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Abstract

We establish stability results for PD tracking control laws in bipedal walking robots. Stability of PD control laws for continuous robotic
systems is an established result, and we extend this for hybrid robotic systems, an alternating sequence of continuous and discrete events.
Bipedal robots have the leg-swing as the continuous event, and the foot-strike as the discrete event. In addition, bipeds largely have
underactuations due to the interactions between feet and ground. For each continuous event, we establish that the convergence rate of the
tracking error can be regulated via appropriate tuning of the PD gains; and for each discrete event, we establish that this convergence
rate sufficiently overcomes the nonlinear impacts by assumptions on the hybrid zero dynamics. The main contributions are 1) Extension
of the stability results of PD control laws for underactuated robotic systems, and 2) Exponential ultimate boundedness of hybrid periodic
orbits under the assumption of exponential stability of their projections to the hybrid zero dynamics. Towards the end, we will validate
these results in a 2-link bipedal walker in simulation.

Key words: PD controllers; Walking; Robotics; Periodic motion.

1 Introduction

Despite great advances in the theory of nonlinear controls,
when it comes to practical implementation, PD control laws
undisputably continue to be the most popular choice. [33,
Table 1A] shows a detailed account on the list of controllers
used and their corresponding acceptance ratings. The pop-
ularity of this type of control laws arises from its ease of
implementation and robustness due to its model indepen-
dent nature. This popularity has equally pervaded robotic
systems. In fact, there are formal guarantees of stability for
a broad class of robots that includes manipulators [21,36].
See Table 1, which shows a list of stability results. A more
detailed list of these types of control laws and the corre-
sponding stability results are given in [5, Table 1.1].

Despite the increase in complexity of the models, PD
control laws have dominated even the domain of bipedal
robots. Bipedal locomotion is hybrid in nature, with al-
ternating phases of continuous (swinging forward of the
nonstance foot) and discrete events (instantaneous impact
of the nonstance foot with ground). In addition, unlike the
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Fig. 1. Figure showing the MABEL walking robot [8] (left), DU-
RUS-2D running robot [26] (middle), and the DURUS walking
robot [24,32] (right). All of these bipeds used PD control laws for
tracking reference trajectories at the low level.

PD regulation GAS [17,34]

LES [2,18], GES [20]

PD tracking LES [15,19,36,38]
Table 1
Table showing some of the formal stability results for PD and
PD based control laws for robotic systems. The abbreviations
are given as follows: GAS: globally asymptotically stable, LES:
locally exponentially stable, GES: globally exponentially stable.

industrial robotic arms, which have a fixed base, bipedal
robots are largely underactuated. Fig. 1 shows some exam-
ples of bipedal robots that used PD and PD based tracking
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control laws. It is worth noting that the reference trajec-
tories that were tracked were obtained offline. In fact, the
field of locomotion has largely focused on experimental
realization by dividing the problem into two parts. First,
obtain reference trajectories/gaits in a simulation model by
using offline optimization tools [11,31]. Second, play these
trajectories in the robot by a low level tracking control law
[12,32,40]. Due to uncertainties in the system, model based
controllers were generally avoided, thereby giving prefer-
ence to the more traditional PD based control laws. These
control laws are known to be “hassle free”, since they are
model-independent and easy to implement. Therefore, the
main goal of this paper is to explore the stability properties
of PD control laws for walking robots, which include vary-
ing levels of complexity due to the presence of impacts and
underactuations.

We will be establishing stability of PD control laws by the
construction of strict Lyapunov functions developed by Ari-
moto et. al. [2], Koditschek [18], and Bayard and Wen [36]
all in the same period of time 1984-1988. Local and global
stability results were shown for both stationary and time
varying desired configurations [15,19,38], but only for fully
actuated systems. For underactuated systems, we can apply
a tracking control law for the actuated states of the robot,
but this does not necessarily guarantee stability, due to the
coupling between the controllable and uncontrollable dy-
namics of the robot. In addition, the impacts due to foot-
strike largely have “destabilizing” effects on the tracking er-
rors. On the other hand, if we make assumptions about the
uncontrolled dynamics of the robot i.e., existence of stable
periodic orbits in the hybrid zero dynamics (HZD), we can
then establish local stability results. This will be the main
approach of the paper.

It is important to discuss the notion of hybrid zero dynam-
ics (HZD) in the context of bipedal walking. HZD was in-
troduced as a feedback design method to move beyond the
traditional quasi-static flat-footed walking gaits [7,37]. The
goal was to realize a stable walking gait (periodic orbit) via
stabilization of a subset of the states of the robot, while the
remaining states of the system exhibit uncontrolled dynam-
ics (resulting in HZD). It was shown in [37] that if there is
an exponentially stable periodic orbit in the HZD, then by
employing a suitable output stabilizing control law [1,28],
the periodic orbit of the full hybrid dynamics can be stabi-
lized, resulting in stable walking.

There were two main output stabilizing controllers proposed
over the last ten years using this notion of HZD—feedback
linearization [28] and control Lyapunov functions (CLF)
[1,24]. Both of these control methodologies relied on using
a user defined ε , which was, in principle, increasing the con-
troller gain. With a sufficiently large gain, the destabilizing
impact events were overcome by faster convergences of the
outputs. Our focus in this paper is to realize the same be-
havior via PD based output stabilizing control laws, wherein
the desirable convergence rates are obtained via tuning of
the PD gains.

Despite their widespread use in practical robotic systems,
PD control laws do not have all of the properties that are
typically “taken for granted” with model based control laws.
Closed loop dynamics obtained from PD control laws do
not necessarily have equilibrium points. This also implies
that orbits in the HZD may not necessarily be orbits in the
full order dynamics. However, we can use properties of the
inertia, Coriolis-centrifugal and gravity matrices, and then
guarantee desirable convergence rates to an ultimate bound,
i.e., exponential ultimate boundedness of the outputs. This
property was utilized in [38] to establish boundedness of
tracking errors for fully actuated systems.

Organization. The paper is structured as follows. Section
2 introduces the hybrid system model of locomotion and
the associated control methodologies. This section also de-
scribes the concept of HZD and the associated stable pe-
riodic orbit. In Section 3, we focus on underactuation and
construct the PD control law for output stabilization. We
will also list a set of assumptions on the desired trajectories
that will be useful to simplify the main results of the paper.
Section 4 contains the main results, i.e., stability results of
PD based control laws for hybrid systems with Lagrangian
dynamics in a series of Lemmas and Theorems. Proofs are
provided in Section 5. Finally Section 6 provides the simu-
lation results of PD control on a 2-DOF walker.

2 Robot walking model and control

In this section, we will discuss the hybrid model of a walking
robot, and the associated notion of hybrid zero dynamics
(HZD) for walking. The associated periodic orbits of the
HZD will also be described.

Notation. R is the set of real numbers, Rn denotes the Eu-
clidean space of dimension n. The open ball of radius r > 0
centered at x ∈ Rn is denoted by Br(x). Given x ∈ Rn, |x|
is the Euclidean norm of x, and given a matrix A ∈ Rn×m,
‖A‖ is the matrix norm of A. Given a set S⊂Rn, we denote
the shortest distance between the point x ∈Rn and the set S
to be ‖x‖S := infy∈S ‖x− y‖. We will sometimes denote the

vector
[
xT ,yT

]T
∈ Rnx+ny as the pair (x,y). Note that the

Euclidean norm has the property |(x,y)|2 = |x|2 + |y|2.

2.1 Robot model

We consider an n-DOF robotic system, with the configura-
tion manifold Q. We will specifically consider relative de-
gree two systems for convenience. Therefore, we denote the
state by x = (q, q̇) ∈ T Q. We will denote the torque input by
u ∈ Rm, which is of dimension m. The dynamic model of
walking consists of a continuous (swing) phase and a dis-
crete (impact or foot-strike) phase. The discrete phase con-
sists of a switch based on a guard condition (i.e., the swing-
ing foot height h crossing zero). Each of these events will
be described briefly below.
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Continuous dynamics. Given the states (q, q̇) and inputs u,
the Euler-Lagrangian dynamics is given by

D(q)q̈+C(q, q̇)q̇+G(q) = Bu, (1)

where D(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n is
the Coriolis-centrifugal matrix, G(q)∈Rn is the gravity vec-
tor, and B∈Rn×m is the mapping of the torques to the joints.
Without loss of generality, we assume that the choice of q is
such that the mapping of torques to actuated joints is one-
to-one i.e., each column of B consists of only one element
with value one and the rest are zeros. Having described (1),
we have the following properties of the model [6,9,29] 1 :

Property 1 D is positive definite symmetric, and Ḋ−2C is
skew-symmetric for any (q, q̇) ∈ T Q.

