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Abstract

Difference equations, such as a Ricker map, for an increased value of the parameter, experience instability of the positive
equilibrium and transition to deterministic chaos. To achieve stabilization, various methods can be applied. Proportional
Feedback control suggests a proportional reduction of the state variable at every kth step. First, if k 6= 1, a cycle is stabilized
rather than an equilibrium. Second, the equation can incorporate an additive noise term, describing the variability of the
environment, as well as multiplicative noise corresponding to possible deviations in the control intensity. The present paper
deals with both issues, it justifies a possibility of getting a stable blurred k-cycle. Presented examples include the Ricker
model, as well as equations with unbounded f , such as the bobwhite quail population models. Though the theoretical results
justify stabilization for either multiplicative or additive noise only, numerical simulations illustrate that a blurred cycle can
be stabilized when both multiplicative and additive noises are involved.

Key words: Stochastic difference equations; proportional feedback control; multiplicative noise; additive noise; Ricker map;
stable cycles

1 Introduction

A difference equation

xn+1 = f(xn), x0 > 0, n ∈ N0 = {0, 1, 2, . . .} , (1)

for a variety of maps f , for example, logistic or Ricker,
can exhibit unstable and even chaotic behavior. For un-
stable (1), several control methods were developed in the
literature, e.g. [6,7,8,10,11,17]. These methods include
Proportional Feedback (PF) control in the deterministic
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[8] and stochastic [4] versions, Prediction-based control
[1,10,11,17] and Target Oriented control [6,7]. Some of
these methods were used to stabilize cycles rather than
an equilibrium in [2,3,11]. Stochastic versions of these
control methods, applied to stabilize a blurred equilib-
rium, were considered in [1,4]. In addition, there are
control methods where stabilization is achieved by noise
only, see the recent papers [5,9] and references therein.
In the present paper, we concentrate on a stochastic ver-
sion of PF control, applied to stabilize blurred cycles.

We consider the control by the proportional feedback
(PF) method. This method, first introduced in [8], in-
volves reduction of the state variable at each k-th step,
k ∈ N, when n is divisible by k (n | k), proportional to
the size of the state variable xn

xn+1 = f(νxn), n | k, xn+1 = f(xn), n 6 | k, (2)

where x0 > 0, n ∈ N0, ν ∈ (0, 1], k ∈ N.

However, the reduction coefficientmay involve a stochas-
tic component, describing uncertainties in the control
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process, resulting in a multiplicative noise

xn+1 =

{

f ((ν + ℓ1χn+1)xn) , n | k,

f(xn), n 6 | k,
(3)

x0 > 0, n ∈ N0, ν ∈ (0, 1], k ∈ N. We can also consider
the case when the reduction coefficient is deterministic
but there are random fluctuations of xn at the control
step, describing variability of the environment

xn+1 =

{

max {f(νxn) + ℓ2χn+1, 0} , n | k,

f(xn), n 6 | k,
(4)

x0 > 0, n ∈ N0, ν ∈ (0, 1], k ∈ N. Here χn+1 ∈ [−1, 1]
is the bounded random variable, while ℓj , j = 1, 2 de-
scribes the bound of the noise.

The deterministic version of cycle stabilization by PF
control was justified in [2]. Stabilization of a positive
equilibrium with PF method shifts an equilibrium closer
to zero and is achieved in an interval ν ∈ (α, β) ⊂ (0, 1).
For smaller values of ν, zero becomes the only stable
equilibrium, for higher values, a positive equilibrium still
can be unstable.When we applied PF control on each kth
step [2], it led to an asymptotically stable k-cycle, with
all the values between zero and a positive equilibrium.
Here we construct a stochastic analogue of this process.
Stabilization of stochastic equations with proportional
feedback was recently explored in the continuous case
[13], as well as the idea of periodic controls [18].

The paper is organized as follows. In Section 2, we in-
troduce main assumptions and discuss properties of a k-
iteration of function f . Section 3 contains results on the
existence of a blurred k-cycle in the presence of stochas-
tic multiplicative perturbations of the control parame-
ter ν when the level of noise ℓ is small, while Section 4
deals with the controlled equation for additive stochastic
perturbations. Section 5 contains examples with com-
puter simulations illustrating the results of the paper,
along with some generalizations. In particular, a modi-
fication of PF method “centered” at an unstable equi-
librium K instead of zero, is developed and applied to
construct a blurred k-cycle in the neighborhood of K,
when both stochastic, multiplicative and additive per-
turbations, are present.

2 Definitions and Auxiliary Results

In this paper, we impose an assumption on the map f
in a right neighbourhood of zero.

Assumption 1 The function f : [0,∞) → [0,∞) is
continuous, f(0) = 0, and there is a real number b > 0
such that f(x) is strictly monotone increasing, while the

function f(x)/x is strictly monotone decreasing on (0, b],
f(b) > b, while f(b)/b > f(x)/x for any x ∈ (b,∞).

Remark 1 Note that, once Assumption 1 holds for a
certain b > 0, it is also satisfied for any b1 ∈ (0, b].

