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Abstract. We establish a geometric Pontryagin maximum principle for discrete time

optimal control problems on finite dimensional smooth manifolds under the following three

types of constraints: a) constraints on the states pointwise in time, b) constraints on the

control actions pointwise in time, c) constraints on the frequency spectrum of the optimal

control trajectories. Our proof follows, in spirit, the path to establish geometric versions

of the Pontryagin maximum principle on smooth manifolds indicated in [Cha11] in the

context of continuous-time optimal control.

§1. Introduction

The celebrated Pontryagin maximum principle (PMP) is a central tool in optimal control

theory that provides first order necessary conditions for optimal controls. These necessary

conditions can be used by algorithms to arrive at optimal control actions. The PMP was

first introduced for continuous time control systems on R
n by Pontryagin and his students

in [PBGM62] and alternate proofs for the PMP later appeared in [Bol71] and [LM67]. The

discrete time Pontryagin maximum principle was developed primarily by Boltyanskii (see

[Bol75, Bol78] and the references therein) and discrete time is the setting of our current

work.
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While control systems evolving on R
n are the most common, systems with non-flat

manifolds as configuration spaces also appear in a variety of engineering disciplines in-

cluding robotics, quantum mechanical systems, and aerospace systems. Justifiably so, the

continuous time PMP was extended to control systems evolving on smooth manifolds in

a sequence of works from [Sus98] through [AS04]; however the proofs given in these

sources are quite complicated. The most recent proof of the geometric continuous time

PMP appears in [Cha11]; it deserves special mention because of its sheer simplicity. This

work serves as a source of inspiration for our current article. Assuming the validity of

the PMP on Euclidean spaces, in [Cha11] the author derives the geometric version of the

PMP by embedding the underlying manifold in a suitable Euclidean space and extending

the optimal control problem on the manifold into an equivalent control problem on the

Euclidean space, followed by appealing to the PMP on the Euclidean space, and finally

translating the necessary conditions furnished by the PMP for the extended problem on the

Euclidean space back to the manifold. This is the route that we follow here in the discrete

time setting.

Almost all physical systems that are to be controlled naturally come with an array of

constraints attached to them. In spite of this, there are few control techniques available that

can actually compute constrained control actions in a tractable fashion. The continuous

time PMP is no exception to this: numerical algorithms that seek to identify optimal

controls from the necessary condition given by the PMP can handle control constraints

rather efficiently. However, the necessary conditions given by the continuous time PMP for

point-wise state constraints typically involve a measure, which is an infinite dimensional

object, and numerical methods face grave difficulties in this setting. If one wants to include

point-wise state constraints in the optimal control problem during the synthesis stage, it

is better to perform some kind of discretization of the system first, and this is where the

relevance of discrete time optimal control arises. A discrete time PMP on smooth manifolds

can be employed by algorithms to solve state and control constrained control problems with

relative ease.

In this article we address optimal control problems for discrete-time smooth control

systems evolving on finite dimensional smooth manifolds in the presence of the following

three important classes of constraints:

(I) constraints on the states at each time instant,

(II) constraints on the control magnitudes at each time instant, and

(III) constraints on the frequency of the control functions.

We prove a discrete time PMP for control systems on smooth finite dimensional manifolds

under the presence of the three classes of constraints of type mentioned above with the aid

of three simple ingredients:

(Step 1) The Whitney embedding theorem, which is employed for embedding the smooth

manifold in a suitable Euclidean space.

(Step 2) A few basic extension theorems for smooth functions defined on embedded sub-

manifolds, employed here to extend the original optimal control problem to the

Euclidean space given by Step 1.

(Step 3) The discrete time PMP on R
n under frequency constraints [PC19], employed to

arrive at first order necessary conditions for optimality of the extended problem.

To our knowledge the only sources that discuss versions of the PMP for discrete time

geometric optimal control problems are [PCB18] and [KG17]. The former establishes a
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PMP for a class of smooth control systems evolving on Lie groups under mild structural

assumptions on the system dynamics. In contrast, in the present article we remove all

such assumptions and present a neater version of the PMP with broader applicability using

very different and simple tools. [KG17] proves a PMP on smooth manifolds subject to the

similar types of constraints that we consider here, but with the exception of the frequency

constraints, and they do so under weaker assumptions on the smoothness of the cost, the

constraints and the state transition maps. However the exposition in [KG17] heavily relies

on nontrivial tools of nonsmooth analysis, and is nowhere nearly as simple as the proof

we present here. The frequency constraints treated in this article first appeared in [PC19],

but the exposition there was limited to systems evolving on finite dimensional Euclidean

spaces, as opposed to non-flat smooth manifolds.

