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Abstract

This paper describes a new approach for identifying FIR models from a finite number of measurements, in the presence of additive
and uncorrelated white noise. In particular, two different frequency domain algorithms are proposed. The first algorithm is based
on some theoretical results concerning the dynamic Frisch scheme. The second algorithm maps the FIR identification problem into
a quadratic eigenvalue problem. Both methods resemble in many aspects some other identification algorithms, originally developed
in the time domain. The features of the proposed methods are compared with each other and with those of some time domain
algorithms by means of Monte Carlo simulations.

Keywords: System identification; FIR models; Discrete Fourier Transform.

1. Introduction

The estimation of finite impulse response (FIR) models from
noise–corrupted data is an important problem in many signal
processing applications [11, 20]. Most of the solutions pro-
posed in the literature assume that only the output measure-
ments are affected by noise. However, as observed in [3], in
many practical situations the presence of an additive noise on
the input is important as well and must be taken into account.

It is a well known result that the least–squares (LS) method
gives biased parameter estimates when the input is affected by
noise. On the contrary, a consistent estimate can be obtained by
using the total least–squares (TLS) approach [3]. In this case,
however, the ratio between the input and output noise variances
must bea priori known.

There are several methods in the literature for how to get
consistent parameter estimates for noise–corrupted FIR mod-
els. One option is to use the instrumental variables (IV) ap-
proach. Such IV algorithms are computationally efficient, but
suffer from poor estimation precision [24].

In order to remove the bias of the LS estimates, many bias–
compensated techniques have been proposed with several, dif-
ferent strategies, see e.g [5, 6]. The compensated least–squares
(CLS) methods are quite attractive, since the particular struc-
ture of the FIR models allows to develop iterative least–squares
algorithms that are particularly suited for on–line implementa-
tions, see e.g. [7] and the reference therein.

In this work the identification of FIR systems corrupted by
additive white noise is addressed by using a frequency domain
approach. In particular, two different frequency domain algo-
rithms are proposed and their features are compared with each
other and with some time domain methods.

From a theoretical point of view, there is a full equivalence
between time and frequency domain identification methods, as
shown for example in [1]. From the practical point of view, the
decision to implement a time or a frequency domain algorithm
can strongly depend on the user choices and on the specific ap-
plications. In most experimental situations the observations are
collected as samples of time signals, so that a Fourier trans-
formation is required before implementing a frequency domain
algorithm. However, there also exist occasions in which the
data are more easily available as frequency samples since they
are collected by a frequency analyzer which directly provides
the Fourier transforms of the time signals [14, 18].

The approach to be described in this paper for frequency
domain identification of noisy FIR models has some similari-
ties with related errors–in–variables (EIV) problems [32, 33],
where though the underlying structure is different. A common
theme is that the estimation problem is formulated in the fre-
quency domain in a way that takes all transient effects into ac-
count, as originally pointed out in [19]. As many other EIV ap-
proaches, also the proposed methods make use of the extended
normal equations and require that some further equations are
introduced, in order to get unique and consistent parameter es-
timates [24]. This being said about the similarities of the cur-
rent paper and [32, 33], it is also crucial to note that the way
the optimization criterions are introduced and analyzed is very
highly tied to the specific model formulation/parameterization,
and therefore there are also large differences in the contents.

The organization of the paper is as follows. Section 2 de-
fines the FIR plus noise identification problem in the frequency
domain, while Section 3 introduces a novel frequency domain
description of the FIR processes. Section 4 discusses some con-
texts for the identification of EIV models. In particular, the



section describes the GIVE framework, originally proposedin
[23] and the dynamic Frisch scheme, originally proposed in [2].
Sections 5 proposes a possible identification criterion, that can
be directly formulated in the frequency domain. In particular,
this criterion takes advantage of a set of equations similarto the
High Order Yule Walker (HOYW) equations. The method can
be considered as the application to FIR models of the frequency
domain approach proposed in [31]. In Section 6, it is shown that
as an alternative approach, the FIR identification problem can
be reformulated as a quadratic eigenvalue problem involving
only the output noise variance. The obtained quadratic eigen-
value problem is solved by mapping it into a generalized eigen-
value problem. The method can be considered as the frequency
counterpart of the time domain approach proposed in [5]. In
Section 7 some general issues of the FIR identification prob-
lem are discussed. In particular, the section treats the problem
of estimating the correct order of the model and analyzes some
practical aspects concerning the filtering operations in the fre-
quency domain. In Section 8 the performance of the two pro-
posed methods is tested by means of Monte Carlo simulations.
Finally some concluding remarks are reported in Section 9.

2. Problem statement

Consider the following FIR system

d(t) = H(z−1) x(t), (1)

wherex(t) andd(t) denote the input and output, andH(z−1) is
the following polynomial in the backward shift operatorz−1

H(z−1) = h0 + h1 z−1
+ · · · + hM−1 z1−M . (2)

The observations ofx(t) andd(t) are both affected by additive
noise, so that the available signals are

u(t) = x(t) + ni(t) (3)

y(t) = d(t) + no(t). (4)

The following assumptions are made.

A1. The lengthM of the FIR model is assumed asa priori
known andhM−1 , 0.

A2. The true inputx(t) can be either a zero–mean ergodic pro-
cess or a quasi–stationary bounded deterministic signal,
i.e. such that the limit

lim
N→∞

1
N

N
∑

t=1

x(t) x(t − τ) (5)

exists∀τ [14]. Moreover,x(t) is considered as persistently
exciting of a sufficiently high order.

A3. The additive noisesni(t) andno(t) are zero–mean ergodic
white processes withunknownvariancesσ∗i andσ∗o.

A4. ni(t), no(t) andx(t) are mutually uncorrelated.