Many functions in (1) used in applications satisfy As-
sumption 1, see [16] and examples below. We truncate
values at zero, when necessary, to satisfy f : [0,∞) →
[0,∞), which is a common practice [14]. Examples in-
clude the Ricker model

xn+1 = f1(xn) = xne
r(1−xn) (5)

for r > 1, with any b ≤ 1/r, the logistic model (trun-
cated at zero) xn+1 = f2(xn) = max {rxn(1− xn), 0}
for r > 2, with b ≤ 1/2. In these maps, fi are unimodal,
increasing on [0, xmax] and decreasing on [xmax,∞), with
the only critical point on [0,∞), which is a global max-
imum. However, Assumption 1 can hold for functions
which have more than one critical point, for example,
for the map developed in [12] to describe the growth of
the bobwhite quail population

f3(x) = x

(

A+
B

1 + xγ

)

, A,B > 0, γ > 1, (6)

which, generally, has two critical points, first a local
maximum, then a global minimum, then increases, and
f3(x) → ∞ as x → ∞.

We denote by (Ω,F , (Fm)m∈N,P) a complete filtered
probability space, χ := (χm)m∈N is a sequence of inde-
pendent random variables with the zero mean. The fil-
tration (Fm)m∈N is naturally generated by the sequence
(χm)m∈N, i.e. Fm = σ {χ1, . . . , χm}. The standard ab-
breviation “a.s.” is used for both “almost sure” or “al-
most surely” with respect to the fixed probability mea-
sure P throughout the text. A detailed discussion of
stochastic concepts and notation can be found in [15].
We consider (3) and (4), where the sequence (χm)m∈N

satisfies the following condition.

Assumption 2 (χm)m∈N is a sequence of independent
and identically distributed continuous randomvariables,
with the density function φ(x) such that φ(x) > 0 for
x ∈ [−1, 1] and φ(x) = 0 for x /∈ [−1, 1].

Remark 2 In fact, Assumption 2 can be relaxed to the
condition P {χ ∈ [1− ε, 1]} > 0 for any ε > 0, which
would allow to include discrete distributions, where
P {χ = 1} > 0.

In numerical simulations, we also consider the combina-
tion of (3) and (4)

xn+1 =

{

f ((ν + ℓ1χn+1)xn) + ℓ2χn+1, n | k,

f(xn), n 6 | k,
(7)
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x0 > 0, n ∈ N0, k ∈ N, ν ∈ (0, 1].

Let us start with some auxiliary results on fk(x) =
f(fk−1(x)) and g(x) := fk(νx) for any ν ∈ (0, 1], where
Assumption 1 holds. Obviously f : [0, b] → [0, f(b)] is in-
creasing and continuous, and there is an increasing and
continuous inverse function f−1 : [0, f(b)] → [0, b]. As
f(b) > b and f(x)/x is decreasing on (0, b] by Assump-
tion 1, f(x) > x for x ∈ [0, b], and also f is increas-
ing. Thus f−1(b) : [0, f(b)] → [0, b] is well defined, and
f−1(b) ∈ (0, b). Evidently f2 : [0, f−1(b)] → [0, f(b)]
is continuous and increasing, since f is increasing on
[0, b], and f2(x) ∈ [0, f(b)] for x ∈ [0, f−1(b)]. Therefore
f−2 : [0, f(b)] → [0, f−1(b)] is also well defined and in-
creasing. Similarly, f−k : [0, f(b)] → [0, f1−k(b)] exists
and is increasing for any k ∈ N. Denote

bj := f1−j(b), j ∈ N, j 6= 1, b1 = b, (8)

then f(bj+1) = bj, j = 1, 2, . . . , k, and

b = b1 > b2 > · · · > bk > 0. (9)

Lemma 2.1 If f satisfies Assumption 1, this assump-
tion also holds for fk with bk instead of b, where bk is
defined in (8).

Proof. The function f : [0, b] → [0, f(b)] is contin-
uous and monotone increasing, so is fk : [0, bk] =
[0, f1−k(b)] → [0, f(b)]. Next, let us prove that
fk(x)/x is monotone decreasing on [0, bk]. Let 0 <
x1 < x2 ≤ bk. Then f(x1) ≤ bk−1, . . . , f j(x1) ≤
bk−j , j = 1, . . . , k − 1. Since f(x)/x is decreas-
ing on [0, b], while f is increasing, f(x1)/x1 >
f(x2)/x2, f(f(x1))/f(x1) > f(f(x2))/f(x2), . . . ,
fk(x1)/f

k−1(x1) > fk(x2)/f
k−1(x2) and

fk(x1)

x1
=

fk(x1)

fk−1(x1)
. . .

f2(x1)

f(x1)

f(x1)

x1

>
fk(x2)

fk−1(x2)
. . .

f2(x2)

f(x2)

f(x2)

x2
=

fk(x2)

x2
.

Also, f(0) = 0 implies fk(0) = 0, and f(b) > b, by (9),

yields that fk(bk) = fk
(

f1−k(b)
)

= f(b) > b > bk.

Finally, let us justify that fk(x)/x < fk(bk)/bk for any
x > bk by induction. For k = 1, f(x)/x < f(b)/b follows
from Assumption 1.

For k = 2 and x > f−1(b) = b2, we consider two pos-
sible cases: f(x) < b and f(x) ≥ b. In the former case,
f(f(x)) < f(b), as f increases on [0, b], and

f2(x)

x
<

f(b)

x
<

f(b)

b2
=

f2(b2)

b2
.

