for
the intermediary bound (∆t(x)) and the upper bound

4



Algorithm1Backtracking algorithm for predictive gra-
dient projection

1: Parameters: Given β ∈ (0, 1) and M ∈ N.
2: Initialization: Set ζ > 0.

3: dt+1 = projX (xt+1 − ζgt)− xt+1

4: m = 0.
5: while ft (xt+1 + βmdt+1) > ft(xt+1) +

βm
(

g⊤
t dt+1 − ǫ‖dt+1‖

)

− 2∆ and m ≤ M do
6: m = m+ 1.
7: end while

8: if m > M then
9: β = 0.

10: end if

(∆). This can represent, for example, loss functions like
squared tracking error functions, in which the time-
varying targets are always contained in a closed set.

In the case of the POCO with backtracking (POCOb),
we re-express the update (4) given in Definition 2. The
backtracking line search for predictive update is given in
Algorithm 1.

Definition 2 (POCOb update) Let ζ be a positive
scalar and βm be determined by a backtracking line search
algorithm. The predictive update with backtracking line
search is

xt+1 = xt+1 + βm (projX (xt+1 − ζgt)− xt+1) (5)

The next lemma shows that the backtracking line
search-based predictive update improves on the OCO
update. Our claim relies on the modified Armijo con-
dition for gradient projection. This condition ensures
a sufficient decrease in the objective when using an es-
timated gradient projection descent direction [33]. We
adapt this condition to the estimated gradient and on-
line setting. The modified Armijo condition for gradient
projection [2] on ft+1 and feasible descent direction
dt+1 = projX (xt+1 + ζgt) − xt+1 for some ζ > 0 with
step size βm is given by:

ft+1 (xt+1 + βmdt+1) ≤ ft+1(xt+1) (6)

+ βm∇ft+1(xt+1)
⊤dt+1.

Lemma 4 (Sufficient decrease of POCOb update)
Suppose ‖gt‖ > ǫ. If Algorithm 1 terminates to a step
size βm > 0, then the predictive update with backtrack-
ing line search (5) used by the ǫ-forecaster satisfies the
modified Armijo condition (6), and leads to a sufficient
decrease in the loss function.

The proof of the lemma can be found in Appendix E.

Remark 1 Algorithm 1 ensures that when β 6= 0, βm

satisfied:

ft (xt+1 + βmdt+1) ≤ ft(xt+1) + βmg⊤
t dt+1

− βmǫ‖dt+1‖ − 2∆ (7)

Every element of (7) is available at time t, which is not
the case in (6). This allows us to use a backtracking line
search algorithm to determine βt in an OCO setting.
Algorithm 1 also ensures that the step size is not too small
(cf. [33, Section 3.1]).

Note that there is an additional ǫ‖dt+1‖ term in themod-
ified Armijo condition for estimated gradient projection.
This is a consequence of not having access to the exact
gradient of ft. Hence, to ensure that the update is valid,
the modified Armijo condition is augmented by a term
proportional to the error of the estimated gradient. The
second additional term, 2∆, is due to the time-varying
setting of OCO.

We now discuss the existence of step sizes βt that sat-
isfy (7) at round t. Before stating the main result, for a
given xt+1 and gt, define the set of step sizes that com-
ply with line 5 in the line search algorithm, which is the
modified Armijo condition for online settings (7):

S =
{

β > 0
∣

∣

∣
ft (xt+1 + βdt+1) ≤ ft(xt+1)

+ βg⊤
t dt+1 − βǫ‖dt+1‖ − 2∆

}

.

Theorem 2 Suppose dt+1 = projX (xt+1 − ζgt) −
xt+1 6= 0 is a feasible descent direction and ft is bounded
below for all t. Then there exists x ∈ X such that
ft(xt+1)− ft(x) > 2∆ if and only if S 6= ∅.
The proof for Theorem 2 is presented in Appendix F.
We note that Theorem 2 does not guarantee that the
backtracking algorithm, Algorithm 1, will find a non-
zero step size. Other techniques like exact line searches,
might be required to identify an adequate step size in
some problem instances. Using Theorem 2, we can pro-
vide a lower bound on the improvement of the predictive
update with backtracking line search.

