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Abstract

To address the universal single-rod electrohydraulic system (EHS), a block-strict-feedback model is constructed for the position
control loop design. Different from the previous strict-feedback controllers used in EHS, the proposed controller avoids the
model order-reduction problem and relaxes the strict-feedback model assumption for the single-rod EHS encountered by the
existing results. Hence, all the dynamic physical states of single-rod EHS are directly used in control design. Since the hydraulic
parametric uncertainties and the external load would degrade the output tracking performance of EHS, an adaptive control is
proposed to guarantee all system states globally and uniformly bounded with parameter adaptation. The constraint holding
technique called prescribed performance constraint (PPC) is adopted to improve the output response and to achieve a desirable
performance. The effectiveness of the proposed controller is demonstrated by a comparison with the strict-feedback controller
via both simulation and experiments.

Key words: Single-rod electrohydraulic system; Parametric adaptive control; Block-strict-feedback control; Prescribed
performance constraint.

1 Introduction

Electrohydraulic systems are widely used in mechatron-
ic engineering as they have a superior load efficiency.
However, due to unknown viscous damping, load stiff-
ness, variations in control fluid volumes, physical char-
acteristics of valve, bulk modulus and oil temperature
variations existed in EHS [12], the high-quality dynamic
performance of EHS cannot always be maintained. Fur-
thermore, the external loads of EHS such as the driv-
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ing forces and the torques of mechanical plant are un-
known disturbances. To address these two problems, Yao
[3] proposes a robust adaptive control to estimate the
unknown parameters and the load disturbance with s-
mooth projection [18], [20]. As mentioned in [3], there
exists an internal dynamics in single-rod hydraulic ac-
tuator, due to the pressure dynamics determined by two
chambers’ equations, which cannot be simplified as the
load pressure dynamics of the double-rod hydraulic actu-
ator. Thus, the system stability and performance of the
single-rod EHS need to be rigorously identified to dis-
close the essential difference from the double-rod EHS.
Inspired by these consideration, this paper establishes a
model of the single-rod EHS in the block-strict-feedback
form [9], instead of the pure-feedback form, which elim-
inates the strict-feedback form assumption required by
the model-reduction method.

In lots of previous work, for the convenience of control
design, the single-rod EHS model is written in a strict-
feedback form by model order-reduction, such as the
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work due to Guan [6] and Ahn [1]. Meanwhile, to address
hydraulic parametric uncertainties, some advanced con-
trol methods have been utilized, such as robust H∞ con-
trol [13], output regulation control [16], and parametric
adaptive control [1], [22]. Parametric uncertainties are
also considered in the hydraulic clutch actuator of Auto-
mated Manual Transmissions [5]. On the other hand, to
suppress the external load in EHS, Kim and Won [8], [19]
proposed a high-gain disturbance observer to compen-
sate the unknown external load with guaranteed position
tracking accuracy. However, to the authors’ best knowl-
edge, adaptive controller and disturbance observer de-
signs used in EHS are based on the strict-feedback mod-
el of double-rod actuator and equivalent strict-feedback
form of single-rod actuator. Thus, this study focuses on
the model construction of a class of universal single-rod
EHS and proposes a block-strict-feedback controller by
taking into account parametric uncertainties and exter-
nal load disturbances.

Inspired by previous results on the pure-feedback and
block-strict-feedback nonlinear systems [10], [11], a para-
metric adaptive control is studied for a generic single-
rod EHS based on its original model. Hence, the main
contributions of this paper are twofold:

(i) Different from the model order-reduction solution in
[3] and [6], this paper provides a block-strict-feedback
form for the single-rod EHS. Via this formulation, the
original model of the single-rod EHS is directly used in
control design such that the model order-reduction is
avoided. Thus, the proposed controller is more general
than the ones given in the existing literature. Further-
more, by using this new block-strict-feedback model, the
control performance of the single-rod EHS is better than
that by using the strict-feedback model in single-rod
EHS.

(ii) Without relying on the projection operator employed
in [3], [6] and [21], the unknown bound of the external
load and the unknown hydraulic parameters are esti-
mated online by adaptive laws, which are in a continu-
ous convergent function form. By introducing the pre-
scribed performance constraint, the output position con-
straint is restricted in a desired accuracy. Furthermore,
the adversarial impact due to parametric uncertainties
and load disturbances is overcome by the proposed con-
troller, which are verified via the single-rod EHS exper-
imental bench.

2 Plant Description

2.1 Single-rod EHS

The single-rod EHS is comprised by a servo valve, a
single-rod cylinder, a fixed displacement pump, a motor,
and a relief valve as shown in Fig. 1. The external load
on this EHS is a general disturbance force which drives
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Fig. 1. The single-rod EHS control mechanism

the motion of mechanical plant. The pump is driven by
the motor and outputs the supply pressure ps, and the
pressure threshold of the relief valve is often set as pth ≤
ps. As the spool position of the servo valve xv > 0,
the hydraulic oil passes the servo valve and enters the
non-rod chamber of the cylinder. The forward channel
flow Qa and the cylinder pressure pa are controlled by
xv. The rod chamber is connected to the return channel
and the return pressure is pr. On the other hand, the
rod chamber is switched to the forward channel where
the channel flow Qb and the cylinder pressure pb are
controlled by the servo valve when xv < 0. The channel
flow is cut off as xv = 0 where the cylinder pressure can
be steadily maintained.

