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Abstract

Set point transition of nonlinear plants plays an important role in many applications where dynamic process management
has to be considered. This transition should be rapid – as operation in the new set point increases the economical benefit –
but in compliance with all safety regulations. We present a feedforward approach for a time-minimal set point transition of
single-input, single-output nonlinear plants with respect to input, state and output constraints. The conceptual idea is based
on the design of an optimization problem utilizing a coordinate change of the plant and a special setup function for the output
trajectory. This allows the simultaneous planning of the trajectory and determination of the corresponding control signal. The
formulation of the set point transition as an optimization problem provides a flexible design with respect to the integration of
inequality constraints. Additional flexibility is provided by the type of setup functions, which permit any adjustment of the
output trajectory between the set points. In contrast to other works, we focus on the stationarity of the system output, which
allows a faster transition compared to the requirement to reach a steady state of all states. Finally, we present an example
from the field of process systems engineering to demonstrate the applicability of the proposed methodology.
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1 Introduction1

This contribution considers the classical control engi-2

neering task of time-minimal set point transition. This3

entails the question of how to design a controller that4

brings a plant from one stationary set point ŷ0 to a final5

value ŷT as fast as possible. This type of problem occurs6

in many applications, such as robotics, aerospace or pro-7

cess systems engineering. An overview about different8

time-optimal state transition tasks can be found in the9

introduction of [5]. Frequently, the integration of differ-10

ent types of constraints during the transition process, to11

satisfy safety regulations or proper operation conditions,12

is of particular importance. Especially, if time-minimal13

set point transitions are required, bang-bang solutions14

should be avoided, as this can lead to increased wear of15
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equipment.16

To illustrate our approach, we focus on a process systems17

engineering perspective of the set point transition sce-18

nario. We assume a hierarchical structure of the process19

operation management, where an upper control layer20

(e.g. a Real-Time Optimization Layer) specifies the new21

set points to a controller in a layer below, see [34,8,35].22

Figure 1 illustrates this hierarchical control structure.23

Due to changing process conditions it might be efficient24

to adapt these set points to ensure an overall objective,25

e.g. profit maximization. The exact values for such set26

points depend on the specification of the operational ob-27

jective, which is not discussed in detail in this contribu-28

tion.29

A suitable control structure has to generate a manipu-30

lating signal in a way, that the system moves from an31

initial output level to a final one. In this context, differ-32

ent constraints have to be satisfied to ensure a feasible33

and safe transition.34
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Fig. 1. Hierarchical control structure of a process and related
time scales, typical for chemical process engineering.

Basically, one can distinguish between optimal output1

and state transition, see [30,5,6]. While the former refers2

to the plant output y the later refers to the state coor-3

dinates which should move from an initial value x̂0 to a4

final value. Both problems are related to each other such5

that state transition techniques can be used to achieve6

a controlled output transition [5].7

An additional way of classifying the transition ap-8

proaches depends on whether optimization techniques9

are used to determine the solution or not. For instance,10

the transition problem in [14] is explained by a two-11

point boundary value problem. However, representa-12

tives of the first group are Model Predictive Controllers13

(MPC), where there exists many subtypes. The main14

idea of any MPC is that for a given reference signal,15

the MPC will compute a control signal by repeatedly16

solving an optimal control problem. In this context, the17

future plant behavior is predicted in every control step18

to ensure different kinds of constraints. For further in-19

formation regarding MPC see [26,15,27].20

An important aspect is the reference signal, which is21

classically determined offline in advance. For the defi-22

nition of the reference signal, it is useful to distinguish23

between trajectory tracking and path following, see [10].24

The previously described controllers are usually applied25

online, i.e. in active operation. An alternative option are26

feedforward control strategies where the manipulation27

signal is determined offline in advance. Here, the concept28

of differential flatness is an important aspect which is29

widely used in the literature for system transformation30

and determination of the input signal based on certain31

ansatz functions, see [29,39,16]. For a general introduc-32

tion to this, the reader is referred to [11,21]. A wide vari-33

ety of theoretical concepts exists for feedforward design34

to achieve a set point tracking, see e.g. [7,31,13].35

One of the results of a feedforward control is the refer-36

ence trajectory defining the set point transition, see [36].37

It can be represented by a time-dependent setup func-38

tion. In the literature, various types of trajectory refer-39

ences can be distinguished. While in [14] or [32] polyno-40

mial or cosine-series are used as reference, in [12] Gevrey41

functions and in [37] splines are applied to avoid oscilla-42

tions during set point changes.43

As mentioned above, the integration of different con-44

straints during the transition process are of particular45

importance. In [9] path and actuator constraints are con-46

sidered for a differentially flat system during the track-47

ing. For the case of non-flat systems, in [14] a method48

is proposed to satisfy input and output constraints. The49

conceptual idea lies in the implementation of satura-50

tion functions on a plant in input-output normal form.51

This strategy was also successfully implemented on a dis-52

cretized tubular reactor model with input constraints,53

see [41]. Furthermore, in [19] this technique has been ex-54

tended for the application to optimal control problems55

for a class of nonlinear systems. The result is an uncon-56

strained optimization problem based on a transformed57

system dynamic.58

The method described in the present article can be clas-59

sified as an optimization-based offline method for out-60

put transition, where the output trajectory is planned61

during optimization.62

The main contribution of this work is the design of an op-63

timization problem to achieve a time-minimal set point64

transition using a coordinate change and a parameter-65

ized setup function similar to [14]. However, there are66

two main differences to that work. First, a novel type of67

setup function is used that allows to build up an opti-68

mization problem to guarantee a time-minimal set point69

transition of the set point. Second, we do not need sat-70

uration functions in our formulation to include inequal-71

ity constraints. This provides more flexibility when in-72

tegrating additional constraints.73

The remainder of this paper is structured as follows. In74

Section 2 some general information about the system75

are presented as well as the transition problem is de-76

fined. At the beginning of Section 3 we present some77

theoretical aspects, followed by a brief description of a78

classical solution strategy. In Section 4, we propose an79

optimization-based approach that addresses some of the80

challenges that the classical approach entails. A numer-81

ical example to demonstrate the time-minimal set point82

transition is presented in Section 5, which is followed in83

Section 6 by the conclusion.84

2 Problem Formulation85

Throughout this contribution we use a differential ge-86

ometry notation. This way, we denote coordinates of a87

state manifold and components of vectors by superscript88

indices. In addition, (k) presents the k-th derivative of a89

function with respect to the time.90

In the following, we consider a dynamic input-affine91

single-input, single-output plant given by92

ẋ = f̃ (x) + g̃ (x)u, x(0) = x0 (1a)

