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Abstract

This paper describes a new approach for identifying FIR models from a finite number of measurements, in the presence of additi
and uncorrelated white noise. In particular, two different frequency domain algorithms are proposed. The first algorithm is base
on some theoretical results concerning the dynamic Frisch scheme. The second algorithm maps the FIR identification problem ir
a quaderatic eigenvalue problem. Both methods resemble in many aspects some other identification algorithms, originally develog
in the time domain. The features of the proposed methods are compared with each other and with those of some time dom:
algorithms by means of Monte Carlo simulations.

Keywords: System identification; FIR models; Discrete Fourier Transform.

1. Introduction From a theoretical point of view, there is a full equivalence
between time and frequency domain identification methods, as

The estimation of finite impulse response (FIR) models fronmShown for example in [1]. From the practical point of view, the
noise—corrupted data is an important problem in many signai€cision to implement a time or a frequency domain algorithm
processing applications [11, 20]. Most of the solutions pro-can strongly depend on the user choices and on the specific ap-
posed in the literature assume that only the output measurlications. In most experimental situations the observations are
ments are affected by noise. However, as observed in [3], if0llected as samples of time signals, so that a Fourier trans-
many practical situations the presence of an additive noise of@rmation is required before implementing a frequency domain
the input is important as well and must be taken into account. lgorithm. However, there also exist occasions in which the

It is a well known result that the least-squares (LS) methodlata are more easily available as frequency samples since they
gives biased parameter estimates when the input is affected §j€ collected by a frequency analyzer which directly provides
noise. On the contrary, a consistent estimate can be obtained B} Fourier transforms of the time signals [14, 18].
using the total least—squares (TLS) approach [3]. In this case, The approach to be described in this paper for frequency
however, the ratio between the input and output noise variance®main identification of noisy FIR models has some similari-
must bea priori known. ties with related errors—in—variables (EIV) problems [32, 33],

There are several methods in the literature for how to gewhere though the underlying structure is different. A common
consistent parameter estimates for noise—corrupted FIR motheme is that the estimation problem is formulated in the fre-
els. One option is to use the instrumental variables (V) apguency domain in a way that takes all transient effects into ac-
proach. Such IV algorithms are computationally efficient, butcount, as originally pointed out in [19]. As many other EIV ap-
suffer from poor estimation precision [24]. proaches, also the proposed methods make use of the extended

In order to remove the bias of the LS estimates, many biastormal equations and require that some further equations are
compensated techniques have been proposed with several, diitroduced, in order to get unique and consistent parameter es-
ferent strategies, see e.g [5, 6]. The compensated least—squatigiates [24]. This being said about the similarities of the cur-
(CLS) methods are quite attractive, since the particular strudent paper and [32, 33], it is also crucial to note that the way
ture of the FIR models allows to develop iterative least-squarei§ie optimization criterions are introduced and analyzed is very
algorithms that are particularly suited for on—line implementa-highly tied to the specific model formulation/parameterization,
tions, see e.g. [7] and the reference therein. and therefore there are also large differences in the contents.

In this work the identification of FIR systems corrupted by The organization of the paper is as follows. Section 2 de-
additive white noise is addressed by using a frequency domaiines the FIR plus noise identification problem in the frequency
approach. In particular, two different frequency domain algo-domain, while Section 3 introduces a novel frequency domain
rithms are proposed and their features are compared with eadescription of the FIR processes. Section 4 discusses some con-
other and with some time domain methods. texts for the identification of EIV models. In particular, the



section describes the GIVE framework, originally propoied
[23] and the dynamic Frisch scheme, originally propose@jn [
Sections 5 proposes a possible identification criterica, ¢an

be directly formulated in the frequency domain. In partéeyl
this criterion takes advantage of a set of equations sirttiltre
High Order Yule Walker (HOYW) equations. The method can
be considered as the application to FIR models of the freqjuen
domain approach proposedin [31]. In Section 6, itis showan th
as an alternative approach, the FIR identification problam c
be reformulated as a quadratic eigenvalue problem invglvin
only the output noise variance. The obtained quadraticneige
value problem is solved by mapping it into a generalizedreige
value problem. The method can be considered as the frequen

counterpart of the time domain approach proposed in [5]. 'rh
Section 7 some general issues of the FIR identification prob-

lem are discussed. In particular, the section treats thielgmo
of estimating the correct order of the model and analyzeseso
practical aspects concerning the filtering operations énfté-
quency domain. In Section 8 the performance of the two pro
posed methods is tested by means of Monte Carlo simulation
Finally some concluding remarks are reported in Section 9.

2. Problem statement
Consider the following FIR system

d(t) = HZ™") x(®), 1)

wherex(t) andd(t) denote the input and output, akt{z?) is
the following polynomial in the backward shift operaiot
H(Z_l) =ho+ hj_Z_l + -+ hy-g M.

)

The observations af(t) andd(t) are both affected by additive
noise, so that the available signals are

u(t) = x(t) + ni(t)
y(B) = d(t) + no(t).

The following assumptions are made.

3)
4

Al. The lengthM of the FIR model is assumed aspriori
known andhy_; # O.