The channel flows Qi(i = a, b) inside two cylinder cham-
bers are described as follows [12]:

Qa =

{
Cdwxv

√
2(ps − pa)/ρ xv ≥ 0

Cdwxv
√

2(pa − pr)/ρ xv < 0
,

Qb =

{
Cdwxv

√
2(pb − pr)/ρ xv ≥ 0

Cdwxv
√

2(ps − pb)/ρ xv < 0
,

(1)

where pa and pb are the channel’s pressures inside the two
cylinder chambers,Cd andw are the discharge coefficient
and the area gradient of the servo valve, xv is the valve
spool position, ρ is the density of hydraulic oil.

According to the flow conservation law, the flow-pressure
equations of hydraulic cylinder are given by [13]{

Aaẏ + Ctl(pa − pb) + (V0a +Aay)ṗa/βe = Qa
Abẏ + Ctl(pa − pb)− (V0b −Aby)ṗb/βe = Qb

, (2)

where y and ẏ are the cylinder position and velocity, Ctl
is the total leakage coefficient of the cylinder, βe is the
effective bulk modulus, Aa and Ab are the annulus areas
of two cylinder chambers, V0a and V0b are the initial total
control volumes of two chambers, respectively.
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Then by the Newton’s second law, the mechanical dy-
namic equation is described as follow [6]:

mÿ = paAa − pbAb −Ky − bẏ − FL(y, ẏ, ÿ, t), (3)

where m is the load mass, K is load spring constant, b is
the viscous damping coefficient, FL is the external load
on the EHS.

Finally, the channel flows Qa and Qb of the single-rod
cylinder are controlled by the spool position xv of the
servo valve. Since the cut-off frequency of servo valve is
far greater than the control system bandwidth, the valve
dynamics can be neglected in the modeling, given by [8]

xv = Ksvu, (4)

where Ksv and u are the gain and the control voltage of
the servo valve, respectively.

From (1)-(4), if the four state variables are defined as
X = [x1, x2, x3, x4]T = [y, ẏ, pa, pb]

T , then the state
space model of the single-rod EHS is given by

ẋ1 = x2

ẋ2 = −θ1x1 − θ2x2 + g2(x3Aa − x4Ab) + dL
ẋ3 = f31(x2)θ3 + f32(X)θ4 + θ5g3(x1, x3, u)u

ẋ4 = f41(x2)θ3 + f42(X)θ4 + θ5g4(x1, x4, u)u

, (5)

where dL(X, t) = FL/m, θ1 = K/m, θ2 = b/m, θ3 = βe,

θ4 = βeCtl, θ5 = βeCdwKsv

√
2/ρ, g2 = 1/m and

f31(x2) = −Aax2/(V0a +Aax1)

f32(X) = (x4 − x3)/(V0a +Aax1)

f41(x2) = Abx2/(V0b −Abx1)

f42(X) = (x3 − x4)/(V0b −Abx1)

g3(x1, x3, u) = [s(u)
√
ps − x3

+ s(−u)
√
x3 − pr]/(V0a +Aax1)

g4(x1, x4, u) = −[s(u)
√
x4 − pr

+ s(−u)
√
ps − x4]/(V0b −Abx1)

. (6)

Remark 1 The function s(u) in (6) is a sign function,
s(u) = 1 for u ≥ 0 and 0 for u < 0.

Remark 2 A new state variable x̄3 is introduced as x̄3 =
pa − pbAb/Aa = x3 − x4Ab/Aa, then model (5) can be
rewritten as

ẋ1 = x2

ẋ2 = −θ1x1 − θ2x2 + g2Aax̄3 + dL
˙̄x3 = (f31(x2)−Abf41(x2)/Aa)θ3

+ (f32(x1, x3, x4)−Abf42(x1, x3, x4)/Aa)θ4

+ (g3(x1, x3, u)−Abg4(x1, x4, u)/Aa)θ5u

,

(7)

where x̄3 represents the equivalent load pressure of the
single-rod EHS. However, there are two redundant states
x3 and x4 existed in (7). If these two cylinder cham-
bers’ pressures are assumed to be known and measurable
variables, model (7) can be used in backstepping itera-
tion. Hence, many previous works focused on this order-
reduction model for the single-rod EHS, since the con-
trollers are conveniently designed based on three scalar s-
tates in a lower triangular structure. In fact, it is not nec-
essary to convert (5) into (7). Instead, the block-strict-
feedback structure is adopted in this paper.

