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Abstract

We solve the problem of stabilizing a general class of 1-d semilinear hyperbolic systems with an arbitrary number of states
convecting in each direction and with the actuation and sensing restricted to one boundary. The control design is based on
the dynamics on the characteristic lines along which the inputs propagate through the domain and the predictability of states
in the interior of the domain up to the time they are affected by the inputs. In the context of broad solutions, the state-
feedback controller drives systems with globally Lipschitz nonlinearities from an arbitrary initial condition to the origin in
minimum time. Alternatively, it is possible to satisfy a tracking objective at the uncontrolled boundary or, for systems with
C1-coefficients and initial conditions, to design the control inputs to obtain classical C1-solutions that also reach the origin
in finite time. Further, we design an observer that estimates the distributed state from boundary measurements only. The
observer combined with the state-feedback controller solves the output-feedback control problem.
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1 Introduction

Hyperbolic partial differential equations are widely used
to model systems such as open water channels [15,10],
traffic flow [3], flow through pipelines [14] and oil wells
[11,1], for the purpose of controller-design. In many situ-
ations, actuation and sensing are restricted to the bound-
ary of the spatial domain.

Approaches to the stabilization of nonlinear hyperbolic
systems by boundary control include designing dissipa-
tive boundary conditions by analysing the evolution of
Riemann invariants [13,10] or via a Lyapunov approach
[7]. However, these methods do not achieve convergence
to a target state in finite time, and there are controllable
systems that cannot be stabilized by static boundary
feedback [4].
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Finite-time or exact controllability, i.e. controlling the
state to an equilibrium in finite time, is well established
for linear systems [21], semilinear systems (i.e., source
terms depend nonlinearly on the state but speeds are
independent of state), e.g. [29], and quasilinear systems
(i.e., speeds and source terms depend nonlinearly on the
state) [6,18]. Controllability is global for linear systems
but nonlinear systems are in general only locally control-
lable, although controllability can be global if additional
assumptions are made on the system coefficients, see e.g.
[29,15]. Similar results exist for observability [19]. A dif-
ferent form of controllability of such systems is the abil-
ity to exactly track a reference signal at, depending on
the number of control inputs, one or more locations in
the domain, called nodal profile control [14,20].

The controllability result from [18] is constructive as it
provides a method for computing the control inputs that
drive the system from the initial state to the target state
within finite time. This time must be chosen larger than
some minimum time depending on the transport speeds.
However, it is an open-loop control law, i.e. the control
inputs for the whole time interval are computed once
based on the initial condition. There is no direct way to
update the control inputs based on measurements of the
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state as time proceeds, making performance and stabil-
ity sensitive to disturbances and model uncertainty.

A constructive method for developing state-feedback
and output-feedback boundary controllers for linear
hyperbolic systems has been developed in form of back-
stepping [22], [28], [16], [2], [8], [1]. However, at this
stage backstepping control of hyperbolic PDEs is re-
stricted to linear systems, although it has been shown
that quasilinear systems can be locally stabilized by a
linear backstepping controller designed based on the
linearization of the nonlinear system [9,17].

More recently, a method for designing state-feedback
and output feedback boundary controllers for semilin-
ear systems was presented in [23]. The method relies
on virtually moving the control inputs to the uncon-
trolled boundary, and the system can be stabilized by
setting these virtual inputs to zero. Based on predictions
of the state that cannot be affected due to the system
delay, the control inputs are constructed by solving an
ODE that governs the dynamics on the characteristic
line along which the control input propagates backwards
in time, taking the virtual input as boundary condition
for the ODE. It was shown that for linear systems the
state-feedback controller is equivalent to a previously
published backstepping controller [23, Section 3.4]. The
method was also extended to a class of interconneceted
systems [24] and to bilateral boundary control [26].

In this paper, we extend the method from [23] further
to systems with m actuated states all convecting in the
same direction and n non-actuated states convecting in
the opposite direction, for arbitrary n and m. In an-
other sense, it can be seen as an extension of the re-
sults in [16,2,8] to semilinear systems. Moreover, rather
than only focusing on minimum-time control as in [23],
we treat the virtual control inputs as degrees of freedom
that can be designed to ensure smoothness of the closed-
loop trajectories.

One of the challenges of systems with m inputs rather
than only one input as in [23] is the interaction between
different control inputs. In particular, the effect a control
input associated with a slower propagation speed has
on the state depends on future values of control inputs
associated with faster speeds (see also Figure 1 for how
the inputs propagate through the domain).

This paper is organized as follows. The precise problem
statement is given in Section 2. In Section 3 we design
the state-feedback control law: some preliminary results
on the states and dynamics on the characteristic lines
are established in Section 3.1 and a target system for
the closed-loop dynamics on the characteristic lines is
designed in Section 3.2, before the actual inputs are con-
structed in Section 3.3. The state estimation problem is
solved in Section 4, with the observer given in Section
4.2 and the output feedback control problem solved in

Section 4.3. Section 5 shows a numerical example. Con-
cluding remarks are given in Section 6. The appendix
contains several technical proofs.