Property 2 There exist positive constants cl , cu > 0 such
that for any (q, q̇) ∈ T Q,

• cl ≤ ‖D(q)‖ ≤ cu
• cl ≤ ‖D−1(q)‖ ≤ cu
• ‖Ḋ(q)‖ ≤ cu|q̇|
• ‖C(q, q̇)‖ ≤ cu|q̇|
• |G(q)| ≤ cu.

Note that each of the matrices, D,D−1,C,G have their own
bounds. We have used the same constants for ease of nota-
tions. (1) can be represented in statespace form as

ẋ = f (x)+g(x)u, (2)

by appropriate determination of f ,g (see [23, (13)]). The
continuous dynamics of the robot is defined on the set of
admissible states D⊂ T Q, defined by

D= {(q, q̇) ∈ T Q : h(q, q̇)≥ 0}, (3)

where h : T Q→R is the height of the swing foot (see Fig. 2).
D is called the domain. Note that h is chosen such that it
only depends on the configuration q i.e., ∂h

∂ q̇ ≡ 0 2 .

Discrete dynamics. Having described the continuous dy-
namics in statespace form (2), we can now describe the dis-
crete dynamics of the walking robot. As observed in Fig. 2,
when the height h crosses zero transversally, we have an im-
pact. This impact is represented with the rigid contact model

1 The class of robots that satisfy these properties are described
in [6,9]. For example, this is true for serial manipulators with all
of their prismatic joints preceding the revolute joints. Even for
the prismatic joints, like in spring deflections, we know that these
deflections are usually restricted by hardstops. This allows us to
include a larger class of mechanical systems.
2 In previous works, like in [1], h is chosen such that Lgh ≡ 0.
This includes a larger class of h, the analysis for which is beyond
the scope of this paper.

R

Fig. 2. Figure showing a 2-link (left) and a 5-link walking robot
(middle). One foot is in contact with ground while the other is at a
height h from the ground. A directed graph structure for a hybrid
system model of walking is shown on the right.

of [13,14]. The swinging foot is assumed to have no rebound
or slip during an impact. The velocity component of the
robot state experiences a jump, while the configuration com-
ponent remains continuous. Since the walking is symmetric,
the roles of the legs are swapped after every foot-strike. We
define the guard set representing the foot-strike as

S= {(q, q̇) ∈ D : h(q, q̇) = 0,L f h(q, q̇)< 0}, (4)

with Lgh(q, q̇)≡ 0. Here L f ,Lg are the Lie derivatives w.r.t.
f ,g respectively. When x ∈ S, we have a discrete event:

x+ = R(x), x ∈ S, (5)

where x is the pre-impact state, x+ is the post-impact state,
and R : S→D is the impact map (or reset map) of the robot.

Having obtained the continuous time (2) and discrete time
(5) model of walking, we obtain the hybrid control system
model as

H C =

{
ẋ = f (x)+g(x)u, x ∈ D\S

x+ = R(x), x ∈ S.
(6)

A pictorial representation of this hybrid control system
model is given in Fig. 2. Note that based on the definition
of the guard set (4), we assume that R(S)∩S= /0 (to avoid
consecutive jumps).

2.2 Hybrid zero dynamics

We will now mathematically describe the notion of HZD.
Denote the relative degree two outputs y : Q→ Rm of di-
mension m as

y(q) = ya(q)− yd(q), (7)

where ya : Q→ Rm, yd : Q→ Rm are the actual and the
desired values respectively. The desired values are chosen
such that y(q) = 0 for at least one q, like in [37, HH4].
Similarly, denote the passive states (or the unactuated states)
of dimension 2l = 2n− 2m as z : T Q→ R2l . Accordingly,
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we have the output dynamics (or the transverse dynamics)
and passive dynamics of the form:

ÿ =L2
f y+LgL f yu (8)

ż =ψ(y, ẏ,z). (9)

Here ψ : R2n→ R2l is the vector field (of z). Note that z is
chosen such that Lgz≡ 0 and a diffeomorphism from (q, q̇) to
(y, ẏ,z) exists (see Assumption 2 further ahead). We denote
this diffeomorphism as Φ : D→ R2n.

With a suitable output stabilizing controller, we can guaran-
tee convergence of the outputs (y, ẏ) to zero. For example, a
feedback linearizing control law of the form:

uIO = LgL f y−1(−L2
f y−2ε ẏ− ε

2y), (10)

yields exponential convergence of the outputs to zero. If
(y, ẏ) = (0,0), the resulting passive dynamics given by

ż = ψ(0,0,z), (11)

is now called the zero dynamics of the closed loop system
of (1). It is important to note that output stabilization can be
realized only during the swing mode (continuous event) of
the hybrid dynamics. On the other hand, if the outputs are
chosen in such a way that the zero dynamics is invariant of
the discrete dynamics, we have hybrid zero dynamics (HZD).
Consider the reduced dimensional surface:

Z = {(q, q̇) ∈ D : y(q) = 0, ẏ(q, q̇) = 0}. (12)

Also consider a post-impact map defined in terms of the
transformed coordinates:

∆(y, ẏ,z) := Φ◦R◦Φ
−1(y, ẏ,z), (13)

which consists of two components:[
∆y(y, ẏ,z)

∆z(y, ẏ,z)

]
:= ∆(y, ẏ,z), (14)

corresponding to the outputs (y, ẏ) and the zero coordinates
z respectively. We have HZD, if the following is satisfied:

R(S∩Z)⊂ Z or ∆(Φ(S∩Z))⊂Φ(Z). (15)

With this formulation, the goal now is to obtain a periodic
orbit in the HZD and, consequently, a periodic orbit in the
full order hybrid dynamics.

2.3 Hybrid periodic orbits

With the initial condition (y∗, ẏ∗,z∗)∈Φ(S), and the control
law (10), let ϕt(∆(y∗, ẏ∗,z∗)) be the resulting flow of (8),

(9) represented in transformed coordinates. By assuming
right continuity [35, Section II-B], this flow is, in fact, the
solution for the entire hybrid system (6) that includes both
the continuous and the discrete dynamics. We say that there
is a periodic orbit if there exists a T ∗ > 0 such that

lim
t→T ∗

ϕt(∆(y∗, ẏ∗,z∗)) = (y∗, ẏ∗,z∗), (16)

and the point (y∗, ẏ∗,z∗) is called the fixed point of the pe-
riodic orbit. We will denote this periodic orbit as

O := {ϕt(∆(y∗, ẏ∗,z∗)) ∈Φ(D) : 0≤ t < T ∗}. (17)

We will also denote the fixed point in angle-velocity coor-
dinates as x∗ := Φ−1(y∗, ẏ∗,z∗).

If the periodic orbit O satisfies some properties (like
transversality and isolated intersections with the guard Φ(S)
[28, H2.4, H2.5], [35, A.6, A.7]), then we know that for an
initial state x0 in a small enough neighborhood of x∗ i.e.,
x0 ∈ Br(x∗)∩S, the time-to-impact function is well defined
with distinct lower and upper bounds, and can be obtained as

T (y, ẏ,z) := inf{t > 0 : h(Φ−1(ϕt(∆(y, ẏ,z))) = 0}, (18)

where (y, ẏ,z) =Φ(x0). See [28,35] for more details on time-
to-impact or dwell-time functions. Note that the problem
formulation is constructed in such a way that undesirable
behaviors like consecutive jumps and Zeno executions are
avoided. Later on (Lemma 1, 2), we will show that by using
sufficiently large controller gains, even PD based control
laws yield well defined time-to-impact functions.

Having defined the periodic orbit and time-to-impact func-
tions, we can define some stability properties for O that will
be useful throughout the paper. For the following definition,
we consider the solution ϕt for the entire time interval [0,∞)
(by assuming right continuity [35, Section II-B]).