A2. The true inpuk(t) can be either a zero—mean ergodic pro-

cess or a quasi—stationary bounded deterministic signaP

i.e. such that the limit

N

lim % Z X(t) X(t — 7)

t=1

©)
existsYr [14]. MoreoverXx(t) is considered as persistently
exciting of a sufficiently high order.

A3. The additive noiseg;(t) andny(t) are zero—mean ergodic

white processes withnknowrvariancesr; ando.

A4. ni(t), no(t) andx(t) are mutually uncorrelated.

m

Let {u(t)}¥ 5! and{y(t)}¥;! be a set of input and output obser-
vations atN equidistant time instants. Feu(t)}!;', the corre-
sponding Discrete Fourier Transform (DFT) is defined as

N

15
=— ) ut)el« 6
N ; ® (6)

wherewy = 27k/N andk = 0,...,N — 1. Similarly, letY(w)
be the DFT offy(t)}{,!. In the frequency domain, the problem
under investigation can be stated as follows.
Problem 1.Let U (wy), Y(wk) be a set of noisy measurements
ggnerated by a FIR system of type (1)—(4), under Assumptions
—A4. Estimate the system parametbrgi = 0,...,M - 1)
nd the noise variances, .

Remark 1.For real-valued signals, the following considera-

tion holds for everyN, even or odd. Les(t) denote eitheu(t)

ory(t). It can be observed that fér= 0, .. .,floor(%)
) 1 N1 i N-1-k
S S(wn1k) = —= ) el T
N t=0
= sty
=N sty e’ " = S(wi),  (7)

whereS(-) is the complex conjugate &(-). Thus, a redundant
information is used when the full data set is consideredadt, f

it is worth observing that the two algorithms proposed in the
Sections 5 and 6 yield consistent estimates of the system pa-
rameters by using only the firbk g = ceil (N + 1)/2) samples
U(wi), Y(wi), k=0,...,floor(}), see also Remark 5.

3. Afrequency domain setup

In this section a new frequency domain description for the
noisy FIR model (1)—(4) is introduced. This setup has been
originally developed in [29, 30] with reference to the idént
cation of errors—in—variables systems. In this respeetnibx-
imum likelihood solution has been analyzed in depth in [27].

3.1. The noise—free case

Similarly to equation (6), leX(wx) and D(wx) be the DFTs
f the signalsx(t) andd(t) appearing in equation (1). Itis a
well-known fact [16, 19] that for finitdN, even in absence of
noise, the DFTX(wk) and D(wy) exactly satisfy an extended
model that includes also a transient term, i.e.

D(wk) = H(e7) X(wk) + T(e7), (8)
whereT(z 1) is a polynomial of ordeM — 2
T(Z_l)=T0+T12_1+-~-+TM_22_M+2 (9)

that takes into account the effects of the initial and finaldie
tions of the experiment.



By considering the whole number of frequencies, eq. (8) can Remark 3. If the signalsx(t) and d(t) happen to beN—
be rewritten in a matrix form. For this purpose, introduce th periodic, then the ternT (e7*n) in equation (8) is identically

parameter vectors
h=[hoh;...hy_1]" (10)
h, =[70...Tm-2]" (12)
and define the following vector
©=[1-h" —nI]", (12)
with dimension
p=2M. (13)

zero. In this case, the matrix in (20) can be reduced to the
N x (M + 1) matrix
c’I\)per = [VD | cDX]~ (25)

It then holds .
Zpere = 0, (26)

whereﬁper isthe M + 1) x (M + 1) positive semidefinite matrix

- 1 - ”
z:per = N(q)l,;lerq)per) (27)

In absence of noise, the parameter vector (12) can be resbver _
by means of the following procedure. Define the row vectors andé is theM + 1 parameter vector

Zw(w) = [1 gloc gL e—j(M—l)wk]
Zy-1(wy) = [1 e . g M=2x ]

(14)
(15)

whose entries are constructed with multiple frequenciasyof
and construct the following matrices

Zm(wo) Zy-1(wo)

H= \P:

Zym-1(wn-1)

: (16)
Zm(wn-1)

of dimensionN x M andN x (M — 1), respectively.
Using the DFT sampleB(wy) and X(wk) construct the fol-
lowing N x N diagonal matrix

Vg® = diag [X(wo), X(w1), ..., X(@n-1)]  (17)
and theN-dimensional column vector
Vb = [D(wo), D(w1), ..., D(wn-1)]" (18)
Then, compute thdl x M matrix
Ox = Vi (19)
and construct th&l x p matrix
® = [Vp| x| ¥]. (20)
Thus, eq. (8) fok =0,...,N — 1 can be rewritten as
O =0. (21)
It then holds A
20 =0, (22)
wheres is thep x p matrix
L= %(cb“ D), (23)

and ()" denotes the transpose and conjugate operation.

Remark 2.Sinced(t) is generated by the FIR model (1), the

relation (8) cannot be satisfied by a polyqonﬁb(lrl) with or-
der lower tharM — 1. Therefore, the matriX in (23) is positive
semidefinite, with only one null eigenvalue, i.e.