§2. Preliminaries

We employ standard notation throughout the article: N denotes the non-negative integers,

N
∗ the positive integers, R the real numbers. If k is a positive integer, we let [k] ≔

{1, . . . , k}. The vector space Rd is always assumed to be equipped with the standard inner

product 〈v, v ′〉 ≔ v⊺v ′ for every v, v ′ ∈ R
d, and we denote by vk the k th component of

v. In the theorem statements, we use
(
R

d
)⋆

to denote the dual space of Rd for the sake

of precision; of course,
(
R

d
)⋆

is isomorphic to R
d in view of the Riesz representation

theorem. It is also assumed that Rd is endowed with the standard partial order 6; i.e., two

vectors v, w ∈ R
d are related by v 6 w if and only if vi 6 wi for all i = 1, . . . d.

If M1 and M2 are smooth manifolds and f : M1 → M2 is a smooth map, then T f :

TM1 → TM2 denotes the tangent lift of the map f and T ∗ f : T ∗
M2 → T ∗

M1 denotes the

cotangent lift of the map f . T f (x0) : T ∗
x0
M1 → T ∗

f (x0)
M2 will denote the tangent lift of the

map f at x0, and T ∗ f (x0) : T ∗
f (x0)

M2 → T ∗
x0
M1 will denote the cotangent lift of the map f

at x0. Similarly, if f : M1 → R is a smooth function, then df : M1 → T ∗
M1 will denote

the differential of the function f .

In the rest of this section we shall define the basic concepts regarding convex sets and

tents which appear later in the statement of the main result. For the sake of brevity, we will

omit all proofs in this section.

◦ Let d be a positive integer. Recall that a non-empty subset K ⊂ R
d is a cone if for every

y ∈ K and α > 0 we have αy ∈ K . In particular, 0 ∈ R
d belongs to K . A non-empty

subset C ⊂ R
d is convex if for every y, y′ ∈ C and θ ∈ [0, 1] we have (1− θ)y+ θy ′ ∈ C.

◦ A hyperplane Γ in R
d is an (d − 1)-dimensional affine subset of Rd . It can be viewed as

the level set of a nontrivial linear function p : Rd −→ R. If p is given by p(x) = 〈a, x〉

for some a(, 0) ∈ R
d, then

Γ ≔
{

x ∈ R
d
�� 〈a, x〉 = α

}
.

◦ Let Ω be a nonempty set in R
d . By affΩ we denote the set of all affine combinations of

points in Ω. That is,

affΩ =

{ k∑

i=1

θi xi

����
k∑

i=1

θi = 1, xi ∈ Ω for i = 1, . . . , k, and k ∈ N
∗

}
.

In other words, affΩ is also the smallest affine set containing Ω. The relative interior

riΩ of Ω denotes the interior of Ω relative to the affine space affΩ.
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◦ Let M be a convex set and x0 ∈ M. The union of all the rays emanating from x0 and

passing through points of M other than x0 is a convex cone with vertex at x0. The closure

of this cone is called the supporting cone of M at x0.

We will now provide some definitions associated with the method of tents. Although

we will not be directly using the method of tents in the proof of the main result, tents do

appear in our final result, and so one needs to be familiar at least with the basic definition

of what a tent is.

Definition 2.1. LetΩ be a subset of Rd and let x0 ∈ Ω. A convex cone Q ⊂ R
d with vertex

x0 is a tent ofΩ at x0 if there exists a smooth map ρ defined in a neighbourhood of x0 such

that:1

(1) ρ(x) = x + o(x − x0),2 and

(2) there exists ǫ > 0 such that ρ(x) ∈ Ω for x ∈ Q ∩ Bǫ (x0).

We say that a convex cone K ⊂ R
d with vertex at x0 is a local tent ofΩ at x0 if for every

x ∈ ri K there is a convex cone Q ⊂ K with vertex at x0 such that Q is a tent of Ω at x0,

x ∈ ri Q, and aff Q = aff K . Observe that if K is a tent of Ω at x0, then K is a local tent of

Ω at x0.

A tent to a set at a point is just a linear approximation of the set about the point.

Intuitively, it is the set of directions along which it is possible to enter the set from the point.

This intuition is reinforced through the following theorems which characterize the tents of

some sets which appear commonly in applications.

Theorem 2.1 ([Bol75, Theorem 8 on p. 11]). Let Ω be a smooth manifold in R
d and K the

tangent plane to Ω at x0 ∈ Ω. Then K is a tent of Ω at x0.

Theorem 2.2 ([Bol75, Theorem 9 on p. 12]). Given a smooth function ϕ : Rd −→ R, let

x0 be such that Dxϕ(x0) , 0. Define sets Ω,Ω0 ∈ R
d as

Ω ≔
{

x ∈ R
d
�� ϕ(x) 6 ϕ(x0)

}
, Ω0 ≔

{
x0

}
∪
{

x ∈ R
d
�� ϕ(x) < ϕ(x0)

}
.