Definition 1 O is said to be locally exponentially stable
(LES) if there are constants M,r,λ > 0 such that for all
(y, ẏ,z) ∈ Br(0,0,z∗)∩Φ(S),

‖ϕt(∆(y, ẏ,z))‖O ≤Me−λ t‖∆(y, ẏ,z)‖O . (19)

Similarly, O is said to be locally exponentially ultimately
bounded (LEUB) if there are constants M,r,λ ,d > 0 such
that for all (y, ẏ,z) ∈ Br(0,0,z∗)∩Φ(S),

‖ϕt(∆(y, ẏ,z))‖O ≤Me−λ t‖∆(y, ẏ,z)‖O +d. (20)

We will be mainly establishing LEUB of O via Poincaré
maps (due to equivalence in stability results between peri-
odic orbits and Poincaré maps [28,35]). Therefore, it is suf-
ficient if we define the flow ϕ for the closed interval [0,T ],
i.e., for only the continuous dynamics. After every impact,
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the time t can be reset to zero with the resulting new ini-
tial state on the Poincaré section. More details on Poincaré
maps are provided in Section 4.

Remark 1 The notion of ultimate boundedness is valid even
for systems without equilibrium points including periodic
orbits [16, 4.8]. In the analysis that follows the next section,
we will show that the set of points O can be shown to be
ultimately bounded when PD based control laws are applied.

We can have similar notions of ultimate boundedness for
the output coordinates in the continuous dynamics. For con-
venience, we will denote the initial state as (y0, ẏ0,z0) and
the resulting trajectory, post-impact, as (y(t), ẏ(t),z(t)) with
(y(0), ẏ(0),z(0)) = ∆(y0, ẏ0,z0). We have the following def-
inition for boundedness of the outputs:

Definition 2 Given Tδ > 0, the zero values of the out-
puts (y(t), ẏ(t)) are said to be locally exponentially
ultimately bounded (LEUB) in the interval t ∈ [0,Tδ ]
if there are constants M,r,λ ,d > 0 such that for all
(y0, ẏ0,z0) ∈ Br(0,0,z∗)∩Φ(S),

|(y(t), ẏ(t))| ≤Me−λ t |(y(0), ẏ(0))|+d. (21)

The notion of ultimate boundedness (UB) and local expo-
nential ultimate boundedness (LEUB) are applied to systems
that are forward complete, i.e., t ∈ [0,∞). We would still
like to use this definition for shorter finite intervals, since
we have a hybrid system with restrictions on dwell-time.
Therefore, whenever we say that the outputs are LEUB in
the interval [0,Tδ ], we mean that (21) is valid for [0,Tδ ].

It was shown in [1, Theorem 2] that if there is an exponen-
tially stable periodic orbit in the HZD, then by choosing a
sufficiently large enough ε in (10), we can realize an expo-
nentially stable periodic orbit in the full order dynamics. In
this paper, we will particularly focus on obtaining a simi-
lar result (boundedness) with PD control by choosing large
enough gains.

3 PD tracking with underactuation

In this section, we will focus on PD based control laws for
robotic systems with underactuation. Since m is the degree
of actuation (DOA) and n is the degree of freedom (DOF),
we have the corresponding degree of underactuation as l =
n−m. Accordingly, we have the following separation in the
dynamics:

D11(q)q̈u +D12(q)q̈a +C1(q, q̇)q̇+G1(q) = 0
D21(q)q̈u +D22(q)q̈a +C2(q, q̇)q̇+G2(q) = u, (22)

where the terms corresponding to D,C,G are apparent from
the setup. qu, qa are the unactuated and actuated configura-
tions respectively. Also let Bc ∈Rn×l be the constant matrix

obtained in such a way that if the l unactuated joints had
inputs, then these inputs would be mapped via this matrix.
In other words, the new notations Bc,qu,qa are defined in
such a way that

q =
[
Bc B

][qu

qa

]
. (23)

Accordingly, we have that[
D11 D12

D21 D22

]
=

[
BT

c DBc BT
c DB

BT DBc BT DB

]
[

C1

C2

]
=

[
BT

c C

BTC

]
[

G1

G2

]
=

[
BT

c G

BT G

]
. (24)

The matrices Bc,B have some important properties that will
be utilized in the proofs in this section. Some of them are

[Bc,B] =

[
BT

c

BT

]
= 1n×n

BT B = 1m×m, BT
c Bc = 1l×l , BT

c B = 0l×m, BT Bc = 0m×l ,

where 1 is the identity matrix, 0 is the zero matrix with
appropriate dimensions. Based on these properties q̈u can be
eliminated from (22) to obtain

BT ADBq̈a +BT ACq̇+BT AG = u, (25)

where

A := 1n×n−DBc(BT
c DBc)

−1BT
c ,

with 1n×n being the identity matrix of dimension n. It can be
verified that BT ADB is nothing but the Schur complement
of D11 = BT

c DBc in D, and it has some important properties:

Proposition 1 BT A(q)D(q)B is symmetric positive definite
for all (q, q̇) ∈ T Q.

Proposition 2 There exist positive constants cl ,cu such that
for all (q, q̇) ∈ T Q,

• cl ≤ ‖BT A(q)D(q)B‖ ≤ cu
• cl ≤ ‖(BT A(q)D(q)B)−1‖ ≤ cu
• ‖A(q)‖ ≤ cu
• ‖A(q)D(q)‖ ≤ cu
• ‖Ȧ(q, q̇)D(q)+A(q)Ḋ(q, q̇)‖ ≤ cu|q̇|
• ‖BT A(q)C(q, q̇)‖ ≤ cu|q̇|
• ‖BT A(q)G(q)‖ ≤ cu.
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See [25, Theorem 2.1, Corollary 4.1] and [3, Appendix
A.5.5] for more details on Schur complement matrices. Note
that, similar to Property 2, we have used the same constants
cl ,cu for ease of notations. Proofs of Propositions 1 and 2
are provided in Appendix A.

3.1 Outputs and control

Having represented the dynamics in the form (25) by elimi-
nating q̈u, we will now define the outputs for the robot. For
the actuated configuration qa, we define the following rela-
tive degree two outputs:

e(qa,τ) = qa−qa
d(τ), (26)

where e defines the difference between the actual and the
desired value of the actuated joints of the robot. The desired
configuration qa

d : R≥0 → Rm is a function of a variable
called the phase (or the gait timing) variable τ : Q→ R,
which is a function of the configuration. By a slight abuse
of notations, we will sometimes remove the phase τ and
denote the desired trajectories by qa

d(q).

Having defined the error e, we have its derivative as

ė(q, q̇) = q̇a−
∂qa

d(q)
∂q

q̇ = J(q)q̇a−
∂qa

d(q)
∂qu q̇u.

and J(q) := ∂e(q)
∂qa is the Jacobian w.r.t. qa. We use the fol-

lowing PD control law:

uPD(q, q̇) =−J(q)T Kpe(q)− J(q)T Kd ė(q, q̇), (27)

where Kp,Kd are the gain matrices of dimension m.

Remark 2 If the desired configuration is only a function of
qu, then J(q) = 1, which reduces (27) to the familiar form
of PD control law.

For simplicity, we will assume that equal gains are applied
for every joint i.e., Kp = kp1, Kd = kd1 for some kp, kd > 1
and an identity matrix 1 of appropriate size. Having defined
this PD control law (27), we have the resulting closed loop
dynamics of (6) as

ẋ = f cl(x) := f (x)+g(x)uPD(q, q̇), (28)

and with the initial state x0 ∈ S, we have the result-
ing flow (integral curve) of the continuous dynamics as
x(t) = (q(t), q̇(t)), where (q(0), q̇(0)) = R(x0) and t ∈ [0,T ]
with T > 0 (see (18)) being the time until the next impact.

3.2 Hybrid zero dynamics

For underactuated robotic systems, we typically choose the
zero coordinates to be the following:

z(q, q̇) :=

[
z1(q)

z2(q, q̇)

]
:=

[
qu

BT
c D(q)q̇

]
. (29)

It is important to note that the coordinates z shown above are
chosen based on e (see Assumption 2 ahead). Accordingly,
we have the output zero coordinates as (e, ė,z), and the cor-
responding transformation as Φ(q, q̇) = (e, ė,z). With this
transformation, we have the following passive dynamics:

ż = ψ(Φ(q, q̇)), (q, q̇) ∈ D\S
z+ = ∆z(Φ(q, q̇)), (q, q̇) ∈ S, (30)

where ψ is given by

ψ(Φ(q, q̇)) :=

[
q̇u

BT
c
(
Ḋ(q, q̇)q̇−C(q, q̇)q̇−G(q)

)] . (31)

Here the input u will not appear due to underactuation. If
the outputs are zero i.e., (e, ė) = (0,0), and if the hybrid in-
variance conditions (15) are satisfied (with the notations y, ẏ
replaced with e, ė), we have hybrid zero dynamics (HZD).
The HZD obtained lies on the reduced dimensional surface:

Z = {(q, q̇) ∈ D : e(q) = 0, ė(q, q̇) = 0}. (32)

Stability of HZD has been extensively studied, where the
desired values qa

d , and the phase τ(q) are chosen in such a
way that the HZD has an exponentially stable periodic orbit
[7,10,37]. Therefore, given that there is a constructive way
to realize an exponentially stable periodic orbit in the HZD,
we make the following assumption:

Assumption 1 The hybrid zero dynamics given by

Z :=

{
ż = ψ(0,0,z), (0,0,z) ∈Φ(Z\(Z∩S))

z+ = ∆z(0,0,z), (0,0,z) ∈Φ(Z∩S)
,

(33)

has an exponentially stable periodic orbit, Oz, transverse to
Φ(Z∩S).

