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COMPOSITIONAL ABSTRACTION-BASED SYNTHESIS FOR NETWORKS OF

STOCHASTIC SWITCHED SYSTEMS

ABOLFAZL LAVAEI1, SADEGH SOUDJANI2, AND MAJID ZAMANI3,1

Abstract. In this paper, we provide a compositional approach for constructing finite abstractions (a.k.a.
finite Markov decision processes (MDPs)) of interconnected discrete-time stochastic switched systems. The
proposed framework is based on a notion of stochastic simulation functions, using which one can employ an
abstract system as a substitution of the original one in the controller design process with guaranteed error
bounds on their output trajectories. To this end, we first provide probabilistic closeness guarantees between
the interconnection of stochastic switched subsystems and that of their finite abstractions via stochastic sim-
ulation functions. We then leverage sufficient small-gain type conditions to show compositionality results of
this work. Afterwards, we show that under standard assumptions ensuring incremental input-to-state stability
of switched systems (i.e., existence of common incremental Lyapunov functions, or multiple incremental Lya-
punov functions with dwell-time), one can construct finite MDPs for the general setting of nonlinear stochastic
switched systems. We also propose an approach to construct finite MDPs together with their corresponding

stochastic simulation functions for a particular class of nonlinear stochastic switched systems. We show that
for this class of systems, the aforementioned incremental stability property can be readily checked by matrix
inequalities. To demonstrate the effectiveness of our proposed results, we first apply our approaches to a road
traffic network in a circular cascade ring composed of 200 cells, and construct compositionally a finite MDP
of the network. We employ the constructed finite abstractions as substitutes to compositionally synthesize
policies keeping the density of the traffic lower than 20 vehicles per cell. We then apply our proposed tech-
niques to a fully interconnected network of 500 nonlinear subsystems (totally 1000 dimensions), and construct
their finite MDPs with guaranteed error bounds. We compare our proposed results with those available in the
literature.

1. Introduction

Motivations. In recent years, switched systems as an important modeling framework describing many en-
gineering systems have received significant attentions due to their broad presence in real-life applications.
It is understood that by fast switching between even stable subsystems, one may render the overall system
unstable. This issue motivated many researchers over the past few years to investigate mainly which classes
of switching strategies or switching signals preserve stability [Lib03].

In the past few years, there have been many works on the synthesis of controllers rendering switched systems
stable. However, there is only a limited work on the construction of controllers for such systems with respect to
complex logic properties. In fact, automated controller synthesis for complex switched systems to achieve some
high-level specifications, e.g. those expressed as linear temporal logic (LTL) formulae [Pnu77], is inherently
very challenging. To tackle this complexity, one promising approach is to employ finite abstractions of the
given systems as a replacement in the controller synthesis procedure. In this regard, one can first abstract
the original system by a simpler one (with finite-state set), perform analysis and synthesis over the abstract
model (using algorithmic techniques from computer science [BK08]), and finally carry the results back over
the concrete system, by providing guaranteed error bounds in this detour process.

One of the main challenges in the construction of finite abstractions for large-scale complex systems is the curse
of dimensionality: the complexity grows exponentially with the dimension of the state set. Then compositional
abstraction-based techniques are essential to alleviate this complexity. In this respect, one needs to consider the
large-scale switched system as an interconnected system composed of several smaller subsystems, and provide
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a compositional framework for the construction of finite abstractions for the given system using abstractions
of smaller subsystems.

There have been several results, proposed in the past few years, on the construction of (in)finite abstractions
for stochastic systems. Existing results include finite bisimilar abstractions for randomly switched stochastic
systems [ZA14], incrementally stable stochastic switched systems [ZAG15], and stochastic control systems
without discrete dynamics [ZMEM+14]. Infinite approximation techniques for jump-diffusion systems are
also presented in [JP09]. In addition, compositional construction of infinite abstractions for jump-diffusion
systems using small-gain type conditions is discussed in [ZRME17]. Construction of finite abstractions for
formal verification and synthesis is initially proposed in [APLS08]. Extension of such techniques to automata-
based controller synthesis, and improvement of the construction algorithms in terms of scalability are proposed
in [KSL13], and [SA13], respectively.

The formal abstraction-based policy synthesis is discussed in [TMKA13], and the extension of such techniques
to infinite horizon properties is discussed in [TA11]. Compositional construction of finite abstractions is
presented in [SAM17, LSZ18a] using respectively dynamic Bayesian networks and small-gain type conditions.
Compositional infinite and finite abstractions in a unified framework via approximate probabilistic relations are
proposed in [LSZ19a, LSZ19b]. Compositional construction of finite MDPs for large-scale stochastic switched
systems via a dissipativity approach is presented in [LZ19]. Compositional construction of finite abstractions
for networks of not necessarily stabilizable stochastic systems via relaxed small-gain and dissipativity condi-
tions is respectively discussed in [LSZ19f, LSZ19e]. An (in)finite abstraction-based technique for synthesis of
stochastic control systems is recently studied in [NSZ19].

There have been also several results on compositional verification of stochastic models. Similarity relations
over finite-state stochastic systems have been studied either via exact notions of probabilistic (bi)simulation
relations [LS91], [SL95], or approximate versions [DLT08], [DAK12]. Compositional modelling and analysis for
the safety verification of stochastic hybrid systems are investigated in [HHHK13] in which random behaviour
occurs only over the discrete components. Compositional controller synthesis for stochastic games using an
assume-guarantee reasoning for the probabilistic finite automata is proposed in [BKW14]. In addition, com-
positional probabilistic verification via an assume-guarantee framework based on multi-objective probabilistic
model checking is investigated in [KNPQ13] for finite systems. Recently, a quantized feedback control of
nonlinear Markov jump systems, and a dissipative filtering approach for a class of discrete-time switched fuzzy
systems with missing measurements are proposed in [ZSM+18], and [ZSWZ19], respectively.

Our Contributions. Our main contribution here is to provide for the first time a compositional methodology
for the construction of finite MDPs for networks of stochastic switched systems accepting multiple Lyapunov
functions with dwell-time. The proposed technique leverages sufficient small-gain type conditions to establish
the compositionality results which rely on relations between subsystems and their abstractions described by
the existence of stochastic simulation functions. This type of relations enables us to compute the probabilistic
error between the interconnection of concrete subsystems and that of their finite abstractions. In this respect,
we first leverage sufficient small-gain type conditions for the compositional quantification of the probabilistic
distance between the interconnection of stochastic switched subsystems and that of their finite abstractions. We
then show that under standard assumptions ensuring incremental input-to-state stability of a switched system
(i.e., existence of a common incremental Lyapunov function, or multiple incremental Lyapunov functions with
dwell-time), one can construct finite MDPs of nonlinear stochastic switched systems.

We also propose an approach to construct finite MDPs together with their corresponding stochastic simulation
functions for a particular class of nonlinear stochastic switched systems. We show that for this class of
nonlinear switched systems, the aforementioned incremental input-to-state stability property can be readily
checked by matrix inequalities. To demonstrate the effectiveness of our proposed results, we first apply our
approaches to a road traffic network in a circular cascade ring composed of 200 cells, each of which has the
length of 500 meters with 1 entry and 1 way out, and construct compositionally a finite MDP of the network.
We employ the constructed finite abstractions as substitutes to compositionally synthesize policies keeping the
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density of traffic lower than 20 vehicles per cell. Finally, we show the applicability of our results to switched
systems accepting multiple Lyapunov functions with dwell-time. We apply our proposed techniques to a
fully interconnected network of 500 nonlinear subsystems (totally 1000 dimensions) and construct their finite
MDPs with guaranteed error bounds. We compare our results with the compositional techniques proposed
in [SAM17] and [LSZ18b].

Recent Works. Compositional construction of infinite abstractions (reduced-order models) for networks
of stochastic control systems is proposed in [LSMZ17] and [LSZ19c] using small-gain type conditions and
dissipativity-type properties of subsystems and their abstractions, respectively. Compositional construction
of finite abstractions is presented in [LSZ18b] and [LSZ19d] using respectively dissipativity-type reasoning
and small-gain conditions, both for discrete-time stochastic control systems. In comparison with the current
work, the proposed results in [LSZ18b], [LSMZ17], [LSZ19c], [LSZ19d] are about the compositional construc-
tion of (in)finite abstractions for stochastic control systems, while here for the first time we enlarge the class
of systems to switched ones. If switched systems accept common Lyapunov functions, our proposed results
here recover the ones presented in the previous works by considering switching signals as discrete inputs. In
this respect, we make comparisons between our results with the ones proposed in [SAM17] and [LSZ18b] by
providing adequate numerical implementations in the first case study. We show that our proposed results
here which are based on max small-gain conditions significantly outperform the results provided in [SAM17]
and [LSZ18b] which are respectively based on dynamic Bayesian network (DBN) and dissipativity-type condi-
tions. This outperformance is due to the fact that the approximation error in [SAM17] and [LSZ18b] increases
as the number of subsystems grows. Whereas, our error provided in (3.5) does not change since the overall
approximation error is completely independent of the size of the network, and is computed only based on the
maximum error of subsystems instead of being a linear combination of them which is the case in [SAM17]
and [LSZ18b].

2. Discrete-Time Stochastic switched Systems

2.1. Preliminaries. We consider a probability space (Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a sigma-
algebra on Ω comprising subsets of Ω as events, and PΩ is a probability measure that assigns probabilities
to events. We assume that random variables introduced in this article are measurable functions of the form
X : (Ω,FΩ) → (SX ,FX). Any random variable X induces a probability measure on its space (SX ,FX) as
Prob{A} = PΩ{X

−1(A)} for any A ∈ FX . We often directly discuss the probability measure on (SX ,FX)
without explicitly mentioning the underlying probability space and the function X itself.

A topological space S is called a Borel space if it is homeomorphic to a Borel subset of a Polish space (i.e.,
a separable and completely metrizable space). Examples of a Borel space are the Euclidean spaces Rn, its
Borel subsets endowed with a subspace topology, as well as hybrid spaces. Any Borel space S is assumed to be
endowed with a Borel sigma-algebra, which is denoted by B(S). We say that a map f : S → Y is measurable
whenever it is Borel measurable.

2.2. Notation. The following notation is used throughout the paper. The sets of nonnegative and positive
integers are denoted by N := {0, 1, 2, . . .} and N≥1 := {1, 2, 3, . . .}, respectively. Moreover, the symbols R,
R>0, and R≥0 denote, respectively, the sets of real, positive and nonnegative real numbers. For any set X we
denote by 2X the power set of X that is the set of all subsets of X . Given N vectors xi ∈ Rni , ni ∈ N≥1, and
i ∈ {1, . . . , N}, we use x = [x1; . . . ;xN ] to denote the corresponding vector of dimension

∑
i ni. We denote

by ‖ · ‖ and ‖ · ‖2 the infinity and Euclidean norm, respectively. Symbols In, 0n, and 1n denote the identity
matrix in Rn×n and column vectors in Rn×1 with all elements equal to zero and one, respectively. The identity
function and composition of functions are denoted by Id and symbol ◦, respectively. Given a symmetric matrix
M , the minimum and maximum eigenvalues of M are respectively denoted by λmin(M) and λmax(M). We
also denote by diag(a1, . . . , aN ) a diagonal matrix in R

N×N with diagonal matrix entries a1, . . . , aN starting
from the upper left corner. Given functions fi : Xi → Yi, for any i ∈ {1, . . . , N}, their Cartesian product∏N
i=1 fi :

∏N
i=1Xi →

∏N
i=1 Yi is defined as (

∏N
i=1 fi)(x1, . . . , xN ) = [f1(x1); . . . ; fN(xN )]. For any set A we
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denote by AN the Cartesian product of a countable number of copies of A, i.e., AN =
∏∞
k=0 A. A function

γ : R≥0 → R≥0, is said to be a class K function if it is continuous, strictly increasing, and γ(0) = 0. A class
K function γ(·) is said to be a class K∞ if γ(r) → ∞ as r → ∞.