Then the half-space K given by the inequality 〈Dxϕ(x0), x − x0〉 6 0 is a tent of both Ω

and Ω0 at x0.

Theorem 2.3 ([Bol75, Theorem 10 on p. 12]). Let Ω ⊂ R
d be a convex set and let K be

its supporting cone at x0 ∈ Ω. Then K is a local tent of Ω at x0.

We will also need the following two theorems regarding embedded submanifolds for the

proof of our main result.

Theorem 2.4 ([Lee13, Theorem 6.15 on p. 134]). Every smooth n-manifold admits an

embedding into R
2n+1 as a closed submanifold.

Theorem 2.5 ([Lee13, Lemma 5.34 on p. 115]). Let M be an n-dimensional smooth

manifold and i : M → R
N be a smooth embedding such that i(M) is a closed subset of RN .

If f : M → R is a smooth function, there exists a smooth function f̃ : RN → R such that

f = f̃ ◦ i.

1The theory also works for ρ continuous.

2 Recall the Landau notation ϕ(x) = o(x) that stands for a function ϕ(0) = 0 and limx→0
|ϕ(x)|
|x |
= 0.
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§3. Problem setup

Consider a discrete time control system evolving on an n dimensional smooth manifold

M described by

(3.1) xt+1 = ft (xt, ut ) for t = 0, . . . ,T − 1,

where xt ∈ M, ut ∈ R
m, and ( ft )

T−1
t=0

is a family of maps such that M × R
m ∋ (ξ, µ) 7−→

fs(ξ, µ) ∈ M is continuously differentiable for each s = 0, . . . ,T − 1. We emphasize that

the condition xt ∈ M is not being enforced as a constraint; M is the natural state space of

the control system (3.1). To wit, it is an intrinsic property of the family of the dynamics

( ft )
T−1
t=0

that any trajectory of (3.1) starting on the manifold M lies entirely on M.

Let uk
≔ (uk

t )
T−1
t=0

denote the k th control sequence, and ûk denote its discrete Fourier

transform (DFT). The relationship between ûk and uk is given by [SS03, Chapter 7]:

(3.2)
ûk ≔ (ûk

ξ )
T−1
ξ=0 =

(T−1∑

t=0

uk
t e−i2πξt/T

)T−1

ξ=0

for ξ = 0, . . . ,T − 1

and k = 1, . . . ,m.

Let T ∈ N
∗ be fixed. The objective of this article is to provide first-order necessary

conditions of a finite horizon constrained optimal control problem with continuously dif-

ferentiable stage cost, terminal cost, and inequality and equality constraints. We write our

abstract optimal control problem as:

(3.3)

minimize
(ut )

T−1
t=0

T−1∑

t=0

ct (xt, ut ) + cT (xT )

subject to




dynamics (3.1),

state constraints at each stage t = 0, . . . ,T,

control constraints at each stage t = 0, . . . ,T − 1,

constraints on frequency components of the control sequence.

where M ∋ ξ 7−→ cT (ξ) ∈ R and M × R
m ∋ (ξ, µ) 7−→ ct (ξ, µ) ∈ R are continuously

differentiable functions representing the terminal cost and stage cost at time t respectively,

for t = 0, . . . ,T − 1.

The three types of constraints considered in the optimal control problem (3.3) are as

follows:

(i) State constraints: Let (gt )
T
t=1

be a family of maps such that M ∋ ξ 7−→ gs(ξ) ∈ R
ns

is continuously differentiable for each s = 0, . . . ,T . We restrict the trajectories of the

states (xt )
T
t=0

to be such that

x0 = q0 and gt (xt ) 6 0 for t = 1, . . . ,T .

(ii) Control constraints: Ut ⊂ R
m is a given but otherwise arbitrary non-empty set for

each t = 0, . . . ,T . We impose the requirement that the control action ut at stage t must

lie in Ut :

(3.4) ut ∈ Ut for t = 0, . . . ,T − 1.
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(iii) Frequency constraints: For the k th component of the control sequence uk , we define