For f(x) ≥ b, by Assumption 1, f(x)/x < f(b2)/b2 for
any x > b2, as b2 < b, and f(f(x))/f(x) ≤ f(b)/b. Thus

f(f(x))

x
=

f(f(x))

f(x)

f(x)

x
<

f(b)

b

f(b2)

b2

=
f(b)

b

b

b2
=

f(b)

b2
=

f2(b2)

b2
.

Next, let us proceed to the induction step. Assume
fn(x)

x
<

fn(bn)

bn
=

f(b)

bn
for any x > bn. Consider

x > bn+1. Then either fn(x) < b or fn(x) ≥ b. In the
former case fn(x) < b, we have f(fn(x)) < f(b) due to
monotonicity of f on [0, b] and

fn+1(x)

x
<

f(b)

x
<

f(b)

bn+1
=

fn+1(bn+1)

bn+1
.

In the latter case fn(x) ≥ b we get

fn+1(x)

x
=

f(fn(x))

fn(x)

fn(x)

x
<

f(b)

b

fn(bn+1)

bn+1

=
fn+1(bn+1)

b

b

bn+1
=

fn+1(bn+1)

bn+1
,

where in the inequality we used
fn(x)

x
<

fn(bn+1)

bn+1

for any x > bn+1 by the induction assumption. Also,
f(u)/u ≤ f(b)/b for any u = fn(x) ≥ b by Assump-
tion 1, while equalities applied notation (8). ✷

Define the function Ψk as

Ψk(x) :=
x

fk(x)
, x ∈ (0, bk), k ∈ N, (10)

and formally introduce the limit

Ψk(0) := lim
x→0+

x

fk(x)
. (11)

Lemma 2.2 Let Assumption 1 hold, k ∈ N and Ψk be
defined as in (10), (11). Then

(1) Ψk : (0, bk) →

(

Ψk(0),Ψk(bk)

)

,

Ψ−1
k :

(

Ψk(0),Ψk(bk)

)

→ (0, bk);

(2) 0 ≤ Ψk(0) < Ψk(bk) < 1;
(3) both Ψk and its inverse Ψ−1

k are increasing and con-
tinuous on their domains.

Proof. By Lemma 2.1, the function Ψk defined in (10)
is increasing, continuous and hence has a unique inverse
function on (0, bk). Following Assumption 1, we notice
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that the limit lim
x→0+

f(x)

x
exists (finite or infinite), is pos-

itive and greater than 1, since f(x)/x is decreasing on

(0, bk) and fk(bk) > bk. Note that
fk(x)

x
=

1

Ψk(x)
and

lim
x→0+

fk(x)

x
= lim

x→0+

1

Ψk(x)
, where lim

x→0+

1

Ψk(x)
= 0 if

lim
x→0+

fk(x)

x
= +∞. Thus (11) is well defined, and Part

(1) is valid. Also, Ψk and its inverse are continuousmono-
tone increasing in their domains and by Lemma 2.1,
Ψk(bk) < 1, which implies Parts (2) and (3). ✷

To apply known results from [4], for each point x∗ ∈
(0, f(b)), we are looking for the control parameter ν =
ν(x∗) ∈ (0, 1) such that x∗ is a fixed point of the function
g(x) := fk(νx). We recall from (8) that b1 = b and
introduce

x̂ = f−k(x∗), ν = ν(x∗) := Ψk(f
−k(x∗))

ν(x∗) = Ψk(x̂), x̂ = ν(x∗)x∗ = Ψ−1
k (ν).

(12)

Lemma 2.3 Let Assumption 1 hold, k ∈ N and x∗ ∈
(0, f(b)). The function ν(x∗) defined in (12) satisfies the
following conditions:

(1) x∗ is a fixed point of g(x) := fk(νx), i.e.
fk

(

ν(x∗)x∗
)

= x∗, ν(x∗) = Ψk(x̂), x̂ ∈ (0, bk);
(2) ν(x∗) ∈ (Ψk(0), Ψk(bk)) ⊂ (0, 1);
(3) ν(x∗) is an increasing function of x∗ on (0, f(b)).

Proof. (1). Let x∗ ∈ (0, f(b)), then f−k(x∗) ∈
(0, bk), thus Ψk(f

−k(x∗)) is well defined and ν(x∗) =
Ψk(f

−k(x∗))

=
f−k(x∗)

fk(f−k(x∗))
=

f−k(x∗)

x∗
=

x̂

fk(x̂)
= Ψk(x̂), hence

x̂ = ν(x∗)x∗ ∈ (0, bk) and

fk
(

ν(x∗)x∗
)

= fk

(

f−k(x∗)

x∗
x∗

)

= fk
(

f−k(x∗)
)

= x∗.

(2). We have x∗ ∈ (0, f(b)) and x̂ = f−k(x∗) ∈
(0, bk). Thus Lemma 2.2, Part 1 implies ν(x∗) ∈
(Ψk(0), Ψk(bk)) ⊂ (0, 1).
(3). By Lemma 2.2 and Assumption 1, for any k ∈ N,
both Ψk and f−k are increasing functions on (0, bk) and
(0, f(b)), respectively. Therefore ν(x∗) = Ψk(f

−k(x∗))
is increasing as a function of x∗ on (0, f(b)). ✷

3 Multiplicative perturbations

Consider the deterministic PF with variable intensity
νm ∈ (0, 1], applied at each k-th step, for a fixed k ∈ N,

xn+1 =

{

f(νnxn), n | k,

f(xn), n 6 | k,
x0 > 0, n ∈ N0. (13)

Investigation of (13) will allow to analyze corresponding
stochastic equation (3) with a multiplicative noise. For
each x∗ ∈

(

0, f(b)
)

, we establish the control ν = ν(x∗)
and define an interval such that a solution of (3) remains
in this interval, once the level of noise ℓ is small enough.
This method was applied, for instance, in [1].