2.3. Discrete-Time Stochastic Switched Systems. We consider stochastic switched systems in discrete-
time defined formally as follows.

Definition 2.1. A discrete-time stochastic switched system (dt-SS) is characterized by the tuple

Σ = (X,P,P ,W, ς, F, Y, h), (2.1)

where:

• X ⊆ Rn is a Borel space as the state space of the system. We denote by (X,B(X)) the measurable
space with B(X) being the Borel sigma-algebra on the state space;

• P = {1, . . . ,m} is the finite set of modes;
• P is a subset of S(N, P ) which denotes the set of functions from N to P ;
• W ⊆ Rp̄ is a Borel space as the internal input space of the system;
• ς is a sequence of independent and identically distributed (i.i.d.) random variables from a sample space

Ω to the measurable space (Vς ,Fς)

ς := {ς(k) : (Ω,FΩ) → (Vς ,Fς), k ∈ N},

• F = {f1, . . . , fm} is a collection of vector fields indexed by p. For all p ∈ P , the map fp : X×W×Vς →
X is a measurable function characterizing the state evolution of the system;

• Y ⊆ Rq is a Borel space as the output space of the system;
• h : X → Y is a measurable function as the output map that maps a state x ∈ X to its output y = h(x).

For a given initial state x(0) ∈ X, input sequence w(·) : N →W and switching signal p(k) : N → P , evolution
of the state of Σ is described as

Σ :

{
x(k + 1) = fp(k)(x(k), w(k), ς(k)),
y(k) = h(x(k)),

k ∈ N. (2.2)

We assume that signal p satisfies a dwell-time condition [Mor96] as defined in the next definition.

Definition 2.2. Consider a switching signal p : N → P and define its switching time instants as

Sp := {sk : k ∈ N≥1}.

Then, p : N → P has dwell-time kd ∈ N [Mor96] if elements of Sp ordered as s1 ≤ s2 ≤ s3 ≤ . . . satisfy
s1 ≥ kd and sk+1 − sk ≥ kd, ∀k ∈ N≥1.

Remark 2.3. Note that the dwell-time in our setting is deterministic and always respected by the controller
designed using the finite MDP. More precisely, switching signals in this work are control inputs and the main
goal is to synthesize them with a specific dwell-time such that outputs of original systems satisfy some high-level
specifications such as safety, reachability, etc. (cf. the first case study). In existing works with the stochastic
dwell-time (e.g. [BDS05], [XLSM13]), switching signals are not control inputs and are randomly changing in
an adversarial manner.

For any p ∈ P , we use Σp to refer to system (2.2) with the constant switching signal p(k) = p for all k ∈ N.
System Σ is called finite if X,W are finite sets and infinite otherwise.

We assume that the output map h satisfies the following general assumption: there exists an L ∈ K∞ such
that ‖h(x)− h(x′)‖ ≤ L (‖x− x′‖) for all x, x′ ∈ X .

Remark 2.4. Note that our assumption on h with L ∈ K∞ is more general than the standard Lipschitz con-
dition in which L is a linear function (i.e., L (α) = Lα for some nonnegative L). Moreover, this assumption
on h is not restrictive provided that h is continuous and one works on a compact subset of X. More precisely,
all uniformly continuous functions automatically satisfy this assumption [Ran03].
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Given the dt-SS in (2.1), we are interested in Markov policies to control the system defined as follows.

Definition 2.5. A Markov policy for the dt-SS Σ in (2.1) is a sequence ρ = (ρ0, ρ1, ρ2, . . .) of universally
measurable stochastic kernels ρn [BS96], each defined on P = {1, . . . ,m}, given X ×W . The class of all such
Markov policies is denoted by ΠM .

In this paper, we are interested in studying interconnected dt-SS without internal inputs that results from the
interconnection of dt-SS having both internal inputs and switching signals. In this case, the interconnected
dt-SS without internal inputs is indicated by the simplified tuple (X,P,P , ς, F, Y, h) with fp : X × Vς → X ,
∀p ∈ P .

2.4. Global Markov Decision Processes. A dt-SS Σ in (2.1) can be equivalently reformulated as an infinite
Markov decision process (MDP) [Kal97, Proposition 7.6, pp. 122]

Σ = (X,P,P ,W, Tx, Y, h), (2.3)

where Tx : B(X)×X×P ×W → [0, 1], is a conditional stochastic kernel that assigns to any x ∈ X , p ∈ P , and
w ∈W a probability measure Tx(·|x, p, w) on the measurable space (X,B(X)) so that for any set A ∈ B(X),

P(x(k + 1) ∈ A|x(k),p(k), w(k)) =

∫

A

Tx(dx
′|x(k),p(k), w(k)).

For given p(·), w(·), the stochastic kernel Tx captures the evolution of the state of Σ and can be uniquely
determined by the pair (ς, f) using (2.2).

In this paper, we consider Σp, ∀p ∈ P , as local MDPs and introduce the notion of global Markov decision
processes as in the next definition. Note that this notion is adapted from the definition of labeled transition
systems defined in [BK08] and modified to capture the stochastic nature of the system. This notion provides
an alternative description of switched systems enabling us to represent a switched system and its finite MDP
in a common framework.

Definition 2.6. Given a dt-SS Σ = (X,P,P ,W, ς, F, Y, h), we define the associated global MDP G(Σ) =
(X,U,W, ς,F,Y,H), where:

• X = X × P × {0, . . . , kd − 1} is the set of states. A state (x, p, l) ∈ X means that the current state of
Σ is x, the current value of the switching signal is p, and the time elapsed since the latest switching
time instant capped by kd is l;

• U = P is the set of external inputs;
• W =W is the set of internal inputs;
• ς is a sequence of i.i.d. random variables;
• F : X×U×W× Vς → X is the one-step transition function given by (x′, p′, l′) = F ((x, p, l), ν, w, ς) if

and only if x′ = fp(x,w, ς), ν = p and the following scenarios hold:
– l < kd− 1, p′ = p, and l′ = l+1: switching is not allowed because the time elapsed since the latest

switch is strictly smaller than the dwell-time;
– l = kd − 1, p′ = p, and l′ = kd − 1: switching is allowed but no switch occurs;
– l = kd − 1, p′ 6= p, and l′ = 0: switching is allowed and a switch occurs;

• Y = Y is the output space;
• H : X → Y is the output map defined as H (x, p, l) = h(x).

We associate respectively to U and W the sets U and W to be collections of sequences {ν(k) : Ω → U, k ∈ N}
and {w(k) : Ω → W, k ∈ N}, in which ν(k) and w(k) are independent of ς(t) for any k, t ∈ N and t ≥ k. We
also denote the initial conditions of p and l by p0 and l0 = 0.

Remark 2.7. Note that in the global MDP G(Σ) in Definition 2.6, we added two additional variables p and
l to the state tuple of the system Σ, in which l is a counter that depending on its value allows or prevents the
system from switching, and p acts as a memory to record the input.
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Remark 2.8. Note that we employ the term “internal” for inputs and outputs of subsystems that are affecting
each other in the interconnection topology: an internal output of a subsystem affects an internal input of
another subsystem. We utilize the term “external” for inputs and outputs that are not employed for the sake
of constructing the interconnection. Properties of the interconnected system are specified over external outputs.
The main goal is to synthesize external inputs (switching signals) to satisfy desired properties over external
outputs.

Proposition 2.9. Global MDP G(Σ) in Definition 2.6 is itself an MDP and the output trajectory of Σ defined
in (2.2) can be uniquely mapped to an output trajectory of G(Σ) and vice versa.

The proof of Proposition 2.9 is provided in the Appendix.

2.5. Finite Markov Decision Processes. In this subsection, we approximate a dt-SS Σ with a finite Σ̂
using Algorithm 1. To construct such a finite approximation, we assume the state and input sets of the dt-SS Σ
are restricted to compact subsets over which we are interested to perform synthesis. The rest of the state sets

can be considered as single absorbing states in both Σ and Σ̂. In order to make the notation easier, we assume
this procedure is already applied to the system and eliminate the absorbing states from the presentation.

Algorithm 1 first constructs a finite partition from the state set X and internal input set W . Then represen-
tative points x̄i ∈ Xi, and w̄i ∈ Wi are selected as abstract states and internal inputs. Transition probabilities

in the finite MDP Σ̂ are also computed according to (2.4). The output map ĥ is the same as h with its domain

restricted to finite state set X̂ (cf. Step 7) and the output set Ŷ is the image of X̂ under h (cf. Step 6).

Algorithm 1 Abstraction of dt-SS Σ by a finite MDP Σ̂

Require: Input dt-SS Σ = (X,P,P ,W, Tx, Y, h)
1: Select finite partitions of sets X,W as X = ∪nx

i=1Xi, W = ∪nw

i=1Wi

2: For each Xi, and Wi, select single representative points x̄i ∈ Xi, w̄i ∈ Wi

3: Define X̂ := {x̄i, i = 1, ..., nx} as the finite state set of MDP Σ̂ with internal input set Ŵ := {w̄i, i =
1, ..., nw}

4: Define the map Ξ : X → 2X that assigns to any x ∈ X , the corresponding partition set it belongs to, i.e.,
Ξ(x) = Xi if x ∈ Xi for some i = 1, 2, . . . , nx

5: Compute the discrete transition probability matrix T̂x for Σ̂ as:

T̂x(x
′|x, p, w) = Tx(Ξ(x

′)|x, p, w), (2.4)

for all x, x′ ∈ X̂, p ∈ P,w ∈ Ŵ
6: Define the output space Ŷ := h(X̂)

7: Define the output map ĥ := h|X̂
Ensure: Finite MDP

Σ̂ = (X̂, P,P , Ŵ , T̂x, Ŷ , ĥ) (2.5)

Remark 2.10. Given a dt-SS Σ = (X,P,P ,W, ς, F, Y, h) with F = {f1, . . . , fm}, the finite MDP Σ̂ constructed
in Algorithm 1 can be represented as

Σ̂ = (X̂, P,P , Ŵ , ς, F̂ , Ŷ , ĥ), (2.6)

with F̂ = {f̂1, . . . , f̂m}, where f̂p : X̂ × Ŵ × Vς → X̂, ∀p ∈ P, is defined as

f̂p(x̂, ŵ, ς) = Πx(fp(x̂, ŵ, ς)), (2.7)

and Πx : X → X̂ is the map that assigns to any x ∈ X, the representative point x̄ ∈ X̂ of the corresponding

partition set containing x. The initial state of Σ̂ is also selected according to x̂0 := Πx(x0) with x0 being the
initial state of Σ.
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Dynamical representation provided by Remark 2.10 uses the map Πx : X → X̂ that satisfies the inequality

‖Πx(x)− x‖ ≤ δ̄, ∀x ∈ X, (2.8)

where δ̄ := sup{‖x − x′‖, x, x′ ∈ Xi, i = 1, 2, . . . , nx} is the state discretization parameter. Now we have all
the ingredients to formally define the finite abstraction of global MDPs as in the following definition.