y = h (x) . (1b)
Σ̃

{
93

2



Here x ∈ X , dim(X ) = nx denotes the dynamical state,1

u ∈ U , dim(U) = 1 the manipulating variable and2

y ∈ Y, dim(Y) = 1 the plant output. We summarize the3

right hand side of (1a) by X̃(x, u) := f̃ (x) + g̃ (x)u.4

It is assumed that there exist an unique state trajec-5

tory x : R+ → X as a solution of system Σ̃ for a given6

manipulating signal u : X → U . In many applica-7

tions in process systems engineering, the changing rate8

u̇ ∈ Ud := {u̇ ∈ R | ud ≤ u̇ ≤ ud} of the manipulating9

signal is bounded. Additionally, the following assump-10

tions are valid.11

Remark 1 Without loss of generality X can be repre-12

sented locally by all values x ∈ Rnx for those x ≤ x ≤ x.13

The same applies to U and Y.14

Assumption 2 For all output values ŷ ∈ Y, there exists15

a manipulating value û ∈ U and a state variable x̂ ∈16

X̂ ⊆ X such that 0 = f̃ (x̂) + g̃ (x̂) û, ŷ = h(x̂) and x̂ is17

asymptotically stable.18

The asymptotic stability is ensured by the use of a feed-19

back controller.20

As already mentioned, the objective is to find a control21

strategy that allows the plant Σ̃ to move between two22

stationary points. The time horizon of such a transition23

is denoted with T̃ := [0, T ]. A formal definition of the24

transitional task is given in Problem 5.25

Definition 3 (Stationary set point) An output26

value ŷ is called stationary at time T , if there exists an27

s ∈ R+, such that ŷ = y(T ) = y(T + s), when solving Σ̃28

driven by a suitable manipulating signal u(·).29

Remark 4 A conservative possibility to ensure station-30

arity of the set point imposes stationarity of all state co-31

ordinates, i.e. X̃(x̂, û) = 0 where x̂ 7→ h (x̂) = ŷT . The32

corresponding state x̂ is called steady state.33

Problem 5 (Time-minimal set point transition)34

Given the plant (1) with ŷ0 = h(x̂0) and a new set point35

ŷT . Design a feedforward controller that generates a ma-36

nipulating signal u : T̃ × X → U that brings the sys-37

tem Σ̃ from an initial set point ŷ0 = y(0) to a final sta-38

tionary set point ŷT = y(T ). The set of all transition39

times T , for which there exists a signal u : T̃ × X → U40

satisfying the system constraints, is denoted by T :=41

{T ∈ R+ | 0 < T ≤ ∞}. A manipulating signal u(t, x) is42

called suitable, if its domain is given by [0, T ∗]×X with43

T ∗ = inf T.44

It should be noted that there are no terminal constraints45

for the state variables x. Only the output variable y is46

fixed at the end of the transition horizon.47

In the next section we give a brief introduction to some48

theoretical basics which allow to consider the require-49

ment of a stationary output signal in the solution of50

the Problem 5. In addition, a method of nonlinear con-51

trol is presented, which represents the basis for the52

optimization-based approach presented in Section 4.53

This inversion-based method uses a coordinate trans-54

formation to include input and output constraints. In55

Section 4 some modifications are made that allow a56

transformation into an optimization problem, where the57

transition time T is explicitly minimized.58

3 Inversion-Based Control Design59

This section gives a short introduction to a classical60

inversion-based controller design approach. For a more61

detailed overview of the system theoretical concepts used62

in this context, see [28,18]. The general concept behind63

this approach is based on the application of a diffeomor-64

phism to change the coordinates of the plant. This dif-65

feomorphism is generated by the Lie derivatives of the66

map h along the vector field of (1).67

In this context, we need to know the relative degree r of68

the system Σ̃. From the nature of the Lie derivative fol-69

lows that r ≤ nx. The plant Σ̃ is said to be flat if r = nx,70

[11]. In this case, one can evaluate all states x and the71

manipulating signal u(t, x) from a given output signal72

y : T̃ → Y by solving a set of algebraic equations.73

Assumption 6 The plant Σ̃ has a relative degree74

r < nx, that is constant over the domain X .75

In case r < nx, the plant has internal dynamics that can76

not be observed by the output y, [18,17]. Consequently, it77

is possible that the state coordinates still undergo a dy-78

namic evolution whereas the output has reached the sta-79

tionary set point. This property is called zero dynamics.80

Assumption 6 demands for more advanced approaches81

to calculate the manipulating signal. It should be noted82

that this is the case in many real-world applications.83

In order to calculate a manipulating signal u(t, x) and
the state trajectory from a given output signal, a local
diffeomorphism Φ : Rnx → Rnx is applied to change the
coordinates. The first r coordinates are given by

z̃i = Φi(x) :=
(

Li−1

f̃
h
)

(x), i ∈ I (2a)

whereas the last nx − r coordinates

z̃r+j = Φr+j(x), j ∈ J. (2b)

are not specified. We summarize the indices by the sets84

I := {1, . . . , r} and J := {1, . . . , nx − r}. The resulting85

system is called input-output normal form of Σ̃ and the86

last nx − r coordinates are called internal states. The87

unspecified functions in (2b) can be chosen arbitrarily if88

Φ is a diffeomorphism.89
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Remark 7 Based on definition for the relative degree, a1

sufficient condition for a stationary set point ŷ at time2

T can be deduced as follows
{
y(i)(T )