£>0 dimkerE =1 (24)

g=[1-h"]". (28)

In the following it will be shown how it is possible to reorgae

the equations as they would have been generated by a periodic

system, for every value df. For details, see Section 4 in [35].
Partition the matrix, defined in (23), as follows

b1 12 23
o1 X X3,
Y31 232 X33

T = (29)

whereoy is a scalary, is a square matrix of dimensiov
andXss is a square matrix of dimensiddl — 1. Relation (22)
can be expanded as follows

G11— 12— Z13h, = 0 (30)
$o1 - Zph—Zx3h, =0 (31)
$31 - Zaph - Sa3h, = 0. (32)
From (32) we obtain
h, = ig;‘ (231 - 232 h) (33)

The expression (33) can then be substituted into (30) and (31

Defining the following matrices
S {5' 11 i312] 7o Fleﬁg%ial 31555380
R DS 1 Yo3dai¥a1  YoaYailan

. (34)

it is possible to reduce the non—periodic case into an etpnva
periodic one, with lower dimensions (cf. (26))

i:per = i:red -T (35)
Sper = 0, (36)
whered has been defined in (28).
For noise—free data, the ratio
.7
p=—r (37)
|| ZredllF

can give a measure of the effect of the transient term, where
|| - ||r is the Frobenius norm of a matrix.



Remark 4.Given the input sequencdt), the ratiop takes

2L. By considering a new matri® with 2L rows, expressions

into account both the parameters and the order of the FIR sy$43)—(44) must be modified as follows

tem. Note thap is a function of the data lengtt. In particular,
p — 0if N - o0, and

ﬁmax = [7 (Nmin)s (38)

whereNmin = 2M — 1 is the minimum length of the input—

1 oH & S
2= (@) =2+5, (46)

where

e % diag[ o5, o Int, Ow_a- (47)

output sequence, i.e. the minimum number of equations $o tha Remark 6.The noise Assumptions A3-A4 are necessary in

relation (24) holds.

3.2. The noisy case

order to obtain a diagonal matrix, as defined in (44), when
N — oo. On the other hand, one can observe that for latge
the effect of the transient polynomi@(z 1) is negligible since
it vanishes at rat® (1/ VN) [18] and the data could be treated

In the presence of noise, the previous considerations can b& herindic, as done in Remark 3. This is a common procedure

modified as follows. With the noisy input—output DFT samples

U (wk), Y(wy) construct theN x N diagonal matrix

Vg™ = diagU(wo), U(wi), ...,U(wn-1)]  (39)
and theN-dimensional column vector
Vy = [Y(wo), Y(w1),..., Y(wn-1)]". (40)
Then, compute the matrix
@y = V5N (41)
and construct th&l x p matrix
@ = [Vy | Dy | ¥]. (42)

Because of Assumptions A3—-A4, whBh— oo, we obtain the
following p x p positive definite matrix

1 A~
T= N(c1>H 0)=3+3", (43)

where 3
s+ = diag[ o, o} I, Ov_1]. (44)

From (12), (22) and (43), the parameter vediyrdefined in
(12), can be obtained as the kernel of
(z-2H0e=0, (45)

after normalizing the first entry @ to 1.

Remark 5.The previous considerations hold also when only

a subset of the whole frequency range is used,dyes W =
[wi, wi], with i > 0 andf < floor(}), containingL = f —i+1

used in frequency domain identification, see e.g. [13, 22].

An alternative solution is to proceed as in Section 3.1. Par-
tition the matrix=, defined in (43), according to the matix
in equation (29). Expanding relation (45) as in (30)—(319, w
obtain

011—Z1oh—-213h. =0 (48)
Y21 - Zph—Zp3h, =0 (49)
Y31 —X3ph—X33h, = 0. (50)
Next (50) implies
he = 253 (Za1 — Za2 ). (51)

Substitute now the expression (51) in (48)—(49), define the m
trices

o1 212 $13533%81 213557832
Zred = s = -1 -1 (52)
221 X DR IIINIXARED W IO NNV
and set
R = Zred - T. (53)
Defining the matrix
R = diag[ o, o7 1], (54)

it is then possible to derive the system of equations (cf))(36

(R-R)o=0. (55)
Also in this case, the ratio
ITllF
= 56
P el (56)

can give a measure of the effect of the transient term, starti

frequencies. The subs@f must be chosen by the user on the from the available noisy data.

basis ofa priori knowledge of the frequency properties of the

FIR system and of the noise—free inptiwy). The choice of

W = [wi, wt] reduces the number of the entries in (16) and
(39)—(40), and all the related equations must be conselyuent 0= —

Remark 7 Simulation experiences have shown that, for every
value ofN, p > p holds, and the effect of the noise

(57)

modified. Some care must be used when the algorithms of Sec- p

tions 5 and 6 make use of the whole DFT datd $@by), Y(wk),

decreases as the amount of noise decreases (see Figumec2). Si

k=0,...,N-1[31]. Inthis case, two distinct sets of frequen- the ratiog’is greater when the number of datias shorter, the

cies must be jointly considered, the 88 = [wi, w¢], with
i > 0andf < floor(}) and the seW, = [wn-1-f, WN-1-i].

effect of the transient term is of major importance in the-sys
tem parameter estimates when the data sequences are ghort an

The total number of frequencies used in the algorithms wvall b affected by a small amount of noise.