2.2 Double-rod EHS

The double-rod EHS can bilaterally drive the external
load while the single-rod EHS drives only in a unidirec-
tional way. The double-rod EHS has the same annulus
areas of two chambers, i.e.,Aa = Ab. Due to ps = pa+pb,
if the load pressure is defined as pL = pa − pb, the t-
wo chambers’ pressures pa = (ps + pL)/2 and pb =
(ps − pL)/2.

Similarly, if the state vector is defined as X =
[x1, x2, x3]T = [y, ẏ, pL]T , then the state space model of
the double-rod EHS is given by [19], [21]

ẋ1 = x2

ẋ2 = −(Kx1 + bx2)/m+Apx3/m+ dL

ẋ3 = −4βeAp
Vt

x2 −
4βeCtl
Vt

x3

+
4βeCdwKsvu

Vt
√
ρ

√
ps − sgn(u)x3

. (8)

3 Model Analysis

Superficially, the single-rod EHS model (5) is a pure-
feedback system [4] due to the control variable u embed-
ded in the expressions of g3 and g4. Without loss of gen-
erality, this pure-feedback model is firstly rewritten as

ẋ1 = x2

ẋ2 = −θ1x1 − θ2x2 + g2(x3Aa − x4Ab) + dL(X, t)

ζ̇ = f34(X, u)[θ3, θ4, θ5]T
,

(9)

where ζ = [x3, x4]T , f34(X, u) =

[
f31 f32 g3(x1, x3, u)u

f41 f42 g4(x1, x4, u)u

]
.

Obviously, (9) is equivalent to
ẋ1 = x2

ẋ2 = −θ1x1 − θ2x2 + g2(x3Aa − x4Ab) + dL(X, t)

ζ̇ = f34(X)[θ3, θ4]T + θ5µ34(X, u0)u

,

(10)
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where u0 locates between zero and u, and f34(X) =[
f31 f32

f41 f42

]
, µ34(X,u0) =

[
g3(x1, x3, u

0)

g4(x1, x3, u
0)

]
.

Lemma 1 The model (10) can be further transformed
into a block-strict-feedback structure.

Proof. In fact, the dynamics of x1 and x2 in (11) are
the typical strict-feedback structure without considering
the dynamics of x3 and x4. According to Remark 1,
the two functions g3(x1, x3, u

0) and g4(x1, x4, u
0) can be

simplified into three cases:

(i) For u0 > 0, g3(x1, x3, u
0) =

√
ps − x3/(V0a + Aax1)

and g4(x1, x4, u
0) = −√x4 − pr/(V0b −Abx1);

(ii) For u0 < 0, g3(x1, x3, u
0) =

√
x3 − pr/(V0a +Aax1)

and g4(x1, x4, u
0) = −√ps − x4/(V0b−Abx1). Thus, the

mean value point u0 is eliminated in g3 and g4 if u0 6= 0
in which case the EHS normally works well.

(iii) For u0 = 0, u = 0, from (5), the single-rod EHS
becomes an autonomous system. Then the spool position
of servo valve is cut off to hold the chambers’ pressures
x3 and x4 with respect to the extern load dL(t). During
the transition, the flow-pressure continuous equation is
neglected and from (5), we have

ẍ1 + θ2ẋ1 + θ1x1 = g2(Aax3 −Abx4) + dL. (11)

Since x3, x4, dL and g2 are bounded, and θ1, θ2 > 0,
then the second-order system with respect to x1 is in-
put to state stable, which indicates x1(t)→ x1eq, where
x1eq is some equilibrium position. If x1eq 6= yd(t), where
yd(t) is the position demand, it indicates that the posi-
tion control objective has not been achieved yet and the
control input u will not be zero in the next transition.
Then case (iii) will switch to the other two cases until
x1 → yd is achieved by the designed controller.

Generally, the effect of the sign function s(u) in different
conditions can be ignored in g3 and g4. Therefore, the
EHS model (10) can be transformed into a block-strict-
feedback structure as follows:

ẋ1 = x2

ẋ2 = −θ1x1 − θ2x2 + g2(x3Aa − x4Ab) + dL(X, t)

ζ̇ = f34(X)[θ3, θ4]T + θ5µ34(X)u

,

(12)
where µ34(X) is a function of the state vector X inde-
pendent of the mean value point u0.

Remark 3 Comparing (7) with (12), it can be seen that
the model order-reduction assumption for the single-rod
EHS is eliminated.

Similarly, the pure-feedback model of the double-rod
EHS (8) can also be transformed into the following strict-
feedback form:

ẋ1 = x2

ẋ2 = f̄2(x1, x2) + ḡ2x3 + ∆2(x1, x2)

ẋ3 = f̄3(x2, x3) + ḡ3(x3)u+ ∆3(x1, x2, x3)

, (13)

where f̄2 = − K̄x1+b̄x2

m , ḡ2 =
Ap

m , f̄3 = − 4β̄eAp

Vt
x2 −

4β̄eC̄tl

Vt
x3, ḡ3 = 4β̄eC̄dw̄Ksv

Vt
√
ρ̄

√
ps − sgn(u)x3, ∆2 and ∆3

are the elements of the lumped parametric uncertainties
and external load disturbance.