}
i∈I = 0.3

Considering (2) the question arises how the components
of the vector field are expressed in z̃ coordinates and
thus the dynamic equations. It is easy to see that this is
determined by

˙̃zi =
(
LX̃Φi ◦ Φ−1

)
(z̃), i ∈ IX (3)

where X̃ corresponds to the original vector field in the4

right-hand-side of (1). The set IX := {1, . . . , nx} sum-5

marize all indices of all states.6

Remark 8 The dependency of the right-hand side of the7

ordinary differential equation (ODE) on the input u is8

implicitly given by X̃.9

Considering (2a), these new coordinates are the time10

derivatives of the output y and they are related only to11

the vector field f̃ . With (3) follows that the dynamic12

equations of the first r− 1 coordinates correspond to an13

integrator chain. However, the input u has an explicit14

affect on the dynamics of the coordinate z̃r. The internal15

dynamics are determined by (3) for i = r + 1, . . . , nx.16

Recall that one goal of Problem 5 is to determine a ma-
nipulating signal u(t, x). Using (3) and (2), the compo-
nent of the vector field of z̃r is influenced by the input u
and one can deduce

˙̃zr =
(

Lr
f̃
h ◦ Φ−1

)
(z̃) + u

(
Lg̃L

r−1

f̃
h ◦ Φ−1

)
(z̃),

=: α̃−1 (z̃, u) (4)

and we obtain

u =

˙̃zr −
(

Lr
f̃
h ◦ Φ−1

)
(z̃)(

Lg̃L
r−1

f̃
h ◦ Φ−1

)
(z̃)

=: α̃z
(
z̃, ˙̃zr

)
, (5)

or without using Φ−1

u =

˙̃zr −
(

Lr
f̃
h
)

(x)(
Lg̃L

r−1

f̃
h
)

(x)
=: α̃x

(
x, ˙̃zr

)
. (6)

Remark 9 The concept of system inversion is based on17

the definition of a time-dependent signal Λ, either for the18

trajectory z1 (i.e. for the output y) itself or for one of the19

time derivatives so that a suitable manipulating signal20

u : [0, T ]×X → U can be generated. This way, the system21

is able to move to a new operating point z1(T ) = yT22

within [0, T ].23

X Rnx

Rnx Rnx Rnx

ξ

Ψ
z x z̃

ΦΓ

Φ ◦ Γ−1

Fig. 2. Commutative diagram to illustrate the change of
coordinates.

3.1 Classic Approach for Control Design24

Based on the system transformations described in the25

previous section, in [13,14] a method is proposed to26

determine a control law for an input and output con-27

strainted system without optimization. This section28

gives a brief introduction to the approach.29

The inversion-based design strategy introduced in [13]30

can be used to calculate a manipulating signal that con-31

nects an initial steady state x(0) = x̂0 with a final steady32

state x(T ) = x̂T . For this purpose, one needs a state33

x̂T ∈ X for a desired set point ŷT in advance. The transi-34

tion problem becomes a two-point boundary value prob-35

lem (BVP), where nx free parameters have to be deter-36

mined for satisfying all input and output constraints.37

First, we show how the constraints of the output, in-
cluding its time derivatives, are integrated into this ap-
proach. These constraints are formulated as box con-
straints y

i
≤ y(i) ≤ yi, i ∈ I ∪ {0}. Starting from a

system (3) in normal input-output form, it is proposed
to consider this type of constraints by applying another
coordinate transformation Ψ−1 : z̃ 7→ ξ. This diffeomor-
phism maps the time derivative of the output to coordi-
nates that are defined over the set of real numbers. The
commutative diagram in Figure 2 illustrates the change
of coordinates. This local diffeomorphism is given by

z̃i =Ψi(ξ) = µi + νiψi
(
ξi;ψ

i
, ψi

)
, i ∈ I (7a)

for the first r coordinates and

z̃r+j =Ψr+j(ξ) = ξr+j , j ∈ J (7b)

for the last nx−r coordinates. Here, µi, νi, ψ
i
and ψi are38

maps from the coordinates ξ1, . . . , ξi−1 to R. However,39

for i = 1 the corresponding functions are independent40

from ξ. The detailed strategy to calculate these maps41

can be deduced from the fact that z̃i is the time deriva-42

tive of z̃. At this point, one can summarize that µi and νi43

result from applying the chain and product rule of differ-44

entiation. Hence, the terms contain an increasing num-45

ber of partial derivatives. Indeed, these nonlinear terms46

can be determined using computer-algebra-systems like47

CasADi [1].48
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Remark 10 The first state coordinate is given by z̃1 =1

ψ1(ξ1;ψ
1
, ψ1). In this case µ1 = 0, ν1 = 1, ψ

1
= y

0
2

and ψ1 = y0. The second coordinate can written as z̃2 =3

∂ψ1

∂ξ1 ψ
2(ξ2;ψ

2
, ψ2). Again, µ2 = 0 but ν2 = ∂ψ1

∂ξ1 and the4

bounds are ψ
2

= y
1

[
∂ψ1

∂ξ1

]−1

and ψ2 = y1

[
∂ψ1

∂ξ1

]−1

.5

The smooth saturation functions ψi : R →
[
ψ
i
(y
i−1

),6

ψi(yi−1)
]

ensure the compliance with the output con-7

straints. Therefore, the lower and the upper bound8

depend on the original output constraints, see [13] for9

details.10

The transformation Ψ only affects the first r coordi-11

nates. The internal states remain constant, which im-12

plies an identity map for the last nx − r coordinates13

within Ψ. It follows from this local diffeomorphism that14

the resulting system has a triangular structure.15

After all, the dynamic equations in these new coordi-16

nates are given by17

ξ̇i = ψi+1(ξ;ψ
i+1

, ψi+1), i ∈ I \ {r} (8a)

ξ̇r = ψr+1(v;ψ
r+1

, ψr+1), (8b)