4. Overview of related EIV approaches o

4.1. The GIVE framework

Note that (55) consists d¥l + 1 algebraic non—linear equa-
tions. The number of unknowns M + 2, i.e. the elements of
hin (10) and the two variances, ando7. In the time domain,
a similar set of equations has been largely studied in the ide
tification of EIV dynamic systems. A general framework has
been originally introduced in [23], where the Generalized |
strumental Variable Estimation (GIVE) method was proposed
with reference to SISO EIV systems affected by additive &hit
noises. The method has been generalized to the case of corre-
lated noises in [25]. The GIVE method provides a unique gen- ‘ ‘ ‘ ‘ ‘
eral framework for the whole class of bias—compensatingnmet 0 005 o1 O 02 0% 03
ods, including iterative solutions, like the BELS metho#8][ '
The GIVE frameworks leads to the following conclusionsttha
are common to the whole class of bias—compensating methods.

0.6

o

variance o

Figure 1: Typical shape &§(R)

1 Since the number of the unknowns is larger than the num-

ber of equations, some further equations need to be Us&gt ihe solutions in the noise plad® are the same. An in-depth

in addition to the system (55) in order to find a unique esyescription of these properties can be found in [2, 9, 24jhén
timate of . It can result in an over—determined systemyqiqwing only the main result of the Frisch scheme is reszll

of equations. In the time domain, a naturgl solution is tOp|| the technical aspects and proofs are reported in [34].
exploit the high—order Yule-Walker equations, where the - ,hgjger the set of non—negative definite diagonal matrices

noise variances are not present. Indeed, these are the eqldﬁ’[ype
tions exploited also by two methods proposed in this pa- R = diag[ oo, o ] (58)
per. In Section 5 we will see how these equations can be o T1M
written in the frequency domain. such that
R-R>0 detR-R)=0. (59)

2 Inthe general case the parameter estimates are obtained as
the solution of an optimization problem. An usual solution Main Result. The set of all matriceR satisfying the con-
strategy consists in forcing some of the over—determineditions (59) defines the poinB = (o, 0,) of a continuous
system of equations to hold exactly, while the others areurve S(R) belonging to the first quadrant of the noise space
minimized in a weighted least squares sense. R?. The curveS(R) describes a convex set in the first quadrant

. - : of R?, whose concavity faces the origin. Asymptotically, when
3 This second aspect does not affect the statistical priepert y g ymp y

. . . é\l — oo, the pointP* = (o7, o) belongs taS(R).
of the estimates, since the asymptotic accuracy depen S As an examole. Fi urel 1 reports the CUS(®) of the numer-
only on the set of equations used to define the problem ple, ™9 P

: ical Example 1 of Section 8.
and not on the way the equations are solved [26]. Never- Remark 8.In many practical situations it is possible to have

theless, in practice, different identification algoriththat . .
. . sQme information about the lower and upper bounds of the
are based on the same set of equations can lead to different .

S . : . noise covariances; andc, for example when other measure-

estimation results, in terms of computational complexity R : - .
. L ments taken in different experimental conditions are atxédl.
and speed of convergence. In particular, it will be shown .
. . .._In these cases, the search of the p&ihon the curveS(R) can
that the over—determined systems of equations exploite o L ; :
. - “be bounded within a limited area in the noise pl&3ge.g. see
by the two proposed methods differ only for one equation : -
. . the box depicted in Figure 1.

but the way they are solved is completely different.

4.2. The Frisch scheme context 5. A criterion based on HOYW-type equations
The purpose of this subsection is to recall the Frisch scheme
[2, 9, 24] for developing the estimation algorithm of Sent® As stated in the Main Result, the determination of the point

This can be thought as a possible numerical strategy to solvg* on S(R) leads to the solution of Problem 1, thanks to (55).

the ‘exact’ equations within the GIVE framework, as stated i Unfortunately, the theoretic properties®(R) described so far

the point 2. do not allow to distinguish poinP* from the other points of
Starting from an assumed knowledge of the noisy md&rix the curve. Some additional condition must be added to define a

in (53), the determination of the system parameter vetéord  uniqueestimate.

of the noise variances;, o, in eq. (55) can be seen as a Frisch  In this section we will describe a possible search criterion

scheme problem. This problem can be solved both in the tim&his criterion is analogue to that reported in [31] with refece

and in the frequency domain. Tn fact, the properties of thedo to frequency domain identification of EIV systems.

5



Select the integeq > 2M — 1. The value of the parameter Remark 10.Equation (69) are analogue to an instrumental
g is a user choice. In general, this value can affect the gualitvariable (IV) method in the time domain, where delayed out-
of the estimates. A good choice, from simulation experigisce puts are used as instruments. These equations can be sglved b

g = 2M — 1. Analogously to (14), consider the row vector using a total least squares approach. The main advantalge of t
i i(M-Lego method is the computational efficiency. On the other hargl, th
Zgrm(wi) = [1L €7 ... e ‘] (60)  obtained estimation precision is often poor [24].