2 Problem statement

2.1 System description

We consider systems in the form

ut(x, t) = −Λu(x)ux(x, t) + Fu((u, v)(x, t), x, t), (1)

vt(x, t) = Λv(x)vx(x, t) + F v((u, v)(x, t), x, t), (2)

u(0, t) = f(v(0, t), t), (3)

v(1, t) = U(t), (4)

u(x, 0) = u0(x), (5)

v(x, 0) = v0(x), (6)

where x ∈ [0, 1], t ≥ 0 and

u(x, t) =
(
u1(x, t) . . . un(x, t)

)T
, (7)

v(x, t) =
(
v1(x, t) . . . vm(x, t)

)T
, (8)

U(t) =
(
U1(t) . . . Um(t)

)T
. (9)

The subscripts x and t denote partial derivatives with
respect to x and t, respectively. Throughout the paper,
we use h([a, b]) to denote a function h (usually state or
input) evaluated over the closed interval [a, b] and simi-
larly for the open interval (a, b) and half open intervals
[a, b) and (a, b], and (u, v)(x, t) to denote the whole state
consisting of both u and v evaluated at (x, t). We assume
u0 ∈ Xn[0,1] and v0 ∈ Xm[0,1] where X k[a,b] for k ≥ 1 is the

space of bounded vector-valued functions on [a, b],

X k[a,b] =
{
f : [a, b]→ Rk : ‖f‖∞ <∞

}
(10)

with norm

‖h‖∞ = sup
x∈[a,b]

‖h(x)‖ (11)

for h ∈ X k[a,b] with Euclidean norm ‖ · ‖.

Remark 1 We consider a type of non-classical solutions
of the PDE model (1)-(6) that is defined via the associ-
ated integral equations. That is, the PDEs can be trans-
formed to integral equations as given in Appendix A, and
we say that the solution of the integral equations, which
always exists for bounded inputs and is unique under the
given assumptions, is the solution of the PDEs. This so-
lution type has been called broad solutions in [5], although
in an L∞ setting where solutions are defined only almost
everywhere as opposed to point-wise. As the solution of
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the integral equations might not be differentiable, depend-
ing on initial conditions and control input, the original
PDEs might not be satisfied in the classical sense.

The transport speeds

Λu(x) = diag
(
λu1 (x) . . . λun(x)

)
, (12)

Λv(x) = diag
(
λv1(x) . . . λvm(x)

)
, (13)

are assumed to be measurable in x and satisfy

λu1 (x) > λu2 (x) > . . . > λun(x) > 0, (14)

λv1(x) > λv2(x) > . . . > λvm(x) > 0, (15)

for all x.

Remark 2 The case where two or more states have equal

speeds λ
u/v
i can be handled by allowing the corresponding

state ui or vi, respectively, to be vector-valued. Further,
note that Assumption (14) is only required for the ob-
server design while Assumption (15) is only required for
the state-feedback controller design.

The nonlinearities Fu, F v : Rn+m × [0, 1] × R → Rn
and f : Rm × R → Rn are assumed to be (i) globally
Lipschitz-continuous in the state,

‖Fu((y1, z1), x, t)− Fu((y2, z2), x, t)‖
≤ Lu(‖y1 − y2‖+ ‖z1 − z2‖), (16)

‖F v((y1, z1), x, t)− F v((y2, z2), x, t)‖
≤ Lv(‖y1 − y2‖+ ‖z1 − z2‖), (17)

‖f(z1, t)− f(z2, t)‖ ≤ Lf‖z1 − z2‖, (18)

for all y1, y2 ∈ Rn, z1, z2 ∈ Rm, x ∈ [0, 1] and t ≥ 0, (ii)
measureable and uniformly bounded in x and t, and (iii)
such that

Fu((0, 0), x, t) = 0, (19)

F v((0, 0), x, t) = 0, (20)

f(0, t) = 0, (21)

for all x and t.

Remark 3 The global Lipschitz conditions (16)-(18)
ensure global existence of the solution as long as the con-
trol inputs remain bounded. Similar local results can be
obtained if the nonlinearities are only locally Lipschitz.

Remark 4 Assumptions (19)-(21) ensure that the ori-
gin is an equilibrium. This assumption can be dropped if
the control objective is tracking instead of stabilization of
an equilibrium.

2.2 Control objective

The control objective is to drive the system to the origin
in finite time. Designs are discussed to reach the origin
in minimum time or, alternatively, to achieve finite-time
convergence while preserving smoothness of the closed-
loop solution. The control design method can also be
applied to solve a class of tracking problems at x = 0;
see also Remark 16. Moreover, we consider the observer
design problem of estimating the distributed state from
boundary measurements

Y (t) = u(1, t) (22)

and the design of an output-feedback controller using
measurements Y (t) only.

Remark 5 Note that in Equation (4), allm components
of the state v are assumed to be actuated at the boundary
x = 1, and that in (22) all n components of the state u are
assumed to be measured at the same boundary. In practi-
cal applications, the transformation required to bring the
physical model to form (1)-(6) can mean that most or all
physical boundary values at x = 1 must be measured, and
the physical actuation signal can be a function of both U
and the physical measurements. See for instance [25] for
a detailed discussion of a particular case with n = m = 1.

3 State feedback control

Fig. 1. Characteristic lines of a system withm = 3 and n = 1.
Starting at x = 1 , the control inputs propagate through the
domain along the dotted (U1), dashed (U2) and solid (U3)
black lines, respectively. The grey dashed lines indicate the
characteristic lines of the state u.