Further, we apply the result obtained in [4] for

zm+1 = g (νmzm) = fk (νmzm) , z0 > 0, m ∈ N, (14)

to explore stochastic equation (3) with a multiplicative
noise.

For any µ1, µ2 such that

Ψk(0) < µ1 < µ2 < Ψk(bk), (15)

we define

y1 := Ψ−1
k (µ1), y2 := Ψ−1

k (µ2). (16)

Lemma 3.1 [4, Lemma 3.1] Let Assumption 1 hold for
fk, k ∈ N, µ1 and µ2 satisfy (15) and, for each m ∈ N,

νm ∈ [µ1, µ2]. (17)

Then, for any z0 > 0 and ε, 0 < ε < min {y1, bk − y2},
where y1,y2 are defined in (16), there is m0 = m0(x0, ε),
m0 ∈ N, such that the solution zn of equation (14) for
any m ≥ m0 satisfies

νmzm ∈ (y1 − ε, y2 + ε) . (18)

Remark 3 Lemma 3.1 actually states (see its proof in
[4]) that, for a prescribed k ∈ N, for a small ε > 0, once
a solution of (13) satisfies νkmxkm ∈ (y1 − ε, y2 + ε),
m ∈ N, all the subsequent k-iterates νm+jx(m+j)k, j ∈ N,
are also in this interval. This is also true for the results
based on Lemma 3.1, in particular, for Lemma 3.3 and
Theorem 3.4.

Lemma 3.2 Let Assumption 1 hold, µ1, µ2 satisfy (15)
and, for each m ∈ N, (17) be fulfilled. For any x0 > 0
and ε > 0, there is m0 = m0(x0, ε) ∈ N such that for
m ≥ m0, the solution of (13) satisfies

xmk+j ∈
(

f j(y1)− ε, f j(y2) + ε
)

, j = 1, . . . , k, (19)

where y1 and y2 are defined in (16).
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Proof. Note that y1, y2 ∈ (0, bk) and f j are continuous
and monotone increasing on (0, bk) for j = 0, . . . , k − 1.
Therefore for any ε > 0 there is an ε1 > 0 such that for
j = 1, . . . , k, u ∈ (y1 − ε1, y2 + ε1) ⇒
f j(u) ∈

(

f j(y1)− ε, f j(y2) + ε
)

. Choose z0 = x0 and
ε2 < min {y1, bk − y2, ε1} instead of ε in Lemma 3.1.
Then for m > m0, by (18), νmkxmk ∈ (y1 − ε2, y2 + ε2).
Since, by the above implication,
xmk+1 = f (νmkxmk) ∈ (f(y1)− ε, f(y2) + ε) , . . . ,
xmk+k = fk (νmkxmk) ∈

(

fk(y1)− ε, fk(y2) + ε
)

,
this implies (19). ✷

Let us proceed to stochastic equation (3).

We start with an auxiliary result which follows from
Lemma 3.2.

Lemma 3.3 Let k ∈ N be fixed, Assumptions 1 and 2
hold, Ψk be defined in (10), x∗ ∈ (0, f(b)), ν = ν(x∗) be
as in (12), and

ℓ ∈
(

0,min
{

Ψk(bk)− ν, ν −Ψk(0)
})

, (20)

y := Ψ−1
k (ν−ℓ), y := Ψ−1

k (ν+ℓ), 0 < y < y < bk. (21)

Let xn be a solution to equation (3) with ν,ℓ satisfying
(12) and (20), respectively.

Then, for any ε > 0 there is a m0 = m0(ε, x
∗, x0) ∈ N

such that, for all m ≥ m0, m ∈ N,

xmk+j ∈
(

f j(y)− ε, f j(y) + ε
)

, j = 1, . . . , k, a.s.

Proof. Since x∗ < f(bk) < f(b), Lemma 2.3 implies

ν(x∗) = Ψk(f
−k(x∗)) ∈ (Ψk(0), Ψk(bk)). Thus the right

segment bound ν−Ψk(0) in (20) is positive. By Assump-
tion 2 we have, a.s.,

νm = ν + ℓχm+1 ≤ ν + ℓ, νm = ν + ℓχm+1 ≥ ν − ℓ

and νm = ν + ℓχmk+1 ≥ ν − ℓ, thus νm ∈ [ν − ℓ, ν + ℓ],
a.s. Let µ1 := ν − ℓ, µ2 := ν + ℓ. With ν as in (12) and
ℓ satisfying (20), we have

Ψk(0)− ℓ < µ1 < µ2 < Ψk(bk) + ℓ,

then Lemma 3.2 implies the statement of the lemma. ✷

Lemma 3.3 leads to the main result of this section, which
states that for any k ∈ N and x∗ ∈ (0, f(b)), we can find
a control ν and a noise level ℓ, such that the solution
eventually reaches some neighbourhood of a k-cycle, a.s.,
and stays there.