Remark 3 Periodic orbits on the HZD are usually ob-
tained through an offline optimization problem [11]. Since
the model is not accurately known, Assumption 1 may seem
restrictive. Relaxation of the above assumption with un-
certainties incorporated have been studied in [22], where
the periodic orbit was shown to be exponentially ultimately
bounded. In order to keep focus on the stability analysis for
PD control laws, we will continue to use Assumption 1 for
the rest of the paper.
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Denote the integral curve of the continuous zero dynamics
as ϕHZD

t : R2l → R2l . Since the HZD has a periodic orbit,
we have a fixed point z∗, and the associated period T ∗ that
satisfies: ϕHZD

T ∗ (∆z(0,0,z∗)) = z∗. We have this periodic orbit
defined as

Oz = {ϕHZD
t (∆z(0,0,z∗)) ∈ R2l : 0≤ t < T ∗}. (34)

3.3 Exponential stability via Poincaré maps

Exponential stability of periodic orbits is characterized by
using Poincaré maps [28,35]. Therefore, we define the fol-
lowing Poincaré map:

ρ(zs) := ϕ
HZD
Tρ (zs)

(∆z(0,0,zs)). (35)

Here (0,0,zs) ∈ Φ(Z ∩S) is the initial state, and Tρ is the
reduced time-to-impact function given by

Tρ(zs) = inf{t > 0 : h(Φ−1(ι(ϕHZD
t (∆z(0,0,zs))))) = 0},

(36)

obtained similar to (18). Note that we have used the subscript
s in zs to distinguish it from the evolution of z of the full
order dynamics. Since Oz is exponentially stable, by the
converse Lyapunov theorem for discrete systems, there exists
an exponentially convergent Lyapunov function Vz for some
r > 0, and positive constants c1,c2,c3,c4 such that for all
zs ∈ Br(z∗)∩ (Z∩S),

c1|zs− z∗|2 ≤Vz(zs− z∗)≤ c2|zs− z∗|2

Vz(ρ(zs)− z∗)−Vz(zs− z∗)≤−c3|zs− z∗|2 (37)
|Vz(zs− z∗)−Vz(z′s− z∗)| ≤ c4|zs− z′|.(|zs− z∗|+ |z′s− z∗|).

In addition, we know that there exist constants c5 > 0, γ ∈
(0,1) such that

|ρ i(zs)− z∗| ≤ c5γ
i|zs− z∗|. (38)

We will be mainly using this property along with the
Poincaré map of the full order hybrid system (described in
the next section) to establish our main results.

3.4 Hybrid dynamics

We can reconstruct O from Oz by the canonical embedding
ι(z) := (0,0,z), i.e., O = ι(Oz). Since O is not necessarily
an orbit of the full order hybrid system, we will denote the
point: (0,0,z∗), simply as a nominal point of O . Given that
Oz is exponentially stable, we are interested in the stability
properties of O when a PD control law of the form (27) is ap-
plied. Accordingly, we have the following hybrid dynamics

expressed in terms of the transformed coordinates (e, ė,z):

H =



ë = fe(e, ė,z)

+ge(e, ė,z)uPD(Φ
−1(e, ė,z))

ż = ψ(e, ė,z),

when (e, ė,z) ∈Φ(D\S)
(e+, ė+,z+) = ∆(e, ė,z),

when (e, ė,z) ∈Φ(S)

,

(39)

where fe,ge are obtained from the Lie derivatives of e. For
the continuous dynamics in (39), we will use e(t), ė(t),z(t) in
place of the flow ϕ for convenience. The value at t = 0, i.e.,
(e(0), ė(0),z(0)), are the post-impact states of the initial state
(e0, ė0,z0) :=Φ(x0). We will also denote the trajectory on the
orbit O by (q∗(t), q̇∗(t)), and in the transformed coordinates
by (0,0,z∗(t)). The following additional assumptions are
used to establish the main result.

3.5 Additional assumptions on Oz and the outputs e

We make the following assumptions on e. In particular, these
assumptions are for a local configuration space of q, i.e., we
will pick a tube of radius r around the orbit q∗(t):

Nr = {q ∈ Q : inf
t∈[0,T ]

‖q−q∗(t)‖ ≤ r}. (40)

We have the following first assumption on the outputs e (26):

Assumption 2 The transformation (qu,e(q)) : Q→Rn is a
local diffeomorphism onto its image for every q ∈ Nr.

By Assumption 2, the Jacobian w.r.t. q is nonsingular:

Je(q) :=

[
1l×l 0l×m
∂e(q)
∂qu J(q)

]
. (41)

As a result, the continuous dynamics (1) can be reformulated
and represented in terms of qu,e as

De(q)

[
q̈u

ë

]
+Ce(q, q̇)

[
q̇u

ė

]
+Ge(q) = J−T

e (q)Bu, (42)

where De = J−T
e DJ−1

e , Ce = J−T
e CJ−1

e + J−T
e D d(J−1

e )
dt , Ge =

J−T
e G. As a result of this change of variables, the following
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functions will appear frequently throughout the paper:

Ae(q) := 1n×n−De(q)Bc(BT
c De(q)Bc)

−1BT
c

Be(q) := 1m×m +BT De(q)Bc(BT
c De(q)Bc)

−1 ∂e(q)
∂qu

T

(43)

B′e(q) := 1l×l− (BT
c D(q)Bc)

−1BT
c D(q)BJ−1(q)

∂e(q)
∂qu .

Similar to (25), we can eliminate q̈u from (42) to obtain

BT AeDeBë+BT AeCe

[
q̇u

ė

]
+BT AeGe = BeJ−T u, (44)

where Ae,Be are obtained from (43). Having defined Ae,Be,
we now impose the following assumption:

Assumption 3 The outputs e are chosen such that the norm
‖ ∂e(q)

∂qu ‖ is sufficiently small. In particular, this norm is cho-
sen such that for all (q, q̇) ∈

⋃
q∈Nr TqQ,

1. B′e is invertible, and

2. ΛBe :=

[
Be +BT

e Be +(1+ |e|)(BT
e −1)

BT
e +(1+ |e|)(Be−1) (1+ |e|)(Be +BT

e )

]
is symmetric positive definite.

where B′e,Be are dependent on q (given by (43)).

Assumption 3 only requires that e has small variations w.r.t.
qu. This will be verified with the example biped model
in Section 6. We choose e such that the entries of Be −
1m×m,B′e−1l×l are small in magnitude. By Gershgorin’s cir-
cle theorem [4, Theorem 2.1], the diagonal entries of B′e,Be
are positive and dominate the off-diagonal entries, thereby
rendering them invertible. Furthermore, since ΛBe is sym-
metric, the eigenvalues are real and positive, thereby ensur-
ing positive definiteness. Note that this assumption is suf-
ficient but not necessary, and its relaxed formulations are
possible, which will be a subject of future work.

Since the norm is a continuous function, ‖Je(q)‖ has nonzero
upper and lower bounds on a compact set Nr. We can make
use of this property to establish the following:

Proposition 3 De is symmetric positive definite, and Ḋe−
2Ce is skew-symmetric. In addition, there exist cl ,cu > 0
(possibly smaller, larger than previously determined cl ,cu)
such that for any (q, q̇) ∈

⋃
q∈Nr TqQ,

1. cl ≤ ‖De(q)‖ ≤ cu
2. cl ≤ ‖D−1

e (q)‖ ≤ cu
3. ‖Ḋe(q)‖ ≤ cu(|q̇u|+ |ė|)
4. ‖Ce(q, q̇)‖ ≤ cu(|q̇u|+ |ė|)
5. |Ge(q)| ≤ cu.