The control design is based on the dynamics on the char-
acteristic lines of system (1)-(6) which are sketched in
Figure 1. The control inputs at time t enter the dynam-
ics at x = 1 and propagate through the domain with
finite speeds λvi . Because the propagation speeds are fi-
nite, the control input Ui affects the state vi only on
the characteristic line along which it propagates, but not
earlier. In particular, at time t the state (u, v)(x, t) for
x ∈ [0, 1) cannot be affected by U(t). Instead, the inputs
U(t) are designed to control the state on the character-
istic line along which input Um, which is associated with
the slowest transport speed λvm, propagates.
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The controller design can be summarized into the fol-
lowing steps:

(1) Derive the dynamics on the characteristic lines
along which the inputs propagate through the do-
main. As shown subsequently, the state on the
slowest characteristic line is governed by an ODE
coupled to n + m − 1 PDEs all convecting in
positive x-direction, i.e. with inflow boundary at
x = 0, compared to n+m heterodirectional PDEs
governing (u, v).

(2) Establish predictability of the states on these char-
acteristic lines using the current state and some
boundary values at x = 0, independently of the
control input U(t).

(3) Virtually move the control inputs from x = 1 to
x = 0, making it straightforward to control the dy-
namics on the slowest characteristic line and mak-
ing the prediction operators implementable.

(4) Using the state predictions, construct the input U
that ensures that the closed-loop system has the
desired boundary value at x = 0.

3.1 Dynamics, predictability and boundary values of
state on characteristic lines

Define the characteristic lines along which the inputs
propagate as

φvi (x) =

∫ 1

x

1

λvi (ξ)
dξ, x ∈ [0, 1], i = 1, . . . ,m (23)

and, to simplify notation later,

φv0(x) =0 for all x ∈ [0, 1], (24)

and the corresponding delay times

dvi = φvi (0). (25)

For j = 0, . . . ,m, define the states on the characteristic
line along which vj evolves as

ūi[j](x, t) = ui(x, t+ φvj (x)), (26)

v̄i[j](x, t) = vi(x, t+ φvj (x)), (27)

with

ū[j](x, t) =
(
ū1[j](x, t) . . . ūn[j](x, t)

)T
, (28)

v̄[j](x, t) =
(
v̄1[j](x, t) . . . v̄m[j](x, t)

)T
. (29)

Note that, due to (24),

ū[0](x, t) = u(x, t) and v̄[0](x, t) = v(x, t). (30)

Denote partial derivatives by ūt[j] = ∂t(ū[j]) and
ūi,t[j] = ∂t(ūi[j]), and similar for v̄ and partial deriva-
tives with respect to x. Assuming for now that the
boundary values v(0, t) are available for all t, we intro-
duce the notation

wi[j](t) = vi(0, t+ dvj ). (31)

Note that the boundary values wi[j](t) at time t depend
on the input Uk up to time t+ dvk − dvj , i.e. on inputs Uk
later than t for k ≤ j (this will be made more precise
later). Finally, define the following state with the j − th
component removed:

ṽ[j] =
(
v̄1[j] . . . v̄j−1[j] v̄j+1[j] . . . v̄m[j]

)
(32)

with ṽ[0] = v̄[0] = v.

The following lemma characterizes the dynamics of
(ū, v̄).

Lemma 6 For j = 0, . . . ,m, the states (ū[j], v̄[j]) sat-
isfy

ūt[j](x, t) = −Λ̄uj ūx[j](x, t) + F̄u[j]((ū, v̄)[j](x, t), x, t),

(33)

ṽt[j](x, t) = Λ̃vj ṽx[j](x, t) + F̃ v[j]((ū, v̄)[j](x, t), x, t),

(34)

v̄j,x[j](x, t) = −F̄ vj [j]((ū, v̄)[j](x, t), x, t), (35)

with boundary conditions

ū[j](0, t) = f(v̄[j](0, t), t+ φvj (0)), (36)

v̄i[j](0, t) = wi[j](t), i = 1, . . . , j, (37)

v̄i[j](1, t) = Ui(t), i = j + 1, . . . ,m, (38)

and initial conditions

ūi[j](x, 0) = ui(x, φ
v
j (x)), i = 1, . . . , n, (39)

v̄i[j](x, 0) = vi(x, φ
v
j (x)), i = 1, . . . ,m, i 6= j, (40)

where, if j ≥ 1,

Λ̄uj (x) = diag
(
λ̄uj,1(x) . . . λ̄uj,n(x)

)
, (41)

Λ̃vj (x) = diag
(
λ̄vj,1 . . . λ̄

v
j,j−1 λ̄

v
j,j+1 . . . λ̄

v
j,m

)
, (42)

with

λ̄uj,i(x) =
λui (x)λvj (x)

λui (x) + λvj (x)
, (43)

λ̄vj,i(x) =
λvi (x)λvj (x)

λvj (x)− λvi (x)
, i 6= j, (44)
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and

F̄u[j] =
(
F̄u1 [j] . . . F̄un [j]

)T
, (45)

F̃ v[j] =
(
F̄ v1 [j] . . . F̄ vj−1[j] F̄ vj+1[j] . . . F̄ vm[j]

)T
, (46)

with

F̄ui [j] ((y, z), x, t) =
λvj (x)

λu
i

(x)+λv
j
(x)

×Fui ((y, z), x, t+ φvj (x))
, (47)

F̄ vi [j] ((y, z), x, t) =
λvj (x)

λv
j
(x)−λv

i
(x)

×F vi ((y, z), x, t+ φvj (x))
, i 6= j, (48)

F̄ vj [j] ((y, z), x, t) = 1
λv
j
(x)

×F vj ((y, z), x, t+ φvj (x))
, (49)

and, for j = 0,

Λ̄u0 = Λu, Λ̄v0 = Λv, F̄u[0] = Fu, F̄ v[0] = F v.
(50)

PROOF. There is nothing to be shown for j = 0 be-
cause (33)-(40) with (50) is just a copy of (1)-(6). For
j = 1, . . . ,m, we have the following.