Corollary 2 (POCOb update improvement)
Suppose that the assumptions of Lemma 4 hold and
βm > 0, then the predictive update with backtracking
line search improves on the OCO update by a minimum
of 2∆.

The proof of Corollary 2 is given in Appendix G. We
now state a regret bound for the POCOb algorithm.

Theorem 3 (POCOb regret bound) Consider an
OCO algorithm with bounded regret. Suppose that the
assumptions of Lemma 4 are met. If the ratio of rounds
with β > 0 and satisfying these assumptions to T is
greater than ν, then the regret of the POCO algorithm
with backtracking used by the ǫ-forecaster is bounded
above by

RegdT (POCOb) ≤ RegdT (OCO) − 2Tν∆ (8)

and thus outperforms the OCO algorithm.

The proof of Theorem 3 is presented in Appendix H.
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Remark 2 Note that if the locally Lipschitz statement of
Proposition 1 is used, then 2∆ is replaced by ∆t,1(xt+1+
βmdt+1) + ∆t,1(xt+1) in the modified Armijo condition
for online settings (7), and the bound (8) can be recom-
puted accordingly.

6 Example

In this section, we apply POCO algorithms to demand
response (DR) in power systems [5,26], specifically regu-
lation and curtailment. At each time step, a DR aggrega-
tor sends instructions to their loads to follow a regulation
signal, e.g., a power imbalance due to a sudden change in
renewable power generation [4, 32]. Each load responds
to the signal by adjusting its power consumption. The
power consumption is constrained by a storage capacity,
which could represent physical storage like a battery or
the load’s limits, e.g., thermal constraints. The regula-
tion signal is unknown at the time the DR instructions
are sent. This can be due, for example, to a drop in re-
newable power generation which is only assessed after
the generator has committed to some amount of power.
The objective of the DR aggregator is, therefore, to pre-
dict the DR dispatch at each time instance. This prob-
lem can be formulated as POCO, in which an estimate of
the regulation signal is available to the load aggregator.

We consider N loads. Let xt ∈ R
N denote the deci-

sion variable at round t. The variable xt represents
the instructions sent to the loads. Let rt ∈ R be
the regulation signal at time t. Let x,x ∈ R

N be
the maximum and minimum power that can be con-
sumed or delivered for all loads. Define the decision set
X =

{

x ∈ R
N
∣

∣x ≤ x ≤ x
}

. We let st ∈ R
N denote the

state of charge vectors of the loads at time t and c ∈ R
N

the vector of load energy capacities. The state of charge
of a load i at time t is st(i) = s0(i)+

∑t
n=1

xn(i). In the
current case, we assume that there is no leakage nor en-
ergy losses. The OCO problem takes the following form:

min
xt∈X

(

rt − 1⊤xt

)2
+ σ

∥

∥

∥
st−1 + xt −

c

2

∥

∥

∥

2

. (9)

The loss function has two terms: (i) a regulation term
where the aggregated loads are dispatched to follow a
regulation signal rt and (ii) a state of charge objective
added to keep the loads near half their energy capac-
ity. The loss function given in (9) is σ-strongly convex.
For this reason we use the OGD for strongly convex func-
tions (σOGD) proposed in [24], which offers tighter regret
bound than the standard OGD. The following corollary
gives an upper bound on the regret of predictive OGD for
strongly convex function (σPOGD).

Corollary 3 (POGD for strongly convex functions)
Suppose ft is σ-strongly convex and satisfies Assump-
tion 5 for all t. Consider the σOGD update

xt+1 = xt + η

(

projX

(

xt −
1

γ
∇ft(xt)

)

− xt

)

Table 1
Parameters for POCO simulations

Parameter Value Unit

N 25 loads

h 30 seconds

x/h Uniform[1, 3] kW

x/h −x kW

c Uniform[10, 15] kWh

ǫ 0.1, 0.05 & 0.01 —

δ 10−6 —

σ 0.005 —

η 1 —

γ L —

β 1/L —

where η ∈ (0, 1] and 0 < γ ≤ L. Then, the σPOGD with
fixed step size, given that the assumptions of Lemma 3
hold for a ratio of the total rounds greater than ν, has a
regret bounded above by

RegdT (σPOGD) ≤ RegdT (σOGD)− Tνδ,

≤ O (VT + 1)− Tνδ.