F
k ⊂ C

T to be the set of admissible frequency components of its discrete Fourier

transform (DFT) ûk
= (ûk

ξ )
T−1
ξ=0

. For a vector v ∈ C
T we define its support as

supp(v) ≔
{
i ∈ {1, . . . ,T }

�� vi , 0
}
,

and stipulate that

(3.5) ûk ∈ F
k
≔

{
v ∈ C

T
�� supp(v) ⊂ Wk

}
,

where Wk ⊂ {1, . . . ,T } represents the support for the admissible frequencies in the

k th control sequence. The sets
(
Wk

)m
k=1

are assumed to be given as part of the problem

specification. In effect the constraint (3.5) ensures that the frequency spectrum of the

k th component of the control sequence does not contain any non-zero entries lying

outside the set Wk . Frequency constraints of the form (3.5) are required in applications

where the designer is required to suppress certain undesirable frequency components

in the control sequence. For instance, in satelites with flexible structures attached to

them, damages to such structures may occur if their natural frequencies are excited in

course of their motion. In such a situation it is essential to avoid the natural frequencies

of the structures from the spectrum of the control trajectories, and such constraints are

ensured precisely by constraints of the form (3.5). It can be shown that (3.5) can be

recast into a more condensed form as

(3.6) F(u0, . . . , uT−1) =

T−1∑

t=0

Ftut = 0 ,where Ft ∈ R
ℓ×m, for some ℓ ∈ N

∗,

where the matrices
(
Ft

)T−1

t=0
depend on the sets

(
Wk

)m
k=1

. For a more detailed discussion

on how this transformation can be done, we refer the reader to [PC19]. We shall refer

to F as our frequency constraint map.

The abstract optimal control problem (3.3) can now be formally written as:

(3.7)

minimize
(ut )

T−1
t=0

T−1∑

t=0

ct (xt, ut ) + cT (xT )

subject to




dynamics (3.1),

x0 = q0,

gt (xt ) 6 0 for t = 1, . . . ,T,

ut ∈ Ut for t = 0, . . . ,T − 1,∑T−1
t=0 Ftut = 0

An optimal solution (u◦t )
T−1
t=0

of (3.7) is a sequence in
∏T−1

i=0 Ui , and it generates its

corresponding optimal state trajectory (x◦t )
T
t=0

according to (3.1). The pair
(
(x◦t )

T
t=0
, (u◦t )

T−1
t=0

)

is called an optimal state-action trajectory.

At this point we make note of the following notational convention in effect throughout

the sequel: T ∗
x ft (x0, u0)will denote the cotangent lift of the map ft (·, u0) : M → M at x0 and

T ∗
u ft (x0, u0) will denote the cotangent lift of the map ft (x0, ·) : Rm → M at u0. Similarly,

dxct (x0, u0) will denote the differential of the map ct (·, u0) : M → R at x0 and duct (x0, u0)

will denote the differential of the map ct (x0, ·) : Rm → R at u0.
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§4. Main result

The following theorem provides first order necessary conditions for optimal solutions of

(3.7); it is the main result of this article.

Theorem 4.1 (PMP on smooth manifolds). Let
(
(x◦t )

T
t=0
, (u◦t )

T−1
t=0

)
be an optimal state-action

trajectory for (3.7). Then there exist

◦ a trajectory
(
η
f
t

)T
t=1

⊂ T ∗
M with η

f
t ∈ T ∗

x◦
t

M for each t (the adjoint trajectory),

◦ a sequence
(
ηxt

)T
t=1

with ηxt ∈
(
R

nt
)⋆

for each t (the multipliers corresponding to the

point-wise state constraints), and

◦ a pair
(
ηC, η̂u

)
∈ R ×

(
R

ℓ
)⋆

(the abnormal multiplier and the multiplier corresponding

to the frequency constraints, respectively),

satisfying the following conditions:

(PMP-i) non-negativity:

ηC > 0,
(
ηxt

)T
t=1
> 0;

(PMP-ii) non-triviality:

the sequence
(
ηxt

)T
t=1

and the pair
(
ηC, η̂u

)
do not simultaneously van-

ish;

(PMP-iii) state and adjoint system dynamics

x◦t+1 = ft (x
◦
t , u

◦
t ) for t = 0, . . . ,T − 1,

η
f
t = T ∗

x ft (x
◦
t , u

◦
t )η

f

t+1
− ηCdxct (x

◦
t , u

◦
t ) − T ∗gt (x

◦
t )η

x
t for t = 1, . . . ,T − 1;

(PMP-iv) transversality:

η
f

T
= −ηCdcT (x

◦
T ) − T ∗gT (x

◦
T )η

x
T ;

(PMP-v) Hamiltonian maximization, point-wise in time,
〈
T ∗
u ft (x

◦
t , u

◦
t )η

f

t+1
− ηCduct (x

◦
t , u

◦
t ) + FT

t η̂
u, ût

〉
6 0

whenever u◦t + ût ∈ qu
t (u

◦
t ), where qu

t (u
◦
t ) is a local tent at u◦t of the set Ut of

admissible actions;

(PMP-vi) complementary slackness:

(ηxt )
jg

j
t (x

◦
t ) = 0 for all j ∈ [nt ].

We present a complete but elementary proof of Theorem 4.1 in §5.