For i = 1, . . . ,m, we have

v̄i,t[j](x, t) =
d

dt
vi(x, t+ φvj (x)) = vi,t(x, t+ φvj (x))

(51)

(note that x and t denote partial derivatives of the state
with respect to the space and time, whereas d

dt and d
dx

are total derivatives with respect to x and t), and

v̄i,x[j](x, t) =
d

dx
vi(x, t+ φvj (x))

= vi,x(x, t+ φvj (x))− 1

λvj (x)
vi,t(x, t+ φvj (x))

=
1

λvi (x)

[
vi,t(x, t+ φvj (x))

−F vi
(
(u, v)(x, t+ φvj (x)), x, t+ φvj (x)

)]
− 1

λvj (x)
vi,t(x, t+ φvj (x))

=
−λvi (x) + λvj (x)

λvi (x)λvj (x)
v̄i,t(x, t)

− 1

λvi (x)
F vi
(
(ū, v̄)(x, t), x, t+ φvj (x)

)
,

(52)

where the dynamics (2) were inserted into the third
equality of (52). If i = j (λvi = λvj ), (52) simplifies to the

ODE (35) with (49). Otherwise, substituting (51) into
(52) and rearranging gives (34) with (44) and (48).

Repeating the same steps for ūi[j] gives (33) with (43)
and (47). Here, no case distinction for i = j is required
because of the + in the denominator of (43).

Regarding the boundary conditions, note that

λvi λ
v
j

λvj − λvi
> 0⇔ λvj > λvi ⇔ j < i. (53)

Therefore, for i < j the propagation direction of state
v̄i[j] is in the positive x-direction. Consequently, the
boundary condition must be specified on the inflow
boundary at x = 0 as given in (37) (where definitions
(25), (27) and (31) are used) , while for i > j, the
direction of propagation of v̄i[j] remains in negative
x-direction with inflow boundary at x = 1 as given by
(38) (using definitions (23), (27) and Equation (4)).
The inflow boundary of ū[j] remains at x = 0 for all i
and j as given in (36). Since v̄j [j] satisfies (35), which
is an ODE in space without time-dynamics, the bound-
ary value can be specified at any x ∈ [0, 1] (even in the
interior of the domain). It is here included in (37). �

Remark 7 Note that for all j

λ̄vj,j−1 < . . . < λ̄vj,1 < 0 < λ̄vj,m < . . . < λ̄vj,j+1, (54)

which is straightforward to show using (15). Therefore,
the propagation direction of v̄i[j] remains in the negative
x-direction for i = j + 1, . . . ,m, but is in the positive x-
direction for i = 1, . . . , j−1. Moreover, v̄j [j] satisfies an
ODE. Furthermore, the input associated with the fastest
speed in (33)-(38) is Uj+1. Also note that F vi , Fui and f
are evaluated at time t+ φvj (x) in (47)-(49) and at time
t+ φvj (0) in (36), respectively.

Next, we establish a precise characterization of the de-
pendence and independence of the states (ū[j], v̄[j]) on
the control inputs U(t). As we are only interested in
dependence on U(t), for now we continue to treat the
boundary value at x = 0, i.e. v̄i[j](0, t) for i = 1, . . . , j
in (37), as known.

For time t ≥ 0 and j = 0, . . . ,m, define the interval

Itj = [t, t+ (dvj+1 − dvj )] (55)

and the set of boundary values (which is empty for j = 0)

Wj(t) =
{
v̄1[j](0, Itj), . . . , v̄j [j](0, Itj)

}
. (56)

At time t, Wj(t) contains the boundary values v̄i[j](0, ·),
i = i, . . . , j, over the future interval Itj .
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Lemma 8 For all j = 0, . . . ,m−1 and t ≥ 0 there exists
a Lipschitz-continuous operator

Φtj :Xn(0,1] ×X
m
[0,1) ×X

j
It
j
→ Xn(0,1] ×X

m
[0,1)

((ū, ṽ) [j](·, t),Wj(t)) 7→ (ū[j + 1], ṽ) [j + 1](·, t).
(57)

Evaluating Φtj is independent of U(t).