ξ̇r+j = LfΦr+j ◦ Γ−1 ◦Ψ(ξ), j ∈ J (8c)

Ξ


18

where v is a new input, that is given by a setup function19

Λ(t; p) satisfying the condition in Remark 7 automati-20

cally. The parameters p are calculated by a numerical21

solver in oder to meet the 2nx initial and terminal con-22

straints. Therefore, the number of parameters depends23

on the dimension of the system to avoid an overdeter-24

mined problem.25

It should be noted that the vector field is generated by26

the saturation functions. For the interested reader, the27

detailed derivation of the system equation can be found28

in Appendix C. The compliance of the constraints for29

the first r states z̃ or the output for the system Σ̃ is30

naturally included in the dynamic equation in Ξ.31

Finally, we come to the input constraints. The concep-32

tual idea is to map these constraints into the component33

of the vector field of z̃r.34

By inserting the lower and upper bounds of the input in35

(4) one can define α̃−1
z (z̃) := min

(
α̃−1
z (z̃, u) , α̃−1

z (z̃, u)
)

36

and α̃
−1
z (z̃) := max

(
α̃−1
z (z̃, u) , α̃−1

z (z̃, u)
)
. Next,37

using (7a) for the first r coordinates one obtains38

α̃−1
ξ (ξ) := α̃−1

z ◦ Ψ(ξ) and α̃
−1
ξ (ξ) := α̃

−1
z ◦ Ψ(ξ). This39

way, the lower and upper bounds for the rth derivative40

of the output signal are replaced by α̃−1
ξ =: y

r
and41

α̃
−1
ξ =: yr. The obtained expressions directly influence42

ψ
r+1

and ψr+1 in (8b).43

A further aspect, presented in [13], is a method to44

determine the transition time depending on the utiliza-45

tion of the input constraints. Therefore, a parameter46

δ ∈ (0, 1) is introduced to measure the aggressiveness of47

the feedforward control. Specifying a certain value for δ48

means to get a corresponding transition time T (δ). For49

δ → 1, the input constraints are highly utilized and the50

manipulating signal becomes a bang-bang control. To51

this end, two additional ODEs (next to (8)) and three52

boundary conditions have to be included to adjust the53

transition time T as an additional parameter.54

4 Time-Minimal Transition Problem55

In the previous section, we discussed a state of the art56

method to solve constrained transition problems. The57

disadvantage of this approach is the fact that only a58

transition between two stationary states is allowed. In59

addition, the method only allows the consideration of60

input and output constraints by a further coordinate61

transformation. A direct optimisation of the transitional62

period is also not possible, which is also reflected in the63

formulation of a BVP.64

In this section we present a modification of the setup65

function that allows a formulation as optimization66

problem and thus also the integration of inequality67

constraints. Finally, we want to compare this approach68

with the one discussed in the previous section.69

4.1 System Formulation70

In the following the plant Σ̃ is time transformed via71

t = τT in oder to map the time horizon [0, T ] of the72

transition to the fixed time horizon [0, 1]. So, T becomes73

a parameter of the system. This technique is widly use74

in the literature, see e.g. [22,24]. The plant dynamic (1a)75

is reformulated as follows ẋτ = T f̃ (x) +T g̃ (x)u, where76

the subscript τ indicates a time derivative with respect77

to τ . Defining f (x) := T f̃ (x) and g (x) := T g̃ (x) yields78

the modified plant model79

ẋτ = f (x) + g (x)u, x(0) = x0 (9a)

y = h (x) . (9b)
Σ

{
80

The state and input constraints given by X and U re-81

main unaffected. An exception is the constraint for the82

input derivative Ud, whose lower and upper bounds are83

weighted by the transition parameter T .84

Remark 11 For the sake of readability, we dispense with85

the explicit mention of the subscript τ .86

In equivalence to the previous section, we apply the
coordinate transformation (2), where the vector field
X(x, u) = f (x) + g (x)u is used. The new state coordi-
nate is denoted by z, where its components are given by

zi = Γi(x) :=
(

Li−1
f h

)
(x), i ∈ I (10)

5



and zj = Γj(x) = Φj(x), j ∈ J. A relation between z1

and z̃ is given in Lemma 12.2

Lemma 12 (Coordinate transformation z 7→ z̃)
Consider the transformation law (2) related to the vector

field X̃. The coordinates of the non-time transformed
system are given by

z̃i = T−(i−1)zi, i ∈ I (11a)

z̃r+j = zr+j , j ∈ J. (11b)

3
The proof can be found in Appendix A. In the following
we proceed from the time-transformed plant Σ in input-
output normal form given by (12). Here, the explicit in-
version of the local diffeomorphism Γ is omitted. This
makes it easier to generate the optimization problem au-
tomatically later. For this purpose, the state transfor-
mation is seen as an additional algebraic equation.

żi =
(
LXΓi

)
(x), i ∈ IX

0 = Γ(x)− z. (12)

As introduced in the previous section, we consider a
suitable time and parameter dependent setup function
Λtf : [0, tf ] × Rr+1 × Rnq → Y, (t, p, q) 7→ Λtf (t, p, q).
This function is at least r + 1 times continuously dif-
ferentiable and describes the time evolution of the out-
put y to realize the time-minimal set point transition as
introduced in Problem 5. As we are looking at a time-
transformed plant here, let tf = 1. There are two types
of parameters in Λtf . The first one is indicated with

p ∈ Rr+1 and its number is directly connected to the
relative degree of the system. The number of the sec-
ond parameter group q ∈ Rnq can be chosen arbitrar-
ily due to two reasons: in our case we have no terminal
constraints which fix the state x at τ = 1 and due to
the fact that we formulate the transition problem as an
optimization problem we can handle underdetermined
systems. Indeed, the set point transition can be compre-
hended as a parameter estimation problem, where the
objective to be minimized is the transition time T .
By integrating the setup function Λ1 into the plant equa-
tions, the number of dynamic equations can be reduced,
since the trajectories

(
z1, . . . , zr

)
are defined in advance.