Let {u(t)}N−1
t=0 and{y(t)}N−1

t=0 be a set of input and output obser-
vations atN equidistant time instants. For{u(t)}N−1

t=0 , the corre-
sponding Discrete Fourier Transform (DFT) is defined as

U(ωk) =
1
√

N

N−1
∑

t=0

u(t) e−j ωkt (6)

whereωk = 2πk/N andk = 0, . . . ,N − 1. Similarly, letY(ωk)
be the DFT of{y(t)}N−1

t=0 . In the frequency domain, the problem
under investigation can be stated as follows.

Problem 1.Let U(ωk), Y(ωk) be a set of noisy measurements
generated by a FIR system of type (1)–(4), under Assumptions
A1–A4. Estimate the system parametershi (i = 0, . . . ,M − 1)
and the noise variancesσ∗i , σ

∗
o.

Remark 1.For real–valued signals, the following considera-
tion holds for everyN, even or odd. Lets(t) denote eitheru(t)
or y(t). It can be observed that fork = 0, . . . , floor

(N
2

)

S(ωN−1−k) =
1
√

N

N−1
∑

t=0

s(t) e−j N−1−k
N 2πt

=
1
√

N

N−1
∑

t=0

s(t) e−j −(1+k)
N 2πt

= S̄(ω1+k), (7)

whereS̄(·) is the complex conjugate ofS(·). Thus, a redundant
information is used when the full data set is considered. In fact,
it is worth observing that the two algorithms proposed in the
Sections 5 and 6 yield consistent estimates of the system pa-
rameters by using only the firstNhalf = ceil

(

(N+ 1)/2
)

samples
U(ωk), Y(ωk), k = 0, . . . , floor

(N
2

)

, see also Remark 5.

3. A frequency domain setup

In this section a new frequency domain description for the
noisy FIR model (1)–(4) is introduced. This setup has been
originally developed in [29, 30] with reference to the identifi-
cation of errors–in–variables systems. In this respect, the max-
imum likelihood solution has been analyzed in depth in [27].

3.1. The noise–free case

Similarly to equation (6), letX(ωk) andD(ωk) be the DFTs
of the signalsx(t) andd(t) appearing in equation (1). It is a
well–known fact [16, 19] that for finiteN, even in absence of
noise, the DFTsX(ωk) andD(ωk) exactly satisfy an extended
model that includes also a transient term, i.e.

D(ωk) = H(e−j ωk) X(ωk) + T(e−j ωk), (8)

whereT(z−1) is a polynomial of orderM − 2

T(z−1) = τ0 + τ1 z−1
+ · · · + τM−2 z−M+2 (9)

that takes into account the effects of the initial and final condi-
tions of the experiment.
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By considering the whole number of frequencies, eq. (8) can
be rewritten in a matrix form. For this purpose, introduce the
parameter vectors

h = [ h0 h1 . . .hM−1 ]T (10)

hτ = [ τ0 . . . τM−2 ]T (11)

and define the following vector

Θ = [ 1 − hT − hT
τ ]T , (12)

with dimension
p = 2M. (13)

In absence of noise, the parameter vector (12) can be recovered
by means of the following procedure. Define the row vectors

ZM(ωk) = [1 e−j ωk . . . e−j (n−1)ωk e−j (M−1)ωk ] (14)

ZM−1(ωk) = [1 e−j ωk . . . e−j (M−2)ωk ], (15)

whose entries are constructed with multiple frequencies ofωk,
and construct the following matrices

Π =

























ZM(ω0)
...

ZM(ωN−1)

























Ψ =

























ZM−1(ω0)
...

ZM−1(ωN−1)

























(16)

of dimensionN × M andN × (M − 1), respectively.
Using the DFT samplesD(ωk) andX(ωk) construct the fol-

lowing N × N diagonal matrix

Vdiag
X = diag [X(ω0), X(ω1), . . . ,X(ωN−1)] (17)

and theN–dimensional column vector

VD = [D(ω0), D(ω1), . . . ,D(ωN−1)]T . (18)

Then, compute theN × M matrix

ΦX = Vdiag
X Π (19)

and construct theN × p matrix

Φ̂ = [VD |ΦX |Ψ]. (20)

Thus, eq. (8) fork = 0, . . . ,N − 1 can be rewritten as

Φ̂Θ = 0. (21)

It then holds
Σ̂ Θ = 0, (22)

whereΣ̂ is thep× p matrix

Σ̂ =
1
N

(Φ̂H
Φ̂), (23)

and (·)H denotes the transpose and conjugate operation.
Remark 2.Sinced(t) is generated by the FIR model (1), the

relation (8) cannot be satisfied by a polynomialH(z−1) with or-
der lower thanM−1. Therefore, the matrix̂Σ in (23) is positive
semidefinite, with only one null eigenvalue, i.e.

Σ̂ ≥ 0 dim kerΣ̂ = 1. (24)

Remark 3. If the signalsx(t) and d(t) happen to beN–
periodic, then the termT(e−jωh) in equation (8) is identically
zero. In this case, the matrix in (20) can be reduced to the
N × (M + 1) matrix

Φ̂per = [VD |ΦX]. (25)

It then holds
Σ̂per θ = 0, (26)

whereΣ̂per is the (M +1)× (M+1) positive semidefinite matrix

Σ̂per =
1
N

(Φ̂H
per Φ̂per) (27)

andθ is theM + 1 parameter vector

θ = [ 1 − hT ]T . (28)

In the following it will be shown how it is possible to reorganize
the equations as they would have been generated by a periodic
system, for every value ofN. For details, see Section 4 in [35].