PROOF. The proof is based on technical results pro-
vided in the appendix. For j = 0, . . . ,m− 1, the system
(33)-(40), is of the form (A.1)-(A.7) with α = ū[j], β =(
v̄1[j] . . . v̄j−1[j]

)
, γ = v̄j [j], δ =

(
v̄j+1[j] . . . v̄m[j]

)
and the input arguments of Φtj as the initial condition

for the (α, β, γ, δ)-system. The speed λδ1 corresponds to
λ̄vj,j+1 as per (44). Using φδ1 as in (A.13), we establish
the following relations:

φvj (x) + φδ1(x) =

∫ 1

x

1

λvj (ξ)
dξ +

∫ 1

x

1

λ̄vj,j+1(ξ)
dξ

=

∫ 1

x

1

λvj (ξ)
+
λvj (ξ)− λvj+1(ξ)

λvj+1(ξ)λvj (ξ)
dξ =

∫ 1

x

1

λvj+1(ξ)
dξ

(58)
and therefore

ūi[j]
(
x, t+ φδ1(x)

)
= u

(
x, t+ φvj (x) + φδ1(x)

)
= ūi[j + 1](x, t), (59)

v̄i[j]
(
x, t+ φδ1(x)

)
= v̄i[j + 1](x, t). (60)

By Lemma 26 (after shifting time), it is possible to pre-
dict

ū[j](x, t+ φδ1(x)), x ∈ (0, 1], (61)

(corresponding to α(x, φδ1(x))), and(
v̄1[j] . . . v̄j [j] v̄j+2[j] . . . v̄m[j]

)
(x, t+ φδ1(x)), (62)

x ∈ [0, 1), (corresponding to β, γ and (δ2 . . . δm−j)
T

at (x, φδ1(x))) independently of the control inputs U(t).
In view of (59)-(60), these are the output arguments of
Φtj . Moreover, by Theorem 25, the predicted solution
depends Lipschitz-continuously on the input arguments
of Φtj . �

Remark 9 The effect of Ui(t) for i = 1, . . . , j on
(ū, ṽ) [j + 1](·, t) is implicitly contained in the boundary
values Wj(t). However, as stated by Lemma 8, evalu-
ating Φtj does not require knowledge of U(t) if Wj(t) is
available.

Remark 10 (Implementation of Φtj) The operator

Φtj can be implemented by solving the PDE-ODE system

(33)-(38) in the rectangular domain{
(x, s) : x ∈ [0, 1], s ∈ [t, t+

∫ 1

x

1

λ̄vj,j+1(ξ)
dξ]

}
(63)

with (ū, ṽ)[j] as the initial condition and some arbitrarily
chosen value for U(t) , as this only affects v̄j+1[j+1] but
not ṽ[j+ 1] and ū[j+ 1]; see the proof of Lemma 26. The
parameter t in Φtj is required because the coupling terms
Fu and F v as well as f are allowed to be time-varying.

Finally, we establish the following relationship between
the control input Uj , entering at x = 1, and the bound-
ary value of vj at x = 0.

Lemma 11 For given j ∈ {1 . . .m} and t ≥ 0, consider
the Lipschitz-continuous operator defined by

Ψt
j : Xn(0,1) ×X

m−1
(0,1) × R→ R

(φ, ϕ̃, w) 7→ ϕj(1)
(64)

where ϕj is the solution of the ODE

ϕj,x(x, t) = −F̄ vj [j]((φ, ϕ)[j](x, t), x, t),

ϕj(0) = w,
(65)

with (analogously to the definition of ū, v̄ and ṽ)

φ =
(
φ1 . . . φn

)
∈ Xn(0,1), (66)

ϕ =
(
ϕ1 . . . ϕm

)
∈ Xm(0,1), (67)

ϕ̃ =
(
ϕ1 . . . ϕj−1 ϕj+1 . . . ϕm

)
∈ Xm−1

(0,1) . (68)

The component of the state v̄j [j] as governed by (35)
satisfies

v̄j(0, t) = w (69)

if and only if

Uj(t) = Ψt
j ((ū, ṽ)[j]((0, 1), t), w) . (70)

PROOF. As, after a change of notation, (65) is a copy
of (35), this follows directly from uniqueness of the so-
lution of the ODE. Existence, uniqueness and Lipschitz-
continuous dependence of the solution under the given
assumptions is ensured by the Carathéodory existence
theorem, see e.g. [12]. �

3.2 Target system with virtual control inputs at x = 0

Note that for j = m, the direction of propagation of all
states in (33)-(35) is in the positive x-direction (except
for v̄m[m], which satisfies an ODE in x and therefore has
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no direction of propagation), and that all boundary con-
ditions are specified at x = 0. The system (ū[m], v̄[m])
turns out to be easier to control via the boundary con-
dition at x = 0 than it is to control the original system
(u, v) via the boundary condition at x = 1. Therefore,
we first construct a target system for (ū[m], v̄[m]) where
we replace the boundary values w in (37) by a new in-
put by virtually moving the control input from x = 1 to
x = 0. Then, in the following section, we construct the
control inputs U(t) such that (ū[m], v̄[m]) as given by
transformation (26)-(27), with (u, v) governed by (1)-(4)
in closed loop with the control law for U(t), is equal to
the target dynamics.

We introduce the virtual control inputs U∗(t) =

(U∗1 (t) . . . U∗m(t)), which are the desired values for v(0, t).