Thus the first r equations of the diffeomorphism can be
written as

0 =
(

Li−1
f h

)
(x)− Λ

(i−1)
1 (τ ; p, q), i ∈ I.

The remaining equations of the transformation are

0 = Γr+j(x)− zr+j , j ∈ J,

where the time evolution of the states is to be determined
by the solution of the ODE

żr+j =
(
LXΓr+j

)
(x), j ∈ J.

In summary, the inverted system is given as follows4

żr+j =
(
LXΓr+j

)
(x), j ∈ J (13a)

0 =
(

Li−1
f h

)
(x)− Λ

(i−1)
1 (τ ; p, q), i ∈ I, (13b)

0 = Γr+j(x)− zr+j , j ∈ J. (13c)

0 = αx
(
x,Λ

(r)
1 (τ ; p, q)

)
− u (13d)

Υ


5

Remark 13 In (13d) we refer to X and thus renounce6

the ·̃ above the α.7

A reason for using (13d) is that the dynamics of the in-8

ternal states can be dependent on the input u. However,9

if LgΓ
r+j(x) = 0, j ∈ J is fulfilled, then (13d) can be10

omitted when solving Υ. The lifted system Υ includes11

2nx − r + 1 equations with nx − r ODEs and nx + 112

algebraic equations. In this context, the variables x and13

u have algebraic nature.14

A significant reduction of Υ can be achieved if the15

internal states zr+i, i ∈ J are choosen suitable. For16

instance, if a subset of the original state coordinates17

is used, (13c) does not have to be considered. For18

this we define Γr+j(x) := xmj where mj ∈ IX ,r :=19

{k ∈ IX } , |IX ,r| = nx − r and j ∈ J. Note that this20

is only possible if the map Γ generated in this way is21

a diffeomorphism. For the reduced system we obtain22

ẋmj = fmj (x) + gmj (x)u, j ∈ J (14a)

0 =
(

Li−1
f h

)
(x)− Λ

(i−1)
1 (τ ; p, q), i ∈ I, (14b)

0 = αx
(
x,Λ

(r)
1 (τ ; p, q)

)
− u (14c)

Υr


23

which is composed of nx + 1 equations.24

4.2 Formulation of the Optimization Problem25

So far we have generated the inverted system (13)
and (14), respectively. In order to formulate an op-
timization problem for deriving the minimum transi-
tion time T ∗ and the associated manipulation signal
u∗ : [0, T ∗]×X → U , we have to address some issues.
As already mentioned, the time derivative of the input
u plays an important role in the set point transition
in various applications. To get an expression for it, we
differentiate a time transformed version of (4) one more
time with respect to τ . Rewriting the derived equation
we obtain

u̇ =
Λ

(r+1)
1 (τ ; p, q)−

(
LXLrf h

)
(x)(

LgL
r−1
f h

)
(x)

+
u
(

LXLgL
r−1
f h

)
(x)(

LgL
r−1
f h

)
(x)

=γ (τ, x, u; p, q) . (15)

6



Furthermore, the initial and boundary conditions have1

to be determined. From (2) and (6) we obtain z0 :=2

Γ(x0) as initial condition for the dynamic states and3

u0 = αx(x0, 0) for the input variable. This way we state4

z := min
(
Γ(x),Γ(x)

)
and z := max

(
Γ(x),Γ(x)

)
as5

lower and upper bounds of z.6

The boundaries for the input variable remain untouched7

by the reformulation of the system. Considering (15), the8

derivative u̇ is with respect to τ . Thus, for the set of ad-9

missible values we obtain ud ≤ T−1γ (τ, x, u; p, q) ≤ ud.10

In order to formulate the optimization problem, we dis-
cretize the time horizon T by N subintervals. The sam-
pling period ∆τk of each subinterval can be chosen ar-

bitrarily but must satisfy the condition
∑N
k=1 ∆τk = 1.

We further define

S :=

{
τk ∈ R+

∣∣∣∣∣ τk =

k∑
i=1

∆τk, k = 1, . . . , N

}

as the set of all time points where the plant is evaluated.11

The solution of the plant model Υ at time τ is de-
scribed by a one step integration through φτ (w0; q) :=(
x (τ) , z (τ) , u (τ)

)
, where w0 := (x0, z0, u0) summa-

rizes the initial values. Here we assumed that the rela-
tive degree r is known, which means that the parame-
ters p are given. Finally, we are able to formulate the
optimization problem as an NLP of the form

minimize
T, q

T (16a)

subject to

(x, z, u) ≤ φτk
(
w0; q

)
≤ (x, z, u) τk ∈ S, (16b)

ud ≤ T−1γ
(
τk, x(τk), u(τk); p, q

)
≤ ud τk ∈ S. (16c)

Assumption 14 It is assumed that for suitable bound-12

aries the optimization problem (16) is feasible.13

Remark 15 The definition of S and thus the step sizes14

∆τk of the time grid is affected by two aspects. The first15

aspect is related to the implemented solution technique.16

For instance, using a direct single/multiple shooting one17

might apply an equidistant grid. If an orthogonal colloca-18

tion is used, ∆τk is determined by the zeros of orthogonal19

Legendre polynomials. A further aspect concerns the ac-20

curacy in the evaluation of the trajectories and thus the21

constraints. However, the focus of this work is not on the22

comparison of different discretisation methods, hence we23

refer to the corresponding literature [23,22,3,4].24

Remark 16 Problem 16 has a local solution if there exist25

a state x in the preimage of the new set point ŷT that is26

reachable from ŷ0, see [28,18].27

As discussed in Section 3.1, the approach in [14] satisfies28

output constraints. If these types of constraints occur29

in addition to the state constraints, two things have to30

be noted. First, the lower and upper boundaries have to31

be mapped to the z coordinates using Lemma 12. Sec-32

ond, the boundaries thus created may differ from those33

resulting from diffeomorphism. In this case, the more re-34

strictive result for z or z has to be used.35

4.3 Setup Function36

In this subsection, the setup function Λ1 that is essential37

to solve the transition problem (16) is discussed in more38

detail. As we could see above, the function Λ1 plays a39

major role in the system Υ, since it specifies the time40

evolution of the output y and its time derivatives. Con-41

sidering the objective of the transition problem, one can42

describe the set of admissible setup function as follows.43

Definition 17 (Admissible Set Up Function ) A
setup function Λtf : [0, tf ]× Rr+1 × Rnq → Y given by