Partition the matrix̂Σ, defined in (23), as follows

Σ̂ =

























σ̂11 Σ̂12 Σ̂13

Σ̂21 Σ̂22 Σ̂23

Σ̂31 Σ̂32 Σ̂33

























, (29)

whereσ̂11 is a scalar,̂Σ22 is a square matrix of dimensionM
andΣ̂33 is a square matrix of dimensionM − 1. Relation (22)
can be expanded as follows

σ̂11 − Σ̂12 h− Σ̂13 hτ = 0 (30)

Σ̂21 − Σ̂22 h− Σ̂23 hτ = 0 (31)

Σ̂31 − Σ̂32 h− Σ̂33 hτ = 0. (32)

From (32) we obtain

hτ = Σ̂
−1
33

(

Σ̂31 − Σ̂32 h
)

. (33)

The expression (33) can then be substituted into (30) and (31).
Defining the following matrices

Σ̂red =













σ̂11 Σ̂12

Σ̂21 Σ̂22













, T̂ =













Σ̂13Σ̂
−1
33Σ̂31 Σ̂13Σ̂

−1
33Σ̂32

Σ̂23Σ̂
−1
33Σ̂31 Σ̂23Σ̂

−1
33Σ̂32













, (34)

it is possible to reduce the non–periodic case into an equivalent
periodic one, with lower dimensions (cf. (26))

Σ̂per = Σ̂red − T̂ (35)

Σ̂per θ = 0, (36)

whereθ has been defined in (28).
For noise–free data, the ratio

ρ̂ =
||T̂||F
||Σ̂red||F

(37)

can give a measure of the effect of the transient term, where
|| · ||F is the Frobenius norm of a matrix.
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Remark 4.Given the input sequencex(t), the ratioρ̂ takes
into account both the parameters and the order of the FIR sys-
tem. Note that ˆρ is a function of the data lengthN. In particular,
ρ̂→ 0 if N→ ∞, and

ρ̂max= ρ̂ (Nmin), (38)

whereNmin = 2M − 1 is the minimum length of the input–
output sequence, i.e. the minimum number of equations so that
relation (24) holds.

3.2. The noisy case

In the presence of noise, the previous considerations can be
modified as follows. With the noisy input–output DFT samples
U(ωk), Y(ωk) construct theN × N diagonal matrix

Vdiag
U = diag [U(ω0), U(ω1), . . . ,U(ωN−1)] (39)

and theN–dimensional column vector

VY = [Y(ω0), Y(ω1), . . . ,Y(ωN−1)]T . (40)

Then, compute the matrix

ΦU = Vdiag
U Π (41)

and construct theN × p matrix

Φ = [VY |ΦU |Ψ]. (42)

Because of Assumptions A3–A4, whenN → ∞, we obtain the
following p× p positive definite matrix

Σ =
1
N
(

Φ
H
Φ
)

= Σ̂ + Σ̃
∗, (43)

where
Σ̃
∗
= diag

[

σ∗o, σ
∗
i IM , 0M−1

]

. (44)

From (12), (22) and (43), the parameter vectorΘ, defined in
(12), can be obtained as the kernel of

(

Σ − Σ̃∗)Θ = 0, (45)

after normalizing the first entry ofΘ to 1.
Remark 5.The previous considerations hold also when only

a subset of the whole frequency range is used, i.e.ωk ∈ W =
[ωi , ω f ], with i ≥ 0 and f ≤ floor

(N
2

)

, containingL = f − i + 1
frequencies. The subsetW must be chosen by the user on the
basis ofa priori knowledge of the frequency properties of the
FIR system and of the noise–free inputX(ωk). The choice of
W = [ωi , ω f ] reduces the number of the entries in (16) and
(39)–(40), and all the related equations must be consequently
modified. Some care must be used when the algorithms of Sec-
tions 5 and 6 make use of the whole DFT data setU(ωk), Y(ωk),
k = 0, . . . ,N − 1 [31]. In this case, two distinct sets of frequen-
cies must be jointly considered, the setW1 = [ωi , ω f ], with
i ≥ 0 and f ≤ floor

(N
2

)

and the setW2 = [ωN−1− f , ωN−1−i ].
The total number of frequencies used in the algorithms will be

2L. By considering a new matrixΦ with 2L rows, expressions
(43)–(44) must be modified as follows

Σ =
1

2L
(

Φ
H
Φ
)

= Σ̂ + Σ̃
∗ , (46)

where

Σ̃
∗
=

N
2L

diag
[

σ∗o, σ
∗
i IM, 0M−1

]

. (47)

Remark 6.The noise Assumptions A3–A4 are necessary in
order to obtain a diagonal matrix̃Σ∗, as defined in (44), when
N → ∞. On the other hand, one can observe that for largeN
the effect of the transient polynomialT(z−1) is negligible since
it vanishes at rateO (1/

√
N) [18] and the data could be treated

as periodic, as done in Remark 3. This is a common procedure
used in frequency domain identification, see e.g. [13, 22].

An alternative solution is to proceed as in Section 3.1. Par-
tition the matrixΣ, defined in (43), according to the matrixΣ̂
in equation (29). Expanding relation (45) as in (30)–(31), we
obtain

σ̂11 − Σ12 h− Σ13 hτ = 0 (48)

Σ21 − Σ̂22 h− Σ23 hτ = 0 (49)

Σ31 − Σ32 h− Σ33 hτ = 0. (50)

Next (50) implies

hτ = Σ
−1
33

(

Σ31 − Σ32 h
)

. (51)

Substitute now the expression (51) in (48)–(49), define the ma-
trices

Σred =

[

σ11 Σ12

Σ21 Σ22

]

, T =

[

Σ13Σ
−1
33Σ31 Σ13Σ

−1
33Σ32

Σ23Σ
−1
33Σ31 Σ23Σ

−1
33Σ32

]

(52)

and set
R= Σred − T. (53)

Defining the matrix

R̃∗ = diag
[

σ∗o, σ
∗
i IM
]

, (54)

it is then possible to derive the system of equations (cf. (36))
(

R− R̃∗
)

θ = 0. (55)

Also in this case, the ratio

ρ =
||T ||F
||Σred||F

(56)

can give a measure of the effect of the transient term, starting
from the available noisy data.