The result follows from the proof of Theorem 1 and the
σOGD regret bound from [24]. We now present simulation
results. All optimizations are solved using CVXPY [11] and
the ECOS [12] solver.

Fixed step size example. The load and algorithm
parameters for this example are gathered in Table 1. The
initial state of charge of each load is set to half its ca-
pacity. The regulation signal is rt = 0.2 sin

(

2π
T t

)

+ wt.
The parameter wt ∼ N(0, 0.01) is a Gaussian noise used
to model sudden changes. We assume that the aggrega-
tor has access to estimated gradient for different level of
accuracy ǫ. This represents, for example when ǫ = 0.01,
a relative error of at least 4% of the actual gradient
norm. The parameter σ is set to achieve adequate reg-
ulation performance without deviating too much from
each load’s desired state of charge.

We now present the performance of our POCOalgorithm
with a fixed step size.We implement the OMD from [28] for
comparison. This algorithm uses gt without validating
the estimated information. Figure 1 shows an instance of
the experimental regret for the POCO with three differ-
ent values of ǫ, the conventional OCO algorithm, their
respective regret bounds and OMD’s regret. POCO out-
performs its bound, the OCO and the OMD algorithms.
We remark that as expected the number of predictive
updates increases with the accuracy of the estimated
gradient, the performance of the POCO algorithm also
improves.

Backtracking line search example. We now
present an example of POCO with backtracking. We
consider a curtailment scenario. We let pt be the to-
tal power to be curtailed by the loads at time t for
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O(VT + 1)− Tδν

Fig. 1. Regret comparison between POCO with fixed
step size, OCO, and OMD (log scale, note: O (VT + 1) and
O (VT + 1)−Tδν are superimposed when shown at this scale)

t = 1, 2, . . . , T . When a contingency occurs in the net-
work, flexible loads are called to curtail their power
consumption, e.g., by temporarily shutting down their
HVAC system. Contrary to the regulation case, the
loads are not contracted to follow a setpoint and no
penalties are assessed on loads curtailing more than
asked. Similar to the regulation setting, the curtailment
signal is unknown until immediately after the current
round. This setting can be modeled as POCO where an
estimated curtailment signal is available to the aggre-
gator at each round. We use the same notation as the
previous examples. Let [·]+ = max{0, ·}. This curtail-
ment scenario is modeled by loss function given below:

ft(xt) =
(

[

pt − 1⊤xt

]+
)2

+σ
∥

∥

∥
αst−1 + xt −

c

2

∥

∥

∥

2

(10)

where we have added a recovery coefficient to the state
of charge objective term used previously. This coeffi-
cient models the usual evolution of the load (e.g., am-
bient temperature heating for a thermostatic load). We
let α = 1.001. This is equivalent to a recovery coeffi-
cient of 1.13 per hour. The function ft given in (10) is
not gradient Lipschitz and Assumption 5 does not hold.
We model the curtailment signal to be quickly increas-
ing at first and then slowly plateauing to represent new
level of available generation. This event is assumed to
be limited in time, after which the network goes back
to its normal state and no curtailment is then required.
We let pt = 0.04t0.3 + wt where wt ∼ N(0, 0.01) for

t = 1, 2, . . . , T/4 and then pt = 0.04 (T/4)
0.3

+w′
t where

w′
t ∼ N(0, 0.001) for t = T/4, T/4 + 1, . . . , T . The noise

variance is equivalent to approximatively 10% of curtail-
ment signal’s value at first and then about 1%.