Note that we have not restricted the tangent space TqQ to a
compact set. This will be useful for allowing larger velocity
variations (see Remark 5 ahead). Proof of Proposition 3 is
provided in Appendix B. The interested reader may also see
[30, Chapter 4, Section 5.4] for more details.

Similar to Proposition 3, we have the following properties
for BT AeDeB:

Proposition 4 BT AeDeB is symmetric positive definite. In
addition, there exist positive constants cl ,cu > 0 such that
for all (q, q̇) ∈

⋃
q∈N TqQ,

• cl ≤ ‖BT Ae(q)De(q)B‖ ≤ cu

• cl ≤ ‖(BT Ae(q)De(q)B)
−1‖ ≤ cu

• ‖BT Ȧe(q, q̇)De(q)B+BT Ae(q)Ḋe(q, q̇)B‖ ≤ cu(|q̇u|+ |ė|)
• ‖BT Ae(q)Ce(q, q̇)‖ ≤ cu(|q̇u|+ |ė|)
• ‖BT Ae(q)Ge(q)‖ ≤ cu.

Proof is provided in Appendix C. With these propositions,
we are now ready to present the main results of the paper.

4 Main results

The main results will be in a series of Lemmas and The-
orems. Since we are interested in a local result, we start
from a small neighborhood of (0,0,z∗) i.e., (e0, ė0,z0) ∈
Br(0,0,z∗)∩Φ(S). The neighborhood radius r may, per-
haps, be smaller than previously determined. Later on, r may
be reduced further depending upon the gains kp,kd . With
this initial condition, we have the following time-to-impact
(dwell-time) function:

T (e0, ė0,z0) :=


inf{t > 0 : h(Φ−1(e(t), ė(t),z(t))) = 0},

if∃ t s.t. (e(t), ė(t),z(t)) ∈Φ(S)
∞, otherwise,

(45)

where (e(0), ė(0),z(0)) = ∆(e0, ė0,z0). Since R(S)∩S = /0,
we know that there is a Tmin > 0 such that T ≥ Tmin (later we
will also show that upper bound for T also exists). We have
the following first result. We show here that the outputs are
LEUB (Definition 2).

Lemma 1 Let the system (39) be given, and let the de-
sired configuration qa

d be chosen such that Assumptions 2-
3 are satisfied. Then there exist sufficiently large enough
gains kp,kd > 1, and a correspondingly small enough r > 0,
Tδ > 0, such that for all (e0, ė0,z0)∈Br(0,0,z∗)∩Φ(S), the
outputs (e(t), ė(t)) are LEUB in the interval t ∈ [0,Tδ ].

Note that [16, 3.2] establishes boundedness by Gronwall-
Bellman result for any finite interval (any arbitrary Tδ ) by
choosing an initial point (e0, ė0,z0) very close to the nomi-
nal point (0,0,z∗) (i.e., by reducing r). We cannot use this
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approach due to the fact that O is not necessarily an orbit
for (39). On the other hand, the following Lemma will, in
fact, allow us to simply pick larger kp,kd for stretching Tδ to
T , thereby establishing ultimate boundedness of the outputs
for the entire step.

Lemma 2 Let the system (39) be given, and let the de-
sired configuration qa

d be chosen such that Assumptions 2-
3 are satisfied. Given that Oz is an orbit of the HZD, and
kp,kd ,r,Tδ > 0 are chosen such that the outputs (e(t), ė(t))
are LEUB in the interval [0,Tδ ], we then have the following:

1. If (e0, ė0,z0) = (0,0,z∗), then there exist Ck,Ct > 0 with
Ck dependent on kp,kd such that

|z(t)− z∗(t)| ≤Ck(kp,kd)eCt tTδ , t ∈ [0,Tδ ], (46)

where Ck decreases with increasing kp,kd .
2. For every δ > 0, there exist kp,kd > 1, greater than pre-

viously determined, such that

|T (0,0,z∗)−T ∗|< δ . (47)

3. There exist kp,kd > 1, greater than previously determined,
and r > 0, such that for all (e0, ė0,z0) ∈ Br(0,0,z∗)∩
Φ(S),

Tmin ≤ T (e0, ė0,z0)≤ Tmax, (48)

for some pre-defined constants Tmax > T ∗ > Tmin > 0.

Lemmas 1 and 2 together show that (e(t), ė(t),z(t)) can be
close to O for the entire step. The ensuing lemma and the
two theorems will extend this result for the entire hybrid
dynamics.

For simplicity of notation, we will denote the output coor-
dinates as η := (e, ė), and shift z∗ to zero. We will also drop
the subscript 0 from the initial states η0,z0

3 . Since we are
analyzing periodic orbits, we will be using Poincaré maps
defined as

P(η ,z) := ϕT (η ,z)(∆(η ,z)), (49)

where T is the time-to-impact function (45) (which is well
defined based on (48)). P has two components Pη ,Pz cor-
responding to the coordinates η ,z respectively. We can also
establish some of the properties of impact maps. We know
that ∆ can be separated into two components (∆η ,∆z) = ∆

corresponding to η and z. By local Lipschitz continuity and
hybrid invariance conditions, we have the following:

|z(0)− zs(0)|= |∆z(η ,z)−∆z(0,z)| ≤ L∆|η | (50)
|z(0)− z∗(0)|= |∆z(η ,z)−∆z(0,0)| ≤ L∆(|η |+ |z|),

3 Since the ensuing Lemma and Theorems are established via
Poincaré maps, there is no confusion.

where L∆ is the Lipschitz constant. Since ∆η(0,z) = 0,

|(e(0), ė(0))|= |∆η(η ,z)−∆η(0,z)| ≤ L∆|η |. (51)

There is an elegant relationship between the time-to-impact
functions T,Tρ and the Poincaré maps P,ρ that can be uti-
lized to prove the main theorem. This is given in the form
of the following lemma.

Lemma 3 Let the system (39) be given, and let the desired
configuration qa

d be chosen such that Assumptions 2-3 are
satisfied. Given that Oz is an LES periodic orbit of the HZD
transverse to Φ(Z ∩S), then there exist large gains kp,kd ,
small enough r > 0, and corresponding CT ,CP,dT ,dP > 0
such that for all (η ,z) ∈ Br(0,z∗)∩Φ(S),

|T (P(η ,z))−Tρ(z)| ≤CT |η |+dT (52)
|Pz(η ,z)−ρ(z)| ≤CP|η |+dP. (53)

In addition, the gains kp,kd can be further increased and r
can be further decreased in such a way that CT ,CP remain
constant and dT ,dP decrease (with increasing kp,kd).

Lemmas 1-3 yield r and the PD gains kp,kd , which yield
the inequalities (52), (53). We will now state the following
well known result for periodic orbits [35]:

Theorem 1 Given the set of points O obtained from the
embedding ι of the periodic orbit Oz (34) of the hybrid zero
dynamics Z (33), the following are equivalent:

1. O = ι(Oz) of the hybrid system H (39) is LEUB.
2. (0,0) = Φ(x∗) of the map P (49) is LEUB.

Theorem 1 will be used to establish the main theorem of the
paper that follows. We will not be proving this theorem, since
it is directly obtained as a consequence of [35, Theorem 1]
(by simply replacing the class K function of the disturbance
with a constant d). The proof of [35, Theorem 1] is for a
stronger property–input-to-state stability (ISS)–and similar
results can be derived for boundedness. We can establish
that the ultimate bound, given by d in (20), can be decreased
to an arbitrarily small value by choosing appropriate kp,kd .
As d → 0, the resulting orbit of the closed loop system
coincides with O . Therefore, Theorem 1 will be used to
establish boundedness of periodic orbits via Poincaré maps.

Main theorem. We will now present the main theorem.

Theorem 2 Let the system (39) be given, and let the desired
configuration qa

d be chosen such that Assumptions 2-3 are
satisfied. If Oz is an LES periodic orbit of the hybrid zero
dynamics Z (33) transverse to Φ(Z∩S), then for sufficiently
large enough gains kp,kd > 1, O is an LEUB periodic orbit
of the full order hybrid dynamics H (39).