Assumption 1 [17] It is assumed that yd(t) and its ith

order derivatives y
(i)
d (t), i = 1, 2, 3 satisfy |yd(t)| ≤ Y0 <

kc1 and
∣∣∣y(i)
d (t)

∣∣∣ ≤ Yi where Yi(i = 0, 1, 2, 3) are positive

constants.

Assumption 2 [3] Due to the physical characteristics
of EHS, all the unknown parameters θi(i = 1, . . . , 5) are
positive and bounded, i.e., there exist the constants θ̄i ≥
θi > 0 such that θi ≤ θi ≤ θ̄i.

Assumption 3 [23] There exist an unknown constant
D ≥ 0, and a non-negative smooth function φ(X, t):
R3 × R+ → R such that ∀X ∈ R3, t ∈ R+, the external
load disturbance dL(X, t) satisfies

|dL(X, t)| ≤ Dφ(X, t). (14)

Lemma 2 [15] The following inequality holds for ∀ε >
0, η ∈ R,

0 ≤ |η| − η tanh(η/ε) ≤ κε, (15)

where κ is a constant that yields κ = e−(κ+1) ≈ 0.2785.

4 Block-strict-feedback Control with Output
Constraint

4.1 Prescribed Performance Constraint

In this section, the prescribed performance constraint
method will be employed to guarantee the satisfactory
dynamic performance of EHS.

Firstly, the tracking error of the cylinder position is
defined as e(t) = x1(t) − yd(t). If the cylinder posi-
tion x1 is constrained in x1(t) ∈ (x1 min, x1 max), and
yd is bounded by ydmin ≤ yd ≤ ydmax, then we have
emin < e(t) < emax, where emin = x1 min − ydmax,
emax = x1 max − ydmin.

Definition 1 [2] A continuous smooth function σ(t) =
(σ(0) − σ(∞))e−λt + σ(∞) is a weighted performance
function if (I) σ(t) is positive and monotonically decreas-
ing; (II) lim

x→∞
σ(t) = σ∞ > 0; (III) σ(∞) < σ(0) < 1.

4



Lemma 3 [2] If the weighted performance function σ(t)
is designed such that emin < e(t)/σ(t) < emax, then e(t)
is constrained in (emin, emax).

Actually, if e(t) ≥ 0, then e(t) ≤ e(t)/σ(t) < emax due
to 0 < σ(t) < 1. On the other hand, if e(t) < 0, then
emin < e(t)/σ(t) < e(t). Thus, the tracking error e(t)
can be always restricted in (emin, emax).

By Lemma 3, the prescribed performance constraint (P-
PC) σ(t)emin < e(t) < σ(t)emax can be used to define a
new state error as follow:

z1(t) = T−1(
e(t)

σ(t)
) = ln(

emax(emin − e(t)/σ(t))

emin(emax − e(t)/σ(t))
), (16)

where T (·) is a smooth function, T−1(·) is its inverse
function.

Theorem 1 The smooth function T (·) is a monotoni-
cally increasing function, and yields the following prop-
erties

emin <T (z1) < emax, T (0) = 0,

lim
z1→−∞

T (z1) = emin, lim
z1→+∞

T (z1) = emax.
(17)

Proof. From (16), the inverse function of z1 is given by

T (z1) =
e(t)

σ(t)
=
eminemax(ez1 − 1)

eminez1 − emax
. (18)

Then the derivative of T (z1) yields

dT

dz1
=
emin(emin − emax)ez1

(eminez1 − emax)2
> 0, (19)

due to emin < 0 and emax > 0. Hence, T (z1) is a mono-
tonically increasing function. Furthermore, due to the
PPC σ(t)emin < e(t) < σ(t)emax with σ(t) > 0, emin <
T (z1) < emax is established. As z1 → ±∞, T (z1) ap-
proaches its bound emax and emin, respectively. If z1 = 0
is substituted into (18), then T (0) = 0.

4.2 Block-strict-feedback Controller Design

For single-rod EHS, its parametric adaptive control
scheme with output constraint is shown in Fig. 2. The
state errors of EHS zi(i = 1, 2, 3) are defined as z1

is given in (16), z2 = x2 − α1, z3 = ζ − α2, where
ζ = [x3, x4]T , αi(i = 1, 2) are the virtual control vari-
ables. Here z3 and α2 are both vectors, while z1, z2 and
α1 are all scalars.

Step 1 : The derivative of z1 is given by

ż1(t) =
∂T−1

∂(e/σ)

d(e/σ)

dt
= r(ė(t)− eσ̇/σ)

= r(x2 − ẏd − eσ̇/σ)

, (20)

where r = ∂T−1

∂(e/σ)
1
σ = emax−emin

(emax−e/σ)(e/σ−emin)
1
σ > 0.