Definition 2.11. Given a global MDP G(Σ) = (X,U,W, ς,F,Y,H) associated with Σ as in the Definition 2.6,

one can construct its finite abstraction as a finite global MDP Ĝ(Σ̂) = (X̂, Û, Ŵ, ς, F̂, Ŷ, Ĥ), where:

• X̂ = X̂ × P × {0, . . . , kd − 1} is the set of states;

• Û = U = P is the set of external inputs that remains the same as in the global MDP;

• Ŵ = Ŵ is the set of internal inputs;
• ς is a sequence of i.i.d. random variables;

• F̂ : X̂× Û× Ŵ× Vς → X̂ is the one-step transition function given by (x̂′, p′, l′) = F̂ ((x̂, p, l), ν̂, ŵ, ς) if

and only if x̂′ = f̂p(x̂, ŵ, ς) as defined in (2.7), ν̂ = p and the following scenarios hold:
– l < kd − 1, p′ = p, and l′ = l+ 1;
– l = kd − 1, p′ = p, and l′ = kd − 1;
– l = kd − 1, p′ 6= p, and l′ = 0;

• Ŷ = {H(x̂, p, l) | (x̂, p, l) ∈ X̂} is the output set;

• Ĥ : X̂ → Ŷ is the output map defined as Ĥ (x̂, p, l) = H (x̂, p, l) = h(x̂).

In the next section, in order to provide an approach for compositional synthesis of interconnected dt-SS, we
define the notions of stochastic pseudo-simulation and simulation functions. These two notions are employed to
quantify the probabilistic error between a global MDP and its finite abstraction and also their interconnection
without internal inputs, respectively.

3. Stochastic Pseudo-Simulation and Simulation Functions

In this section, we first introduce a notion of stochastic pseudo-simulation functions for dt-SS with internal
inputs. We then define a notion of stochastic simulation functions for switched systems without internal
inputs. We employ these definitions mainly to quantify closeness of a global MDP and its finite abstraction.

Definition 3.1. Consider two global MDPs G(Σ) = (X,U,W, ς,F,Y,H) and Ĝ(Σ̂) = (X̂, Û, Ŵ, ς, F̂, Ŷ, Ĥ). A

function V : X × X̂ → R≥0 is called a stochastic pseudo-simulation function (SPSF) from Ĝ(Σ̂) to G(Σ) if
there exist α ∈ K∞, 0 < κ < 1, ρint ∈ K∞ ∪ {0}, and a constant ψ ∈ R≥0 such that

• ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂,

α(‖H(x, p, l)− Ĥ(x̂, p, l)‖) ≤ V ((x, p, l), (x̂, p, l)), (3.1)

• ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂, ∀ν̂ ∈ Û, ∀w ∈ W, ∀ŵ ∈ Ŵ,

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣ x, x̂, p, l, w, ŵ
]

≤max
{
κV ((x, p, l), (x̂, p, l)), ρint(‖w − ŵ‖), ψ

}
, (3.2)

where the expectation operator E is with respect to ς under the one-step transition of both global MDPs
with ν = ν̂, i.e., (x′, p′, l′) = F ((x, p, l), ν̂, w, ς) and (x̂′, p′, l′) = F̂ ((x̂, p, l), ν̂, ŵ, ς).

If there exists an SPSF V from Ĝ(Σ̂) to G(Σ), this is denoted by Ĝ(Σ̂) �PS G(Σ), and the system Ĝ(Σ̂) is
called an abstraction of concrete (original) global MDP G(Σ).

Now, we modify the above notion for global MDPs without internal inputs by eliminating all the terms related
to w, ŵ which will be employed later for relating interconnected systems.
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Definition 3.2. Consider two global MDPs G(Σ) = (X,U, ς,F,Y,H) and Ĝ(Σ̂) = (X̂, Û, ς, F̂, Ŷ, Ĥ) without

internal inputs. A function V : X× X̂ → R≥0 is called a stochastic simulation function (SSF) from Ĝ(Σ̂) to
G(Σ) if

• there exists α ∈ K∞ such that ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂,

α(‖H(x, p, l)− Ĥ(x̂, p, l)‖) ≤ V ((x, p, l), (x̂, p, l)), (3.3)

• ∀(x, p, l) ∈ X, ∀(x̂, p, l) ∈ X̂, ∀ν̂ ∈ Û,

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣ x, x̂, p, l
]
≤ max

{
κV ((x, p, l), (x̂, p, l)), ψ

}
, (3.4)

for some 0 < κ < 1, and ψ ∈ R≥0, where the expectation operator E is with respect to ς under the
one-step transition of both global MDPs with ν = ν̂, i.e., (x′, p′, l′) = F ((x, p, l), ν̂, ς) and (x̂′, p′, l′) =

F̂ ((x̂, p, l), ν̂, ς).

If there exists an SSF V from Ĝ(Σ̂) to G(Σ), this is denoted by Ĝ(Σ̂) � G(Σ), and Ĝ(Σ̂) is called an abstraction
of G(Σ).

Remark 3.3. Note that conditions (3.1), (3.2), (3.3), and (3.4) roughly speaking guarantee that if the concrete
system and its abstraction start from two close initial conditions, then their outputs remain close (in terms of
expectation) after one step. This type of conditions is closely related to the ones in the notions of (bi)simulation
relations [Tab09].

In order to show the usefulness of SSF in comparing output trajectories of two global MDPs (without internal
inputs) in a probabilistic setting, we need the following technical lemma borrowed from [Kus67, Theorem 3,
pp. 86] with some slight modifications adapted to stochastic switched systems.

Lemma 3.4. Let G(Σ) = (X,U, ς,F,Y,H) be a global MDP with the transition map F : X × U × Vς → X.
Assume there exist V : X → R≥0 and constants 0 < κ < 1, and ψ ∈ R≥0 such that

E

[
V (x′, p′, l′)

∣∣ x, p, l
]
≤ κV (x, p, l) + ψ,

where (x′, p′, l′) = F ((x, p, l), p, ς). Then for any random variable a as the initial state of the underlying dt-SS,
any initial mode p0, and l0 = 0 as the initial counter, the following inequity holds:

P

{
sup

0≤k≤Td

V (x(k), p(k), l(k)) ≥ ε | a, p0

}
≤ δ,

δ :=

{
1− (1− V (a,p0,l0)

ε )(1− ψ
ε )
Td , if ε ≥ ψ

κ ,

(V (a,p0,l0)
ε )(1− κ)Td + ( ψκε )(1− (1 − κ)Td), if ε < ψ

κ .

Now by employing Lemma 3.4, we provide one of the results of the paper.

Theorem 3.5. Let G(Σ) = (X,U, ς,F,Y,H) and Ĝ(Σ̂) = (X̂, Û, ς, F̂, Ŷ, Ĥ) be two global MDPs without internal

inputs. Suppose V is an SSF from Ĝ(Σ̂) to G(Σ). For any random variables a and â as the initial states of

the two dt-SS, any initial mode p0, and for any external input trajectory ν̂(·) ∈ Û that preserves the Markov

property for the closed-loop Ĝ(Σ̂), the following inequality holds:

P

{
sup

0≤k≤Td

‖yaν̂(k)− ŷâν̂(k)‖ ≥ ε | a, â, p0

}
(3.5)

≤

{
1− (1 − V ((a,p0,l0),(â,p0,l0))

α(ε) )(1 − ψ
α(ε) )

Td , if α (ε) ≥ ψ
κ ,

V ((a,p0,l0),(â,p0,l0))
α(ε) (1− κ)Td + ψ

κα(ε) (1− (1− κ)Td), if α (ε) < ψ
κ .

The proof of Theorem 3.5 is provided in the Appendix.
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4. Compositional Abstractions for Interconnected Switched Systems

In this section, we analyze networks of stochastic switched subsystems by driving a small-gain type condition
and discuss how to construct their finite global MDP together with a simulation function based on the
corresponding SPSF of their subsystems.

4.1. Concrete Interconnected Stochastic Switched Systems. Suppose we are given N concrete sto-
chastic switched subsystems

Σi = (Xi, Pi,Pi,Wi, ςi, Fi, Yi, hi), i ∈ {1, . . . , N}, (4.1)

with its equivalent global MDP G(Σi) = (Xi,Ui,Wi, ςi,Fi,Yi,Hi), in which their internal inputs and outputs
are partitioned as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ], yi = [yi1; . . . ; yiN ], (4.2)

and their output spaces and functions are of the form

Yi =

N∏

j=1

Yij , hi(xi) = [hi1(xi); . . . ;hiN (xi)]. (4.3)

We interpret the outputs yii as external ones, whereas the outputs yij with i 6= j are internal ones which are
utilized to interconnect stochastic switched subsystems. For the interconnection, we assume that wij is equal to
yji if there is a connection from Σj to Σi, otherwise we put the connecting output function identically zero, i.e.
hji ≡ 0. Now, we are ready to define the interconnection of concrete dt-SS Σi = (Xi, Pi,Pi,Wi, ςi, Fi, Yi, hi).

Definition 4.1. Consider N ∈ N≥1 dt-SS Σi = (Xi, Pi,Pi,Wi, ςi, Fi, Yi, hi), with the input-output configura-
tion as in (4.2) and (4.3). The interconnection of Σi, ∀i ∈ {1, . . . , N}, is the concrete interconnected dt-SS

Σ = (X,P,P , ς, F, Y, h), denoted by I(Σ1, . . . ,ΣN), such that X :=
∏N
i=1Xi, P :=

∏N
i=1 Pi, P :=

∏N
i=1 Pi,

F :=
∏N
i=1 Fi, Y :=

∏N
i=1 Yii, and h =

∏N
i=1 hii, subjected to the following constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : wji = yij , Yij ⊆Wji.

Similarly, given global MDPs G(Σi) = (Xi,Ui,Wi, ςi,Fi,Yi,Hi), i ∈ {1, . . . , N}, one can also define the inter-
connection of concrete global MDPs G(Σi) as I(G(Σ1), . . . ,G(ΣN )).

Now assume that any concrete global MDP G(Σi) = (Xi,Ui,Wi, ςi,Fi,Yi,Hi), i ∈ {1, . . . , N}, admits an

abstract global MDP Ĝ(Σ̂i) = (X̂i, Ûi, Ŵi, ςi, F̂i, Ŷi, Ĥi) together with an SPSF Vi from Ĝ(Σ̂i) to G(Σi) with
the corresponding functions and constants denoted by αi, ρinti, κi and ψi as in Definition 3.1.

4.2. Compositional Abstractions of Interconnected Switched Systems. In order to provide composi-
tionality results of the paper, we first define the abstraction map Πwji on Wji that assigns to any wji ∈ Wji, a

representative point w̄ji ∈ Ŵji of the corresponding partition set containing wji. The mentioned map satisfies

‖Πwji(wji)− wji‖ ≤ µ̄ji, ∀wji ∈ Wji, (4.4)

where µ̄ji is an internal input discretization parameter defined similar to δ̄ in (2.8).

Remark 4.2. Note that condition (4.4) helps us to choose quantization parameters of internal input sets freely
at the cost of incurring an additional error term formulated in ψ in (8.2).

Now, we define a notion of the interconnection of abstract global MDPs Ĝ(Σ̂i) = (X̂i, Ûi, Ŵi, ςi, F̂i, Ŷi, Ĥi).