Theorem 3.4 Let Assumptions 1 and 2 hold, Ψk be de-
fined in (10), (11), x∗ ∈ (0, f(b)) be an arbitrary point,

ν = ν(x∗) be denoted in (12), y and y be defined in (21),
x0 > 0 and ℓ ∈ R satisfy inequality (20). Then for the so-
lution xn of equation (3), the following statements hold.
(i) For each ε > 0 there exists a nonrandom m0 =
m0(ε, x

∗, x0) ∈ N such that, for all m ≥ m0,
xmk+j ∈

(

f j(y)− ε, f j(y) + ε
)

, j = 1, . . . , k, a.s.

(ii) lim inf
m→∞

xmk+j ≥ f j(y), lim sup
m→∞

xmk+j ≤ f j(y), j =

1, . . . , k, a.s.

Proof. Note that from condition (20) we have ν > ℓ.
By Lemma 3.3, for any x0 > 0 and ε > 0, there is m0 =
m0(ε) ∈ N such that, a.s., xmk+j > f j(y)− ε, xmk+j <

f j(y) + ε, m ≥ m0, j = 1, . . . , k, which immediately
implies (i).

Choosing a sequence of εm = 1
m
,m ∈ N in (i), we deduce

(ii). ✷

Next, let us assume that the level of noise can be chosen
arbitrarily small. Theorem 3.5 below confirms the intu-
itive feeling that, as the noise level ℓ is getting smaller,
the solution of stochastic equation (3) behaves similarly
to the solution of corresponding deterministic equation
(2) in terms of approaching its stable cycle {f j(x̂)},
j = 1, . . . , k, where x̂ is defined in (12).

Theorem 3.5 Let Assumptions 1 and 2 hold, k ∈ N

be fixed, x̂ ∈ (0, bk) be an arbitrary point, x∗ = fk(x̂),
ν = ν(x∗) be defined as in (12), and x0 > 0. Then, for any
ε > 0, there exists the level of noise ℓ(ε) > 0 such that for
each ℓ < ℓ(ε), there is a nonrandom m1 = m1(ε, ℓ, x̂, x0)
such that the solution x of equation (3) satisfies xmk+j ∈
(f j(x̂)− ε, f j(x̂) + ε), j = 1, . . . , k for m ≥ m1, a.s.

Proof. First of all, from monotonicity of fk notice that
the map x∗ = fk(x̂) is one-to-one, and an arbitrary
x∗ ∈ (0, f(b)) corresponds to a certain x̂ ∈ (0, bk). Next,
by continuity of all f j , for any ν = ν(x∗) defined as in
(12), there is a δ > 0 such that

|x− x̂| < δ ⇒
∣

∣f j(x) − f j(x∗)
∣

∣ <
ε

2
, j = 1, . . . , k. (22)

Also, from the choice of ν in (12) and continuity of Ψk,
there is ℓ(ε) > 0 such that for ℓ < ℓ(δ),

∣

∣y − x̂
∣

∣ < δ, |y − x̂| < δ,

since y and y defined in (21) continuously depend on ℓ.
Thus, by (22),

∣

∣f j(x̂)− f j(y)
∣

∣ <
ε

2
,
∣

∣f j(y)− f j(x̂)
∣

∣ <
ε

2
, (23)

j = 1, . . . , k. Next, let us apply Theorem 3.4, Part (i),
with ε

2 instead of ε. Then, ∀m ≥ m0, j = 1, . . . , k, a.s.,

xmk+j ∈
(

f j(y)−
ε

2
, f j(y) +

ε

2

)

. (24)
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In view of (23) and (24), xmk+j > f j(x̂) −
ε

2
−

ε

2
=

f j(x̂) − ε and xmk+j < f j(x̂) +
ε

2
+

ε

2
= f j(x̂) + ε,

therefore xmk+j ∈ (f j(x̂) − ε, f j(x̂) + ε), j = 1, . . . , k,
a.s. ✷

4 Additive perturbations

In this section we investigate similar problems for
stochastic equation with additive perturbations (4),
where f satisfies Assumption 1. Our purpose remains
the same: to achieve pseudo-stabilization of a blurred
cycle {f j(x∗)}, j = 1, . . . , k. Here x∗ is an arbitrary
point x∗ ∈

(

0, f(b)
)

.

Denoting again g(x) := fk(νx), we can connect (4) to
the equation with xmk = zm, x0 = z0 > 0,

zm+1 = max {g(zm) + ℓχm+1, 0} , m ∈ N. (25)

Let x∗ ∈ (0, f(b)), ν = Ψ−1
k (x∗), x̂ = νx∗ = f−k(x∗) ∈

(0, bk). Note that bk/ν > x∗ and, for a fixed ν, by
Lemma 2.1, g(x) = fk(νx) satisfies Assumption 1 for
νx ∈ (0, bk], so g(bk/ν)/(bk/ν) < g(x∗)/x∗. Here the
equality g(x∗) = x∗ is due to Lemma 2.3, Part 1. Thus
bk
ν

− g

(

bk
ν

)

> 0. In addition, g(x) > x for x ∈ (0, x∗)

and g(x) > x, x ∈ (x∗, bk/ν). For ℓ = 0, frommonotonic-
ity of g on (0, bk/ν), x

∗ is an attractor of g on (0, bk/ν).
Moreover, g(x) < x for any x > x∗ implies x∗ is an at-
tractor for any z0 > 0. Our purpose is to choose ℓ > 0
small enough, to have zm+1 ∈ (0, bk/ν), once zm is in
this interval.