Discussion. The rest of this section is devoted to a scrutiny of various facets of Theorem 4.1

over a sequence of remarks.

Remark 4.1. One of the points of departure of Theorem 4.1 from the Euclidean version

of the PMP given in [PC19, Theorem 3.1] is (PMP-v). To wit, there appears to be no

natural way of defining a Hamiltonian function analogous to the one given in [PC19,

Theorem 3.1] in the geometric framework. It is also worth noting that the absence of a

natural Hamiltonian is peculiar to the discrete time setting since a Hamiltonian function

arises naturally in the continuous time geometric PMP. Indeed, in continuous time a key

element in the definition of the Hamiltonian is the duality product between the adjoint

trajectory lying on the cotangent bundle and the tangent vector field along the optimal state

trajectory lying on the tangent bundle. In the discrete time geometric setting, however, the
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adjoint trajectory remains on the cotangent bundle of the manifold, but the tangent vector

field is replaced by a discrete trajectory lying on the manifold itself. Since there is no

natural product (pairing) between an element of the cotangent bundle and an element of the

manifold, a natural definition of a Hamiltonian is difficult to arrive at.

Remark 4.2. It is not entirely appropriate to use the term “Hamiltonian maximization

condition” for (PMP-v); we have not even defined a Hamiltonian function here, let alone

derive a maximization condition. We still use this name for the condition because it

is analogous to the actual Hamiltonian maximization condition in the continuous time

counterpart of the PMP. However, such a maximization condition does hold under additional

structural assumptions on the sets of admissible actions and regularity assumptions on the

cost and transition maps. We refer the reader to [KG17, §3.1] for a detailed exposition on

this.

Remark 4.3. The non-triviality condition (PMP-ii) stated here is somewhat non-standard.

The non-triviality condition is usually stated as the adjoint trajectory
(
η
f
t

)T
t=1

and the pair(
ηC, η̂u

)
do not simultaneously vanish. The condition given in (PMP-ii) is slightly weaker

than the standard non-triviality condition; if
( (
η
f
t

)T
t=1
, ηC, η̂u

)
could not simultaneously

vanish, then
( (
ηxt

)T
t=1
, ηC, η̂u

)
would not vanish simultaneously either, since if it did, by

(PMP-iii) and (PMP-iv)
( (
η
f
t

)T
t=1
, ηC, η̂u

)
would also vanish simultaneously.

However, under the additional assumption of the constraints gt being regular (as defined

in Definition 5.1) at x◦t , the condition stated in (PMP-ii) is equivalent to the standard non-

triviality condition. Suppose
((
η
f
t

)T
t=1
, ηC, η̂u

)
did vanish simultaneously, then by (PMP-iii)

and (PMP-iv), we get that

T ∗gt (x
◦
t )η

x
t = 0.

Also, by (PMP-i) and (PMP-vi), we have

ηxt > 0 and (ηxt )
jg

j
t (x

◦
t ) = 0 for all j ∈ [nt ].

If the constraints gt are regular at x◦t , the only ηxt satisfying these three conditions will

be ηxt = 0. Therefore,
( (
ηxt

)T
t=1
, ηC, η̂u

)
would also vanish simultaneously, contradicting

(PMP-ii).

Remark 4.4. First order necessary conditions for locally optimal solutions of finite dimen-

sional constrained optimization problems (such as the KKT conditions) usually accompany

a “constraint qualification” condition which at first glance is completely absent in our dis-

cussion. The difference between conditions (PMP-i) - (PMP-vi) and the standard KKT

conditions is the presence of the abnormal multiplier ηC . Observe that (PMP-i) only guar-

antees that ηC > 0, it is still possible that ηC = 0. When ηC = 0 we arrive at an “abnormal”

situation where the necessary conditions (PMP-i) - (PMP-vi) no longer depend on either the

stage costs or the terminal cost; this situation arises typically when the constraints are so

tight that the cost functions play no key role in the determination of the optimizer(s). In the

context of the PMP, constraint qualification conditions serve the purpose of strengthening

the conditions of Theorem 4.1 by guaranteeing that ηC is non-zero thereby precluding the

aforementioned abnormal situation. Due to the presence of the abnormal multiplier, the

PMP as presented in Theorem 4.1 holds regardless of any such constraint qualification

conditions.

Remark 4.5. The conditions (PMP-i) - (PMP-vi) together constitute a well-defined two point

boundary value problem, with (PMP-iv) along with the initial condition x0 = q0 giving
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the entire set of boundary conditions. Algorithms based on Newton step methods may be

employed to solve this (algebraic) two point boundary value problem; see, eg., [Tré12, §2.4]

for an illuminating discussion in the context of continuous-time problems. Fast solution

techniques for two point boundary value problems is an active field of research.