Definition 4.3. Consider N ∈ N≥1 abstract global MDPs Ĝ(Σ̂i) = (X̂i, Ûi, Ŵi, ςi, F̂i, Ŷi, Ĥi), with the input-

output configuration similar to (4.2) and (4.3). The interconnection of Ĝ(Σ̂i), ∀i ∈ {1, . . . , N}, is the

interconnected abstract global MDP Ĝ(Σ̂) = (X̂, Û, ς, F̂, Ŷ, Ĥ), denoted by Î(Ĝ(Σ̂1), . . . , Ĝ(Σ̂N )), such that

X̂ :=
∏N
i=1 X̂i, Û :=

∏N
i=1 Ûi, Ŷ :=

∏N
i=1 Ŷii, Ĥ =

∏N
i=1 Ĥii, and the map F̂ =

∏N
i=1 F̂i is the transition
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function given by (x̂′, p′, l′) = F̂ ((x̂, p, l), ν̂, ŵ, ς) if and only if x̂′ = f̂p(x̂, ŵ, ς) as defined in (2.7), ν̂ = p and
the following scenarios hold for any i ∈ {1, . . . , N}:

• li < kdi − 1, p′i = pi, and l
′
i = li + 1;

• li = kdi − 1, p′i = pi, and l
′
i = kdi − 1;

• li = kdi − 1, p′i 6= pi, and l
′
i = 0;

where x̂ = [x̂1; . . . ; x̂N ], ν̂ = [ν̂1; . . . ; ν̂N ], p = [p1; . . . ; pN ], l = [l1; . . . ; lN ], and subjected to the following
constraint:

∀i, j ∈ {1, . . . , N}, i 6= j : ŵji = Πwji (ŷij), Πwji (Ŷij) ⊆ Ŵji.

Now we raise the following small-gain assumption inspired by the corresponding one in [DRW07, DRW10] to
establish the main compositionality results of the paper.

Assumption 1. Assume that there exist K∞ functions δ̃f , λ̄ such that (λ̄−Id) ∈ K∞ and K∞ functions κij
defined as

κij(s) :=

{
κis if i = j,

(Id + δ̃f ) ◦ ρinti ◦ λ̄ ◦ α−1
j (s) if i 6= j,

satisfying

κi1i2 ◦ κi2i3 ◦ · · · ◦ κir−1ir ◦ κiri1 < Id (4.5)

for all sequences (i1, . . . , ir) ∈ {1, . . . , N}r and r ∈ {1, . . . , N}.

The small-gain condition (4.5) implies the existence of K∞ functions σi > 0 [Rüf10, Theorem 5.5], satisfying

max
i,j

{
σ−1
i ◦ κij ◦ σj

}
< Id, i, j = {1, . . . , N}. (4.6)

In the next theorem, we leverage small-gain Assumption 1 to quantify the error between the interconnection
of concrete global MDPs and that of their finite abstractions in a compositional manner.

Theorem 4.4. Consider the interconnected global MDP G(Σ) = (X,U, ς,F,Y,H) induced by N ∈ N≥1 global

MDPs G(Σi). Suppose that each G(Σi) admits a finite abstraction Ĝ(Σ̂i) together with an SPSF Vi. If
Assumption 1 holds, then function V ((x, p, l), (x̂, p, l)) defined as

V ((x, p, l), (x̂, p, l)) := max
i

{σ−1
i (Vi((xi, pi, li), (x̂i, pi, li)))}, (4.7)

for σi as in (4.6), is an SSF function from Î(Ĝ(Σ̂1), . . . , Ĝ(Σ̂N )) to I(G(Σ1), . . . ,G(ΣN)) provided that
maxi σ

−1
i is concave.

The proof of Theorem 4.4 is provided in the Appendix.

5. Construction of Stochastic Pseudo-Simulation Functions

In this section, we impose conditions on the concrete dt-SS Σ enabling us to find an SPSF from finite abstrac-

tion Ĝ(Σ̂) to G(Σ). The required conditions are first presented in a general setting for nonlinear stochastic
switched systems in Subsection 5.1 and then represented via some matrix inequalities for a class of nonlinear
stochastic switched systems in Subsection 5.2.

5.1. General Setting of Nonlinear Stochastic Switched Systems. The stochastic pseudo-simulation

function from finite global MDP Ĝ(Σ̂) to G(Σ) is established under the assumption that the original discrete-
time stochastic switched subsystems Σp, ∀p ∈ P, are incrementally input-to-state stable (δ-ISS) as in the
following definition.
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Definition 5.1. A dt-SS Σp is called incrementally input-to-state stable (δ-ISS) if there exists function
Vp : X ×X → R≥0 such that ∀x, x′ ∈ X, ∀w,w′ ∈ W , the following two inequalities hold:

αp(‖x− x′‖) ≤ Vp(x, x
′) ≤ αp(‖x− x′‖), (5.1)

and

E

[
Vp(fp(x,w, ς), fp(x

′, w′, ς))
∣∣ x, x′, w, w′

]
≤ κ̄pVp(x, x

′) + ρ̄intp(‖w − w′‖), (5.2)

for some αp, αp ∈ K∞, 0 < κ̄p < 1, and ρ̄intp ∈ K∞ ∪ {0}.

The above definition is a stochastic counterpart of the δ-ISS Lyapunov functions defined for discrete-time
deterministic systems in [TRK17]. In order to construct a stochastic pseudo-simulation function from finite

global MDP Ĝ(Σ̂) to G(Σ), we need to raise the following assumptions. These assumptions are essential to
show the main result of this section in Theorem 5.4.

Assumption 2. There exists µ ≥ 1 such that

∀x, x′ ∈ X, ∀p, p′ ∈ P, Vp(x, x
′) ≤ µVp′(x, x

′). (5.3)

Remark 5.2. Assumption 2 is a standard one in switched systems accepting multiple Lyapunov functions with
dwell-time similar to the one appeared in [Lib03, equation (3.6)]. Note that if function Vp is quadratic in the

form of (5.8), there always exists µ ≥ 1 satisfying Assumption 2 as µ = max(
λmax(Mp)
λmin(Mp′ )

,
λmax(Mp′ )

λmin(Mp)
), ∀p, p′ ∈ P

(cf. the second case study). If there exists a common Lyapunov function between all modes, then µ = 1 and
V ((x, p, l), (x̂, p, l)) = V (x, x̂) (cf. the first case study).

Assumption 3. Assume that ∀p ∈ P , there exists a function γp ∈ K∞ such that

Vp(x, x
′)− Vp(x, x

′′) ≤ γp(‖x
′ − x′′‖), ∀x, x′, x′′ ∈ X. (5.4)

Remark 5.3. As shown in [ZMEM+14] and by employing the mean value theorem, inequality (5.4) is always
satisfied for any differentiable function Vp restricted to a compact subset of X ×X. Note that if one chooses

Vp = ((x− x′)TMp(x− x′))
1
2 , ∀x, x′ ∈ X, then γp(s) =

√
λmax(Mp)s, ∀s ∈ R≥0.

Under Definition 5.1 and Assumptions 2 and 3, the next theorem shows a relation between G(Σ) and Ĝ(Σ̂)
via establishing a stochastic pseudo-simulation function between them.

Theorem 5.4. Let Σ = (X,P,P ,W, ς, F, Y, h) be a switched system with its equivalent global MDP G(Σ) =

(X,U,W, ς,F,Y,H). Consider an abstract global MDP Ĝ(Σ̂) = (X̂, Û, Ŵ, ς, F̂, Ŷ, Ĥ) constructed as in Definition
2.11. For any p ∈ P , let Σp be an incrementally input-to-state stable (δ-ISS) dt-SS via a function Vp as in

Definition 5.1, and Assumptions 2 and 3 hold. Let ǫ > 1. If ∀p ∈ P , kd ≥ ǫ ln(µ)
ln(1/κ̄p)

+ 1, then

V ((x, p, l), (x̂, p, l)) =
1

κ̄
l/ǫ
p

Vp(x, x̂), (5.5)

is an SPSF from Ĝ(Σ̂) to G(Σ).

The proof of Theorem 5.4 is provided in the Appendix.

Remark 5.5. Note that if there exists a common Lyapunov function V : X ×X → R≥0 between all switching
modes p ∈ P satisfying Definition 5.1 and Assumptions 2 (with µ = 1) and 3, then V ((x, p, l), (x̂, p, l)) =
V (x, x̂) and Definitions 3.1 and 3.2 reduce to Definitions 3.1 and 9.1 in [LSZ19d] (cf. the first case study).

Now we provide similar results as in Subsection 5.1 but tailored to a particular class of nonlinear stochastic
switched systems.
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5.2. Stochastic Switched Systems with Slope Restrictions on Nonlinearity. Here, we focus on a
specific class of discrete-time nonlinear stochastic switched systems Σ together with quadratic functions Vp
and provide an approach on the construction of their finite global MDPs. The class of nonlinear switched
systems is given by

Σ :

{
x(k + 1) = Ap(k)x(k) + Ep(k)ϕp(k)(Fp(k)x(k)) +Bp(k) +Dp(k)w(k) +Rp(k)ς(k),
y(k) = Cx(k),

(5.6)

where the additive noise ς(k) is a sequence of independent random vectors with multivariate standard normal
distributions, and ϕp : R → R satisfies

0 ≤
ϕp(c)− ϕp(d)

c− d
≤ āp, ∀c, d ∈ R, c 6= d, (5.7)

for some āp ∈ R>0 ∪ {∞}.

We use the tuple

Σ = (A,B,C,D,E, F,R, ϕ),

to refer to the class of nonlinear switched systems of the form (5.6), whereA = {A1, . . . , Am}, B = {B1, . . . , Bm},
D = {D1, . . . , Dm}, E = {E1, . . . , Em}, F = {F1, . . . , Fm}, R = {R1, . . . , Rm}, ϕ = {ϕ1, . . . , ϕm}, for the finite
set of P = {1, . . . ,m}.

Remark 5.6. If Ep is a zero matrix or ϕp in (5.6) is linear including the zero function (i.e. ϕp ≡ 0), one can
remove or push the term Epϕp(Fpx) to Apx, and consequently the nonlinear tuple reduces to the linear one
Σ = (A,B,C,D,R). Then, every time we mention the tuple Σ = (A,B,C,D,E, F,R, ϕ), it implicitly implies
that ϕp is nonlinear and Ep is nonzero.

Here, we employ quadratic function of the form

Vp(x, x̂) = (x − x̂)TMp(x− x̂), ∀p ∈ P, (5.8)

where Mp ≻ 0 is a positive-definite matrix of an appropriate dimension. In order to show that a nominated

V employing Vp in (5.8) is an SPSF from Ĝ(Σ̂) to G(Σ), we raise the following assumption on Σ.

Assumption 4. Assume that there exist constants 0 < κ̄p < 1, πp ∈ R>0, and matrix Mp ≻ 0 such that the
following inequality holds:

[
(1 + 2πp)A

T
pMpAp ATpMpEp

ETpMpAp (1 + 2πp)E
T
pMpEp

]
�

[
κ̄pMp −FTp
−Fp 2/āp

]
. (5.9)

Remark 5.7. Note that for any linear system Σ = (A,B,C,D,R) with matrices Ep and Fp being identically
zero, matrices Ap being Hurwitz is sufficient to satisfy Assumption 4.

Now, we provide another main result of this paper showing under which conditions a nominated V using Vp
in (5.8) is an SPSF from Ĝ(Σ̂) to G(Σ).

Theorem 5.8. Consider a global MDP G(Σ) associated with Σ = (A,B,C,D,E, F,R, ϕ) and Ĝ(Σ̂) as its
finite abstraction with state discretization parameter δ̄. Let ǫ > 1. If Assumption 4 holds, and ∀p ∈ P ,

kd ≥ ǫ ln(µ)
ln(1/κ̄p)

+ 1, then

V ((x, p, l), (x̂, p, l)) =
1

κ̄
l/ǫ
p

Vp(x, x̂), (5.10)

with Vp in (5.8) is an SPSF from Ĝ(Σ̂) to G(Σ).