Remark 7.Simulation experiences have shown that, for every
value ofN, ρ > ρ̂ holds, and the effect of the noise

δ =
ρ − ρ̂
ρ̂

(57)

decreases as the amount of noise decreases (see Figure 2). Since
the ratioρ̂ is greater when the number of dataN is shorter, the
effect of the transient term is of major importance in the sys-
tem parameter estimates when the data sequences are short and
affected by a small amount of noise.
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4. Overview of related EIV approaches

4.1. The GIVE framework

Note that (55) consists ofM + 1 algebraic non–linear equa-
tions. The number of unknowns isM + 2, i.e. the elements of
h in (10) and the two variancesσ∗o andσ∗i . In the time domain,
a similar set of equations has been largely studied in the iden-
tification of EIV dynamic systems. A general framework has
been originally introduced in [23], where the Generalized In-
strumental Variable Estimation (GIVE) method was proposed
with reference to SISO EIV systems affected by additive white
noises. The method has been generalized to the case of corre-
lated noises in [25]. The GIVE method provides a unique gen-
eral framework for the whole class of bias–compensating meth-
ods, including iterative solutions, like the BELS methods [26].
The GIVE frameworks leads to the following conclusions, that
are common to the whole class of bias–compensating methods.

1 Since the number of the unknowns is larger than the num-
ber of equations, some further equations need to be used
in addition to the system (55) in order to find a unique es-
timate of θ. It can result in an over–determined system
of equations. In the time domain, a natural solution is to
exploit the high–order Yule–Walker equations, where the
noise variances are not present. Indeed, these are the equa-
tions exploited also by two methods proposed in this pa-
per. In Section 5 we will see how these equations can be
written in the frequency domain.

2 In the general case the parameter estimates are obtained as
the solution of an optimization problem. An usual solution
strategy consists in forcing some of the over–determined
system of equations to hold exactly, while the others are
minimized in a weighted least squares sense.

3 This second aspect does not affect the statistical properties
of the estimates, since the asymptotic accuracy depends
only on the set of equations used to define the problem
and not on the way the equations are solved [26]. Never-
theless, in practice, different identification algorithmsthat
are based on the same set of equations can lead to different
estimation results, in terms of computational complexity
and speed of convergence. In particular, it will be shown
that the over–determined systems of equations exploited
by the two proposed methods differ only for one equation,
but the way they are solved is completely different.

4.2. The Frisch scheme context

The purpose of this subsection is to recall the Frisch scheme
[2, 9, 24] for developing the estimation algorithm of Section 5.
This can be thought as a possible numerical strategy to solve
the ‘exact’ equations within the GIVE framework, as stated in
the point 2.

Starting from an assumed knowledge of the noisy matrixR
in (53), the determination of the system parameter vectorθ and
of the noise variancesσ∗i , σ

∗
o in eq. (55) can be seen as a Frisch

scheme problem. This problem can be solved both in the time
and in the frequency domain. Tn fact, the properties of the locus

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

variance σ
i

va
ria

nc
e 

σ o

ξ

r
P∗

P

σmax
o

σmax
i

Figure 1: Typical shape ofS(R)

of the solutions in the noise planeR2 are the same. An in–depth
description of these properties can be found in [2, 9, 24]. Inthe
following only the main result of the Frisch scheme is recalled.
All the technical aspects and proofs are reported in [34].

Consider the set of non–negative definite diagonal matrices
of type

R̃= diag
[

σo, σi IM
]

(58)

such that
R− R̃≥ 0 det

(

R− R̃
)

= 0. (59)

Main Result. The set of all matrices̃R satisfying the con-
ditions (59) defines the pointsP = (σi , σo) of a continuous
curveS(R) belonging to the first quadrant of the noise space
R2. The curveS(R) describes a convex set in the first quadrant
of R2, whose concavity faces the origin. Asymptotically, when
N → ∞, the pointP∗ = (σ∗i , σ

∗
o) belongs toS(R).

As an example, Figure 1 reports the curveS(R) of the numer-
ical Example 1 of Section 8.

Remark 8.In many practical situations it is possible to have
some information about the lower and upper bounds of the
noise covariancesσ∗i andσ∗o, for example when other measure-
ments taken in different experimental conditions are available.
In these cases, the search of the pointP∗ on the curveS(R) can
be bounded within a limited area in the noise planeR2, e.g. see
the box depicted in Figure 1.

5. A criterion based on HOYW–type equations

As stated in the Main Result, the determination of the point
P∗ onS(R) leads to the solution of Problem 1, thanks to (55).
Unfortunately, the theoretic properties ofS(R) described so far
do not allow to distinguish pointP∗ from the other points of
the curve. Some additional condition must be added to define a
uniqueestimate.