We will prove Lemmas 1-3, and also Theorem 2 in the next
section.
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5 Proofs of Lemmas 1-3 and Theorem 2

PROOF. [of Lemma 1] We consider the following Lya-
punov candidate:

Ve(e, ė,q) =V0(e, ė,q)+Vc(e, ė,q) (54)

V0(e, ė,q) =
1
2

[
e

ė

]T [
Kp 0

0 BT Ae(q)De(q)B

][
e

ė

]
(55)

Vc(e, ė,q) = α(e)eT BT Ae(q)De(q)Bė (56)

α(e) =
k0

1+ |e|
=

k0

1+
√

eT e
. (57)

It can be verified that Ve is positive definite. The addition of
the cross terms Vc does not affect the positive definiteness
as long as k0 is sufficiently small. For example, we can pick
k0 that satisfies

k0 ≤
√
‖Kp‖‖BT AeDeB‖
‖BT AeDeB‖

. (58)

Therefore, we can choose

k0 =

√
kp

N
, where N > ‖BT AeDeB‖

1
2 . (59)

We will be picking a larger value for N later on. Choosing
this value of k0 also helps in separating kp from the positive
definite matrix in (55) to obtain the following bounds on Ve:

λl

∣∣∣∣∣
[√

kpe

ė

]∣∣∣∣∣
2

≤Ve ≤ λu

∣∣∣∣∣
[√

kpe

ė

]∣∣∣∣∣
2

, (60)

for some positive constants λl, λu that do not depend on
kp. This type of inequality is useful for realizing desirable
convergence rates for Ve (see [1, (10)-(22)] for a similar
formulation).

Ve of the initial states. It is important to determine the
sublevel sets of Ve that contains all the possible initial values.
Since Oz is locally stable in HZD, we can pick the same
neighborhood radius r (or maybe even smaller) for the initial
states (e0, ė0,z0). With this initial state we know from (50)
and (51) that

|(e(0), ė(0))| ≤L∆|(e0, ė0)| ≤ L∆r. (61)

Therefore, given the initial state, the maximum possible
value of Ve is λukpL2

∆
r2. This will be useful for determining

the gains of the controller later on. We will now solve for
the dynamics of Ve.

Derivative of V0. By solving for the derivative of V0, we get
the following:

V̇0 = eT Kpė+
1
2

ėT BT (ȦeDe +AeḊe)Bė+ ėT BT AeDeBë,

and after substituting (44) and (27) and using Propositions
3, 4, we have the final inequality as

V̇0 =
1
2

ėT BT (ȦeDe +AeḊe)Bė− ėT BT Ae(Ce

[
ż1

ė

]
+Ge)

− kpėT (Be−1)e− kd ėT Beė

≤cu

2

∣∣∣∣∣
[

ż1

ė

]∣∣∣∣∣ |ė|2 + cu

∣∣∣∣∣
[

ż1

ė

]∣∣∣∣∣
2

|ė|+ cu|ė|

− kpėT (Be−1)e− kd ėT Beė. (62)

Derivative of Vc. By solving for the derivative of Vc, we have

V̇c =α̇eT BT AeDeBė+α ėT BT AeDeBė

+αeT BT (ȦeDe +AeḊe)Bė+αeT BT AeDeBë

≤2αcu|ė|2 +αcu

∣∣∣∣∣
[

ż1

ė

]∣∣∣∣∣ |e||ė|+αcu

∣∣∣∣∣
[

ż1

ė

]∣∣∣∣∣
2

|e|+αcu|e|

− kpαeT Bee− kdαeT Beė, (63)

where we have used Propositions 3, 4, and some of the
properties of α(e):

|α(e)| ≤ k0, |α(e)||e| ≤ k0,

|α̇(e)| ≤ k0|ė|, |α̇(e)||e| ≤ k0|ė|.

In addition, we note from (29), Property 2 and Assumptions
2, 3 that B′eż1 = D−1

11 (z2−D12J−1ė), which yields∣∣∣∣∣
[

ż1

ė

]∣∣∣∣∣≤ cq

∣∣∣∣∣
[

z2

ė

]∣∣∣∣∣ , (64)

for some cq > 0. This can be substituted for ż1, ė in the above
equations. We obtain the total derivative as

V̇e ≤−
α

2

[
e

ė

]T  kp(Be +BT
e )

kp(BT
e −1)+αkdBe

α

kp(Be−1)+αkdBT
e

α

kd(Be+BT
e )

α


︸ ︷︷ ︸

Λ

[
e

ė

]

+αcu|z2||e||ė|+ cu(α|e|+ |ė|)(|z2|2 +1)

+2cu(α +α|e|+ |ė|+ |z2|)|ė|2, (65)

where cu is redefined to absorb cq. The control gains kp,kd
must be picked in such a way that Ve is decreasing. For |z2|,
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we will pick the maximum of z in a compact neighborhood
(tube) of Oz. Assume that this maximum is b > 0 (say).
Similarly, the maximum possible values for |ė|, |e| in the
sublevel set of Ve are given by

|ė| ≤

√
kp

λu

λl
L∆r =: |ė|max, |e| ≤

√
λu

λl
L∆r =: |e|max, (66)

which are obtained from the maximum value of Ve for all
possible initial states. Since |ė|max depends on the propor-
tional gain kp, the derivative gain kd must be at least as high
as
√

kp. Therefore, choose kp = ε2,kd = εk,k0 = ε/k for
some ε,k > 1. We require that Λ� 0 i.e.,

[
e

ė

]T

Λ

[
e

ė

]
=

[
εe

kė

]T

ΛBe

[
εe

kė

]
> 0, (67)

for all (q, q̇) ∈ ∪q∈Nr TqQ. This is true by Assumption 3.
Therefore, we have the following:

V̇e ≤−
α

2
λBe

∣∣∣∣∣
[

εe

kė

]∣∣∣∣∣
2

+αk1|e||ė|+αk2|ė|2 (68)

+ k3(α|e|+ |ė|),

where λBe := λmin(ΛBe) is the minimum eigenvalue in the
compact set Nr, and

k1(|z2|) = cu|z2|

k2(|e|, |ė|, |z2|) = 2cu

(
1+ |e|+ (|ė|+ |z2|)

εk−1(1+ |e|)−1

)
(69)

k3(|z2|) = cu(|z2|2 +1).

One half of the first summand in (68) can be used to cancel
the next two summands in the following manner:

−λBe

4
|(εe,kė)|2 + k1|e||ė|+ k2|ė|2 = (70)

−

[
|e|
|ė|

]T  ε2λBe
4 −k1

−k1
k2λBe

4 − k2

[|e|
|ė|

]
,

where the summands are collected together in the form of a
matrix. We can replace e, ė,z2 in k1,k2 with their maximum
possible values, and by choosing a large enough k, we can
ensure that (70) is negative.

Note that (70) is satisfied even if ε is increased (|ė| ≤ |ė|max
is canceled by ε in the denominator in (69)), and if the k
chosen does not satisfy (58) i.e., if k 6> N, then we simply
increase it further. We will be using ε as a tunable gain for

obtaining desirable convergence rates. We have that

V̇e ≤−
αλBe

4
|(εe,kė)|2 + k3(α|e|+ |ė|)

≤−αλBe

8
|(εe, ė)|2 +

2αk2
3

λBe ε2 +
2k2

3k2

λBe α

≤−2ελVe +
2αk2

3
λBeε2 +

2k2
3k2

λBeα
, (71)

where λ := λBe/(16k(1+ |e|max)λu). The above inequality is
satisfied as long as z remains in the tube. Let Tδ be the time
when z crosses this limit. Therefore, by using comparison
lemma [16, Lemma 3.4] in (71), we have that

Ve(t)≤ e−2ελ tVe(0)+
k4

ε2 , t ∈ [0,Tδ ], (72)

where k4 is obtained by collecting all the additional terms
that are independent of ε . We can express the above inequal-
ity in terms of the outputs as

∣∣∣∣∣
[

e(t)

ė(t)

]∣∣∣∣∣
2

≤ ε
2e−2ελ t λu

λl

∣∣∣∣∣
[

e(0)

ė(0)

]∣∣∣∣∣
2

+
k4

ε2λl∣∣∣∣∣
[

e(t)

ė(t)

]∣∣∣∣∣≤ εe−ελ t

√
λu

λl

∣∣∣∣∣
[

e(0)

ė(0)

]∣∣∣∣∣+
√

k4

ε2λl
, (73)

which completes the proof.

Remark 4 We showed that increasing ε increases the con-
vergence rate of the outputs. It is important to note that this
also results in changing shape of the Lyapunov level sets
of Ve. The peak velocity |ė|max increases with increasing ε .
On the other hand, increasing ε does not increase |e|max.
Therefore, Assumptions 2 and 3 are still valid. We will now
prove Lemma 2.