The proof of Theorem 5.8 is provided in the Appendix. Remark that µ employed in Theorem 5.8 is the one
appearing in Assumption 2. Given the quadratic forms of Vp in (5.8), ∀p ∈ P , we can always choose µ ≥ 1
satisfying Assumption 2 as discussed in Remark 5.2.
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6. Case Study

In this section, to demonstrate the effectiveness of our proposed results, we first apply our approaches to a
road traffic network in a circular cascade ring composed of 200 identical cells, each of which has the length
of 500 meters with 1 entry and 1 way out, and construct compositionally a finite MDP of the network. We
employ the constructed finite abstraction as a substitute to compositionally synthesize policies keeping the
density of traffic lower than 20 vehicles per cell. Finally, to show applicability of our results to switched
systems accepting Multiple Lyapunov functions with dwell-time, we apply our proposed techniques to a fully
interconnected network of 500 nonlinear subsystems (totally 1000 dimensions) and construct their finite MDPs
with guaranteed error bounds on their probabilistic output trajectories.

6.1. Road Traffic Network. In this subsection, we apply our results to a road traffic network in a circular
cascade ring which is composed of 200 identical cells, each of which has the length of 500 meters with 1 entry
and 1 way out, as schematically depicted in Figure 1. The model of this case study is borrowed from [LCGG13]
by including stochasticity in the model as an additive noise.

Σ1 Σ2

.

Σ200

Road Traffic

Network

Traffic light

Σ1

.

.

Way out

Figure 1. Model of a road traffic network in a circular cascade ring composed of 200 identical
cells, each of which has the length of 500 meters with 1 entry and 1 way out.

The entry is controlled by a traffic light, that enables (green light) or not (red light) the vehicles to pass. In
this model the length of a cell is in kilometers (0.5 km), and the flow speed of the vehicles is 100 kilometers
per hour (km/h). Moreover, during the sampling time interval τ = 6.48 seconds, it is assumed that 8 vehicles
pass the entry controlled by the green light, and one quarter of vehicles goes out on the exit of each cell (ratio
denoted by q). We want to observe the density of the traffic xi, given in vehicles per cell, for each cell i of the
road. The set of modes is Pi = {1, 2}, i ∈ {1, . . . , n} such that

• mode 1 means traffic light is red;
• mode 2 means traffic light is green.

Note that here we only have the traffic signals on the on-ramps. The dynamic of the interconnected system is
described by:

Σ:

{
x(k + 1) = Ax(k) +Bp(k) + ς(k),
y(k) = x(k),

where A is a matrix with diagonal elements aii = (1− τνi
Li

−q), i ∈ {1, . . . , n}, off-diagonal elements ai+1,i =
τνi
Li

,

i ∈ {1, . . . , n − 1}, a1,n = τνn
Ln

, and all other elements are identically zero. Moreover, Bp = [b1p1 ; . . . ; bnpn ],
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x(k) = [x1(k); . . . ;xn(k)], ς(k) = [ς1(k); . . . ; ςn(k)], and

bipi =

{
0, if pi = 1,
8, if pi = 2.

Furthermore, the additive noise ς(k) is a sequence of independent random vectors with multivariate standard
normal distributions (i.e., mean zero and covariance matrix identity). Now, by introducing the individual cells
Σi described as

Σi :

{
xi(k + 1) = (1− τνi

Li
− q)xi(k) +Diwi(k) + bipi(k) + ςi(k),

yi(k) = xi(k),

where Di =
τνi−1

Li−1

(with ν0 = νn, L0 = Ln) and wi(k) = yi−1(k) (with y0 = yn), one can readily verify that

Σ = I(Σ1, . . . ,ΣN ), equivalently Σ = I(G(Σ1), . . . , ,G(ΣN )). Note that we consider sets Xi = Wi = [0 20],
∀i ∈ {1, . . . , n}. Since the dynamic of the system is linear, condition (5.9) reduces to,

(1 + 2πi)A
T
i MiAi � κ̄iMi, (6.1)

which is nothing more than stability of each cell i. Note that in this example Vp = Vp′ , ∀p, p
′ ∈ P (i.e.,

common Lyapunov function). Then one can readily verify that this condition is satisfied with Mi = 1,

πi = 0.85, κ̄i = 0.41 ∀i ∈ {1, . . . , n}, and the function Vi(xi, x̂i) = (xi − x̂i)
2 is an SPSF from Ĝ(Σ̂i) to G(Σi)

satisfying condition (3.1) with αi(s) = s2 and condition (3.2) with κi = 0.99, ρinti(s) = 0.72s2, ∀s ∈ R≥0, and
ψi = 84.96 δ̄2i .

Now we check the small-gain condition (4.5) that is required for the compositionality result. By taking
σi(s) = s, ∀i ∈ {1, . . . , n}, condition (4.5) and as a result condition (4.6) are always satisfied without any

restriction on the number of cells. Hence, V (x, x̂) = maxi(xi − x̂i)
2 is an SSF from Ĝ(Σ̂) to G(Σ) satisfying

conditions (3.3) and (3.4) with α(s) = s2, κ = 0.99, and ψ = 84.96 δ̄2.

We take the state and internal input discretization parameters as 0.02. Hence, we have nxi = nwi = 1000.

By taking the initial states of the interconnected systems Σ and Σ̂ as 101200, we guarantee that the distance

between trajectories of Σ and of Σ̂ will not exceed ε = 1 during the time horizon Td = 15 with the probability
at least 88%, i.e.,

P(‖yaν̂(k)− ŷâν̂(k)‖ ≤ 1, ∀k ∈ [0, 15]) ≥ 0.88.

Note that for the construction of finite abstractions, we have selected the center of partition sets as repre-
sentative points. We do not need any constraint on the shape of the partition sets in general in constructing
finite MDPs. For the sake of an easy implementation, the partition sets are considered hyper-intervals and the
center of them as their representative points. Moreover, we assume Ŷij = Ŵji, i.e., the overall error in (8.2)

reduces to ψ := maxi σ
−1
i (ψi).

6.2. Compositional Controller Synthesis. Let us now synthesize a controller for Σ via the abstraction

Ĝ(Σ̂) such that the safety controller maintains the density of traffic lower than 20 vehicles per cell. The

idea here is to first design a local controller for the abstraction Ĝ(Σ̂i), and then refine it back to system Σi.
Consequently, a controller for the interconnected system Σ would be a vector such that each of its components
is the controller for systems Σi. We employ here software tool FAUST2 [SGA15] by doing some modification
to accept internal inputs as disturbances, and synthesize a controller for Σ by choosing the standard deviation
of the noise σi = 0.83, ∀i ∈ {1, . . . , n}. Optimal switch for a representative cell in a network of N = 200
cells is plotted in Figure 2 top. Optimal switch here is sub-optimal for each subsystem and is obtained by
assuming that other subsystems do not violate the safety specification. Optimal switch w.r.t. time for a
representative cell with different noise realizations is also illustrated in Figure 2 middle, with 10 realizations.
Moreover, closed-loop state trajectories of the representative cell with different noise realizations are illustrated
in Figure 2 bottom.
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Figure 2. Top: Optimal switch for a representative cell in a network of 200 cells. Mid-
dle: Optimal switch w.r.t. time for a representative cell with 10 different noise realizations.
Bottom: Closed-loop state trajectories of a representative cell with 10 different noise realiza-
tions.

6.3. Memory Usage and Computation Time. Now we discuss the memory usage and computation time
of constructing finite MDPs in both monolithic and compositional manners. The monolithic finite MDP
would be a matrix with the dimension of (nNxi

× 2N) × nNxi
with nxi = 1000 and N = 200. By allocating 8

bytes for each entry of the matrix to be stored as a double-precision floating point, one needs a memory of
8×1000200×2200×1000200

109 ≈ 101252 GB for building the finite MDP in the monolithic manner which is impossible
in practice. Now we proceed with the compositional construction of finite MDPs proposed in this work. The
constructed MDP for each subsystem here is a matrix with the dimension of (nxi × 2 × nwi) × nxi with
nxi = nwi = 1000. This has the memory usage of 8×1000×2×1000×1000

109 = 16 GB. We can compute such a finite

MDP with the software tool FAUST2, which takes 112 seconds on a machine with Windows operating system
(Intel i7@3.6GHz CPU and 16 GB of RAM).

A comparison on the required memory for the construction of finite MDPs between the monolithic and com-
positional manners for different state discretization parameters is provided in Table 1. As seen, in order to
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provide even a very weak closeness guarantee of 2% between trajectories of Σ and of Σ̂, the required memory
in the monolithic fashion is 10972 GB which is still impossible in practice. This implementation clearly shows
that the proposed compositional approach in this work significantly mitigates the curse of dimensionality prob-
lem in constructing finite MDPs monolithically. In particular, in order to quantify the probabilistic closeness

between two networks Σ and Σ̂ via inequality (3.5) as provided in Table 1, one needs to only build finite MDPs

of individual subsystems (i.e., Σ̂i), construct an SPSF between each Σi and Σ̂i, and then employ the proposed

compositionality results of the paper to build an SSF between Σ and Σ̂.

Table 1. Required memory for the construction of finite MDPs in both monolithic and
compositional manners for different state discretization parameters.

δ̄ Closeness Σ̂i (GB) Σ̂ (GB)

0.01 97% 128 101372

0.02 88% 16 101252

0.03 75% 4.72 101181

0.04 60% 2 101131

0.05 44% 1.02 101092

0.06 30% 0.59 101061

0.07 19% 0.37 101033

0.08 11% 0.25 101011

0.09 5% 0.17 10990

0.1 2% 0.12 10972

6.4. Comparisons with DBN Approach of [SAM17]. We first compare the probabilistic closeness guar-
antees provided by our approach with that of [SAM17]. Note that our results are based on max small-gain
conditions while [SAM17] employs dynamic Bayesian network (DBN) to capture the dependencies between
subsystems. The comparison is shown in Figures 3-5 in the logarithmic scale. In Figure 3, we have fixed
the confidence bound ε = 1, the standard deviation of the noise σi = 0.83, the time horizon Td = 15, and
plotted the error as a function of the state discretization parameter δ̄ and the number of subsystems N . As
seen, by increasing the number of subsystems, our error provided in (3.5) does not change since the overall
ψ is independent of the size of the network (i.e. N), and is computed only based on the maximum ψi of
subsystems instead of being a linear combination of them which is the case in [SAM17]. In Figure 4, we have
fixed N = 200, ε = 1, Td = 15, and plotted the error as a function of δ̄ and σ. Our error in (3.5) is independent
of σ while the error in [SAM17] grows when σ goes to zero. In Figure 5, we have fixed N = 200, σi = 0.83,
Td = 15, and plotted the error as a function of δ̄ and ε. The error in [SAM17] is independent of ε while our
error increases when ε goes to zero.

In conclusion, the proposed approach in [SAM17] is more general than our setting here. It does not require
original systems to be incremental input-to-state stable (δ-ISS) and only the Lipschitz continuity of the as-
sociated stochastic kernels is enough for validity of the results. The refinement does not require running the
abstract systems and obtaining the input according to an interface function. On the other hand, the abstrac-
tion error in [SAM17] depends on the number of subsystems and also the Lipschitz constants of the stochastic
kernels associated with the system. Thus, our approach outperforms the results in [SAM17] for large-scale
stochastic systems with small standard deviation of the noise as long as the imposed assumptions are satisfied.