In this section we will describe a possible search criterion.
This criterion is analogue to that reported in [31] with reference
to frequency domain identification of EIV systems.
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Select the integerq ≥ 2M − 1. The value of the parameter
q is a user choice. In general, this value can affect the quality
of the estimates. A good choice, from simulation experience, is
q = 2M − 1. Analogously to (14), consider the row vector

Zq+M(ωk) = [1 e−j ωk . . .e−j (M−1+q)ωk ] (60)

and extract from it theq–dimensional row vector

Zh
q(ωk) = [e−j Mωk . . .e−j (M−1+q)ωk ]. (61)

Then, construct the followingN × q matrix

Π
h
=

[

Zh
q(ω0) Zh

q(ω1) . . . Zh
q(ωN−1)

]T
. (62)

and compute theN × q matrix

Φ̂
h
= Vdiag

X Π
h. (63)

Define now theq× p matrix

Σ̂
h
=

1
N
(

(Φ̂h)H
Φ̂
)

. (64)

Because of (21) we have

Σ̂
h
Θ = 0. (65)

In an analogous way, in the noisy case, we can compute the
N × q matrix

Φ
h
= Vdiag

U Π
h (66)

and define theq× p matrix

Σ
h
=

1
N
(

(Φh)H
Φ
)

. (67)

Because of Assumptions A3–A4, whenN→ ∞ it results

Σ
h
= Σ̂

h. (68)

It is thus possible to write

Σ
h
Θ = 0. (69)

It is not difficult to show that the dimensions of equation (69)
can be reduced. For this purpose, partition matrixΣh as follows

Σ
h
=

[

Σ
h
1 Σ

h
2 Σ

h
3

]

, (70)

where the matricesΣh
1, Σh

2, Σh
3 have dimensionsq × 1, q × M,

q× (M − 1), respectively. Thanks to (51), equation (69) can be
reduced to

Rh θ = 0, (71)

whereθ has been defined in (28) and

Rh
=

[

Σ
h
1 − Σh

3Σ
−1
33Σ31 Σ

h
2 − Σh

3Σ
−1
33Σ32

]

. (72)

Remark 9. Equation (69) constitutes a set ofq equations,
analogue to the time domain high order Yule–Walker equations,
that does not involve the noise variancesσ∗i , σ

∗
o. These equa-

tions could be directly used to obtain an estimate of the param-
eter vectorΘ if q ≥ 2M − 1.

Remark 10.Equation (69) are analogue to an instrumental
variable (IV) method in the time domain, where delayed out-
puts are used as instruments. These equations can be solved by
using a total least squares approach. The main advantage of the
method is the computational efficiency. On the other hand, the
obtained estimation precision is often poor [24].

Remark 11.The set of (M +1) non–linear equations (55) can
be joined to the set ofq linear equations (71), withq ≥ 2M − 1
and can be settled within the GIVE framework, as described in
Subsection 4.1. Thus, the results in [23] and [24] can be ap-
plied, to express the statistical accuracy in terms of the theoret-
ical asymptotic covariance matrix of the parameter estimates.
More precisely, applying the Frisch scheme described in Sub-
section 4.2, the equations (55) are treated as a constraint that
must be exactly satisfied, while the equations (71) must hold
approximately. In other words, the search forP∗ alongS(R)
can be performed by minimizing a quadratic cost function.

On the basis of the previous considerations, it is possible to
develop an algorithm for the identification of the FIR plus noise
models. A detailed description of the procedure can be found
in [34]. In the following this algorithm is denoted as FIR1-FD.

6. A subspace approach

The approach proposed in this section is analogue to that de-
scribed in [4] for the identification of autoregressive models af-
fected by additive noise. This alternative method is not directly
based on the Frisch scheme, but exploits the set of equations
(69) together with the equations (45). It will be shown that
the FIR plus noise identification problem can be mapped into a
quadratic eigenvalue problem that, in turn, can be solved asa
generalized eigenvalue problem. The principle has been applied
to some other identification problems as well [5, 32].

Consider again equation (45), expanded as in (48)–(50). The
last 2M − 1 equations (49)–(50) can be written as

[

Σ21 Σ22 − σ∗i IM Σ23

Σ31 Σ32 Σ33

]

Θ = 0. (73)

Equation (73) contains 2M+1 unknowns, i.e.σ∗i and the entries
of Θ. The equations (69) and (73) can be combined together in
order to obtain the following nonlinear system of 2M − 1 + q
equations





















Σ21 Σ22 − σ∗i IM Σ23

Σ31 Σ32 Σ33

Σ
h





















Θ = 0. (74)

It can be observed that the dimensions of the equation (74) can
be reduced. For this purpose, consider the matrixR defined in
(53) and partitioned as follows

R=

[

r11 R12

R21 R22

]

, (75)

wherer11 is a scalar andR22 is a square matrix of dimensionM.
Moreover, consider the matrixRh defined in (72). Thanks to

(51), equation (74) can be reduced to
[

R21 R22− σ∗i IM

Rh

]

θ = 0. (76)
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Remark 12.Observe that the set of equations (76) differ from
the set of equations (55) and (71) by only one equation, in fact
the first row in (55) is missing. Also the set of equations (76)
can be settled within the GIVE framework of Subsection 4.1.
As shown in the following, all the equations (76) are minimized
in a total least squares sense, by solving a minimal eigenvalue
problem. Of course, the asymptotic analysis proposed in [23]
and [24] can be applied also in this case.

The equations (76) can be compactly rewritten as
(

S − σ∗i J
)

θ = 0, (77)

where

S =

[

R21 R22

Rh

]

J =

[

0M×1 IM

0q×(M+1)

]

. (78)

Equations (78) represent a non–square generalized eigen-
value problem. In order to solve it, in the following we pursue
the approach proposed in [4].