However, attractivity of a positive equilibrium in a de-
terministic case, in the presence of the zero equilibrium,
does not imply that zero is a repeller in the stochastic
case, see [5,9] and references therein. Generally, with a
positive probability, a solution can still stay in the right
neighbourhood of zero. Assumption 2 and its general-
ized version in Remark 2 allow to make a conclusion on
attractivity of x∗, a.s.

We choose δ0 > 0 satisfying

δ0 < min

{

bk
ν

− g

(

bk
ν

)

, max
x∈[0,x∗]

[g(x)− x]

}

. (26)

Define the numbers y1, y2, x̂1, x̂2 as

y1 := sup {x ∈ [0, x∗]| g(x)− x ≥ δ0} ,

x̂1 :=νy1 ∈ (0, bk), y1 ∈ (0, x∗),

y2 := inf {x ∈ [x∗, bk/ν]| g(x)− x ≤ −δ0} ,

x̂2 :=νy2 ∈ (0, bk), y2 ∈ (x∗, bk/ν).

(27)

According to the choice of δ0, the sets in (27) are non-
empty, so y1,y2, x̂1 and x̂2 are well defined. Denote

y3 = inf {x ∈ [x∗,∞)| g(x)− δ0 ≤ y1} , (28)

where y3 is assumed to be infinite if the set in the right-
hand side of (28) is empty. As stated in [4, Lemma 4.1],
the numbers y1, y2 and y3 defined by (27) and (28),
respectively, exist.

Lemma 4.1 [4, Theorem 4.5] Let Assumptions 1 and 2
hold, x∗ ∈ (0, f(b)) be an arbitrary point, ν = ν(x∗) be
chosen as in (12), g(x) = fk(νx) and δ0 satisfy (26).
Suppose that y1, y2, y3 are denoted in (27) and (28), re-
spectively, and zm is a solution to equation (25) with an
arbitrary z0 > 0 and ℓ > 0 satisfying ℓ ≤ δ0. Then
(i) for each ε1 > 0, there exists a random M(ω) =
M(ω, x0, ℓ, x

∗, ε1) such that form ≥ M(ω) we have, a.s.
on Ω,

y1 ≤ zm ≤ y2 + ε1; (29)

(ii) for each ε1 > 0 and γ ∈ (0, 1), there is a nonrandom
number M = M(γ, x0, ℓ, x

∗, ε1) such that

P{y1 ≤ zm ≤ y2 + ε1, for m ≥ M} > γ; (30)

(iii) we have lim inf
m→∞

zm ≥ y1, lim sup
m→∞

zm ≤ y2, a.s.

Another result that will be used in future is also stated
below. It illustrates that a solution will eventually be in
any arbitrarily small neighborhood of x∗ with an arbi-
trarily close to one probability and will further be used
in the proof of Theorem 4.4.

Lemma 4.2 [4, Theorem 4.6] Let Assumptions 1 and 2
hold, z0 > 0 be an arbitrary initial value, x∗ ∈ (0, f(b))
be an arbitrary point, ν = ν(x∗) be chosen as in (12).
Then, for each ε > 0 and γ ∈ (0, 1), we can find δ0 such
that for the solution zm to (25) with ℓ ≤ δ0, and for some
nonrandom M = M(γ, x0, ℓ, x

∗, ε) ∈ N, we have
P{zm ∈ (x∗ − ε, x∗ + ε) ∀m ≥ M} ≥ γ.

This leads to two main results for (4), Lemma 4.1 imply-
ing Theorem 4.3 on a.s. convergence to a blurred cycle,
and Lemma 4.2 yielding Theorem 4.4 on the convergence
with a prescribed close to one probability.

Theorem 4.3 Let Assumptions 1 and 2 hold, x̂ ∈ (0, bk)
be an arbitrary point, x∗ = fk(x̂), ν = ν(x∗) be chosen
as in (12), and δ0 satisfy (26). Suppose that x̂1 and x̂2

are defined as in (27), and xn is a solution to (4) with
an arbitrary x0 > 0 and ℓ > 0 satisfying ℓ ≤ δ0. Then
(i) For any ε > 0, there exists a random M(ω) =
M(ω, x0, ℓ, x̂, ε) such that for m ≥ M(ω) we have, a.s.
on Ω, f j(x̂1) ≤ xkm+j ≤ f j(x̂2) + ε, j = 1, . . . k.
(ii) For each ε > 0 and γ ∈ (0, 1), there is a nonrandom
number M = M(γ, x0, ℓ, x̂, ε) such that, for j = 1, . . . k,

P{f j(x̂1) ≤ xkm+j ≤ f j(x̂2) + ε, m ≥ M} > γ, (31)
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(iii) For a solution xn of (4)we have, a.s., for j = 1, . . . k,

lim inf
n→∞

xkm+j ≥ f j(x̂1), lim sup
n→∞

xkm+j ≤ f j(x̂2). (32)