Remark 11The set of M + 1) non—linear equations (55) can

and extract from it the—dimensional row vector be joined to the set af linear equations (71), with > 2M - 1

Zg(wk) = [eiMex | gl(M-Traox] (61)  and can be settled within the GIVE framework, as described in
Subsection 4.1. Thus, the results in [23] and [24] can be ap-
Then, construct the followindyl x g matrix plied, to express the statistical accuracy in terms of thertt-
T ical asymptotic covariance matrix of the parameter estiat
mn" = [Za‘(wo) Zi(w1) - .. ZQ(wN_l)] . (62)  More precisely, applying the Frisch scheme described in Sub
) section 4.2, the equations (55) are treated as a consthaint t
and compute thél x q matrix must be exactly satisfied, while the equations (71) must hold
&h = ydiag g approximately. In other words, the search ®ralong S(R)
=Vy . (63) L . .
can be performed by minimizing a quadratic cost function.
Define now they x p matrix On the basis of the previous considerations, it is possible t
develop an algorithm for the identification of the FIR plusseo
$h_ 1((&)h)H ci)). (64) models. A detailed description of the procedure can be found
N in [34]. In the following this algorithm is denoted as FIRDF

Because of (21) we have
$he - o, (65) 6. A subspace approach
The approach proposed in this section is analogue to that de-
In an analogous way, in the noisy case, we can compute thecribed in [4] for the identification of autoregressive misas-
N x q matrix _ fected by additive noise. This alternative method is natatly
o" = v (66)  based on the Frisch scheme, but exploits the set of equations
(69) together with the equations (45). It will be shown that
the FIR plus noise identification problem can be mapped into a
quadratic eigenvalue problem that, in turn, can be solveal as
generalized eigenvalue problem. The principle has beelieapp
to some other identification problems as well [5, 32].
Consider again equation (45), expanded as in (48)—(50). The

and define the x p matrix
1
= N((oph)'* 0). (67)

Because of Assumptions A3-A4, whdh— oo it results

sh=sh (68) last2M — 1 equations (49)—(50) can be written as
It is thus possible to write Ta Iz—oilv sl g g (73)
31 32 Y33

h —
2'0=0. (69) Equation (73) containsM + 1 unknowns, i.eo and the entries

of ®. The equations (69) and (73) can be combined together in

It is not difficult to show that the dimensions of equation)(69 : ‘ i
order to obtain the following nonlinear system d¥f12- 1 + g

can be reduced. For this purpose, partition maifims follows

equations
== [z =h =, (70) Y21 Z2—0fIm Zos
a1 232 2331 @ =0. (74)
where the matrices!, =, =5 have dimensiong x 1, g x M, xh

qx (M - 1), respectively. Thanks to (51), equation (69) can b&¢ can pe observed that the dimensions of the equation (74) ca
reduced to be reduced. For this purpose, consider the ma&riefined in

h ) _ "
R'6 =0, (71) (53) and partitioned as follows
whered has been defined in (28) and r R
e o R= [R“ Rl (75)
R = [20 - 2053l%s 2 - 205ins). (72) 21 22

whereri; is a scalar an&y; is a square matrix of dimensiadvi.
Moreover, consider the matrR" defined in (72). Thanks to
(51), equation (74) can be reduced to

Remark 9. Equation (69) constitutes a set qfequations,
analogue to the time domain high order Yule—Walker equation
that does not involve the noise varianegs o5. These equa-
tions could be directly used to obtain an estimate of thempara [RZl Ro2— o Im

eter vecto® if g > 2M — 1. = ] 0=0. (76)



Remark 120bserve that the set of equations (76) differ from7. General considerations
the set of equations (55) and (71) by only one equation, in fac
the first row in (55) is missing. Also the set of equations (76)7-1. Estimation of the model order
can be settled within the GIVE framework of Subsection 4.1. A possible method for estimating the orddr- 1 of the FIR
As shown in the following, all the equations (76) are miniedz model (1) can be developed on the basis of the following ebser
in a total least squares sense, by solving a minimal eigeaval vation. In the time domain, the process
problem. Of course, the asymptotic analysis proposed ih [23
and [24] can be applied also in this case. e(t) = y(t) - H(z ") u(t) (86)

The equations (76) can be compacily rewritten as describes the equation error of the FIR model (1)—(4). By sub

(S-073)6=0, (77)  stituting the relations (3) and (4) in (86), we obtain theaia-
tive representation
where
R R 0 | _
S- [ o 22} 3- [ Mt M]. (78) ) = no(t) — HEZ ) ni (). (87)
R Oq><(M+1)

Equations (78) represent a non-square generalized eigeBecause of Assumptions A3-A4, the equation (87) proves that
value problem. In order to solve it, in the following we puesu the equation errag(t) is an MA process of ordevl — 1, whose

the approach proposed in [4]. autocovariance function(k) = E [e(t) e(t — K)] is given by
Multiplying both sides of (77) by(S - o} J)T leads to the V1
equation re(Q)=o + 0 Y h? (88)
(Aoo? + Ayo +Ag) 6 =0, (79) ) o ; '
where (K) M_Zk:_lh h for k=1 M-1 (89)
r =0 i hj ork=1,...,M -
Po=S"S  A=-(STI+J'S)  A=JT3 (80) ¢ Lo

TheM + 1 coefficients of can thus be estimated by solving the refk) =0  for k>M-1 (90)

following quadratic eigenvalue problem (QEP) . o
Thus, a possible way for estimating the ordér- 1 of (1)