If the candidate Lyapunov function is given by

V1 =
1

2
z2

1 , (21)

then its time derivative yields

V̇1 = z1ż1 = z1r(x2 − ẏd − eσ̇/σ)

= z1r(z2 + α1 − ẏd − eσ̇/σ)
. (22)

If the virtual control variable α1 is designed as

α1 = ẏd + eσ̇/σ − k1z1/r, (23)

where k1 is a positive constant, then substituting (23)

into (22), V̇1 yields

V̇1 = −k1z
2
1 + rz1z2, (24)

where rz1z2 will be compensated in next step.

Step 2 : For simple writing, a symbol µ2 = g2[Aa,−Ab]T
is defined, and the time derivative of z2 can be derived as

ż2 = ẋ2 − α̇1 = −θ1x1 − θ2x2 + µT2 ζ + dL − α̇1

= −θ1x1 − θ2x2 + µT2 (z3 +α2)− α̇1 + dL
.

(25)

If let θ̃i = θi− θ̂i(i = 1, 2), D̃ = D− D̂ be the estimated
errors of the corresponding unknown parameters, where

θ̂i and D̂ are the estimates of θi andD, respectively, then
the candidate Lyapunov function is given by

V2 = V1 +
1

2
z2

2 +

2∑
i=1

1

2λi
θ̃2
i +

1

2λD
D̃2, (26)

where λ1, λ2, λD are positive constants.

Thus, the time derivative of V2 is given by

V̇2 =V̇1 + z2ż2 −
2∑
i=1

1

λi
θ̃i

ˆ̇
θi −

1

λD
D̃

˙̂
D

≤− k1z
2
1 + z2(rz1 − θ1x1 − θ2x2 + µT2 α2 − α̇1)

+ z2µ
T
2 z3 + z2dL −

2∑
i=1

1

λi
θ̃i

ˆ̇
θi −

1

λD
D̃

˙̂
D

.

(27)
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By using Assumption 3, Lemma 2, and let ε = ε0/D,
the following inequality holds:

z2dL ≤ z2Dφ tanh(z2φ/ε) + κDε. (28)

Considering the uncertain parameters θi(i = 1, 2) and
D in (27), the parametric adaptive laws and the virtual
control variable α2 are designed as follows:


˙̂
θ1 = −λ1z2x1 − λ1γ1(θ̂1 − θ10)
˙̂
θ2 = −λ2z2x2 − λ2γ2(θ̂2 − θ20)
˙̂
D = λDz2φ tanh(z2φ/ε)− λDγD(D̂ −D0)

, (29)

α2 =− diag{µ2(1), µ2(2)}−1{k2z2 + rz1

− θ̂1x1 − θ̂2x2 − α̇1 + D̂φ tanh(z2φ/ε)}
, (30)

where k2, γ1, γ2 and γD are positive constants, θ10, θ20

and D0 are the predictive values of the corresponding
parameters, µ2(1) = g2Aa, µ2(2) = −g2Ab.

Furthermore, recalling the Young’s inequality, the fol-
lowing inequalities hold

θ̃i(θ̂i − θi0) ≤ −θ̃2
i /2 + (θi − θi0)2/2, i = 1, 2

D̃(D̂ −D0) ≤ −D̃2/2 + (D −D0)2/2
. (31)

Substituting (28)-(31) into (27), V̇2 yields

V̇2 ≤ ¯̇V2 + z2µ
T
2 z3 + Ω1

¯̇V2 = −k1z
2
1 − k2z

2
2 −

2∑
i=1

γiθ̃
2
i /2− γDD̃2/2 < 0

,

(32)

where Ω1 = γ1(θ1−θ10)2+γ2(θ2−θ20)2+(D−D0)2

2 + κDε.

Step 3 : Similar to Step 2, the time derivative of z3 is
given by

ż3 = ζ̇−α̇2 = f34(X)[θ3, θ4]T +θ5µ34(X)u−α̇2. (33)

The candidate Lyapunov function is given by

V3 = V2 +
1

2
zT3 z3 +

5∑
i=3

1

2λi
θ̃2
i , (34)

where λi(i = 3, 4, 5) are positive constants. The time

derivative of V3 is given by

V̇3 =V̇2 + zT3 ż3 −
5∑
i=3

1

λi
θ̃i

˙̂
θi

≤ ¯̇V2 + zT3 (f34(X)[θ3, θ4]T + θ5µ34(X, u)u− α̇2)

+ z2µ
T
2 z3 −

5∑
i=3

1

λi
θ̃i

˙̂
θi + Ω

.

(35)

To this end, the parametric adaptive laws and the final
control variable u can be derived as

˙̂
θ3 = λ3[f31, f32]Tz3 − λ3γ3(θ̂3 − θ30)
˙̂
θ4 = λ4[f41, f42]Tz3 − λ4γ4(θ̂4 − θ40)
˙̂
θ5 = λ5z

T
3 µ34(X, u)u− λ5γ5(θ̂5 − θ50)

, (36)

u =− 1

θ̂5zT3 µ34(X, u)
(k3z

T
3 z3 + zT3 f34(X)[θ̂3, θ̂4]T

+ z2µ
T
2 z3 − zT3 α̇2)

,

(37)
where k3, γ3, γ4 and γ5 are positive constants, θi0(i =
3, 4, 5) are the initial values of the corresponding param-
eters.