That is, the desired closed-loop trajectories shall satisfy

vi(0, t+ dvi ) = U∗i (t) (71)

for i = 1, . . . ,m. The shift by dvi is to compensate for
the transport delay in the system, such that the input
Ui(t) at time t is correlated to the virtual input U∗i (t) at
time t. Moreover, we define

U∗i [j](t) = U∗i (t+ dvj − dvi ), (72)

which is just another time-shifting such that

v̄i[j](0, t) = U∗i [j](t). (73)

The target system for (ū[m], v̄[m]) in closed loop, which
we denote by (ū∗, v̄∗), is

ū∗t (x, t) = −Λ̄umū
∗
x(x, t) + F̄u[m]((ū∗, v̄∗)(x, t), x, t),

(74)

ṽ∗t (x, t) = Λ̃vmṽ
∗
x(x, t) + F̃ v[m]((ū∗, v̄∗)(x, t), x, t),

(75)

v̄∗m,x(x, t) = −F̄ vm[m]((ū∗, v̄∗)(x, t), x, t), (76)

with boundary conditions

ū∗(0, t) = f(v̄∗(0, t), t+ φvj (0)), (77)

v̄∗(0, t) = U∗[m](t), (78)

and initial conditions

ū∗i (x, 0) = ui(x, φ
v
m(x)), i = 1, . . . , n, (79)

ṽ∗i (x, 0) = vi(x, φ
v
m(x)), i = 1, . . . ,m− 1. (80)

Note that the equations governing (74)-(77) are equiv-
alent to (33)-(36) for j = m as they cannot be affected
by control. The difference is the boundary condition for
v(0, t), which is considered as an input in (78) com-
pared to a boundary value that is the result of inputs
U(t) = v(1, t) in (37).

It turns out that the choice U∗ = 0 stabilizes the target
system at the origin.

Theorem 12 Consider system (74)-(78). If

U∗[m](t) = 0 for all t ≥ t0 (81)

for some t0 ≥ 0 (see also Remark 15), then

ū∗(x, t) ≡ v̄∗(x, t) ≡ 0
for all x ∈ [0, 1],

t ≥ t0 +
∫ x

0
1

λ̄um,n(ξ)
dξ
, (82)

irrespective of the initial condition. Moreover, the closed-
loop solution remains bounded for t < t0 +

∫ x
0

1
λ̄um,n(ξ)

dξ

if U∗ is bounded.

PROOF. System (74)-(78) is of the form (A.1)-(A.7)
for α = ū∗, β = ṽ∗, γ = v̄∗n and nδ = 0. Due to

−λ̄vm,m−1 =
λvm

1− λvm
λv
m−1

> λvm >
λvm

1 +
λvm
λun

= λ̄um,n, (83)

the assumptions of Lemma 27 are satisfied. Shifting time
and applying the lemma establishes the first part of the
result. Boundedness for t < t0 +

∫ x
0

1
λ̄um,n(ξ)

dξ follows

directly from Theorem 25. �

Remark 13 (Exponential stability) If there exists a
constant c such that

sup
t≤t0
‖U∗[m](t)‖ ≤ c‖ (ū∗, v̄∗) (·, 0)‖∞ (84)

with U∗[m](t) = 0 ∀ t ≥ t0, then (74)-(78) is also expo-
nentially stable in the sense of that for every b > 0 there
exist an a > 0 such that

‖ (ū∗, v̄∗) (·, t)‖∞ ≤ a‖ (ū∗, v̄∗) (·, 0)‖∞e−bt. (85)

This can also be proven by use of Theorem 25 because, for
t < t0 + dvm, bound (A.29) and (84) imply the existence
of constant a such that

eb(t0+dvm)‖ (ū∗, v̄∗) (·, t)‖∞ ≤ a‖ (ū∗, v̄∗) (·, 0)‖∞, (86)

while for t ≥ t0 + dvm (85) trivially holds due to (82).

3.3 Construction of control inputs

In this section we construct the control inputs that map
the open-loop dynamics (1)-(4) into the closed-loop tar-
get dynamics (74)-(78) for chosen virtual control inputs
U∗. The design exploits the predictability of the state
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(ū[j], ṽ[j]) by successively applying the prediction oper-
ators Φtj as given in Lemma 8, and then applying the

operator Ψt
j from Lemma 11 to compute the input Uj

that ensures that v̄[j] has the desired boundary value at
x = 0 as given in (78).

As written in Lemma 8, evaluating Φtj requires knowl-
edge of the boundary values collected in the set Wj(t)
(see definition (56)), which depend on the control in-
puts Ui over the time interval [t, t+ dvj − dvi ], i.e. on fu-
ture values of Ui for i ≤ j that are yet to be computed.
The crux of making the predictors and control law im-
plementable, is to use the fact that in closed loop these
boundary values are equal to the virtual control inputs
as in (71) and (73).

For chosen virtual control inputs U∗ as in (71)-(73) and
using Itj as defined in (55), define the set

U∗[j](t) =
{
U∗1 [j]

(
Itj
)
, . . . , U∗j [j]

(
Itj
)}
, (87)

which is the closed-loop analogue of W[j]. Due to (55)
and (71)-(72), note that U∗[m](t) includes future values
of U∗i up to time t + dvm − dvi , which must be pre-
determined at time t. Using (87), the operators Φtj from
Lemma 8 can be applied to successively predict the
closed-loop states (ū, ṽ)[j] for j = 0, . . . ,m− 1 via

(ū[j + 1]((0, 1], t), ṽ[j + 1]([0, 1), t))

= Φtj
(
(ū[j]((0, 1], t), ṽ[j]([0, 1), t)),U∗j (t)

) (88)

with (ū, ṽ) [0] as in (30). By Lemma 11, the control inputs
Uj(t), j = 1, . . . ,m that ensure (73) are

Uj(t) = Ψt
j(ū[j], ṽ[j], U∗j [j](t)). (89)

In summary, the control algorithm is as follows.