Proof. Recall from (27) that νy1 = x̂1, νy2 = x̂2. From
continuity and monotonicity of f , for any ε > 0, there is
a ε1 > 0 such that (29) implies

f j(x̂1) ≤ f j(νzm) ≤ f j(x̂2) + ε, j = 1, . . . , k. (33)

We have

xmk = zm, xmk+j = f j(νzm), j = 1, . . . , k. (34)

(i) Choosing this ε1 as in (i) of Lemma 4.1, we find
M(ω) = M(ω, x0, ℓ, x

∗, ε1) such that (29), and thus
(31) are satisfied.
(ii) Further, (ii) in Lemma 4.1 implies for M =
M(γ, x0, ℓ, x

∗, ε1) inequality (30). Thus by (33) and (34)
we have P{f j(x̂1) ≤ xkm+j ≤ f j(x̂2) + ε, for m ≥ M}
≥ P{x̂1 ≤ zm ≤ y2 + ε, for m ≥ M} > γ.
(iii) As xmk+j and zm are connected with (34), appli-
cation of Part (iii) in Lemma 4.1 immediately implies
(32). ✷

Theorem 4.4 Let Assumptions 1 and 2 hold, x0 > 0,
x̂ ∈ (0, bk) be an arbitrary point, x∗ = fk(x̂), ν = ν(x∗)
be chosen as in (12). Then, for each ε > 0 and γ ∈ (0, 1),
we can find δ0 such that for the solution xn to (4) with
ℓ ≤ δ0, and for some nonrandomM = M(γ, x0, ℓ, x̂, ε) ∈
N, j = 1, . . . , k, we have
P
{

xkm+j ∈
(

f j(x̂)− ε, f j(x̂) + ε
)

∀m ≥ M
}

≥ γ.

Proof. Let us choose ε1 such that (33) is satisfied,
fix γ ∈ (0, 1) and find M = M(γ, x0, ℓ, x̂, ε1) ∈ N

as in Lemma 4.2. Then P{νzm ∈ (x̂ − ε1, x̂ +
ε1) for all m ≥ M} ≥ γ, which by (34) implies the
statement of the theorem. ✷

5 Examples

We consider (7) combining multiplicative and additive
noise. Similarly to the previous theorems, the following
more general result can be obtained. However, the proof
is long and technical and does not include any new ideas.
Therefore we do not present it, but only illustrate stated
below Proposition 1 with computer simulations.

Proposition 1 Let Assumptions 1 and 2 hold, x0 > 0,
x̂ ∈ (0, bk) be an arbitrary point, x∗ = fk(x̂), ν = ν(x∗)
be chosen as in (12). Then, for each ε > 0 and γ ∈ (0, 1),
we can find δ1 and δ2 such that for the solution xn to (7)
with ℓ1 ≤ δ1, ℓ2 ≤ δ2 and for some nonrandom M =
M(γ, x0, ℓ1, ℓ2, x̂, ε) ∈ N, we have
P
{

xkm+j ∈
(

f j(x̂)− ε, f j(x̂) + ε
)

∀m ≥ M
}

≥ γ, j =
1, . . . , k.

Now we present examples of application of noisy PF
control method to create a stable equilibrium or stable
k-cycle in the neighborhood of nonzero point K. In all
case noises χ are continuous uniformly distributed on
[−1, 1]. In all the simulations five runs with the same
initial value are illustrated, with n on the x-axis and xn

(for all the five runs) on y-axis.

Example 1 Let us apply PF control to the Ricker model
(5). For r = 2.8, the non-controlled map is chaotic. We
consider ν = 0.002, noise applied every third step. For
(3) with ℓ1 = 0.0001 we observe a blurred stable 3-cycle,
see Fig. 1, left. Next, we simulate additive noise as in
(4). We observe a blurred stable 3-cycle with similar am-
plitudes for larger ℓ2, see Fig. 1, right. For the combined
noise as in (7), the results of the runs are similar to
Fig. 1, left.
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Fig. 1. Solutions of the Ricker difference equation with f = f1
as in (5), r = 2.8, x0 = 0.5, k = 3, ν = 0.002, n = 0, . . . , 1000
and (left) (3) with ℓ1 = 0.0001, (right) (4) with ℓ2 = 0.0005.

Example 2 Consider a particular case of (6), see [3,4],

f(x) = x

(

0.55 +
3.45

1 + x9

)

, x ≥ 0. (35)

We apply PF with k = 3 to the three cases: the multi-
plicative noise, as in (3), the additive noise, as in (4),
and the combined noise as in (7), see Fig. 2.
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Fig. 2. Solutions xn vs. n with f as in (35), k = 3, ν = 0.02,
x0 = 0.5, and (top left) (3) with ℓ = 0.0005, (top right)
(4) with ℓ = 0.005, (bottom) (7) with ℓ1 = 0.0005 and
ℓ2 = 0.005.
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The standard PF control moves a positive equilibrium
towards zero; applied at every kth step, it leads to a
stable cycle in a right neighbourhood of zero. Now we
modify this method choosing a positive equilibrium K1

instead of zero. We apply PF control method to create
a stable equilibrium or k-cycle in the nighbourhood of
nonzero point K1. The non-shifted PF control brings
the state variable 1/ν times closer to zero. We mimic
this idea for a shifted version assuming that the state
variable is proportionally moved to the fixed K1. The
controlled equation has the form xn+1 = f(K1+ ν(xn−
K1))−K1+K1 = f(νxn+(1−ν)K1), xn ≥ K1, xn+1 =
K1−[K1 − f (K1 − ν(K1 − xn))] = f(νxn+(1−ν)K1),
xn ∈ (0,K1). Thus

xn+1 = f(νxn + (1 − ν)K1). (36)