§5. Proof of the main result

We present a proof of Theorem 4.1 through the following steps:

• Step 1: The configuration manifold is embedded in a Euclidean space and we

convert (3.7) into an equivalent optimal control problem on this Euclidean space.

• Step 2: First order necessary conditions for the equivalent problem on the Euclidean

space are applied to the problem in Step 1.

• Step 3: The necessary conditions in Step 2 are lifted back to the original manifold.

§ 5.1. Step 1. By Theorem 2.4, one can find a smooth embedding of M in R
N , where

N = 2n + 1, such that the image of the embedding is a closed subset of R
N . Let

i : M −→ R
N denote such a smooth embedding.

We observe that i(M) × U ∋ (ξ, µ) 7−→ i ◦ ft (i
−1(ξ), µ) ∈ R

N is a smooth map from

a closed subset of R
N × R

m to R
N . Hence, it can be extended to a smooth map f̃t :

R
N × R

m −→ R
N on the whole of RN . Similarly, i(M) ∋ ξ 7−→ gt ◦ i−1(ξ) ∈ R

nt and

i(M) ∋ ξ 7−→ ct ◦ i−1(ξ) ∈ R are smooth maps from a closed subset of RN to R
nt and

R, and hence they can be extended to corresponding smooth maps g̃t : RN −→ R
nt and

c̃t : RN −→ R.

Now let us define an extended optimal control problem

(5.1)

minimize
(ut )

T−1
t=0

T−1∑

t=0

c̃t (x̃t, ut ) + c̃T (x̃T )

subject to




x̃t+1 = f̃t (x̃t, ut ) for t = 0, . . . ,T − 1,

x̃0 = q̃0 = i(q0),

g̃t (x̃t ) 6 0 for t = 1, . . . ,T,

ut ∈ Ut for t = 0, . . . ,T − 1,∑T−1
t=0 Ftut = 0.

If
(
(xt )

T
t=0
, (ut )

T−1
t=0

)
is a feasible state-action trajectory of (3.7), then

(
(i(xt ))

T
t=0
, (ut )

T−1
t=0

)
is,

clearly, a feasible state-action trajectory of (5.1). If
(
(x̃t )

T
t=0
, (ut )

T−1
t=0

)
is a feasible state-

action trajectory of (3.7), then (x̃t )
T
t=0

⊂ i(M), since x̃0 = i(q0) ∈ i(M) and f̃t is an extension

of i ◦ ft . So, the state-action trajectory
(
(xt )

T
t=0
, (ut )

T−1
t=0

)
is a feasible solution of (3.7) if

and only if
(
(i(xt ))

T
t=0
, (ut )

T−1
t=0

)
is a feasible solution of (5.1). It is also straightforward to

see that the cost incurred by the trajectory
(
(xt )

T
t=0
, (ut )

T−1
t=0

)
is the same as that incurred by(

(i(xt ))
T
t=0
, (ut )

T−1
t=0

)
. Therefore, the state-action trajectory

(
(x◦t )

T
t=0
, (u◦t )

T−1
t=0

)
is an optimal

solution of (3.7) if and only if
(
(i(x◦t ))

T
t=0
, (u◦t )

T−1
t=0

)
is an optimal solution of (5.1).

§5.2. Step 2. In this step we find first order necessary conditions satisfied by a solution of

5.1. To this end, we define the set Ωt ≔
{

x ∈ R
N
�� g̃t (x) 6 0

}
. For x ∈ Ωt we define the

active set of indices At (x) ≔
{
i ∈ [nt]

�� g̃it (x) = 0
}
.
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Definition 5.1. Let ϕ : M → R
d be a smooth map from a smooth manifold M to R

d. We

say that ϕ is regular at x0 ∈ M if the only µ ∈ T ∗
ϕ(x0)

R
d satisfying the three conditions

(i) T ∗ϕ(x0)µ = 0,

(ii) µ > 0, and

(iii) µiϕi(x0) = 0 for all i ∈ [d],

is µ = 0.

Proposition 5.1. If g̃t is regular at x0, then the closed convex cone

Kt (x0) ≔
{
x ∈ R

N
�� Tg̃it (x0)(x − x0) 6 0 for all i ∈ At (x0)

}

is a tent of Ωt at x0. Moreover, the closed convex cone

Kt (x0)
⋆
≔

{
T ∗g̃t (x0)µ

�� µ > 0, µig̃it (x0) = 0
}

is the dual cone of Kt (x0).

Proof. Define Ωi
t ≔

{
x ∈ R

N
�� g̃it (x) 6 0

}
. Two cases arise. If i ∈ At (x0), then the closed

convex cone

Kt (x0)
i
≔

{
x ∈ R

N
�� Tg̃it (x0)(x − x0) 6 0

}
is a tent of Ωi

t at x0.