Λtf (t; p, q) := ŷ0 + y∆λtf (t; p, q). (17)

where y∆ := ŷT − ŷ0, is called an admissible candidate
for Problem 5, if λtf (t; p, q) satisfies

(i) 0 = λ
(k)
tf

(0; p, q), k = 0, . . . , r,

(ii) 1 = λtf (tf ; p, q),

(iii) 0 = λ
(k)
tf

(tf ; p, q), k = 1, . . . , r.

We propose that λtf (t; p, q) is a summation of two terms
in the sense of

λtf (t; p, q) = Atf (t; p) +Btf (1; q).

where Atf is called the basic and Btf variation term.44

The basic term fulfills the boundary conditions of Def-45

inition 17 and depends only on the relative degree r of46

the system Σ. The parameters {pi}i=1,...,r+1 are fix, and47

they shall ensure that there exists a trajectory between48

ŷ0 and ŷT .49

In contrast, the variation term Btf serves to adapt the50

trajectory within the time horizon [0, tf ], whereas on the51

boundaries B
(k)
tf

(0; q) = B
(k)
tf

(tf ; q) = 0, k = 0, . . . , r.52

To this end, the parameters {qv,i}i=1,...,Nv
are free and53

Nv can be arbitrarily chosen. In other words, Nv deter-54

mines the degree of freedom for the transition problem.55

Table 1
Ansatz functions for λtf where τ̂ := t/tf .

Polynomial Trigonometric

Atf (t; p)
r+1∑
i=1

piτ̂
r+i

r+1∑
i=1

pi cos
(
(i− 1)πτ̂

)
Btf (t; q)

Nv∑
i=1

qiτ̂
i
(
τ̂2 − τ̂

)r+2 Nv∑
i=1

qi sinr+2 (iπτ̂)

7



In Table 1, two different approaches for the basic and the1

variation term are given, following the thoughts in [13].2

Remark 18 Applied to a certain transition problem, the3

combination of basic and variation functions is arbitrary.4

Depending on the type of Ansatz function, the calcu-5

lation options for the parameters p are given in Ap-6

pendix B.7

4.4 Application of the Control Law8

The solution of the optimization problem (16) for a given
setup function from Table 1 yields optimal parameters
q∗ as well as a minimum transition time T ∗. The result
is used to design the feedback controller

Kw0 :R×X → U ,
(t, x) 7→ Kw0

(t, x) ,
(19)

for the plant Σ̃, where

Kw0
(t, x) :=

 α̃x

(
x,Λ

(r)
T∗ (t; p, q∗)

)
+ β (t, x) t ∈ [0, T ∗]

σ(x) + β (T ∗, x) t > T ∗,

and

σ(x) :=

{
α̃x (x, 0) internal dynamic is stable,

ûT internal dynamic is unstable

Here, α̃x is responsible for the transition part and it9

can be interpreted as feedforward control. As common10

in literatur, β is an additional feedback part of the con-11

trol law. Even though α̃x will bring the plant along the12

nominal trajectory to the desired set point ŷT , β can13

be used to additionally stabilize the plant along this14

nominal trajectory despite uncertainties. This approach15

is known in literatur as “two-degree-of-freedom con-16

trol” and has already been used for nonlinear systems,17

see [37,20]. For instance, the map β can be represented18

by a PI controller or a LQR that is designed using a lin-19

earization along the nominal state trajectory generated20

by applying α̃x. Further information on the design can21

be found in [25,2,40] The subscript w0 emphasizes that22

the controller was designed for a certain initial value of23

Σ̃. Even if Assumption 2 requires that Σ̃ and thus the24

transformed system Υ is stable, the pure application25

of α̃x can cause a destabilization. For this reason, we26

have to discuss two scenarios below that differ for times27

t > T ∗ after the transition.28

For stable internal dynamic, the control law during and29

after the transition consits of both parts α̃x and β.30

Due to Assumption 14, within [0, T ∗] the trajectories31

are bounded via the constraints (16b). The part α̃x32

guarantees both the transition to the new set point ŷT33

and that the output remains constant after the transi-34

tion, while some of the states can still change. Here α̃x35

compensates the effect on the output with respect to36

those states that are not in steady-state at the end of37

the transition. After the transition, i.e. for t > T ∗, the38

feedforward part α̃x is abused as feedback controller by39

using the actual state x instead of the preplanned one40

(see the example in Section 5). Here, the designed setup41

function Λ
(r)
T∗ is set to be zero such that the output42

remains constant. In this case β is only responsible for43

disturbance rejection and noise compensation and not44

neccessary for nominal stability.45

46

For unstable internal dynamic, α̃x is only used during
transition. Even if the internal state trajectories are un-
stable, they are bounded by the finite transition period
and (16b) of the optimization problem. After the tran-
sition, α̃x is set to be ûT ∈ U , which corresponds to the
stationary input of ŷT by solution of steady-state equa-
tion

0 = f̃ (x̂T ) + g̃ (x̂T ) ûT ,

ŷT = h (x̂T ) .