(Az A+ A+ Ao) v=0. (81)  consists in applying one of the proposed algorithms for an in
creasing sequence of ordersOnce the parametels, ..., h,

of H(zY) and the variances, o have been estimated by
AoV A+ A v+ AV =0, (82)  means of the algorithm FIR1-FD or FIR2-FD, it is possible to
compute the estimates of(k) by using (88)—(90). The model
orderM —1 can be estimated by observing that the cost function

Equations (81) can be solved by rewriting them as

wherev = Av. Thus, the following (81 + 2)—dimensional
generalized eigenvalue problem can be derived

P-A =0 83 0
(P-1Qn=0 (83) 3= Yt n=12.. (91)
where k=—n
P= Ao 0 _|A A _ |V 84 stabilizes at a constant value for> M — 1. Note thatJ, rep-
0 | Q= 0 =yl @4
M+1 M+1 resents the value of the spectrum of the MA pro&gsat zero

Following the discussion of [4], it can be stated that, asytip ~ frequency.

cally when the the number of data— oo, the only real-valued It is worth observing that the algorithm FIR1-FD is to be
eigenvalue solving (83) is* and the firstM + 1 entries of the ~ preferred in the computation of the quantities (88)—(90att,
corresponding eigenvectgt are, after a normalization of the in many cases the algorithm FIR2-FD yields worse estimdtes o

first entry to 1, the entries ¢ i.e. Ti, To.
o = :7(1) =[6" oro" " (85)  7.2. Practical aspects of frequency filtering
n

) ) e ) One of the main advantages of the proposed techniques lies
Remark 13.Forming the matrix produc’S in (80) is the i, the fact that they allow to perform the identification byngs
critical point of the proposed subspace approach, due fpdhe only a reduced number of frequencies, as described in Remark

all the eigenvalues solving (83) will exhibit, in generakmall o main reasons.

imaginary part. A criterion leading to good results corssiat First of all, it must be observed that the conditiper 2M —

choosing the eigenvalue having the smallest modulus [4]. 1 of Remark 9, together with Assumption A2, do not assure
On the basis of the previous considerations, it is possible tthe consistency of the IV estimate (69). They assure only the

develop a second algorithm for the FIR identification prahle “generic consistency”, i.e. the consistency with prolighbine,

A detailed description of the procedure can be found in [B4]. see [28] pag. 266. In other words, there may exist cases where

the following this algorithm is denoted as FIR2-FD. the rank of£" in (69) is lower than 1 — 1 and consequently



the proposed algorithms do not produce consistent estimate
This consideration is particularly important when only aset

of the whole frequency range is used and Assumption A2 may
fail.

Moreover, in case of FIR system identification, there is an- - 1
other important aspect that limits the usage of a reducedeum D i e Sty
of frequencies. The frequency shape of a FIR model is strictl 5 10 " Ry 25 30
linked with its order, e.g. see [10]. This property has alisead
consequences in FIR system identification, as far as theehoi
of the order is concerned. In fact, from simulation experes)
it is possible to state that, in general, in order to obtaimady
identification of the FIR system the model order must be cor-
rectly chosen and equal to its nominal value. A choice of a ‘ ‘
wrong (reduced) model order leads to biased estimates. The ° 10 " SR » %0
previous property is valid also when the system is identifigd
using a reduced number of frequencies, within a limited win-
dow of the spectrum. Also in this case, the order of the iden-
tified FIR modelH(z%) must be chosen equal to its nominal
value. In the presence of additive white noises on the inpdt a
output the previous consideration has a direct consequ&hee  the estimate of the noise variances is concerned. The perfor
signal-to—noise ratios of the input and output power spere ~ mances have been always similar to those reported below, eve

for longer FIR models, like the 25 taps FIR filter proposed in

T
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Figure 2:p andé factors versus SNR.

wwk) Mo Wk 92) . In the following only two illustrative cases are prased,
Sx(@) _ limnoo E[IX(@)l?/ N] 21]. In the following only two illustrati el

Sy (wy) o} additional numerical examples can be found in [34].

Sa(w)  lIMNSe E[ID(wk)?/ N] Example 1 The proposed algorithms have been tested on se-
S (W) - o quences generated by the following FIR model, originally-pr

posed in [3] and reconsidered several times in the liteeatee
(93) e.g. [5, 6, 7] and the references therein. The FIR model has
lengthM = 5 and is characterized by the coefficients

iMoo E [[X(wi)I2/ N]
s

we=27k/N k=0,....N-1

= H(Ee )P

_ _ , h=[-03 -09 08 -0.7 06]". (94)
It can be observed that equation (92) is characterized bya co