6.5. Comparisons with Dissipativity Approach in [LSZ18b]. Since the presented road traffic network
admits a common Lyapunov function, our results recover the ones proposed in [LSZ18b] by considering switch-
ing signals as discrete inputs. The comparison is shown in Figure 6 in the logarithmic scale. We have fixed
ε = 1, Td = 15, and plotted the error as a function of δ̄ and the number of subsystems N . By increasing
the number of subsystems, the error in (3.5) does not change since the overall ψ is independent of N , and



COMPOSITIONAL ABSTRACTION-BASED SYNTHESIS FOR NETWORKS OF STOCHASTIC SWITCHED SYSTEMS 17

10-10

10-7

103

10-5

100

102

101

10-2
10-3

10-4
10-5

10-6

DBN
Small-Gain

Figure 3. Comparison of the probabilistic error bound in (3.5) provided by our approach
based on max small-gain conditions with that of [SAM17] based on DBN. Plots are in the
logarithmic scale for a fixed ε = 1, σi = 0.83, and Td = 15.
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Figure 4. Comparison of the probabilistic error bound in (3.5) provided by our approach
based on max small-gain conditions with that of [SAM17] based on DBN. Plots are in the
logarithmic scale for a fixed N = 200, ε = 1, and Td = 15.

is computed only based on the maximum of ψi of subsystems instead of being a linear combination of them
which is the case in [LSZ18b]. Nevertheless, for networks with small number of subsystems, the proposed er-
rors in [LSZ18b] are slightly better than the ones provided in this work. This issue is expected and the reason
is due to the conservatism nature of the approach that we employ here ([SGZ18, Theorem 1]) to transfer the
additive form of our pseudo-simulation functions to a max form (cf. (8.8)), but with the gain of providing an
overall error for the network only based on the maximum error of subsystems instead of a linear combination
of them. Thus, our proposed results here outperform the ones in [LSZ18b] for large-scale stochastic switched
systems admitting a common Lyapunov function.

6.6. Switched Systems Accepting Multiple Lyapunov Functions with Dwell-Time. In order to show
applicability of our results to switched systems accepting multiple Lyapunov functions with a dwell-time, we
apply our proposed techniques to a fully interconnected network of 500 nonlinear subsystems in the form
of (5.6) (totally 1000 dimensions), as illustrated in Figure 7. The model of the system does not have a
common Lyapunov function because it exhibits unstable behaviors for different switching signals [Lib03] (i.e.,
if one periodically switches between different modes, the trajectory goes to infinity). The dynamic of the
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Figure 5. Comparison of the probabilistic error bound in (3.5) provided by our approach
based on max small-gain conditions with that of [SAM17] based on DBN. Plots are in the
logarithmic scale for a fixed N = 200, σi = 0.83, and Td = 15.
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Figure 6. Comparison of the probabilistic error bound in (3.5) provided by our approach
based on max small-gain conditions with that of [LSZ18b] based on dissipativity-type reason-
ing. Plots are in the logarithmic scale for a fixed ε = 1, and Td = 15.

interconnected system is described by:

Σ :

{
x(k + 1) = Ap(k)x(k) +Bp(k) + ϕ(x(k)) +Rς(k),
y(k) = x(k),

where

Ap(k) =




Āpi Ã · · · · · · Ã

Ã Āpi Ã · · · Ã

Ã Ã Āpi · · · Ã
...

. . .
. . .

...

Ã · · · · · · Ã Āpi




n×n

,

Ã =

[
0.015 0
0 0.015

]
, Āpi =





[
0.05 0
0.9 0.03

]
, if pi = 1,

[
0.02 −1.2
0 0.05

]
, if pi = 2.
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Figure 7. A fully interconnected network of 500 nonlinear components (totally 1000 dimensions).

Moreover, we choose R = diag(12, . . . ,12), ϕ(x) = [0.112ϕ1(0.11
T
2 x1(k)); . . . ; 0.112ϕN (0.11T2 xN (k))], and

ϕi(x) = sin(x), ∀i ∈ {1, . . . , N}. Note that functions ϕi satisfy condition (5.7) with āpi = 1. We fix here
N = 500. Furthermore, Bp = [b1p1 ; . . . ; bNpN ] such that

bipi =





[
−0.9
0.5

]
, if pi = 1,

[
0.9
−0.2

]
, if pi = 2.

We partition x(k) as x(k) = [x1(k); . . . ;xN (k)] and ς(k) as ς(k) = [ς1(k); . . . ; ςN (k)], where xi(k), ςi(k) ∈ R2.
Now, by introducing the individual subsystems Σi described as

Σi :

{
xi(k + 1) = Āpi(k)xi(k) + bipi(k) +Diwi(k) + 0.112ϕi(0.11

T
2 xi(k)) + 12ςi(k),

yi(k) = xi(k),

where

Di = [Ã; . . . ; Ã]T2×(n−2), wi(k) = [yi1; . . . ; yi(i−1); yi(i+1); . . . ; yiN ], i ∈ {1, . . . , N},

one can readily verify that Σ = I(Σ1, . . . ,ΣN ), equivalently Σ = I(G(Σ1), . . . ,G(ΣN )). One can also verify
that, ∀i ∈ {1, . . . , N}, condition (5.9) is satisfied with

for pi = 1: Mpi =

[
1.311 0.001
0.001 0.492

]
, κ̄pi = 0.7, πpi = 0.5,

for pi = 2: Mpi =

[
0.4 0.01
0.01 1.49

]
, κ̄pi = 0.7, πpi = 0.4.

By taking ǫ = 1.75 and choosing µ = 3.27, one can get the dwell-time kd = 7. Hence, Vi((xi, pi, li), (x̂i, pi, li)) =
1

κ̄
l/1.75
pi

(xi − x̂i)
TMipi(xi − x̂i) is an SPSF from Ĝ(Σ̂i) to G(Σi) satisfying condition (3.1) with αi(s) = 0.2s2

and condition (3.2) with κi = 0.99, ρinti(s) = 0.19s2, ∀s ∈ R≥0, and ψi = 2266 δ̄2i .

Now we the check small-gain condition (4.5) that is required for the compositionality result. By taking σi(s) =
s, ∀i ∈ {1, . . . , N}, condition (4.5) and as a result condition (4.6) are satisfied. Hence, V ((x, p, l), (x̂, p, l)) =

maxi{
1

κ̄
l/1.75
pi

(xi − x̂i)
TMipi(xi − x̂i)} is an SSF from Ĝ(Σ̂) to G(Σ) satisfying conditions (3.3) and (3.4) with

α(s) = 0.2s2, κ = 0.99, and ψ = 2266 δ̄2.

By taking the state set discretization parameter δ̄i = 0.001, and taking the initial states of the interconnected

systems Σ and Σ̂ as 11000, we guarantee that the distance between trajectories of Σ and of Σ̂ will not exceed
ε = 1 during the time horizon Td = 10 with the probability at least 90%, i.e.,

P(‖yaν̂(k)− ŷâν̂(k)‖ ≤ 1, ∀k ∈ [0, 10]) ≥ 0.9.
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6.7. Analysis on Probabilistic Closeness Guarantee. In order to have a practical analysis of the proba-
bilistic closeness guarantee, we plotted in Figure 8 the probabilistic error bound provided in (3.5) in terms of
the state discretization parameter δ̄ and the confidence bound ε. As seen, the probabilistic closeness guarantee
is improved by either decreasing δ̄ or increasing ε. Note that the constant ψ in (3.5) is formulated based on
the state discretization parameter δ̄ as in (8.5). It is worth mentioning that there are some other parameters
in (3.5) such as K∞ function α, and the value of SSF V at initial conditions a, â, p0, l0 which can also improve
the proposed bound for given values of Td and initial conditions of the system.

1
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0.8
0.6
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0.4
10-3
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10-5

10-60.2
10-7

Small-Gain Approach

Figure 8. Probabilistic error bound proposed in (3.5) based on δ̄ and ε. Plot is in the
logarithmic scale for Td = 10. The probabilistic closeness guarantee is improved by either
decreasing the state discretization parameter δ̄ or increasing the confidence bound ε.

7. Discussion

In this paper, we provided a compositional approach for the construction of finite MDPs for networks of
discrete-time stochastic switched systems. First, we introduced new notions of stochastic pseudo-simulation
and simulation functions in order to quantify the probabilistic distance between concrete stochastic switched
subsystems and their finite abstractions and their interconnections, respectively. Then we leveraged sufficient
small-gain type conditions for the compositional quantification of the probabilistic distance between the inter-
connection of stochastic switched subsystems and that of their finite abstractions. Furthermore, we showed
that under an incremental input-to-state stability property, one can construct finite MDPs of the concrete
models for the general setting of nonlinear stochastic switched systems. We also proposed an approach to
construct finite MDPs together with their corresponding stochastic pseudo-simulation functions for a particu-
lar class of discrete-time nonlinear stochastic switched systems. Finally, we applied our approaches to a road
traffic network in a circular cascade ring composed of 200 cells, and constructed compositionally a finite MDP
of the network. We employed the constructed finite abstraction as a substitute to compositionally synthe-
size policies keeping the density of the traffic lower than 20 vehicles per cell. We also applied our proposed
techniques to a fully interconnected network of 500 nonlinear subsystems (totally 1000 dimensions) accepting
multiple Lyapunov functions with the dwell-time, and constructed their finite MDPs with guaranteed error
bounds. We benchmarked our proposed results against the ones available in the literature.

References

[APLS08] A. Abate, M. Prandini, J. Lygeros, and S. Sastry. Probabilistic reachability and safety for controlled discrete time
stochastic hybrid systems. Automatica, 44(11):2724–2734, 2008.

[BDS05] S. Battilotti and A. De Santis. Dwell-time controllers for stochastic systems with switching Markov chain. Auto-
matica, 41(6):923–934, 2005.

[BK08] C. Baier and J.-P. Katoen. Principles of model checking. MIT press, 2008.
[BKW14] N. Basset, M. Kwiatkowska, and C. Wiltsche. Compositional controller synthesis for stochastic games. In Proceedings

of the International Conference on Concurrency Theory, pages 173–187, 2014.



COMPOSITIONAL ABSTRACTION-BASED SYNTHESIS FOR NETWORKS OF STOCHASTIC SWITCHED SYSTEMS 21

[BS96] D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Discrete-Time Case. Athena Scientific, 1996.
[DAK12] A. D’Innocenzo, A. Abate, and J.P. Katoen. Robust PCTL model checking. In Proceedings of the 15th ACM

International Conference on Hybrid Systems: Computation and Control, pages 275–286, 2012.
[DLT08] J. Desharnais, F. Laviolette, and M. Tracol. Approximate analysis of probabilistic processes: Logic, simulation and

games. In Proceedings of the 5th International Conference on Quantitative Evaluation of System, pages 264–273,
2008.
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8. Appendix

Proof: (Proposition 2.9) In order to show that global MDP G(Σ) in Definition 2.6 is itself an MDP, we
need to elaborate on this issue that X is itself a Borel space. Since X defined in (2.1) is a Borel space, one
can readily verify that its Cartesian product by other discrete spaces as X = X ×P ×{0, . . . , kd − 1} is also a
Borel space [APLS08]. Then the global MDP G(Σ) = (X,U,W, ς,F,Y,H) can be equivalently represented as
an MDP

G(Σ) = (X,U,W,Tx,Y,H),

where the map Tx : B(X) × X× U ×W → [0, 1], is a conditional stochastic kernel that assigns to any x ∈ X,
ν ∈ U, and w ∈ W a probability measure Tx(·|x, ν, w) on the measurable space (X,B(X)) so that for any set
A ∈ B(X),

P(x(k + 1) ∈ A|x(k), ν(k), w(k)) =

∫

A

Tx(dx
′|x(k), ν(k), w(k)).
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Moreover,

(p′, l′) :=





(p, l + 1) if l < kd − 1,

(p, kd − 1) if l = kd − 1,

(6= p, 0) if l = kd − 1,

or equivalently,

ν :=

{
no switch if l < kd − 1,

{1, 2, . . . ,m} if l = kd − 1.