PROOF. [of Lemma 2] Firstly, we note that by the differ-
entiability of Φ (diffeomorphism):

|q(t)−q∗(t)| ≤ Lq(|z1(t)− z∗1(t)|+ |e(t)|), (74)

where Lq is the local Lipschitz constant (for the tube of
radius r around the orbit). By using the definition of the zero
coordinates, we have that

ż1(t)− ż∗1(t) =B′e(q(t))
−1D11(q(t))−1[z2(t)

−D12(q(t))J(q(t))−1ė(t)
]

(75)

−B′e(q
∗(t))−1D11(q∗(t))−1z∗2(t).

Here B′e is given by (43), and q∗(t),z∗1(t) correspond to the
trajectory on O . By collecting the common terms, we obtain
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the following inequality:

|ż1(t)− ż∗1(t)| ≤cz(|z2(t)− z∗2(t)|+ |q(t)−q∗(t)|+ |ė(t)|),
(76)

for some cz > 0. We can have a similar inequality for the
derivative of z2(t)− z∗2(t):

|ż2(t)− ż∗2(t)| ≤ cz(|ż1(t)− ż∗1(t)|+ |ż1(t)− ż∗1(t)|2 (77)

+ |ė(t)|+ |ė(t)|2 + |q(t)−q∗(t)|),

for, perhaps, a larger value for cz > 0. By using (74), (76)
and (77), we establish that

|ż(t)− ż∗(t)| ≤ cz

∣∣∣∣∣
[

z(t)− z∗(t)

η(t)

]∣∣∣∣∣+
∣∣∣∣∣
[

z(t)− z∗(t)

η(t)

]∣∣∣∣∣
2 ,

(78)

for some cz > 0 (possibly larger than the previously deter-
mined cz). We have used η(t) :=(e(t), ė(t)) for convenience.
We substitute (78) in the following inequality:

|z(t)− z∗(t)| ≤|z(0)− z∗(0)|+
∫ t

0
|ż(s)− ż∗(s)|ds

≤|z(0)− z∗(0)|+ cz

∫ t

0
(|η(s)|+ |η(s)|2)ds

+ cz

∫ t

0
(|z(s)− z∗(s)|+ |z(s)− z∗(s)|2)ds.

For a tube of radius r around Oz, we have that |z(t)|, |z∗(t)| ≤
b. Therefore, by substituting b and the expression for the
outputs η(t), we have that

|z(t)− z∗(t)|≤|z(0)− z∗(0)|+ czελu

2λλl
|η(0)|2 + czk4Tδ

ε2λl

+
cz

λ

√
λu

λl
|η(0)|+ cz

√
k4

ε2λl
Tδ

+ cz(1+2b)
∫ t

0
|z(s)− z∗(s)|dt. (79)

By using Gronwall-Bellman inequality [16, Lemma A.1],
we obtain

|z(t)− z∗(t)|≤cz

(
|z0|+ε|η0|2 + |η0|+

Tδ

ε2 +
Tδ

ε

)
ecz(1+2b)t ,

(80)

where the pre-impact state (η0,z0) is substituted and cz is ap-
propriately redefined. We establish the first part of Lemma 2
by substituting z0 = z∗ = 0, η0 = 0 and appropriately choos-
ing Ck,Ct .

To establish the second part of Lemma 2, we first note that
the constant terms in (80) decrease with increasing ε . There-
fore, z(t) gets closer to O with decreasing r and increasing

ε , implying that the states are bounded for [0,Tδ ]. Since Tδ

is the time when |z2(t)| crosses its bound b, i.e., leaves the
compact neighborhood around Oz, we can use the steps fol-
lowed in [16, Theorem 3.5]. Tδ is stretched to an arbitrary
constant Tδ = Tmax > T ∗ (say), and by choosing ε (say ε1),
and r (say r1 that is smaller than previously chosen), we en-
sure that Lemma 1 is valid for the entire [0,Tmax]. With this
result, the next steps are similar to [35, Proof of Lemma 2],
where we use implicit function theorem (in function spaces)
to establish bounds for the time-to-impact function (45). We
know that on the nominal orbit, we obtain the period T ∗ as

T ∗ = inf{t > 0 : h(Φ−1(0,0,z∗(t))) = 0}, (81)

which is well defined. By transversality condition (see [35,
A.7]), any small perturbation of the trajectories from the
nominal orbit in the guard function h(Φ−1(µ1(t),0,z∗(t)+
µ2(t))) will still yield a well defined time-to-impact func-
tion, as long as the perturbations µ1(t),µ2(t) are small 4 .
Pick µ1(t) = e(t), µ2(t) = z(t)− z∗(t), and the resulting
guard function yields (45). We can quantify µi’s by using
function norms. Denote the functional norms as

‖e‖∞ := sup
t∈[0,Tmax]

|e(t)|

‖z− z∗‖∞ := sup
t∈[0,Tmax]

|z(t)− z∗(t)|. (82)

Both ‖e‖∞ and ‖z− z∗‖∞ can be evaluated from (73) and
(80) respectively. Since the initial state is (0,0,z∗), we know
that by increasing ε , ‖e‖∞ and ‖z− z∗‖∞ can be decreased.
Given δ > 0, if δ > Tmax−T ∗, we will first pick a smaller
δ1 > 0 that ensures that T ∗+ δ1 < Tmax. Therefore, given
δ1 > 0, we can obtain a larger ε > ε1 (say ε2) such that (47)
is satisfied.

We will now establish the third part of Lemma 2. Simi-
lar to Tmax, we can manually set some Tmin > 0 such that
Tmin < T ∗ < Tmax

5 . We choose δ < min{Tmax− T ∗,T ∗−
Tmin}, and the corresponding time-to-impact satisfies Tmin <
T (0,0,z∗)< Tmax, for ε ≥ ε2. Note that ε can be increased
even further to decrease the bound on e,z. Accordingly, we
can choose a small enough neighborhood (smaller than r1)
around (0,0,z∗) in such a way that (48) is satisfied, while
still satisfying the conditions of implicit function theorem
and boundedness of z(t). This completes the proof.

Remark 5 For the initial state (0,0,z∗), we have that ε→∞

=⇒ the resulting evolution of z(t) is identically equal to
z∗(t). For the non-zero initial state (e0, ė0,z0), it can be ver-
ified that the norm ‖z−z∗‖∞ does not increase with increas-
ing ε if the neighborhood radius r is chosen appropriately.
For example, we can choose r such that it is inversely pro-
portional to

√
ε (see (80)). In addition, the peak value of

4 h is not dependent on velocity ė, and hence the second argument
being zero still yields the time-to-impact function.
5 In [1, Lemma 1], Tmin,Tmax were chosen to be 0.9T ∗,1.1T ∗
respectively.
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|e(t)| only depends on r (see (66)). This will be useful for in-
creasing ε to arbitrarily large values later on. We will now
prove Lemma 3.

PROOF. [of Lemma 3] We will first study the progression
of η(t) till the end of the step t = T . By replacing T with its
extreme values Tmin,Tmax, we have the following from (73):

|η(T )| ≤β (ε)|η |+dη(ε), (83)

where the subscript 0 was omitted for convenience, and

β (ε) =

√
λu

λl
εe−ελTmin , dη(ε) =

√
k4

ε2λl
. (84)

Here the dependency of β ,dη on ε is explicitly shown. Note
that β has an upper bound (denote it by β̄ ) that is indepen-
dent of ε .

We can obtain similar inequalities for the zero coordinates.
Firstly, we know that z(t) is the trajectory of the zero coor-
dinate on the full order hybrid dynamics (39) with the ini-
tial condition (η ,z) on the guard, and zs(t) is the trajectory
on the HZD with the initial condition z on the guard. For a
fixed ε ≥ ε2, we know that we can pick an r (see Remark
5) in such a way that

|z(T )− zs(T )| ≤Cz|η |+dz(ε), (85)

where Cz,dz are both obtained by collecting all the terms
together. This is similar to the inequality (80). The rest of the
steps are very similar to [1, Proof of Lemma 1]. We define
an auxiliary time-to-impact function:

TB(µη ,µz,z) = inf
t>0
{t : h(Φ−1(µη ,zs(t)+µz)) = 0}, (86)

where µη ∈ R2m, µz ∈ R2l , and satisfies

|TB(µη ,µz,z)−Tρ(z)| ≤ LB(|µη |+ |µz|), (87)

where LB is the Lipschitz constant. In addition, µη ,µz are
further defined to be

µη = η(t)|t=T (η ,z), µz = z(t)− zs(t)|t=T (η ,z), (88)

which yields TB(µη ,µz,z) = T (η ,z). With this result, and
by substituting (83), (85), and also the bound on β (ε) in
(87), we get the first result (52).