We use the same parameters as in the previous section,
except for those in Table 2. The POCOb experimental
regret shown in Figure 2 is sublinear in the numbers of
rounds and outperforms the OCO’s regret. While the

Table 2
Different parameters for POCOb simulations

Parameter Value

α 1.001

ǫ 0.1, 0.01 & 0.001

M 100

σ 5× 10−5

ζ 0.5

β 0.9

η 1/10
√
T
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POCO with ǫ = 0.1

POCO with ǫ = 0.01

POCO with ǫ = 0.001

OCO

O
(√

T (VT + 1)
)

O
(√

T (VT + 1)
)

− 2∆ν

Fig. 2. Regret comparison between POCOb, OCO,

and OMD (log scale, note: O
(√

T (VT + 1)
)

and

O
(√

T (VT + 1)
)

− Tδν are superimposed when shown at

this scale)

performance is not as strong as POCO with fixed step
size, this algorithm can be applied to a broader family of
functions because it does not require the loss function to
be gradient Lipschitz continuous. The difference in per-
formances between the two POCO updates is explained
by the fact that the sufficient conditions for the POCOb
are rarely satisfied in this simulation. Improved estima-
tion accuracy, ǫ, and a loss function with a lower maxi-
mum temporal change, ∆, could increase the number of
times the backtracking line search is used. Nevertheless,
the POCOb achieves a regret reduction of 29% when
ǫ = 1% over a standard OCO algorithm. Lastly, we note
that POCOb performs better for larger variations in pt
and smaller values of ǫ.

7 Conclusion

In this work, we have presented the predictive online con-
vex optimization framework. In POCO, a second update
is used after the OCO update to improve performance
using an estimated gradient. We have presented two ver-
sions of the predictive update that can be used under
different assumptions. We have shown a regret upper
bound for all of our POCO algorithms. We have applied
POCO to demand response in electric power systems

7



and found that they outperform conventional OCO us-
ing commonly available forecast information. In the case
of fixed step size update, we observed an improvement
of 95% in the final regret and of 29% in the backtracking
case when having access to a (ǫ = 0.01)-forecaster.
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A Proof of Lemma 1

Define et ∈ R
n as et = gt −∇ft+1(xt+1) where ‖et‖ ≤

ǫ by the definition of the ǫ-forecaster. A vector v is a
descent direction if v⊤∇ft+1(xt+1) < 0. Thus, we have

0 < g⊤
t ∇ft+1(xt+1)

= g⊤
t (gt − et)

Equivalently, we have g⊤
t gt > g⊤

t et. Taking the norm of
both sides and dividing by the norm of gt gives

‖gt‖ > ‖et‖ cos θgt,et
, (A.1)

where θgt,e is the angle between gt and et. By assump-
tion, ‖gt‖ > ǫ and ‖et‖ ≤ ǫ. Therefore (A.1) always
holds and we have proved the lemma. �

B Proof of Lemma 2

The identity follows from [2, Proposition 6.1.1] with gt

instead of the gradient of the loss function. It then fol-
lows from Lemma 1 that −βtgt with βt > 0 is a descent
direction at xt+1. Thus, dt+1 = xt+1(βt)−xt+1 is a feasi-
ble descent direction because dt+1 ∈ X and g⊤

t dt+1 < 0
for all t and xt+1 ∈ X . �

C Proof of Lemma 3

By Assumption 5, ft+1 has an L-Lipschitz gradient. We
use the following inequality from [25, Theorem 2.1.5]

ft+1(y) ≤ ft+1(x) +∇ft+1(x)
⊤(y − x)

+
L

2
‖x− y‖2

(C.1)

for all x,y ∈ X . We substitute y = xt+1(β) and x =
xt+1 into (C.1) to obtain

ft+1(xt+1(β)) ≤ ft+1(xt+1) +
L

2
‖xt+1(β)− xt+1‖2

+∇ft+1(xt+1)
⊤(xt+1(β) − xt+1).