If i < At (x0), then x0 lies in the interior of Ωi
t , and therefore Kt (x0)

i
= R

N is a tent of Ωi
t

at x0. The condition that g̃t is regular at x0 is equivalent to [Bol75, Theorem 2] the cones

Kt (x0)
i being inseparable. Since Ωt =

⋂nt
i=1
Ω

i
t , it follows from [Bol75, Theorem 11] that

Kt (x0) =
⋂nt

i=1
Kt (x0)

i is a tent of Ωt at x0, proving the first part of the claim.

The fact that Kt (x0)
⋆ is closed and that it is the dual cone of Kt (x0) follows from Farkas’

lemma as given in [Ber09, Proposition 2.3.1]. �

The notational conventions mentioned earlier will be used in this section also. T ∗
x̃

f̃t (x0, u0)

will denote the cotangent lift of the map f̃t (·, u0) : RN → R
N at x0 and T ∗

u f̃t (x0, u0) will

denote the cotangent lift of the map f̃t (x0, ·) : Rm → R
N at u0. Similarly, dx̃ c̃t (x0, u0) will

denote the differential of the map c̃t (·, u0) : RN → R at x0 and du c̃t (x0, u0) will denote the

differential of the map c̃t (x0, ·) : Rm → R at u0.

Proposition 5.2. Let
(
(x̃◦t )

T
t=0
, (u◦t )

T−1
t=0

)
be an optimal state-action trajectory for (5.1). Then

there exist

◦ a trajectory
(
η̃
f
t

)T
t=1

⊂ T ∗
R

N such that η̃
f
t ∈ T ∗

x̃◦
t

R
N ,

◦ a sequence
(
η̃xt

)T
t=1

such that η̃xt ∈
(
R

nt
)⋆

, and

◦ a pair
(
η̃C, ̂̃ηu

)
∈ R ×

(
R

ℓ
)⋆

,

satisfying the following conditions:

(EPMP-i) non-negativity condition

η̃C > 0,
(
η̃xt

)T
t=1
> 0;

(EPMP-ii) non-triviality condition

the multipliers
(
η̃xt

)T
t=1

and the pair
(
η̃C, ̂̃ηu

)
do not simultaneously

vanish;

(EPMP-iii) state and adjoint system dynamics

x̃◦t+1 = f̃t (x̃
◦
t , u

◦
t ) for t = 0, . . . ,T − 1,

η̃
f
t = T ∗

x̃ f̃t (x̃
◦
t , u

◦
t )η̃

f

t+1
− η̃Cdx̃ c̃t(x̃

◦
t , u

◦
t ) − T ∗g̃t (x̃

◦
t )η̃

x
t for t = 1, . . . ,T − 1;
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(EPMP-iv) transversality conditions

η̃
f

T
= −η̃Cdc̃T (x̃

◦
T ) − T ∗g̃T (x̃

◦
T )η̃

x
T ;

(EPMP-v) Hamiltonian maximization condition, point-wise in time,
〈
T ∗
u f̃t (x̃

◦
t , u

◦
t )η̃

f

t+1
− ηCdu c̃t (x̃

◦
t , u

◦
t ) + FT

t
̂̃ηu, ût

〉
6 0

whenever u◦t + ût ∈ qu
t (u

◦
t ), where qu

t (u
◦
t ) is a local tent at u◦t of the set Ut of

admissible actions;

(EPMP-vi) complementary slackness

(η̃xt )
j g̃

j
t (x̃

◦
t ) = 0 for all j ∈ 1, 2, . . . , nt .

Proof. Suppose g̃s is not regular at x̃◦s for some s. Then there exists µ ∈
(
R

ns
)⋆

such

that µ , 0,T ∗g̃s(x̃
◦
s )µ = 0, µ > 0, µig̃is(x̃

◦
s ) = 0. We can now take η̃xs = µ, η̃

x
t = 0 for all

t , s, η̃C = 0, ̂̃ηu
= 0, η̃

f
t = 0 and the conditions of Proposition 5.2 hold trivially.