Since the system is stable again, as required by As-47

sumption 2, the remaining internal states move towards48

their steady-state x̂T . In other words, while the output49

has reached ŷT , the internal states are not necesary at50

x̂T . Without β it is not guaranteed that the output will51

remain at the desired set point. Rather, it can converge52

to another set point, i.e. a stationary offset occurs. To53

compensate for this effect, β is used as a feedback con-54

troller for set point stabilization. It should be noted55

that the state x(T ) ∈ X at the end of the transition has56

to be in a neighborhood of x̂T where no other solutions57

of the stationary equations exist.58

59

4.5 Final Comments60

In Section 3, we introduced the approach of [14]. This61

was applicable to systems with output and input con-62

straints using a special diffeomorphism with saturation63

functions. A time-dependent setup function converts the64

transition problem into a BVP where nx parameters65

needs to be determined as the system moves from an66

initial steady state to a final one. Depending on a prede-67

fined factor δ to model the aggressiveness of the manip-68

ulating signal, the transition time T becomes another69

parameter that has to be determined. This is associated70

with the presence of input constraints. Using gradient-71

based optimization techniques, to minimize the transi-72

tion time directly, causes numerical difficulties due to73

discontinuity operations like min/max operations, tak-74

ing the absolute value or case dependent functions.75

The significant difference to the method described before76
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compared to the new one proposed in the present work,1

is the requirement that we only consider the stationar-2

ity of the set point and the choice of the setup functions3

Λ. The first point provides a faster transition, because4

there is no interest in reaching a steady state. The sec-5

ond point allows us to address the transition problem as6

optimization problem, where the transition time T can7

be minimized directly. Moreover, no additional coordi-8

nate transformations need to be introduced in this way9

to include input, state or output constraints. The struc-10

ture of Λ gives us the flexibility to choose any number11

of optimization variables. In Table 2 the two approaches12

are compared once again.13

Table 2
Comparison of the classic inversion-based control design ap-
proach (IFD) and the proposed time-minimal set point tran-
sition problem (tmSTP) approach.

IFD tmSTP

System Ξ Υ or Υr

Time optimization No Yes

DOF nx + 1 Nv + 1 ≥ 1

Constraints U and Y Ud, U , X and Y
Solution w.r.t. Prob. 5 not suitable suitable

5 Example: van de Vusse reactor14

To demonstrate the proposed approach, we consider the
control of a van de Vusse reactor [38] is a continuously
stirred tank reactor (CSTR) [33]. Inside the reactor the
inlet feed stream of component A is converted according
to the reaction scheme A −−→ B −−→ C, 2 A −−→ D.
The dynamics of this production plant is given by

ċA = q (cA,in − cA)− k1 (ϑ) cA − k2 (ϑ) cA
2 (20a)

ċB = −qcB + k1 (ϑ) cA − k1 (ϑ) cB (20b)

ϑ̇ = q (ϑin − ϑ) + κ1 (ϑc − ϑ) + h(cA, cB , ϑ) (20c)

ϑ̇c = κ2 (ϑ− ϑc) + κ3Q, (20d)

where h(cA, cB , ϑ) is the enthalpy and {ki}i=1,2 are the15

reaction rate coefficients modeled with the Arrhenius16

function.17

This example can be found in [13]. Therefore we consider18

the same setup and control task in order to compare19

both results with each other. The manipulating input20

signal is chosen to the cooling power Q. The objective is21

to change the reactor temperature from an initial value22

ϑ(t = 0) = 373 K up to ϑ(t = T ∗) = 383 K as fast as23

possible. The relative degree is r = 2 which means that24

one has to choose two internal state variables.25

As basic and variational term Atf (τ ; p) and Btf (τ ; q) for26

the setup function Λtf , we use a polynomial ansatz as27

given in Table 1. The degree of freedom is Nv = 10. Fur-28

thermore, two cases are studied. In the first case, we have29

input constraints comparable with [13]. In the second30

case, we additionally constrain the derivative of the ma-31

nipulating signal in the tmSTP. Table 3 summarizes the32

variables and constraints of the optimization problem.33

In both cases we get an optimal solution for the transi-34

tion time T and the parameters q. The optimal time for35

a stationary set point transition is T ∗ ≈ 7.44 min in the36

first and T ∗ ≈ 8.06 min for the second case.37

Figure 3 shows the resulting state and input trajectory38

of the original system Σ̃. Within the transition hori-39

zon [0, T ∗] (blue area) the manipulating signal is calcu-40

lated by the feedback law (19) using the results from the41

transition problem (16). The application of α̃x does not42

change the stability property, so that the plant is still43

stable. Therefore, an additional feedback controller β is44

not required for nominal stability and is set to zero in45

this example. We can see in Figure 3, there are state co-46

ordinates which have not yet reached the steady state47

after t > T ∗. Due to the fact that the controlled plant re-48

mains stable, we apply (19) over the transition horizon,49

where Λ
(r)
T∗ ≡ 0. This ensures that the set point remains50

constant for t > T ∗.51

Comparing the results of the first case with those in52

[13], the state trajectories are similar if the upper input53

constraint becomes active. The analysis of the transition54

time depending on the aggressiveness yields a minimal55

value of Tmin ≈ 11 min for δ → 1 for the approach in [13].56

The resulting control signal is a nearly bang-bang control57

ensuring a transition between two steady states. Since58

we only consider a stationary set point transition, the59

transition process becomes faster. Adding constraints for60

the input derivative make the transition time marginally61

longer, while a bang-bang solution is prevented.62

Table 3
Control setup and constraints.

Variable Constraint Unit

input u = Q ∈ [−8.5, 0] MJ/h

output y = ϑ ∈ [350, 400] K

internal states cA, cB ∈ [0.5, 3.5] kmol/m3

input derivative u̇ = Q̇ ∈ [−2, 2] · 102 MJ/h2

transition time T ∈ R+ min

parameter {qi}i=1,...,10 ∈ [−1, 1] · 104

9
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Fig. 3. State and input variables for a output transition of the reactor temperature. The turquois solid curves show the results
for first and the dashed grey curves for the second case. The blue area illustrates the transition horizon and the red area the
constraints.