Multiplying both sides of (77) by
(

S − σ∗i J
)T

leads to the
equation

(

A2σ
2∗
i + A1σ

∗
i + A0

)

θ = 0, (79)

where

A0 = STS A1 = −
(

ST J + JTS
)

A2 = JT J. (80)

TheM+1 coefficients ofθ can thus be estimated by solving the
following quadratic eigenvalue problem (QEP)

(

A2 λ
2
+ A1 λ + A0

)

v = 0. (81)

Equations (81) can be solved by rewriting them as

A2 v′ λ + A1 vλ + A0 v = 0, (82)

wherev′ = λ v. Thus, the following (2M + 2)–dimensional
generalized eigenvalue problem can be derived

(P− λQ) η = 0, (83)

where

P =

[

A0 0
0 IM+1

]

Q =

[

−A1 −A2

IM+1 0

]

η =

[

v
v′

]

. (84)

Following the discussion of [4], it can be stated that, asymptoti-
cally when the the number of dataN→ ∞, the only real–valued
eigenvalue solving (83) isσ∗i and the firstM + 1 entries of the
corresponding eigenvectorη∗ are, after a normalization of the
first entry to 1, the entries ofθ, i.e.

η0 =
η∗

η∗(1)
=
[

θT σ∗i θ
T ]T . (85)

Remark 13.Forming the matrix productSTS in (80) is the
critical point of the proposed subspace approach, due to thepo-
tential loss of numerical precision. With a finite number of data,
all the eigenvalues solving (83) will exhibit, in general, asmall
imaginary part. A criterion leading to good results consists in
choosing the eigenvalue having the smallest modulus [4].

On the basis of the previous considerations, it is possible to
develop a second algorithm for the FIR identification problem.
A detailed description of the procedure can be found in [34].In
the following this algorithm is denoted as FIR2-FD.

7. General considerations

7.1. Estimation of the model order

A possible method for estimating the orderM − 1 of the FIR
model (1) can be developed on the basis of the following obser-
vation. In the time domain, the process

e(t) = y(t) − H(z−1) u(t) (86)

describes the equation error of the FIR model (1)–(4). By sub-
stituting the relations (3) and (4) in (86), we obtain the alterna-
tive representation

e(t) = no(t) − H(z−1) ni(t). (87)

Because of Assumptions A3-A4, the equation (87) proves that
the equation errore(t) is an MA process of orderM − 1, whose
autocovariance functionre(k) = E [e(t) e(t − k)] is given by

re(0) = σ∗o + σ
∗
i

M−1
∑

i=0

h2
i (88)

re(k) = σ∗i

M−k−1
∑

i=0

hi hi+k for k = 1, . . . ,M − 1 (89)

re(k) = 0 for k > M − 1. (90)

Thus, a possible way for estimating the orderM − 1 of (1)
consists in applying one of the proposed algorithms for an in-
creasing sequence of ordersn. Once the parametersh0, . . . , hn

of H(z−1) and the variancesσ∗o, σ
∗
i have been estimated by

means of the algorithm FIR1-FD or FIR2-FD, it is possible to
compute the estimates ofre(k) by using (88)–(90). The model
orderM−1 can be estimated by observing that the cost function

Jn =

n
∑

k=−n

re(k) n = 1, 2, . . . (91)

stabilizes at a constant value forn ≥ M − 1. Note thatJn rep-
resents the value of the spectrum of the MA processe(t) at zero
frequency.

It is worth observing that the algorithm FIR1-FD is to be
preferred in the computation of the quantities (88)–(90). In fact,
in many cases the algorithm FIR2-FD yields worse estimates of
σ∗i , σ

∗
o.

7.2. Practical aspects of frequency filtering

One of the main advantages of the proposed techniques lies
in the fact that they allow to perform the identification by using
only a reduced number of frequencies, as described in Remark
5. However, this property must be used with some caution, for
two main reasons.

First of all, it must be observed that the conditionq ≥ 2M −
1 of Remark 9, together with Assumption A2, do not assure
the consistency of the IV estimate (69). They assure only the
“generic consistency”, i.e. the consistency with probability one,
see [28] pag. 266. In other words, there may exist cases where
the rank ofΣh in (69) is lower than 2M − 1 and consequently
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the proposed algorithms do not produce consistent estimates.
This consideration is particularly important when only a subset
of the whole frequency range is used and Assumption A2 may
fail.

Moreover, in case of FIR system identification, there is an-
other important aspect that limits the usage of a reduced number
of frequencies. The frequency shape of a FIR model is strictly
linked with its order, e.g. see [10]. This property has also direct
consequences in FIR system identification, as far as the choice
of the order is concerned. In fact, from simulation experiences,
it is possible to state that, in general, in order to obtain a good
identification of the FIR system the model order must be cor-
rectly chosen and equal to its nominal value. A choice of a
wrong (reduced) model order leads to biased estimates. The
previous property is valid also when the system is identifiedby
using a reduced number of frequencies, within a limited win-
dow of the spectrum. Also in this case, the order of the iden-
tified FIR modelH(z−1) must be chosen equal to its nominal
value. In the presence of additive white noises on the input and
output the previous consideration has a direct consequence. The
signal–to–noise ratios of the input and output power spectra are

Sx(ωk)
Sni (ωk)

=
limN→∞ E

[|X(ωk)|2/N
]

σ∗i
(92)

Sd(ωk)
Sno(ωk)

=
limN→∞ E

[|D(ωk)|2/N
]

σ∗o

= |H(e−jωk)|2 limN→∞ E
[|X(ωk)|2/N

]

σ∗o
(93)

ωk = 2πk/N k = 0, . . . ,N − 1.

It can be observed that equation (92) is characterized by a con-
stant denominatorσ∗i for all possible frequency windows. Also
equation (93) is characterized by a constant denominatorσ∗o for
all possible frequency windows since in this caseH(z−1) is a
transfer function with only zeros, see eq. (2). Thus, restrict-
ing the identification within a limited window of the frequency
spectrumωk ∈ [ωi , ω f ] leads, in general, to worse results with
respect to performing the same identification procedure by us-
ing the whole set of frequencies, for the simple reason that in
the former case the available information of the systemH(e−j ωk)
are only partially exploited. Of course, this consideration is
no more valid when the input and output noises are character-
ized by a spectrum that is not constant for all the frequencies,
i.e. when the denominators in the expressions (92)–(93) arenot
constant for all the frequency range. In this case the identifica-
tion of the FIR model by using only a limited number of fre-
quencies can lead to great advantages, if the chosen frequency
window is characterized by lower values of the noise spectra.