For the reminder of the proof, we use dt+1 = xt+1(β)−
xt+1 to simplify the notation. We rewrite the gradient
in term of the estimated gradient, which yields

ft+1(xt+1(β)) ≤ ft+1(xt+1) + g⊤
t dt+1 − e⊤t dt+1

+
L

2
‖dt+1‖2 . (C.2)

By assumption, xt+1(β) 6= xt+1, which ensures that
Lemma 2 holds. We use Lemma 2 to upper bound the
second term of the right-hand side of (C.2). We then

have: ft+1(xt+1(β)) ≤ ft+1(xt+1)−
(

1

β − L
2

)

‖dt+1‖2+
ǫ‖dt+1‖. Therefore, the predictive update with fixed step
size will improve on the OCO update by a minimum of
δ > 0 if the following condition is satisfied:

1

β
‖dt+1‖2 −

L

2
‖dt+1‖2 − ǫ‖dt+1‖ ≥ δ. (C.3)

Assuming 0 < β ≤ 1

L , then
1

β ≥ L, and if L
2
‖dt+1‖2 −

ǫ‖dt+1‖ ≥ δ, then (C.3) also holds for any β ∈]0, 1

L ].
Solving for the norm of the feasible descent direction
‖dt+1‖, we have

‖dt+1‖ = ‖xt+1(β)− xt+1‖ ≥ ǫ

L
+

√

ǫ2

L2
+

2δ

L
. (C.4)

Thus, by setting 0 < β ≤ 1

L and satisfying (C.4), we ob-
tain ft+1(xt+1(β)) ≤ ft+1(xt+1)− δ, where δ > 0. This
implies that the predictive update strictly improves over
the OCO update when the feasible descent direction sat-
isfies the condition (C.4). The improvement is bounded
below by δ. �

D Proof of Theorem 1

Let x̂t denote the decision variable with βt = 0 for all t.
In other words, x̂t represents the decision variable com-
puted without the predictive algorithm. Denote the set
of assumptions of Lemma 3 at round t by At. Let IAt

be
the indicator function where IAt

= 1 if the assumptions
are satisfied and 0 otherwise. Observe that the improve-
ment, it, is given by

itIAt
= ft(x̂t)− ft(xt), (D.1)

where it is the improvement when IAt
= 1. The regret

of the POCO algorithm is

RegdT (POCO) =

T
∑

t=1

ft(xt)− ft(x
∗
t ). (D.2)

Using (D.1), we re-express ft(xt) in (D.2):

RegdT (POCO) =

T
∑

t=1

ft(x̂t)− ft(x
∗
t )−

T
∑

t=1

itIAt

= RegdT (OCO) −
T
∑

t=1

itIAt
(D.3)

By Lemma 3, the improvement it is bounded below by
δ. We rewrite (D.3) as RegdT (POCO) ≤ RegdT (OCO) −
∑T

t=1
δIAt

. A minimum of Tν rounds satisfy At and

hence RegdT (POCO) ≤ RegdT (OCO) − Tνδ. �
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E Proof of Lemma 4

We show that for some step size βm, the estimated gra-
dient descent projection leads to a sufficient decrease
thus outperforming the OCO update. We show that if
βm satisfies (7), then it also satisfies satisfies (6), ensur-
ing a sufficient decrease in the objective function. Note
that (7) is the condition under which the backtracking
algorithm,Algorithm 1, is used.We can see from the left-
hand side of the condition (7) that the update improves
over the OCO update because the three last terms are
bounded above by 0, i.e., g⊤

t dt+1 ≤ − 1

ζ ‖dt+1‖2 < 0 by

Lemma 2. Thus all three terms are less or equal to zero.
By assumption, β > 0, and these terms are also bounded
away from zero since xt+1 6= xt+1.

We start from (7) and shows it implies (6). By assump-
tion, ‖et‖ ≤ ǫ for all t and hence (7) implies,

ft (xt+1 + βmdt+1) ≤ ft(xt+1) + βm (gt − et)
⊤
dt+1

− 2∆.

Rearranging the terms, we have

ft (xt+1 + βmdt+1) + ∆ ≤ ft(xt+1)−∆ (E.1)

+ βm∇ft+1(xt+1)
⊤dt+1.