stant denominatafi* for a” pOSSib|e fl’equency WindOWS. AISO The input Signa' is the autoregressive process
equation (93) is characterized by a constant denomiwettor
all possible frequency windows since in this casg?) is a X(t) = —0.2 x(t — 1) — 0.6 X(t — 2) + W(t), (95)
transfer function with only zeros, see eq. (2). Thus, refstri
ing the identification within a limited window of the frequen  wherew(t) is a Gaussian white noise with unit variance.
spectrumwy € [wi, wt] leads, in general, to worse results with  In order to illustrate the effect of the transient term wigh r
respect to performing the same identification proceduresby u spect to the amount of noise, Figure 2 reports, for diffedama
ing the whole set of frequencies, for the simple reason that ilengthsN, the values op, see eq. (56), anél see eq. (57) for
the former case the available information of the sysitfer'®«)  different values of the signal-to—noise ratio (SNR).
are only partially exploited. Of course, this considenatis To complete this analysis, a Monte Carlo simulation of 100
no more valid when the input and output noises are charactejndependent runs has been performed in the case of very short
ized by a spectrum that is not constant for all the frequescie data,N = 25, with very small amount of noise, SNR = 60 dB.
i.e. when the denominators in the expressions (92)—(93)are Table 1 reports the empirical means of the system parameter
constant for all the frequency range. In this case the ifieati  estimates obtained by means of the algorithm FIR1-FD, when
tion of the FIR model by using only a limited number of fre- the transient term is taken into account as described iridect
quencies can lead to great advantages, if the chosen fregjuers, and when the transient term is not considered, as dedcribe
window is characterized by lower values of the noise spectra in the Remarks 3 and 6 (algorithm FIR1-FD-NT). The number
of the HOYW equations has been fixed to the minimal values
g=2M-1=9andq= M =5, respectively.
A second Monte Carlo of 100 independent runs has been
The effectiveness of the considered identification alparit  performed by considering noisy input and output sequentes o
has been tested by means of numerical simulations on sevelahgthN = 100, affected by additive white noises correspond-
FIR models taken from the literature. As a general considering to a SNR of 20 dB on both input and output sides.
ation, it can be said that quite often the FIR1 algorithm give Table 2 reports the empirical means of the system parame-
better estimates than the FIR2 method, in particular asdar aer estimates and of the noise variance estimates, togeitier

8

8. Numerical examples



Table 1: True and estimated parameters with and without#msient term N = 25, SNR= 60 dB.

ho hy hy hs ha
true -0.3 -0.9 0.8 -07 0.6
FIR1-FD —0.2998+ 0.6635+ 1073 | —0.8999:+ 0.5814+ 1073 | 0.8001+ 0.6782+ 103 | —0.7000+ 0.5469+ 1073 | 0.5999+ 0.7329x 1073
FIR1- FD-NT —0.4594+ 0.0009 -1.1020+ 0.0012 05219+ 0.0016 —0.7924+ 0.0011 0.4451+ 0.0010

Table 2: True and estimated parameters obtained with FIRIFFR2-FD, FIR1-TD, FIR2-TD and TLS-TDN = 100, SNR= 20 dB.

true FIR1-FD FIR2-FD FIR1L-TD FIR2-TD TLS-TD
ho -0.3 | -0.2983+ 0.0243 | —0.3032+ 0.0254 | —0.2990+ 0.0261 | —0.3024+ 0.0271 | —0.2990+ 0.0263
hy -0.9 | -0.9039+ 0.0261 | —0.9097+ 0.0695 | —0.9022+ 0.0271 | —0.9094+ 0.0917 | —0.9050+ 0.0238
h, 0.8 0.7970+ 0.0306 | 0.7906+ 0.0446| 0.7970+0.0316| 0.7953+0.0534| 0.7985+0.0321
hs -0.7 | -0.7040+ 0.0238 | —0.7107+ 0.0472| —0.7031+ 0.0243 | —0.7091+ 0.0537 | —0.7046+ 0.0233
hy 0.6 0.5975+ 0.0253 | 0.5945+0.0576| 0.5969+0.0254| 0.5978+0.0735| 0.5993+ 0.0260
oy | 00207 | 0.0206+0.0208| 0.0155+0.0975| 0.0234+0.0225| 0.0138+0.1310| 0.0194+0.0031
o; | 00113| 0.0093+0.0088| 0.0858+0.0278| 0.0089+0.0090| 0.0835+0.0328| 0.0106+0.0017

the corresponding standard deviations, obtained with lge a
rithms proposed in Sections 5 and 6, denoted with FIR1-FD
and FIR2-FD, respectively. The number of the HOYW equa-
tions has been fixed = 2M - 1 = 9 for both algorithms. The
table shows also the results obtained with the correspgndin
time domain algorithms, denoted with FIR1-TD and FIR2-TD.
The FIR2-TD algorithm was originally described in [5]. For
FIR1-TD and FIR2-TD the number of the HOYW equations
has been fixed tq = M = 5. For comparison, the last column
of the table reports also the estimates obtained with tresidal
(time—domain) total least—squares method [8, 12]. Of eucs
obtain the TLS-TD solution, the noise variance ratfyo; has
been considered aspriori known. The TLS estimate should
therefore be seen as a lower (and not accessible) limit of the
performance, as TLS is heavily exploiting the informatidn o
knownog /o [24]. It can be observed that the proposed identi-
fication methods yield similar, good results. Very simikesults
are also obtained with the corresponding time domain vessio

For a deeper comparison of the asymptotic performances of

the algorithms, a Monte Carlo simulation of 100 independent
runs has been carried out with = 500, by considering differ-
ent values of the SNR. In every run, the SNRs on the input and

NRMSE (dB)

-35}

:
—6— FIR1-FD
—#— FIR2-FD
- 4+ - FIR1-TD|]

FIR2-TD
—O— TLS-TD |4

1
20

‘ ‘
10 15
SNR (dB)

1
25 30

Figure 3: NMRSE versus SNR: FIR1-FD (circle, solid), FIRR-Fdashed—
dotted), FIR1-TD (dashed), FIR2-TD (dotted), TLS-TD (d@m, solid).