Algorithm 1 State-feedback control algorithm

Input: time t, state (u, v) (·, t),
virtual control inputs U∗i ([t, t + (dvm − dvi )]), i =
1 . . .m

Output: control input U(t)

1: set (ū, ṽ) [0](·, t) = (u, v) (·, t)
2: for j = 0, . . . ,m− 1 do
3: set U∗[j](t) as in (87)
4: predict (ū, ṽ) [j + 1](·, t) using (88)
5: compute Uj+1(t) using (89)
6: end for

We are now in position to formulate the main theorem
on state-feedback control.

Theorem 14 The system consisting of (1)-(4) in closed
loop withU(t) constructed as in Algorithm 1 withU∗(t) =

0 for all t ≥ t0 satisfies u(x, t) = v(x, t) = 0 for all

t ≥ t0 + dvm + dun, where dun =
∫ 1

0
1

λun(ξ)dξ. Moreover, the

closed-loop solution remains bounded for t < t0+dvm+dun
if U∗(t) is bounded for t < t0.

PROOF. Due to Lemmas 8 and 11, system (1)-(6) in
closed loop with U(t) as constructed in Algorithm 1 sat-
isfies

u(x, t) = ū∗(x, t− φvm(x)), v(x, t) = v̄∗(x, t− φvm(x)),
(90)

for all t ≥ φvm(x). Using

u(x, t0 + dvm + dun)

= u

(
x, t0 +

∫ 1

0

1

λun(ξ)
dξ +

∫ x

0

1

λvm(ξ)
dξ

)
= ū∗

(
x, t0 +

∫ 1

x

1

λun(ξ)
dξ +

∫ x

0

1

λ̄um,n(ξ)
dξ

) (91)

and analogously for v, applying Theorem 12 proves con-
vergence to the origin, i.e., that (91) is equal to zero,
as well as boundedness for x ∈ [0, 1], t ≥ φvm(x). It
only remains to show boundedness for t < φvm(x). For
t < φv1(x), boundedness follows directly from Theorem
25. Then, using boundedness of U∗i [j] for 1 ≤ j, one
can apply Theorem 25 recursively for j = 1, . . . ,m − 1
to prove boundedness of (ū, v̄)[j](x, t) for x ∈ [0, 1],

t <
∫ 1

x
1

λ̄j,j+1(x)
. By (44) and (26)-(27), this is equivalent

to boundedness of u(x, t) and v(x, t) in each of the do-
mains x ∈ [0, 1], t ∈ [φvj (x), φvj+1(x)], j = 1, . . . ,m − 1,
which finishes the proof. �

Remark 15 (Design of U∗(t)) Choosing U∗(t) = 0
for all t ≥ 0 is sufficient (but not necessary) to ensure
that the system is driven to the origin in minimum
time. However, minimum-time control can create dis-
continuities in the state which are undesirable in some
applications.

For instance, to obtain classical C1-solutions to (1)-(6),
the coefficients Λu, Λv, Fu, F v and f , the initial con-
ditions (u0, v0) and the control input U must be C1-
functions of their arguments, and the initial conditions
and control inputs must also satisfy the C1-compatibility
conditions at x = 0 and x = 1. See for instance [5, chap-
ter 3] for a more detailed discussion of regularity of the
solution. The corresponding compatibility conditions for
U∗ are

U∗i (0) = lim
s→dv

i

vi(0, s), (U∗i )′(0) = lim
s→dv

i

v′i(0, s). (92)

Note that the boundary values vi(t), t < dvi , are pre-
dictable independent of U ; i.e., there exist prediction op-
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erators Πt
j such that

vj(0, [0, d
v
j )) = Πt

j(v0, u0, Ū∗j ) (93)

where

Ū∗j =
{
U∗1 ([0, dvj − dv1]), . . . , U∗j−1([0, dvj − dvj−1])

}
.

(94)
Existence of Πt

i can be proven by use of Lemma 26.

One design U∗i ∈ C1 that reaches zero within some finite
time T > 0, where T can be chosen to tune the conver-
gence time and gradient of the solution, is

U∗i (t) =

{
c0 + c1t+ c2t

2 + c3t
3 if t < T

0 if t ≥ T . (95)

The coefficients c0 to c3 are determined by condition (92)
and the target condition

U∗i (T ) = 0, (U∗i )′(T ) = 0, (96)

which can be solved recursively for i = 1 . . .m by use of
(93).

Remark 16 (Tracking) Instead of stabilizing the sys-
tem at the origin, a tracking objective at x = 0 of the
form

vi(0, t) = hi(t) for t ≥ dvi (97)

can be satisfied simply by choosing

U∗i (t) = hi(t+ dvi ). (98)

For tracking, assumptions (19)-(21) can be dropped as
they are only required to ensure that the origin is an
equilibrium. Thus, the terms Fu, F v and f are allowed to
include time-varying disturbances for which short-term
predictions exist. More precisely, it is sufficient if at each
time t ≥ 0, the functions Fu, F v and f are known over
the future interval [t, t+ dvm].