The second result (53) will follow exactly the steps in [1,
Proof of Lemma 1] with the substitution of (52). Define

Cψ = max
Tmin≤t≤Tmax

|ψ(0,zs(t))|. (89)

We therefore have

|Pz(η ,z)−ρ(z)|≤|z(0)− zs(0)+∫ T (η ,z)

0
ψ(η(t),z(t))−ψ(0,zs(t))dt

∣∣∣∣
+

∣∣∣∣∫ Tρ (z)

T (η ,z)
|ψ(0,zs(t))|dt

∣∣∣∣ . (90)

The first two terms on the RHS are substituted with (85),
and the last term can be replaced with (89) and (52). This
completes the proof.

We are now ready to prove the main theorem.

PROOF. [of Theorem 2] Since we know that exponential
stability of Oz yields a discrete time Lyapunov function Vz(z)
(37), we need to construct a suitable Lyapunov function for
the full order system.

Lyapunov candidate for P: Consider the following Lya-
punov candidate for the Poincaré map:

V (η ,z) = σ |η |2 +Vz(z), (91)

where σ > 0 is a tunable constant, and (η ,z) is the initial
state (by a slight abuse of notations).

We will analyze the two terms in RHS of (91) separately.
We note in (83) that β (ε) can be reduced by increasing ε .
Hence, we can obtain ε̄ > ε2 in such a way that β (ε)< 1/2
(say) for all ε ≥ ε̄ . We may have to increase ε further to
decrease the ultimate bound later on. We have

|Pη(η ,z)|2−|η |2 ≤− (1−β (ε)2)|η |2 +dη(ε)
2. (92)

By using (37), we have the following:

Vz(Pz(η ,z))−Vz(z)
=Vz(Pz(η ,z))−Vz(ρ(z))+Vz(ρ(z))−Vz(z)

≤c4|Pz(η ,z)−ρ(z)|.(|Pz(η ,z)|+ |ρ(z)|)− c3|z|2

≤− c3|z|2 + c4(CP|η |+dP(ε))
2

+ c4(Lρ + c5γ)(CP|η |+dP(ε))|z|, (93)

where Lρ is the Lipschitz constant of ρ . The remaining steps
are similar to [23, Eqns. (92)-(94)], which yields

V (P(η ,z))−V (η ,z)≤−

[
|η |
|z|

]T

ΛH

[
|η |
|z|

]
+d(σ ,ε),

(94)
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where

ΛH =

[
σ

1−2β (ε)2

2 − c4C2
P −

c4CP(Lρ+c5γ)
2

− c4CP(Lρ+c5γ)
2

c3
2

]
(95)

d(σ ,ε) = σdη(ε)
2 +

[
2C2

P
σ

+
1
c4

+
(Lρ + c5γ)2

2c3

]
c2

4dP(ε)
2.

By choosing a large enough σ , it can be verified that ΛH is
positive definite. We complete the proof by picking an even
larger ε > ε̄ such that d(σ ,ε) is sufficiently small.

6 Results

In this section we will discuss simulation results on a 2-link
walker platform shown in Fig. 2. The biped is planar with
2 links; this model was primarily used to establish robust
walking behaviors in [27]. The robot has point feet, and is
thus underactuated at the ankle. Table 2 provides the list of
physical parameters of the 2-link walker. More details about
this model are found in [27].

Outputs and control. We have the configuration as q =
(q1,q2), where q1 is the angle between the legs i.e., angle
between the stance and nonstance legs, q2 is the stance leg
angle w.r.t. the vertical axis. The output is defined as follows:

e(q) = q1−qa
d(τ(q2)), (96)

where qa
d is a 5th order polynomial:

qa
d(τ) =

5

∑
j=0

ζ jτ
5− j(1− τ) j, τ(q2) =

q2−q0

q f −q0
, (97)

with ζ j’s being the parameters 0.5753, 3.1632, 0.3115,
−0.0570, −1.9988, −0.5753 in increasing order, and q0,q f
being the initial and final values of q2 on the orbit. These
parameters are obtained via an offline optimization prob-
lem [11,39,40]. The control law is given by (27). We chose
the following gain values, and then studied the resulting
walking:

kp = ε
2, kd = εk, with ε = 5,10,20, k = 2. (98)

ε = 5 resulted in eventual falling, while ε = 10,20 resulted in
stable walking. We verified that Assumption 3 was satisfied
throughout the step, which is shown in Fig. 3. Fig. 4 shows
the responses and torque profiles for these different gains.
Fig. 5 shows the phase portrait of the zero coordinates for
100 steps for ε = 20,40. It can be verified from Figs. 4 and
5 that increasing ε not only increases the convergence rate,
but also reduces the ultimate bound.

Model Parameters

Link Mass Length Center

(kg) l(m) lc (m)

Leg 0.103 0.5 0.33

Hip 0.068 N/A 0
Table 2
The table of parameters for the 2-link walker is shown here.
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Fig. 3. Left figure is showing the minimum eigenvalue of ΛBe (see
Assumption 3), and the right figure is showing B′e for three steps.
This shows that Assumption 3 is valid for the gait obtained.

7 Conclusions

We established that PD control laws are sufficient to realize
locally stable periodic orbits in underactuated hybrid robotic
systems. As an example, we have realized stable walking
in a 2-link bipedal walker. The key methodology is to use
derivative gains that are at least as high as the square root
of the proportional gains, and then increase the proportional
gains as high as possible. It is important to note that proper-
ties like existence of stable periodic orbits in HZD, and low
variations of the desired trajectories w.r.t. the unactuated co-
ordinates have been used to achieve stable walking. We are
also assuming that the joint actuators have high torque lim-
its. These are not restrictive, and can be used as guidelines
for the biped design process.
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A Proofs of Propositions 1 and 2

PROOF. For convenience let Ds(q) := BT A(q)D(q)B. It is
easy to see why Ds is symmetric. By [3, A.5.5], Ds is positive
definite. We consider the inverse of D, which is obtained as

D−1 =

[
D−1

11 +D−1
11 D12D−1

s D21D−1
11 −D−1

11 D12D−1
s

−D−1
s D21D−1

11 D−1
s

]
.

(A.1)
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Fig. 4. Left figure is showing the comparison between the actual and nominal (dashed) trajectories for different gains of the control law
(27). The center figure is showing the Lyapunov functions varying as a function of time. The right figure is showing the corresponding
torque values varying as a function of time. Since the Lyapunov functions are decaying fast, their plots are shown for a shorter duration.
Note that the nominal trajectories are not the same as the desired trajectories.
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Fig. 5. Figure showing the phase portrait of the zero coordinates
for ε = 20 (left) and for ε = 40 (right). The phase portrait for the
nominal gait is shown for reference. The thick band indicates the
region where the walking trajectories are mostly lying. The band
is thinner and closer to the nominal curve for ε = 40.

Since ‖D−1‖ has upper and lower bounds (eigenvalues of
D−1 are the inverse eigenvalues of D), Ds must have upper
and lower bounds. We will choose these bounds to be cl ,cu
respectively. The rest of the properties can be obtained di-
rectly from Property 2 (since D contains only sine and co-
sine functions of q, their derivatives are bounded w.r.t. q).

B Proof of Proposition 3

PROOF. Positive definiteness of De, and skew symmetry
of Ḋe− 2Ce are shown in [30, Lemma 4.11]. To prove the
second part of the proposition, we have that

‖De‖ ≤ ‖J−T
e ‖‖D‖‖J−1

e ‖, (B.1)

and based on boundedness and invertibility of Je, we choose
a cu (possibly larger) that bounds De. Similarly

‖D‖ ≤ ‖JT
e ‖‖De‖‖Je‖, (B.2)

and the lower bound can be obtained accordingly. Similar
procedure follows for D−1

e ,Ge. For Ḋe we have

‖Ḋe‖=

∥∥∥∥∥∂De

∂q
J−1

e

[
q̇u

ė

]∥∥∥∥∥≤ cu(|q̇u|+ |ė|), (B.3)

for some cu > 0. Similar procedure follows for Ce.

C Proof of Proposition 4

PROOF. Proof is very similar to Proof of Propositions 1,
2, and 3. We note that Ae,De are purely functions of the
configuration q from a compact space N. Therefore, the ar-
guments follow directly from (A.1), (B.1), (B.2), (B.3).
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