Table 3: True and estimated parameters in the presencemftqibk noise

output sides are equal. The normalized root mean squane erro true | FIRI-FD[0.15-05] | FIR1-FD[0-05]
ho 1.0000 1.0061+ 0.0106 1.0912+0.1172
100
1 1 A h; | —0.3903 —0.3856+ 0.0133 —-0.4333+ 0.0607
NRMSE= — ,|-— Z In' — hij2 (96) -
(1| 100 4 h, 0.6240 0.6315+ 0.0157 0.6840+ 0.0779
N h; | —0.1912 -0.1860+ 0.0130 -0.2132+ 0.0345
has been used. as p_erfor.manc.e index, whedenotes thg esti- | h, | 02401 0.2427+ 0.0095 0.2601+ 0.0286
mates ot obtained in the—th_ trla_l of the Monte Carlo simula- o | 07833 010962 0.0038 0.61382 0.0885
tion. The results are shown in Figure 3.
o} 0.0000 0.0018+ 0.0022 0.0726+ 0.1378

Note that for high values of the SNR, the curves tend all to

be straight lines with slopel. This means that for high SNR
9
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Figure 4: Function, versus the model ordex N=100, SNR=20 dB. Figure 5: FIR model (solid), pink noise (dotted), equivalesite noise (dash—

dotted) and noisy signal (dashed)

values, NRMSE is inversely proportional to SNR, and it holds
1 By construction, asymptotically, whel — oo, the variance
NRMSE~ —— (97) 0. coincides with the variance of the output noist), i.e.

SNR’ . X L
oe = 0. For this reason, the data length in this example has
It can be observed that the performances of the FIR1 algg5een fixed td\ = 5000.

rithms are slightly better than those of the correspondiRRF A Monte Carlo of 100 independent runs has been performed

algorithms. _ by considering noisy output sequences, affected by aeditiv
Concluding, with reference to the casefot= 100 and SNR i nojse, with variancer; = 0.7833, corresponding to a ratio
= 20 dB, the Figure 4 reports the results of the model order

estimate, obtained with the cost functidnin (91), evaluated E[d(t)?] f_ ’; Salwi) dzw
by means of the two proposed algorithms. It can be observed 10 logyg W = 0 W
that the Algorithm 1 yields a nicer, monotonic, behaviodgf : _ —n SN \WK) 2
: : : [H(ei@x)2 o2}
The next numerical example illustrates the frequency domai — 10 logy, f_,, ( )= ~3dB

features of the new identification methods, described in the
Subsection 7.2.

Example 2.The following FIR model, with lengtiM = 5,
has been considered

h=[1.0000 —0.3903 06240 —0.1912 02401]. (98)

0o

Figure 5 shows the spectrum of the FIR system (solid line) and
the spectrum of the additive pink noise (dotted line) togeth
with the resulting noisy output spectrum (dashed line). The
dash—dotted line reports the spectrum of the “equivaleiitav

. . . . . . . . noise with variance.

The input signali(t) is a Gaussian white noise with variance |, many real situations some additional information about
ox = 1. In this example the input measurement noise is NOfhq system is available. In this case, for example, one doeld
present, i.en;(t) = 0, and the output signal is affected by a pink 5\yare that the additive noise is of pink type. Taking accafint

noise. Pink noise is frequently used in music signal prangss  hjs information, the FIR model has been identified by usieg t
and is characterized by a power spectrum that falls in freqyie  £1R1_FD algorithm within the frequency window = [f, f:],

like 1/ f. The pink noise has bee_n generated by using the thirdg;i, f, = 0.15 andf; = 0.5. In this way, the effect of the pink

order ARMA model, suggested in [17] at pag. 736 noise, acting at low frequencies, has been filtered out.

B(z1 The results of the simulation are reported in the first column
) t 99 ;

Az D) &) (99)  of Table 3. For comparison, the second column of Table 3 re-

. . . . . orts the estimates obtained by the same FIR1-FD algorithm
wheree(t) is a white noise with variancage, go = 0.57534 and ports St S : y S gor

when the whole frequency windofv = [0, 0.5] is used. The
B(z'Y) = (1-0.98444z1)(1 - 0.833927 1)(1 - 0.075682 %) advantageous effects of filtering are evident. In fact thého
A(ZY) = (1-0.995747 1) (1 - 0.94791z°1)(1 - 0.535687°2).

No(t) = do

yields accurate estimates of the system parameters. lecab-b

served that the results using all frequencies are definitetge.

The resulting power spectra of the signafy andn,(t) are
Sa(wk) = [H(E7T*)P oy = [H(e )P (100)

2 |B(e19)?

O TAeToR ¢

9. Conclusions

In this paper two novel frequency domain approaches have
been proposed for the identification of FIR models affectgd b

10

Sno(wi) =9 (101)



additive white noises. Their estimation properties havenbe [26]
tested and compared by means of Monte Carlo simulations. The
numerical results have confirmed the good performancesof trb?]
methods. The benefits of filtering the data in the frequeney do

main have been illustrated by means of a numerical example.
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