8. Numerical examples

The effectiveness of the considered identification algorithms
has been tested by means of numerical simulations on several
FIR models taken from the literature. As a general consider-
ation, it can be said that quite often the FIR1 algorithm gives
better estimates than the FIR2 method, in particular as far as
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Figure 2:ρ andδ factors versus SNR.

the estimate of the noise variances is concerned. The perfor-
mances have been always similar to those reported below, even
for longer FIR models, like the 25 taps FIR filter proposed in
[21]. In the following only two illustrative cases are presented,
additional numerical examples can be found in [34].

Example 1.The proposed algorithms have been tested on se-
quences generated by the following FIR model, originally pro-
posed in [3] and reconsidered several times in the literature, see
e.g. [5, 6, 7] and the references therein. The FIR model has
lengthM = 5 and is characterized by the coefficients

h = [−0.3 − 0.9 0.8 − 0.7 0.6]T. (94)

The input signal is the autoregressive process

x(t) = −0.2 x(t − 1)− 0.6 x(t − 2)+ w(t), (95)

wherew(t) is a Gaussian white noise with unit variance.
In order to illustrate the effect of the transient term with re-

spect to the amount of noise, Figure 2 reports, for differentdata
lengthsN, the values ofρ, see eq. (56), andδ, see eq. (57) for
different values of the signal–to–noise ratio (SNR).

To complete this analysis, a Monte Carlo simulation of 100
independent runs has been performed in the case of very short
data,N = 25, with very small amount of noise, SNR = 60 dB.
Table 1 reports the empirical means of the system parameter
estimates obtained by means of the algorithm FIR1-FD, when
the transient term is taken into account as described in Section
5, and when the transient term is not considered, as described
in the Remarks 3 and 6 (algorithm FIR1-FD-NT). The number
of the HOYW equations has been fixed to the minimal values
q = 2M − 1 = 9 andq = M = 5, respectively.

A second Monte Carlo of 100 independent runs has been
performed by considering noisy input and output sequences of
lengthN = 100, affected by additive white noises correspond-
ing to a SNR of 20 dB on both input and output sides.

Table 2 reports the empirical means of the system parame-
ter estimates and of the noise variance estimates, togetherwith

8



Table 1: True and estimated parameters with and without the transient term -N = 25, SNR= 60 dB.

h0 h1 h2 h3 h4

true −0.3 −0.9 0.8 −0.7 0.6

FIR1− FD −0.2998± 0.6635∗ 10−3 −0.8999± 0.5814∗ 10−3 0.8001± 0.6782∗ 10−3 −0.7000± 0.5469∗ 10−3 0.5999± 0.7329∗ 10−3

FIR1− FD− NT −0.4594± 0.0009 −1.1020± 0.0012 0.5219± 0.0016 −0.7924± 0.0011 0.4451± 0.0010

Table 2: True and estimated parameters obtained with FIR1-FD, FIR2-FD, FIR1-TD, FIR2-TD and TLS-TD -N = 100, SNR= 20 dB.

true FIR1− FD FIR2− FD FIR1− TD FIR2− TD TLS− TD

h0 −0.3 −0.2983± 0.0243 −0.3032± 0.0254 −0.2990± 0.0261 −0.3024± 0.0271 −0.2990± 0.0263

h1 −0.9 −0.9039± 0.0261 −0.9097± 0.0695 −0.9022± 0.0271 −0.9094± 0.0917 −0.9050± 0.0238

h2 0.8 0.7970± 0.0306 0.7906± 0.0446 0.7970± 0.0316 0.7953± 0.0534 0.7985± 0.0321

h3 −0.7 −0.7040± 0.0238 −0.7107± 0.0472 −0.7031± 0.0243 −0.7091± 0.0537 −0.7046± 0.0233

h4 0.6 0.5975± 0.0253 0.5945± 0.0576 0.5969± 0.0254 0.5978± 0.0735 0.5993± 0.0260

σ∗o 0.0207 0.0206± 0.0208 0.0155± 0.0975 0.0234± 0.0225 0.0138± 0.1310 0.0194± 0.0031

σ∗i 0.0113 0.0093± 0.0088 0.0858± 0.0278 0.0089± 0.0090 0.0835± 0.0328 0.0106± 0.0017

the corresponding standard deviations, obtained with the algo-
rithms proposed in Sections 5 and 6, denoted with FIR1-FD
and FIR2-FD, respectively. The number of the HOYW equa-
tions has been fixed toq = 2M−1 = 9 for both algorithms. The
table shows also the results obtained with the corresponding
time domain algorithms, denoted with FIR1-TD and FIR2-TD.
The FIR2-TD algorithm was originally described in [5]. For
FIR1-TD and FIR2-TD the number of the HOYW equations
has been fixed toq = M = 5. For comparison, the last column
of the table reports also the estimates obtained with the classical
(time–domain) total least–squares method [8, 12]. Of course, to
obtain the TLS-TD solution, the noise variance ratioσ∗o/σ

∗
i has

been considered asa priori known. The TLS estimate should
therefore be seen as a lower (and not accessible) limit of the
performance, as TLS is heavily exploiting the information of
knownσ∗o/σ

∗
i [24]. It can be observed that the proposed identi-

fication methods yield similar, good results. Very similar results
are also obtained with the corresponding time domain versions.