If not, we can say that for all t ∈ [T ], g̃t is regular at x̃◦t . From Proposition 5.1 we know

that the set

Kt (x0)
⋆
≔

{
T ∗g̃t (x0)µt

�� µit > 0, µit g̃
i
t (x0) = 0

}

is the dual cone of a tent to the set Ωt =
{
x ∈ R

N
�� g̃t (x) 6 0

}
. It follows now that

Proposition 5.2 is just a restatement of [PC19, Proposition C.6] except for the condition

(EPMP-ii). Suppose the multipliers
(
η̃xt

)T
t=1

and the pair
(
η̃C, ̂̃ηu

)
vanish simultaneously,

then from the transversality condition (EPMP-iv),

η̃
f

T
= −η̃Cdc̃T (x̃

◦
T ) − T ∗g̃T (x̃

◦
T )η̃

x
T = 0,

and from the adjoint dynamics (EPMP-iii),

η̃
f
t = T ∗

x̃ f̃t (x̃
◦
t , u

◦
t )η̃

f

t+1
− η̃Cdx̃ c̃t (x̃

◦
t , u

◦
t ) − T ∗g̃t (x̃

◦
t )η̃

x
t

= T ∗
x̃ f̃t (x̃

◦
t , u

◦
t )η̃

f

t+1
for t = 1, . . . ,T − 1.

It follows that the trajectory
(
η̃
f
t

)T
t=1

also vanishes. This contradicts the non-triviality

condition given in [PC19, Proposition C.6], and proves (EPMP-ii). �

§5.3. Step 3. The necessary conditions we arrived at in Proposition 5.2 depends on both

the particular embedding of i : M 7−→ R
N and the extensions

(
g̃t
)T
t=1
,
(
f̃t
)T−1

t=0
,
(
c̃t
)T
t=0

; this

isn’t desirable. In this step we finally arrive at the conditions in Theorem 4.1 from the

conditions in Proposition 5.2.

Proof of Theorem 4.1. Define η
f
t ≔ T ∗i(x◦t )η̃

f
t , η

x
t ≔ η̃

x
t , η

C
= η̃C . Then

η
f
t = T ∗i(x◦t )η̃

f
t

= T ∗i(x◦t )
(
T ∗
x̃ f̃t (x̃

◦
t , u

◦
t )η̃

f

t+1
− η̃Cdx̃ c̃t (x̃

◦
t , u

◦
t ) − T ∗g̃t (x̃

◦
t )η̃

x
t

)

= T ∗
x ( f̃t ◦ i)(x◦t , u

◦
t )η̃

f

t+1
− η̃Cdx(c̃t ◦ i)(x̃◦t , u

◦
t ) − T ∗(g̃t ◦ i)(x◦t )η

x
t .

Since c̃t and g̃t are extensions of ct and gt respectively, c̃t ◦ i = ct, g̃t ◦ i = gt, f̃t ◦ i = i ◦ ft .

Also, ηxt = η̃
x
t , η

C
= η̃C by definition. Therefore,

η
f
t = T ∗

x (i ◦ ft )(x
◦
t , u

◦
t )η̃

f

t+1
− ηCdxct (x̃

◦
t , u

◦
t ) − T ∗gt (x

◦
t )η

x
t

= T ∗
x ft (x

◦
t , u

◦
t )T

∗
x i(x◦t+1)η̃

f

t+1
− ηCdxct (x̃

◦
t , u

◦
t ) − T ∗gt (x

◦
t )η

x
t .
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We now conclude that

η
f
t = T ∗

x ft (x
◦
t , u

◦
t )η

f

t+1
− ηCdxct(x

◦
t , u

◦
t ) − T ∗gt (x

◦
t )η

x
t ,

η
f

T
= −ηCdcT (x

◦
T , u

◦
T ) − T ∗gT (x

◦
T )η

x
T .

This proves (PMP-iii) and (PMP-iv). Since c̃t (x̃
◦
t , u) = ct (x

◦
t , u) for all u ∈ R

m,

du c̃t (x̃
◦
t , u) = duct (x

◦
t , u).

Since i ◦ ft (x
◦
t , u) = f̃t (x̃

◦
t , u) for all u ∈ R

m,

T ∗
u f̃t (x̃

◦
t , u

◦
t )η̃

f
t = T ∗

u (i ◦ ft )(x
◦
t , u

◦
t )η̃

f
t

= T ∗
u ft (x

◦
t , u

◦
t )T

∗
x i(x◦t )η̃

f
t

= T ∗
u ft (x

◦
t , u

◦
t )η

f
t .

Therefore,
〈
T ∗
u ft (x

◦
t , u

◦
t )η

f
t − ηCduct (x

◦
t , u

◦
t ) + FT

t η̂
u, û

〉
=

〈
T ∗
u f̃t (x̃

◦
t , u

◦
t )η̃

f
t − η̃Cdu c̃t (x̃

◦
t , u

◦
t ) + FT

t
̂̃ηu, û

〉
6 0

whenever u◦t + ût ∈ qu
t (u

◦
t ), where qu

t (u
◦
t ) is a local tent at u◦t of the set Ut of admissible

actions. This proves (PMP-v). (PMP-i), (PMP-ii), and (PMP-vi) are just restatements of

(EPMP-i), (EPMP-ii), and (EPMP-vi). �
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