By assumption, ft+1 is time-Lipschitz with constant
∆ > 0 for all x ∈ X and all t. We can therefore bound
below and above respectively the left-hand and right-
hand side of (E.1). This leads to

ft+1 (xt+1 + βmdt+1) ≤ ft+1(xt+1)

+ βm∇ft+1(xt+1)
⊤dt+1,

the modified Armijo condition (6). �

F Proof of Theorem 2

Assume ft(xt+1)−ft(x) > 2∆. This assumption implies
that ft+1(xt+1) − ft+1(x) > 0 by Proposition 1. Thus,
xt+1 is not the minimum point of ft+1. It follows that
∇ft+1(xt+1) 6= 0. By assumption, dt+1 6= 0 is a feasible
descent direction and we have

∇ft+1(xt+1)
⊤dt+1 < 0. (F.1)

Let a ∈ (0, 1). Subtracting ∇ft (xt+1 + aβdt+1)
⊤
dt+1

on both side of (F.1) we obtain,

(∇ft+1(xt+1)−∇ft(xt+1 + aβdt+1))
⊤dt+1 < (F.2)

−∇ft (xt+1 + aβdt+1)
⊤
dt+1.

If the following condition holds, then (F.2) also holds:

‖∇ft+1(xt+1)−∇ft(xt+1 + aβdt+1)‖‖dt+1‖ <

−∇ft (xt+1 + aβdt+1)
⊤
dt+1.

(F.3)

Under Assumption 3, for all x, z ∈ X we have

‖∇ft+1(x) −∇ft(z)‖ ≤ ‖∇ft+1(x)‖+ ‖∇ft(z)‖ ≤ 2G

and by Assumption 1, we have ‖dt+1‖ ≤ D. Then, if

2GD < −∇ft (xt+1 + aβmdt+1)
⊤
dt+1 (F.4)

holds, so does (F.3). We rewrite (F.4) as

∇ft (xt+1 + aβdt+1)
⊤
dt+1 < −2GD (F.5)

Recalling Taylor’s Theorem [33, Theorem 2.1]:

ft(y + p) = ft(y) +∇ft(y + ap)⊤p,

where y,x ∈ X , p ∈ R
n and for some a ∈ (0, 1). We let

y = xt+1 and p = βmdt+1. We have,

ft(xt+1 + βdt+1) = ft(xt+1) (F.6)

+ β∇ft(xt+1 + aβdt+1)
⊤dt+1.

We bound above the the last term of (F.6) using (F.5)
and obtain

ft(xt+1 + βdt+1) < ft(xt+1)− 2βGD (F.7)

By setting β ≤ ∆

GD in (F.7), we have ft(xt+1+βdt+1) <
ft(xt+1) − 2∆. This shows that there always exists at
least one point which satisfies the assumption on the
existence of x ∈ X such that ft(xt+1)−ft(x) > 2∆ that
is along the feasible descent direction dt+1 from xt+1.

Next, adapting the proof of [33, Lemma 3.1] for the mod-
ified Armijo condition for online settings (7), it follows
that there exists β ≤ ∆

GD such that

ft
(

xt+1 + βdt+1

)

≤ ft(xt+1) + βg⊤
t dt+1 − βǫ‖dt+1‖

− 2∆.

The set S is therefore non-empty if there exists x ∈ X
such that ft(xt+1)− ft(x) > 2∆.

We now show the converse. Assuming S 6= ∅, then there
exists β ∈ S and

ft
(

xt+1 + βdt+1

)

< ft(xt+1)− 2∆ (F.8)

holds since g⊤
t dt+1 < 0 by Lemma 2 and ǫ > 0.

Thus, (F.8) implies that there exists x ∈ X such
that ft(xt+1) − ft(x) > 2∆ and one of such point is
x = xt+1 + β2dt+1. This completes the proof. �

G Proof of Corollary 2

Since β > 0, then S 6= ∅. By the converse of Theorem 2,
we have ft(xt+1)−ft(x) > 2∆, where x = xt+1+βdt+1,
the decision played by the predictive update (5). The
predictive update hence improves on the OCO update
by at least 2∆. �
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H Proof of Theorem 3

Let IA′

t

be the indicator function where IA′

t

= 1 if at

round t, β > 0 and ‖gt‖ > ǫ or 0 otherwise. Using
the same approach as in Theorem 1’s proof with Corol-
lary 2, we obtain the regret bound. The last term of (8)
is strictly positive and thus the POCOb regret is always
bounded above by the OCO algorithm regret. �
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