For a deeper comparison of the asymptotic performances of
the algorithms, a Monte Carlo simulation of 100 independent
runs has been carried out withN = 500, by considering differ-
ent values of the SNR. In every run, the SNRs on the input and
output sides are equal. The normalized root mean square error

NRMSE=
1
‖h‖

√

√

√

1
100

100
∑

i=1

‖ĥi − h‖2 (96)

has been used as performance index, whereĥi denotes the esti-
mates ofh obtained in thei–th trial of the Monte Carlo simula-
tion. The results are shown in Figure 3.

Note that for high values of the SNR, the curves tend all to
be straight lines with slope−1. This means that for high SNR
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Figure 3: NMRSE versus SNR: FIR1-FD (circle, solid), FIR2-FD (dashed–
dotted), FIR1-TD (dashed), FIR2-TD (dotted), TLS-TD (diamond, solid).

Table 3: True and estimated parameters in the presence of output pink noise

true FIR1− FD [ 0.15− 0.5 ] FIR1− FD [ 0− 0.5 ]

h0 1.0000 1.0061± 0.0106 1.0912± 0.1172

h1 −0.3903 −0.3856± 0.0133 −0.4333± 0.0607

h2 0.6240 0.6315± 0.0157 0.6840± 0.0779

h3 −0.1912 −0.1860± 0.0130 −0.2132± 0.0345

h4 0.2401 0.2427± 0.0095 0.2601± 0.0286

σ∗o 0.7833 0.1096± 0.0038 0.6138± 0.0885

σ∗i 0.0000 0.0018± 0.0022 0.0726± 0.1378
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Figure 4: FunctionJn versus the model ordern. N=100, SNR=20 dB.

values, NRMSE is inversely proportional to SNR, and it holds

NRMSE∼ 1
SNR

. (97)

It can be observed that the performances of the FIR1 algo-
rithms are slightly better than those of the corresponding FIR2
algorithms.

Concluding, with reference to the case ofN = 100 and SNR
= 20 dB, the Figure 4 reports the results of the model order
estimate, obtained with the cost functionJn in (91), evaluated
by means of the two proposed algorithms. It can be observed
that the Algorithm 1 yields a nicer, monotonic, behavior ofJn.

The next numerical example illustrates the frequency domain
features of the new identification methods, described in the
Subsection 7.2.

Example 2.The following FIR model, with lengthM = 5,
has been considered

h = [1.0000 − 0.3903 0.6240 − 0.1912 0.2401]T. (98)

The input signalx(t) is a Gaussian white noise with variance
σx = 1. In this example the input measurement noise is not
present, i.e.ni(t) = 0, and the output signal is affected by a pink
noise. Pink noise is frequently used in music signal processing
and is characterized by a power spectrum that falls in frequency
like 1/ f . The pink noise has been generated by using the third–
order ARMA model, suggested in [17] at pag. 736

no(t) = g0
B(z−1)
A(z−1)

e(t), (99)

wheree(t) is a white noise with varianceσe, g0 = 0.57534 and

B(z−1) = (1− 0.98444z−1)(1− 0.83392z−1)(1− 0.07568z−1)

A(z−1) = (1− 0.99574z−1)(1− 0.94791z−1)(1− 0.53568z−1).

The resulting power spectra of the signalsd(t) andno(t) are

Sd(ωk) = |H(e−j ωk)|2σx = |H(e−j ωk)|2 (100)

Sno(ωk) = g2
0
|B(e−jωk)|2
|A(e−jωk)|2 σe. (101)
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Figure 5: FIR model (solid), pink noise (dotted), equivalent white noise (dash–
dotted) and noisy signal (dashed)

By construction, asymptotically, whenN → ∞, the variance
σe coincides with the variance of the output noiseno(t), i.e.
σe = σ

∗
o. For this reason, the data length in this example has

been fixed toN = 5000.
A Monte Carlo of 100 independent runs has been performed

by considering noisy output sequences, affected by additive
pink noise, with varianceσ∗o = 0.7833, corresponding to a ratio

10 log10
E[d(t)2]
E[no(t)2]

= 10 log10

∫ π

−π Sd(ωk) dω
2π

∫ π

−π Sno(ωk) dω
2π

= 10 log10

∫ π

−π |H(e−j ω k)|2 dω
2π

σ∗o
≈ 3 dB.

Figure 5 shows the spectrum of the FIR system (solid line) and
the spectrum of the additive pink noise (dotted line) together
with the resulting noisy output spectrum (dashed line). The
dash–dotted line reports the spectrum of the “equivalent” white
noise with varianceσ∗o.

In many real situations some additional information about
the system is available. In this case, for example, one couldbe
aware that the additive noise is of pink type. Taking accountof
this information, the FIR model has been identified by using the
FIR1-FD algorithm within the frequency windowF = [ fi , f f ],
with fi = 0.15 andf f = 0.5. In this way, the effect of the pink
noise, acting at low frequencies, has been filtered out.

The results of the simulation are reported in the first column
of Table 3. For comparison, the second column of Table 3 re-
ports the estimates obtained by the same FIR1-FD algorithm
when the whole frequency windowF = [0, 0.5] is used. The
advantageous effects of filtering are evident. In fact the method
yields accurate estimates of the system parameters. It can be ob-
served that the results using all frequencies are definitelyworse.

9. Conclusions

In this paper two novel frequency domain approaches have
been proposed for the identification of FIR models affected by

10



additive white noises. Their estimation properties have been
tested and compared by means of Monte Carlo simulations. The
numerical results have confirmed the good performances of the
methods. The benefits of filtering the data in the frequency do-
main have been illustrated by means of a numerical example.
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