Similarly, by using the Young’s inequality, we have

θ̃i(θ̂i − θi0) ≤ −θ̃2
i /2 + (θi − θi0)2/2, i = 3, 4, 5. (38)

Substituting (36)-(38) into (35), V̇3 yields

V̇3 ≤ ¯̇V2 − k3z
T
3 z3 +

5∑
i=3

γiθ̃i(θ̂i − θi0) + Ω1

≤ −
2∑
i=1

k1z
2
1 − k3z

T
3 z3 −

1

2

5∑
i=1

γiθ̃
2
i −

1

2
γDD̃

2 + Ω2

,

(39)

where Ω2 = Ω1 +
5∑
i=3

γ5
2 (θi − θi0)2.

Theorem 2 Consider the EHS system (5) with the out-
put error transformation (16), the adaptive controller
(37) together with the virtual control functions (23), (30),
and the parametric adaptive laws (29), (36). Under As-
sumptions 1-3 and Lemmas 1-3, for initial condi-
tions X(0) ∈ ΩX0, where ΩX0 := {X ∈ R3 : x1 min <
x1(0) < x1 max, pr < x3(0), x4(0) < ps}, there exist
suitable design parameters ki(i = 1, 2, 3), λj , γj(j =
1, . . . , 5) and γD used in the proposed adaptive control
scheme such that (i) all closed-loop signals including

xi(i = 1, . . . , 4), θ̂j(j = 1, . . . , 5) and D̂ are bounded; (ii)
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the output tracking error e(t) is constrained in the de-
signed PPC σ(t)emin < e(t) < σ(t)emax; (iii) e(t) can be
reduced to arbitrarily small residual set.

Proof. From (21), (26) and (34), the cascade Lya-
punov function V3 > 0 holds. If let c = min{2ki(i =
1, 2, 3), γj(j = 1, . . . , 5), γD}, then from (39), the time
derivative of V3 is given by

V̇3 ≤ −cV3 + Ω2. (40)

Integrating both sides of (40), V̇3 yields

V (t) ≤ V (0)e−ct + Ω2(1− e−ct)/c. (41)

Now from (41), and letting t → ∞, the errors zi(i =

1, 2, 3) and the parametric adaption errors θ̃j , D̃ con-
verge to the bounded residual set Ω2/c. According to
Assumption 1, the demand position yd and its first two
derivatives ẏd and ÿd are bounded, which implies from
the definitions of zi(i = 1, 2, 3) that the system states
xi(i = 1, . . . , 4) are bounded too. Furthermore, it follows

from Assumption 2 that θ̂j = θj − θ̃j is also bounded
for j = 1, . . . , 5. Recalling Assumption 3, we have that
the estimateD is also bounded. Similarly, the parametric
adaption D̂ is bounded. In addition, from Lemma 3 and
the logarithm definition of z1, the output tracking error
e(t) is constrained in the PPC σemin < e(t) < σemax.
Finally, the residual set Ω2/c can be reduced to arbitrar-
ily small by the increasing control gains ki(i = 1, 2, 3),
the adaptation gains γj(j = 1, . . . , 5) and γD.

Remark 4 [14] The control gains ki(i = 1, 2, 3) are
regulated to obtain tradeoff between the tracking perfor-
mances of EHS and the significant chatter of the control
response. Furthermore, the parametric estimation gains
λi(i = 1, . . . , 5), λD, γi(i = 1, . . . , 5) and γD have impact
on the convergent velocities of parametric estimations.
Too large estimation gain will degrade the transient s-
moothness of estimation response.

5 Simulation

5.1 Related parameter setup

The nominal values of the hydraulic parameters C̄d =
0.62, w̄ = 0.024 m, Lmax = 1 m, ps = 40 bar, pr =
2 bar, Aa = 2.01 cm2, Ab = 1.23 cm2, V0a = V0b =
1.01×10−4 m3, C̄tl = 2.5×10−11 m3/(s ·Pa), β̄e = 7000
bar, ρ̄ = 850 kg/m3, K̄ = 500 N/m, b̄ = 50 Ns/m, Ksv

= 4.9×10−7 m/V are fixed. The control parameters are
selected as k1 = 500, k2 = 200 and k3 = 0.25, λ1 = λ2 =
50, λ3 = 5000, λ4 = 30, λ5 = 1× 10−18, λD = 10, γ1 =
γ2 = γ4 = γ5 = 0.1, γ3 = 0.001, λD = 0.3, ε = 0.01,
x1 min = −50 mm, x1 max = 50 mm, ydmin = −50 mm,

EHS (5)

Parametric adaption
law (29)(36)