Then the global MDP G(Σ) in Definition 2.6 is itself an MDP. Now we elaborate on the fact that the output
trajectories of Σ defined in (2.2) and of G(Σ) are equivalent. Given an initial state x0, a switching signal
p : N → P , an internal input w(·), and a realization of the noise ς(·), one can uniquely map the output
trajectory of Σ to an output trajectory of G(Σ). Moreover, if we pick p0 ∈ P as the initial mode of the system
and l0 = 0, the output trajectory of G(Σ) can be uniquely projected to an output trajectory of Σ. Then one
can uniquely map the output trajectory of Σ to an output trajectory of G(Σ) and vice versa, for the same
initial conditions.

Proof: (Theorem 3.5) For any (x, p, l) ∈ X, and (x̂, p, l) ∈ X̂, one gets:

‖H(x, p, l)− Ĥ(x̂, p, l)‖ = ‖h(x)− ĥ(x̂)‖ = ‖y − ŷ‖.

Since V is an SSF from Ĝ(Σ̂) to G(Σ), we have

P

{
sup

0≤k≤Td

‖yaν̂(k)− ŷâν̂(k)‖ ≥ ε | a, â, p0

}

= P

{
sup

0≤k≤Td

α (‖yaν̂(k)− ŷâν̂(k)‖) ≥ α(ε) | a, â, p0

}

≤ P

{
sup

0≤k≤Td

V ((xaν̂(k), p(k), l(k), (x̂âν̂(k), p(k), l(k))) ≥ α(ε) | a, â, p0

}
. (8.1)

The equality holds due to α being a K∞ function, and also condition (3.3) on the SSF V . By applying
Lemma 3.4 to (8.1), utilizing inequality (3.4), and since

max
{
κV ((x, p, l), (x̂, p, l)), ψ

}
≤ κV ((x, p, l), (x̂, p, l)) + ψ,

one can readily acquire the results in (3.5).

Proof: (Theorem 4.4) We first show that SSF V in (4.7) satisfies the inequality (3.3) for some K∞ function

α. For any (x, p, l) ∈ X, and (x̂, p, l) ∈ X̂, one gets:

‖H(x, p, l)− Ĥ(x̂, p, l)‖ = max
i

{‖Hii(xi, pi, li)− Ĥii(x̂i, pi, li)‖}

≤ max
i

{‖Hi(xi, pi, li)− Ĥi(x̂i, pi, li)‖} ≤ max
i

{α−1
i (Vi((xi, pi, li), (x̂i, pi, li)))}

≤ β (max
i

{σ−1
i (Vi((xi, pi, li), (x̂i, pi, li)))}) = β(V ((x, p, l), (x̂, p, l))),

where β(s) = maxi

{
α−1
i ◦ σi(s)

}
for all s ∈ R≥0, which is a K∞ function and (3.3) holds with α = β−1. We

continue with showing that inequality (3.4) holds, as well. Let κ(s) = maxi,j{σ
−1
i ◦ κij ◦ σj(s)}. It follows
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from (4.6) that κ < Id. Since maxi σ
−1
i is concave, one can readily get the chain of inequalities in (8.3) using

Jensen’s inequality, inequality (4.4), and by defining ψ as

ψ := max
i
σ−1
i (Λi), (8.2)

where Λi := (Id + δ̃−1
f ) ◦ (ρinti ◦ λ̄ ◦ (λ̄−Id)

−1(maxj,j 6=i{µ̄ji}) +ψi). Hence, V is an SSF from Ĝ(Σ̂) to G(Σ),
which completes the proof.

Remark 8.1. Note that to show Theorem 4.4, we employed the following inequalities:

{
ρint(a+ b) ≤ ρint ◦ λ̄(a) + ρint ◦ λ̄ ◦ (λ̄− Id)

−1(b),

a+ b ≤ max{(Id + δ̃f )(a), (Id + δ̃−1
f )(b)},

for any a, b ∈ R≥0, where ρint, δ̃f , λ̄, (λ̄− Id) ∈ K∞.

Remark 8.2. If ρinti, i ∈ {1, . . . , N}, are linear, κij and Λi reduce to, respectively, κij = (Id + δ̃f ) ◦ ρinti ◦

α−1
j (s), and Λi := (Id + δ̃−1

f ) ◦ (ρinti ◦ (maxj,j 6=i{µ̄ji}) + ψi), ∀i ∈ {1, . . . , N}, j 6= i.

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣ x, x̂, p, l
]
= E

[
max
i

{
σ−1
i (Vi((x

′
i, p

′
i, l

′
i), (x̂

′
i, p

′
i, l

′
i)))

} ∣∣ x, x̂, p, l
]

≤ max
i

{
σ−1
i (E

[
Vi((x

′
i, p

′
i, l

′
i), (x̂

′
i, p

′
i, l

′
i))

∣∣ x, x̂, p, l
]
)
}
= max

i

{
σ−1
i (E

[
Vi((x

′
i, p

′
i, l

′
i), (x̂

′
i, p

′
i, l

′
i))

∣∣xi, x̂i, pi, li
]
)
}

≤ max
i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti(‖wi − ŵi‖), ψi})

}

= max
i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti(max

j,j 6=i
{‖wij − ŵij‖}), ψi})

}

= max
i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti(max

j,j 6=i
{‖yji − ŷji + ŷji −Πwji (ŷji)‖}), ψi})

}

≤ max
i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti(max

j,j 6=i
{‖Hj(xj , pj, lj)−Ĥj(x̂j , pj , lj)‖+‖ŷji−Πwji(ŷji)‖}), ψi})

}

≤ max
i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti(max

j,j 6=i
{α−1

j (Vj((xj , pj, lj), (x̂j , pj , lj))) + µ̄ji}), ψi})
}

≤ max
i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), ρinti ◦ λ̄(max

j,j 6=i
{α−1

j (Vj((xj , pj, lj), (x̂j , pj , lj)))})

+ ρinti ◦ λ̄ ◦ (λ̄− Id)
−1(max

j,j 6=i
{µ̄ji}), ψi})

}

≤ max
i

{
σ−1
i (max{κiVi((xi, pi, li), (x̂i, pi, li)), (Id + δ̃f ) ◦ ρinti ◦ λ̄(max

j,j 6=i
{α−1

j (Vj((xj , pj , lj), (x̂j , pj , lj)))}),Λi})
}

= max
i,j

{
σ−1
i (max{κij(Vj((xj , pj, lj), (x̂j , pj, lj)),Λi})

}

= max
i,j

{
σ−1
i (max{κij ◦σj◦σ

−1
j (Vj((xj , pj , lj), (x̂j , pj , lj))),Λi})

}

≤ max
i,j,j̄

{
σ−1
i (max{κij ◦σj◦σ

−1
j̄

(Vj̄((xj̄ , pj̄ , lj̄), (x̂j̄ , pj̄ , lj̄))),Λi})
}

= max
i,j

{
σ−1
i (max{κij ◦σj(V ((x, p, l), (x̂, p, l))),Λi})

}

= max{κV ((x, p, l), (x̂, p, l)), ψ}. (8.3)
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Proof: (Theorem 5.4) Given the general assumption on h, since Σp is incrementally input-to-state stable

(δ-ISS), and from (5.1), ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, we get

‖H(x, p, l)− Ĥ(x̂, p, l)‖ = ‖h(x)− ĥ(x̂)‖ ≤ L (‖x− x̂‖) ≤ L ◦ α−1
p (Vp(x, x̂))

= L ◦ α−1
p (κ̄l/ǫp V ((x, p, l), (x̂, p, l))).

Since 1

κ̄
l/ǫ
p

> 1, one can conclude that the inequality (3.1) holds with α(s) = minp{(L ◦α−1
p (s))−1}, ∀s ∈ R≥0.

Now we show that the inequality (3.2) holds, as well. By taking the conditional expectation from (5.4),

∀x ∈ X, ∀x̂ ∈ X̂, ∀p ∈ P, ∀w ∈W, ∀ŵ ∈ Ŵ , we have

E

[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
− E

[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]

≤ E

[
γ(‖f̂p(x̂, ŵ, ς)− fp(x̂, ŵ, ς)‖)

∣∣x, x̂, ν̂, w, ŵ
]
,

where f̂p(x̂, ŵ, ς) = Πx(fp(x̂, ŵ, ς)). Using Remark 2.10 and inequality (2.8), the above inequality reduces to

E

[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
− E

[
Vp(fp(x,w, ς), fp(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
≤ γp(δ̄).

Employing (5.2), we get

E

[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, w, ŵ
]
≤ κ̄pVp(x, x̂) + ρ̄intp(‖w − ŵ‖) + γp(δ̄). (8.4)

Now, in order to show that the function V in (5.5) satisfies (3.2), we should consider the different scenarios

as in Definition 2.11. For the first scenario (l < kd − 1, ‖fp(x̂, ŵ, ς)− f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ = p, and l′ = l + 1),
using (8.4) we have:

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣ x, x̂, p, l, w, ŵ
]
=

1

κ̄
l′/ǫ
p′

E

[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ

]

=
1

κ̄
(l+1)/ǫ
p

E

[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
≤

1

κ̄
(l+1)/ǫ
p

(
κ̄pVp(x, x̂) + ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)

= κ̄
ǫ−1

ǫ
p V ((x, p, l), (x̂, p, l)) +

1

κ̄
(l+1)/ǫ
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
≤ κ̄

ǫ−1

ǫ
p V ((x, p, l), (x̂, p, l))

+
1

κ̄
kd/ǫ
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
;

Note that the last inequality here holds since l < kd − 1, and consequently, l + 1 < kd.