6 Conclusion1

This contribution presents a feedforward control scheme2

for a time-minimal set point transition in presence of3

input, state and output constraints. In particular, the4

use of a novel setup function allows both, simultaneous5

planning of the output trajectory and calculation of the6

control signal without violating the initial and terminal7

conditions. Moreover, we are able to formulate the tran-8

sition problem as a parameter optimization problem so9

that the complexity of the time-minimal set point tran-10

sition problem is reduced to the choice of the type of11

ansatz function and the number of free paramter. In con-12

trast to the classical approach from Section 3.1, we fo-13

cus on the stationarity of the final set point and not on14

the fact that the corresponding state coordinates have15

reached their final steady state. This way, the transition16

time can be reduced significantly. Additionally the time17

derivative of the control signal is considered to restrict18

the rate, i.e. the first derivative of the manipulating sig-19

nal, which prevents bang-bang solutions. This is impor-20

tant to minimize wear and to keep the plant in a proper21

operation. Finally, the novel approach is compared with22

the classical method. We have demonstrated the perfor-23

mance of the proposed control strategy by applying it to24

the van de Vusse reactor.25
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A Proof of Lemma 1293

Proof: The diagram in Figure 2 illustrates the follow-
ing. We consider three different coordinate charts x, z
and z̃ of state manifold X . As already stated, the coor-
dinate transformation Φ : x 7→ z̃ is defined by (2) and
the transformation Γ : x 7→ z is given by (10) The first
r coordinates of the transformation Γ : x 7→ z̃ are repre-
sented by For the first r components applies

Γi(x) :=
(

Li−1
f h

)
(x) =

(
Li−1

T f̃
h
)

(x)

=T i−1
(

Li−1

f̃
h
)

(x) = T i−1Φi(x)

In a more compact form, we can write Γ(x) = T ◦ Φ(x)
with T = diag

(
1, T, . . . , T r−1, 1, . . . , 1

)
. Finally, it fol-

lows from Figure 2, that the identity map id and the rule
for inverting a composition of two maps that a change
of coordinates z 7→ z̃ is given by

Φ ◦ Γ−1 = Φ ◦ (T ◦ Φ)
−1

= Φ ◦
(
Φ−1 ◦ T−1

)
= idRnx ◦ T−1.

The diagonal elements of the inverseT−1 = diag
(
1, T−1,94

. . . , T−(r−1), 1, . . . , 1
)

are the components in (11). �95

11



B Parameter of A(τ ; p)1

Based on [32], the coefficients for the polynomial term
are given by

pi =
(−1)i−1(2r + 1)!

(i+ r) · r!(i− 1)!(r + 1− i)! .

The coefficients for the trigonometric series can be com-2

puted with Algorithm 1. It should be noted that a high3

relative degree r can cause an ill-conditioned matrix A.4

At this point further modifications has to be done, e.g.5

regularisation techniques. The rate of convergence of Al-6

gorithm 1 is comparable to determining the solution of7

a linear equation.8

Algorithm 1 Coefficients for the trigonometric series.

1: m := 2; v := 0; I := [0 0]; k := 1
2: for i = 1:2:r do
3: m← m+ 2
4: v ← v + 2
5: I ← [I v v]
6: end for
7: b := zeros(m, 1), b(2)← 1
8: A := zeros(m,m)
9: for i = 1:numel(I) do

10: for ii = 1:m do
11: if mod(k, 2) = 0 then
12: h := pow

(
ii− 1, I(i)

)
13: A(k, ii)← h ∗ cos

(
(ii− 1)π

)
14: else
15: A(k, ii)← pow

(
ii− 1, I(i)

)
16: end if
17: end for
18: k ← k + 1
19: end for
20: p← A\b

C Derive of the System Ξ9

Proof: First, we consider equation (8a). It follows
from (2a) that z̃i+1 is the time derivative of z̃i. With
equation (7a) follows

LY µ
i + LY ν

iψi
(
ξi;ψ

i
, ψi

)
(C.1)

= µi+1 + νi+1ψi+1
(
ξi+1;ψ

i+1
, ψi+1

)
where Y denotes the vector field to be determined. The
first term becomes LY µ

i =
∑nx

j=1
∂µi

∂ξj Y
j . However, µi

depends only on ξ1, . . . , ξi−1, the Lie derivative contains
only the states up to ξi−1. The second term in (C.1) is
splitted into two parts, using the product rule.(

LY ν
i
)
ψi
(
ξi;ψ

i
, ψi

)
︸ ︷︷ ︸

1st part

+ νi
(

LY ψ
i
(
ξi;ψ

i
, ψi

))
︸ ︷︷ ︸

2nd part

Evaluating the 1st part yields ψi
∑nx

j=1
∂νi

∂ξj Y
j .The sec-

ond term can be splitted into two part represented by

νi
(∑nx

j=1,j 6=i
∂ψi

∂ξj Y
j + ∂ψi

∂ξi Y
i
)

. Comparing these ex-

pressions with (C.1), one can summarize

µi+1 =

nx∑
j=1

[(
∂µi

∂ξj
+
∂νi

∂ξj

)
Y j
]

+ νi
nx∑

j=1,j 6=i

∂ψi

∂ξj
Y j

νi+1 =νi
∂ψi

(
ξi;ψ

i
, ψi

)
∂ξi

Y i =ψi+1
(
ξi+1;ψ

i+1
, ψi+1

)
.

Considering the last equation, the individual saturation10

functions define the components of the vector field for the11

first r − 1 coordinates. Next, we come to equation (8b).12

Due to the diffeomorphism Ψ the component of the vec-13

tor field for the r-th coordinate consists of a saturation14

function, too. Instead of ξr+1, one introduce v and call15

it new input. Finally, we consider equation (8c). Due16

to (7b), the internal states are determined by (2b) with17

the associated vector field components (3). If Assump-18

tion 2 holds, one can choose internal states whose dy-19

namic are not influenced by the input u. Additional the20

coordinate transformation from ξ 7→ x are included, see21

the diagram in Figure 2, �22

Another result of this proof is an iteration rule to com-23

pute the transformation law Ψ. Consider the case i = 1,24

where µ1 := 0 and ν1 := 1 are independent on ξ. The25

term µ2 becomes zero, due to the partial derivatives. The26

term ν2 = ∂ψ1

∂ξ1 depends on ξ1.27
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