Adaptive controller with 
output constraint (37)

yd 1x

u

max min
1

min max

( / )ln
( / )

e e ez
e e e









Prescribed performance constraintNew state 
error (16)

,e 

Block-strict-
feedback 

model (12)

Lemma 1

FL

( = 1, 2)iα i

( = 2,3)iz i

( = 1, 2,3)iz iˆ ˆ( = 1, ,5),iθ i D

min max( ) ( ) ( )t e e t t e  

Fig. 2. The Block diagram of the parametric adaptive control
scheme with output constraint

ydmax = 50 mm, σ(0) = 0.95, σ(∞) = 0.03, λ = 2. The
initial predictive values of the hydraulic parameters are
θ10 = 225, θ20 = 20, D0 = 30, θ30 = 6.3 × 108, θ40 =
0.01925, θ50 = 92.871. The cylinder position demand is
given by yd = 50 sin(πt) mm.

Subsequently, the strict-feedback controller for double-
rod EHS (8) is derived as [7]

α1 = ẏd + eσ̇/σ − k1z1/r

α2 = −(k2z2 + rz1 + f̄2 − α̇1)/ḡ2

u = −(k3z3 + f̄3 + ḡ2z2 − α̇2)/ḡ3

, (42)

where z1 is given in (16), z2 = x2−α1, z3 = x3−α2, f̄2,
f̄3, ḡ2, ḡ3 are shown in (13), and the gains ki((i = 1, 2, 3)
are selected to be same in the PAC and MORC.

Likewise, the model order-reduction controller (MORC)
for single-rod EHS (7) is given by

α1 = ẏd + eσ̇/σ − k1z1/r

α2 = −(k2z2 + rz1 − θ10x1 − θ20x2 − α̇1)/(g2Aa)

u = −[k3z3 + (f31 −Abf41/Aa)θ30

+ (f32 −Abf42/Aa)θ40

+ g2Aaz2 − α̇2]/[(g3 −Abg4/Aa)θ50]

,

(43)
where z1 is given in (16), z2 = x2 − α1, z3 = x̄3 − α2.

5.2 Comparison results

The simulation results of the proposed parametric adap-
tive controller (PAC) are shown in Figs. 3-5. The track-
ing error of the cylinder position ∆x1 is always restrict-
ed in the prescribed performance constraint eminσ(t) <
e(t) < emaxσ(t) and the steady stable error of ∆x1 is
less than 1 mm. The control voltage u of servo valve e-
volves with the control saturation level umax = ±10 V.
Furthermore, the chambers’ pressures the two chambers
pressures x3 and x4 never traverse the prescribed ranges
2 = pr ≤ x3, x4 ≤ ps = 40 bar. In fact, the equivalent

7



0 5 10 15 20

−50

0

50

Time(s)

Po
sit

ion
(m

m)

emaxσ

0 5 10 15 20
−100

−50

0

50

100

Time(s)

∆
x 1

(m
m
)

eminσ

0 5 10 15 20
−10

−5

0

5

10

Time(s)

u(
V
)

emaxσ 10 15 20
−5

0

5

Fig. 3. The simulation results of the proposed controller (37):
the red solid and the blue dashed line represent yd and x1
respectively, ∆x1 = yd − x1 is the tracking error, u is the
control voltage of the servo valve.

load pressure of the single-rod cylinder pL dynamically
switches from -5 to 5 bar. The estimates of the six un-
known parameters θ̂i(i = 1, . . . , 5) and D̂ are convergent
to their respective steady values.

Then the simulation results of the controller (42) used for
double-rod EHS (7) is shown in Fig. 6. Due to the strict-
feedback structure of the double-rod EHS, this controller
has a similar tracking position accuracy (∆x1 < 0.5 m-
m) than the block-strict-feedback controller (37) does.
However, the model (7) of double-rod EHS has no infor-
mation about the pressures pa and pb due to the inte-
gration of the load pressure pL = pa− pb. Note that the
simplified load pressure of the double-rod EHS is simi-
lar to the equivalent load pressure pL = pa − pbAb/Aa
of the single-rod cylinder as shown in Fig. 4.

Finally, the simulation results of the model order-
reduction controller (43) used for single-rod EHS (5)
are shown in Fig. 7. The dynamic and steady tracking
accuracy of the cylinder position is poor than that of
the proposed block-strict-feedback controller as shown
in Fig. 3, although the both chambers’ pressures never
leave their respective ranges. Indeed, the integration of
the load pressure pL = pa − pbAb/Aa achieves the mod-
el order-reduction which facilitates the strict-feedback
control design. However, the information about the
two chambers’ pressures is missing in the state feed-
back expression, which degrades the single-rod EHS
performance. Thus, the proposed block-strict-feedback
controller is superior for the single-rod EHS model.