For the second scenario (l = kd − 1, ‖fp(x̂, ŵ, ς)− f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ = p, and l′ = kd − 1), we have:

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ
]
=

1

κ̄
l′/ǫ
p′

E

[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ

]

=
1

κ̄
l/ǫ
p

E

[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
≤

1

κ̄
l/ǫ
p

(
κ̄pVp(x, x̂) + ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)

= κ̄pV ((x, p, l), (x̂, p, l)) +
1

κ̄
kd/ǫ
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)

≤ κ̄
ǫ−1

ǫ
p V ((x, p, l), (x̂, p, l)) +

1

κ̄
kd/ǫ
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
;

Note that the last inequality here holds since ǫ > 1, and consequently, 0 < ǫ−1
ǫ < 1.
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For the last scenario (l = kd − 1, ‖fp(x̂, ŵ, ς) − f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ 6= p, and l′ = 0), using Assumption 2 we
have:

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ
]
=

1

κ̄
l′/ǫ
p′

E

[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ

]

≤ µE
[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]
= µκ̄(kd−1)/ǫ

p

1

κ̄
l/ǫ
p

E

[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]

≤ µκ̄(kd−1)/ǫ
p

1

κ̄
l/ǫ
p

(
κ̄pVp(x, x̂) + ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)

≤ µκ̄(kd−1)/ǫ
p κ̄pV ((x, p, l), (x̂, p, l)) + µ

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)

≤ κ̄
ǫ−1

ǫ
p V ((x, p, l), (x̂, p, l)) +

1

κ̄
kd/ǫ
p

(
ρ̄intp(‖w − ŵ‖) + γp(δ̄)

)
;

Note that ∀p ∈ P , µκ̄
(kd−1)/ǫ
p ≤ 1 since ∀p ∈ P , kd ≥ ǫ ln(µ)

ln(1/κ̄p)
+ 1. By employing a similar argument as the

one in [SGZ18, Theorem 1], and by defining κ̄ = maxp{κ̄
ǫ−1

ǫ
p }, ρ̄int(s) = maxp{

1

κ̄
kd/ǫ
p

ρ̄intp(s)}, ∀s ∈ R≥0, and

γ̄(δ̄) = maxp{
1

κ̄
kd/ǫ
p

γ̄p(δ̄)}, the following inequality

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣ x, x̂, p, l, w, ŵ
]
≤ max

{
κ̃V ((x, p, l), (x̂, p, l)), ρ̃int(‖w − ŵ‖), γ̃

}

holds for the all scenarios, where κ̃ = (1− (1− π̃)(1 − κ̄), ρ̃int = (Id + δ̃f ) ◦ (
1

(1−κ̄)π̃ λ̄ ◦ ρ̄int), γ̃ = (Id + δ̃−1
f ) ◦

( 1
(1−κ̄)π̃ ◦ λ̄ ◦ (λ̄ − Id)

−1 ◦ γ̄) where δ̃f , λ̄, are some arbitrarily chosen K∞ functions with λ̄ − Id ∈ K∞, and

0 < π̃ < 1, 1− κ̄ > 0. Hence, inequality (3.2) is satisfied with ν = ν̂, κ = κ̃, ρint = ρ̃int, and ψ = γ̃(δ̄). Hence,

V is an SPSF from Ĝ(Σ̂i) to G(Σi), which completes the proof.

Remark 8.3. If ∀p ∈ P , there exists a common V : X×X → R≥0 satisfies Definition 5.1 and Assumptions 2
and 3, then p = p′, ∀p, p′ ∈ P , and consequently, V, α, κ̄, ρ̄int and γ̄ in Theorem 5.4 reduce to the functions
V ((x, p, l), (x̂, p, l)) = V (x, x̂), α(s) = (Lp ◦ α

−1
p (s))−1, ρ̄int(s) = ρ̄intp(s), ∀s ∈ R≥0, and constants κ̄ = κ̄p,

γ̄(δ̄) = γ̄p(δ̄).

Proof: (Theorem 5.8) Since Ĉ = C, we have ‖H(x, p, l)− Ĥ(x̂, p, l)‖ = ‖Cx− Ĉx̂‖2 ≤ nλmax(C
TC)‖x

− x̂‖2, and similarly λmin(Mp)‖x − x̂‖2 ≤ (x − x̂)TMp(x − x̂). One can readily verify that
λmin(Mp)

nλmax(CTC)‖Cx−

Ĉx̂‖2 ≤ Vp(x, x̂) holds ∀x, ∀x̂, and consequently, 1

κ̄
l/ǫ
p

λmin(Mp)
nλmax(CTC)

‖Cx− Ĉx̂‖2 ≤ V ((x, p, l), (x̂, p, l)), ∀(x, p, l) ∈

X, ∀(x̂, p, l) ∈ X̂. Since 1

κ̄
l/ǫ
p

> 1, one can conclude that inequality (3.1) holds with α(s) = minp{
λmin(Mp)

nλmax(CTC)
} s2

for any s ∈ R≥0. We proceed with showing that the inequality (3.2) holds, as well. We simplify

Apx+ Epϕp(Fpx) +Bp +Dpw +Rpς −Πx(Apx̂+ Epϕp(Fpx̂) +Bp +Dpŵ +Rpς)

to

Ap(x− x̂) +Dp(w − ŵ) + Ep(ϕp(Fpx)− ϕp(Fpx̂)) + N̄p, (8.6)

where N̄p = Apx̂+Epϕp(Fpx̂) +Bp+Dpŵ+Rpς −Πx(Apx̂+Epϕp(Fpx̂) +Bp+Dpŵ+Rpς). From the slope
restriction (5.7), one obtains

ϕp(Fpx) − ϕp(Fpx̂) = δ̂p(Fpx− Fpx̂) = δ̂pFp(x− x̂), (8.7)

where δ̂p is a function of x and x̂ and takes values in the interval [0, āp]. Using (8.7), the expression in (8.6)
reduces to

(Ap + δ̂pEpFp)(x − x̂) +Dp(w − ŵ) + N̄p.
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- First Scenario (l < kd − 1, ‖f(x̂, ŵ, ς)− f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ = p, l′ = l + 1):

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣x, x̂, p, l, w, ŵ
]
=

1

κ̄
l′/ǫ
p′

E

[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ

]

=
1

κ̄
(1+l)/ǫ
p

E

[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣ x, x̂, ν̂, w, ŵ
]

=
1

κ̄
(1+l)/ǫ
p

(
(x− x̂)T

[
(Ap + δ̂pEpFp)

TMp(Ap+δ̂pEpFp)
]
(x − x̂) + 2

[
(x−x̂)T(Ap+δ̂pEpFp)

T
]
Mp

[
Dp(w−ŵ)

]

+ 2
[
(x− x̂)T (Ap + δ̂pEpFp)

T
]
MpE

[
N̄p

∣∣x, x̂, ν̂, w, ŵ
]
+ 2

[
(w − ŵ)TDT

p

]
MpE

[
N̄p

∣∣ x, x̂, ν̂, w, ŵ
]

+ (w − ŵ)TDT
pMpDp(w − ŵ) + E

[
N̄T
p MpN̄p

∣∣x, x̂, ν̂, w, ŵ
])

≤
1

κ̄
(1+l)/ǫ
p

([
x− x̂

δ̂pFp(x− x̂)

]T [
(1 + 2πp)A

T
pMpAp ATpMpEp

∗ (1 + 2πp)E
T
pMpEp

] [
x− x̂

δ̂pFp(x− x̂)

]

+ p̄(1 + πp + 2/πp)‖
√
MpDp‖

2
2‖w − ŵ‖2 + n(1 + 3/πp)λmax(Mp) δ̄

2
)

≤
1

κ̄
(1+l)/ǫ
p

([
x− x̂

δ̂pFp(x− x̂)

]T [
κ̄pMp −FTp
−Fp

2
āp

] [
x− x̂

δ̂pFp(x − x̂)

]
+ p̄(1 + πp + 2/πp)‖

√
MpDp‖

2
2‖w − ŵ‖2

+ n(1 + 3/πp)λmax(Mp) δ̄
2
)

=
1

κ̄
(1+l)/ǫ
p

(
κ̄p(Vp(x, x̂))− 2δ̂p(1−

δ̄

āp
)(x − x̂)TFTp Fp(x− x̂) + p̄(1 + πp + 2/πp)‖

√
MpDp‖

2
2‖w − ŵ‖2

+ n(1 + 3/πp)λmax(Mp) δ̄
2
)

≤ κ̄
ǫ−1

ǫ
p V ((x, p, l), (x̂, p, l)) +

1

κ̄
kd/ǫ
p

(
p̄(1 + πp + 2/πp)‖

√
MpDp‖

2
2‖w − ŵ‖2 + n(1 + 3/πp)λmax(Mp) δ̄

2
)
;

- Second Scenario (l = kd − 1, ‖f(x̂, ŵ, ς)− f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ = p, l′ = kd − 1):

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣ x, x̂, p, l, w, ŵ
]
=

1

κ̄
l′/ǫ
p′

E

[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ

]

=
1

κ̄
l/ǫ
p

E

[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣ x, x̂, ν̂, w, ŵ
]

≤ κ̄pV ((x, p, l), (x̂, p, l)) +
1

κ̄
kd/ǫ
p

(
p̄(1 + πp + 2/πp)‖

√
MpDp‖

2
2‖w − ŵ‖2 + n(1 + 3/πp)λmax(Mp) δ̄

2
)

≤ κ̄
ǫ−1

ǫ
p V ((x, p, l), (x̂, p, l)) +

1

κ̄
kd/ǫ
p

(
p̄(1 + πp + 2/πp)‖

√
MpDp‖

2
2‖w − ŵ‖2 + n(1 + 3/πp)λmax(Mp) δ̄

2
)
;

- Last Scenario (l = kd − 1, ‖f(x̂, ŵ, ς)− f̂p(x̂, ŵ, ς)‖ ≤ δ̄, p′ 6= p, l′ = 0):

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣ x, x̂, p, l, w, ŵ
]
=

1

κ̄
l′/ǫ
p′

E

[
Vp′(x

′, x̂′)
∣∣x, x̂, ν̂, w, ŵ

]

= µ E

[
Vp(fp(x,w, ς), f̂p(x̂, ŵ, ς))

∣∣x, x̂, ν̂, w, ŵ
]

≤ µκ̄(kd−1)/ǫ
p κ̄pV ((x, p, l), (x̂, p, l)) + µ

(
p̄(1 + πp + 2/πp)‖

√
MpDp‖

2
2‖w − ŵ‖2 + n(1 + 3/πp)λmax(Mp) δ̄

2
)

≤ κ̄
ǫ−1

ǫ
p V ((x, p, l), (x̂, p, l)) +

1

κ̄
kd/ǫ
p

(
p̄(1 + πp + 2/πp)‖

√
MpDp‖

2
2‖w − ŵ‖2 + n(1 + 3/πp)λmax(Mp) δ̄

2
)
.

(8.5)
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Using Young’s inequality [You12] as cd ≤ π
2 c

2 + 1
2πd

2, for any c, d ≥ 0 and any π > 0, by employing Cauchy-
Schwarz inequality and (5.9), and since

‖N̄p‖ ≤ δ̄, N̄T
p MpN̄p ≤ nλmax(Mp)δ̄

2,

one can obtain the chain of inequalities in (8.5) including the different scenarios as in Definition 2.11. By

employing the similar argument as the one in [SGZ18, Theorem 1], and by defining κ̄ = maxp{κ̄
ǫ−1

ǫ
p }, ρ̄int(s) =

maxp{
1

κ̄
kd/ǫ
p

p̄(1 + πp + 2/πp)‖
√
MpDp‖

2
2}s

2, ∀s ∈ R≥0, and γ̄ = maxp{
1

κ̄
kd/ǫ
p

n(1 + 3/πp)λmax(Mp)}δ̄
2, the

following inequality

E

[
V ((x′, p′, l′), (x̂′, p′, l′))

∣∣ x, x̂, p, l, w, ŵ
]
≤ max

{
κ̃V ((x, p, l), (x̂, p, l)), ρ̃int(‖w − ŵ‖), γ̃

}
(8.8)

holds for all the scenarios, where κ̃ = (1 − (1 − π̃)(1 − κ̄), ρ̃int =
(1+δ̃c)
(1−κ̄)π̃ ρ̄int, γ̃ = (1+1/δ̃c)

(1−κ̄)π̃ γ̄, where π̃, δ̃c, can

be arbitrarily chosen such that 0 < π̃ < 1, δ̃c > 0, 1− κ̄ > 0. Therefore, the inequality (3.2) is satisfied with

ν = ν̂, κ = κ̃, ρint = ρ̃int, and ψ = γ̃. Hence, V defined in (5.10) is an SPSF from Ĝ(Σ̂) to G(Σ), which
completes the proof.
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