Example 3 Define

f(x) :=
9

2
x2(1 − x), x ∈ [0, 1]. (37)

The maximum value of fmax is achieved at xmax = 2
3 ,

f(xmax) =
2
3 , the inflection point is x∗ = 1

3 , f
′′(x) > 0

for x ∈ (0, 1
3 ) and f ′′(x) < 0 for x ∈ (13 , 1), f has two

positive equilibrium pointsK1 = 1
3 ,K2 =

2
3 and f ′

(

1
3

)

=
3
2 > 1.

Consider a modification of PF method “centered” at
K1 = 1/3, see (36). It can be shown that, for ν ∈ (2/3, 1),
equation (36) has two positive locally stable equilibrium
points on both sides of K1, each attracts a solution xn

with corresponding position of x0 around K1, see bifur-
cation diagram on Fig 3.
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 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

c

bifurcation diagram
unstable solution

Fig. 3. Bifurcation diagram for (36) with f as in (37),
c = 1 − ν changing from zero to 0.9 and x0 changing from
0 to 1. We get an upper branch if x0 changes from 1/3 to 1
and the lower branch if it changes from zero to 1/3.

Note that (36) is a particular case of Target Oriented
Control [6], sufficient conditions for stabilization of K1

in (36) were obtained in [7]. A modification of PF method
is responsible for the left part of the diagram (bistability)
while [7] gives an exact bound c∗ such that for c ∈ (c∗, 1),
all solutions of (36) with ν := 1 − c and x0 ∈ (0, 1)
converge to K1 = 1/3.

We introduce multiplicative noise in (36) to get for any
k ∈ N, ν ∈ (0, 1],

xn+1 =



























f((ν + ℓ1χm+1)xn

+(1− ν − ℓ1χm+1)K1), n | k,

f(xn), n 6 | k,

n ∈ N0, x0 > 0.

(38)

A multiplicative noise with small ℓ1 does not change this
type of behavior, as illustrated in Fig. 4. This also holds
when coefficient ℓ2 of the additive noise is relatively small
and x0 is relatively far from K1, see Fig 5, left and mid-
dle. However, when ℓ2 increases (in some limits), the so-
lution started on the left ofK1 and close enough toK1, is
attracted to both equilibrium solutions, on the left and on
the right of K1, see Fig. 5, right. The same holds when
x0 > K1. Fig. 6 illustrates construction of stable three-
cycles when the initial value is taken on both sides of K1.
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Fig. 4. Five runs of the difference equation with f as in
(37), multiplicative noise with ℓ = 0.0005, ν = 0.7 and (left)
x0 = 0.35, (middle) x0 = 0.6, (right) x0 = 0.2.
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Fig. 5. For difference equation (38) with f as in (37), with
additive noise (left) ν = 0.7, ℓ = 0.001, x0 = 0.4, (middle)
ν = 0.7, ℓ = 0.001, x0 = 0.3, (right) ν = 0.8, ℓ = 0.01,
x0 = 0.33.

Example 4 Define now

f(x) := 6x2(1− x), x ∈ [0, 1], (39)

which has a positive equilibrium K1 ≈ 0.211 < 1/3. Note
that for f as in (39), the results of Sections 3-4 can be
applied for xn to the left ofK1, see the bifurcation diagram
in Figure 6.
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Fig. 6. Five runs of difference equation (38) with f as in (37),
PF control applied every third step, multiplicative noise with
ℓ1 = 0.0001, additive noise with ℓ2 = 0.001, ν = 0.7 and
(left) x0 = 0.3, (right) x0 = 0.7.
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Fig. 7. Bifurcation diagram with 1 − ν changing from zero
to 0.9 for the map f as in (39).

Fig. 8 illustrates a construction of a stable 2-cycle with
multiplicative and additive noise. The left-side pictures,
where the initial value x0 < K1, show a 2-cycle, while the
right-side pictures, where x0 > K1, produce a 3-cycle.
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Fig. 8. Solutions of difference equation (38) with f as in (39),
PF control applied every second step, multiplicative noise
with ℓ1 = 0.001, additive noise with ℓ2 = 0.01, ν = 0.7 and
(left) x0 = 0.2, (right) x0 = 0.3.

6 Summary and discussion

First of all, numerical simulations show less restrictive
conditions on ν in (36) than for classical (non-shifted)
PF control. If we denote c := 1−ν in (36) then it becomes
a particular case of Target Oriented Control with an
unstable equilibrium K1 as a target [6,7].

Possible generalizations and extensions of the present
research include the following topics.

(a) Everywhere in simulations we assumed uniform
continuous distribution, and all the estimates were
dependent only on the noise amplitude. Specific
estimates for particular types of noise distribution
can be established.

(b) Everywhere we investigated asymptotic properties
of solutions. However, analysis of so called transient
behaviour, describing the speed of this convergence,
starting from the initial point, maximal amplitudes
for given initial values and noise characteristics, is
interesting for applications.
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