6 Experimental Verification

6.1 Single-rod EHS Bench Setup

To verify the effectiveness of the proposed parametric
adaptive controller, the experimental bench of the single-
rod EHS is set up as shown in Fig. 8. In fact, this
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Fig. 4. The simulation results of the proposed controller (37):
x3 and x4 are two chambers’ pressures, pL = x3 − x4Ab/Aa

is the equivalent load pressure of the single-rod cylinder.
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Fig. 5. The estimates of the six unknown parameters by (29)
and (36).
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Fig. 6. The simulation results of the strict-feedback controller
(42) for double-rod EHS (8): pL is the load pressure of the
double-rod cylinder.

EHS is considered to be an actuator to drive the join-
t motion of one manipulator. The servo valve (Brand:
FF-102/03021T240) and the hydraulic cylinder (Brand:
UG1511R25/16-80) are powered by a small pump sta-
tion (Brand: HY-36CC-01/11kw). The cylinder position
y is measured by a displacement transducer (Brand:
JHQ-GA-40), and two chambers’ pressures pa, pb are
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Fig. 7. The simulation results of the model order-reduction
controller (43) for single-rod EHS (5): x3 and x4 are two
chambers’ pressures of the single-rod cylinder.

measured by a pressure transducer (Brand: BD-Sensors-
DMP-331). The external load is generated by the driven
force of the manipulator. In this study, only the forearm
joint of the manipulator is controlled by the correspond-
ing servo valve, the other joint is fixed.

The system feedback signals (y, ẏ, pa, pb) are sampled by
an NI card (Brand: PCI-6221). After the control algo-
rithm is designed and compiled in MATLAB/Simulink
tool in a host PC, the algorithm code is downloaded in a
target computer by the driven instructions “xpcexplr”.
The interval of the whole algorithm execution should be
appropriately chosen to guarantee that the data sam-
pling and the control algorithm can be completed in each
interval. Here, the control algorithm interval is 1 ms. As
the control voltage u is returned to the NI card, the servo
valve is driven to throttle two cylinder chambers’ flows
Qa and Qb supplied by the pump station. Then the joint
motion of the robotic manipulator will be driven by the
EHS.

The control parameters are selected as k1 = 200, k2 = 70
and k3 = 2, λ1 = λ2 = 60, λ3 = 5000, λ4 = 1000,
λ5 = 1 × 10−16, λD = 20, γ1 = γ2 = 0.02, γ3 = 0.001,
γ4 = 1, γ5 = 0.05, λD = 0.1. The initial values of the
hydraulic parameters are the same as the values used in
the simulation. Taking the mechanical constraint of the
cylinder displacement into account, the cylinder position
demands are selected as yd = 30 sin(πt) + 25 mm and
yd = 30 sin(2πt) + 25 mm.

6.2 Experiment results

The model order-reduction controller (MORC) directly
utilized the nominal parameters of the EHS in backstep-
ping iteration. Hence, for the sinusoidal demand yd =
30 sin(πt) + 25 mm, the tracking performance of the
MORC (|∆x1| < 4 mm) is poor than the parametric
adaptive controller (PAC) (|∆x1| < 1.5 mm) as shown
in Fig. 9. In practice, the hydraulic nominal parameter-

Pump 
station

Hydraulic 
cylinder

Displacement 
transducer

Pressure 
transducer

Accumulator

Servo 
valve

Manipulator

Fig. 8. The experimental bench of single-rod EHS
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Fig. 9. The comparative experimental results:
yd = 30 sin(πt) + 25 mm.

s used in MORC may deviate from their true values in
different working condition, which would lead to degra-
dation of the closed-loop performance. In the proposed
PAC, online parameter adaptation laws, as shown in
Fig. 10, are used to counteract the model parametric un-
certainties, which greatly improves the tracking perfor-
mance. To further show the robustness of the PAC, the
sinusoidal frequency is increased to 1 Hz and the experi-
ment results are shown in Fig. 11. The PAC achieves bet-
ter tracking performance than the MORC, which demon-
strates the superiority of the PAC in dealing with the
hydraulic parametric uncertainties and unknown exter-
nal load encountered by the single-rod EHS. In practice,
the cylinder pressure has more measured sensitive than
the signals of cylinder position and velocity. Hence, in
the presence of many hydraulic uncertainties and un-
known external load, the proposed PAC used the direct
two cylinder pressures has advantage for the uncertain-
ty and disturbance compensation than the MORC used
the equivalent load pressure in single-rod EHS.

7 Conclusion

In this paper, a block-strict-feedback control has been
developed for the universal single-rod EHS to improve
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Fig. 10. The six parametric estimates in experiment.
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Fig. 11. The comparative experimental results:
yd = 30 sin(2πt) + 25 mm.

the dynamic and steady performance in the presence of
hydraulic parametric uncertainties and unknown exter-
nal load. By employing the parametric adaptive control
with PPC technique, all the signals of the single-rod
EHS are uniformly bounded and the tracking error of
the cylinder position converges to a small compact set
without violating the constraints. Meanwhile, the hy-
draulic parametric uncertainties and unknown external
load are handled by the parametric adaptation law. Fi-
nally, the effectiveness of the proposed controller is illus-
trated through both simulation and experiments.
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