Remark 17 (Sampled-time control algorithm)
Instead of continuously evaluating the control law as de-
scribed in Algorithm 1, which is practically intractable
as the PDEs need to be solved in zero time when eval-
uating Φtj, a sampled-time version can be implemented
that at time t computes the control input for the inter-
val [t, t + δ]. For this purpose, the state (ū, ṽ)[m](·, t),
which in closed loop is equal to the state of the tar-
get system (ū∗, ṽ∗)(·, t), can be predicted based on state
(u, v)(·, t) by successively evaluating the operators Φtj
for j = 0 . . .m, as done in Algorithm 1. Then, the tra-
jectory of (ū∗, v̄∗)(·, s) over the interval s ∈ [t, t + δ]
(as opposed to just the time point t) can be obtained by
solving (74)-(78) over the interval [t, t + δ]. The inputs

U that render the system into the target system are the
boundary values of the target system at x = 1; i.e.,

Ui(s) = v̄∗i (s), s ∈ [t, t+ δ], i = 1, . . . ,m. (99)

In algorithmic form this reads as follows.

Algorithm 2 Sampled state-feedback control algorithm

Input: time t, state (u, v) (·, t),
virtual control inputs U∗i ([t, t+ (dvm − dvi ) + δ]), i =
1 . . .m

Output: control input U([t, t+ δ])

1: set (ū, ṽ) [0](·, t) = (u, v) (·, t)
2: for j = 0, . . . ,m− 1 do
3: set U∗[j](t) as in (87)
4: predict (ū, ṽ) [j + 1](·, t) using (88)
5: end for
6: set (ū∗, ṽ∗) (·, t) = (ū, ṽ) [m](·, t)
7: solve (74)-(78) over time-interval [t, t+ δ]
8: set Ui(s) = v̄ti(s) for s ∈ [t, t+ δ], i = 1, . . . ,m

However, this algorithm uses predictions of the closed-
loop trajectories over the longer horizon

{(x, s) : x ∈ [0, 1], s ∈ [t, t+ φvm(x) + δ]} (100)

compared to

{(x, s) : x ∈ [0, 1], s ∈ [t, t+ φvm(x)]} (101)

for Algorithm 1. In theory, if exact predictions are as-
sumed, the control inputs computed via the two algo-
rithms are equivalent. In practice, however, uncertainty
will lead to prediction errors that can affect closed loop
stability. It is to be expected that longer prediction hori-
zons due to sampling lead to more sensitivity to uncer-
tainty. Yet, if the sampling period δ is small compared
to the prediction horizon dvm of the continuous-time con-
trol law, it might be expected that the error introduced
by sampling is small. Robustness analysis of closed-loop
stability and performance using both the continuous (Al-
gorithm 1) and sampled (Algorithm 2) feedback laws is
the subject of further research.

Remark 18 If system (1)-(6) is linear, one would expect
that the control input is a linear function of the state and,
due to Riesz representation theorem on L2([0, 1],Rn+m),
could be written in the form

U(t) =

∫ 1

0

Ku(x)u(x, t) +Kv(x)v(x, t)dx (102)

with gains Ku ∈ L2([0, 1],Rn) and Kv ∈ L2([0, 1],Rm).
This was done in [23, Section 3.4] for n = m = 1, in
which case the control law turned out to be equivalent
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to the backstepping controller. Although we have so far
been unable to derive an expression of form (102) for
general n and m, it would be an interesting question to
research if it is possible, and to investigate the relation
to the different backstepping controllers. In particular,
there might be links between degrees of freedom in U∗

and degrees of freedom in the target system and kernel
boundary conditions of the backstepping method.

4 Observer design and output feedback

The observer design is based on the observation that
the measurements Yi(t) = ui(1, t) propagate through
the domain along the characteristic lines of the states
ui, similar to how the control inputs Ui propagate along
the characteristic lines of states vi. See also Figure 2.
In particular, due to the finite propagation speeds, the
state at (x, t) for x < 1 has no effect on the measure-
ments at time t. Therefore, the idea behind the observer
design is to first estimate the state on the characteris-
tic lines on which the measurements associated with the
slowest speed evolved, and then use a prediction opera-
tor to construct the estimate of the current state from
the estimated state on that characteristic line.

4.1 Dynamics on characteristic lines of measurement

Fig. 2. Characteristic lines of a system with n = 2 and
m = 1 along which the measurements Y1(t) (solid) and Y2(t)
(dashed) evolve, as well as the characteristic lines of the v.

For i = 1, . . . , n define

φui (x) =

∫ 1

x

1

λu(ξ)i
dξ, dui = φui (0). (103)

Define the states on the characteristic line along which
the j-th measurement evolved as

ûi[j](x, t) = ui(x, t− φuj (x)), (104)

v̂i[j](x, t) = vi(x, t− φuj (x)), (105)

with

û[j](x, t) =
(
û1[j](x, t) . . . ûn[j](x, t)

)
, (106)

v̂[j](x, t) =
(
v̂1[j](x, t) . . . v̂m[j](x, t)

)
, (107)

and the state with j-th element removed

ǔ[j] =
(
û1[j] . . . ûj−1[j] ûj+1[j] ûn[j]

)T
. (108)

Lemma 19 For j = 1, . . . , n, the states (û[j], v̂[j]) sat-
isfy

ǔt[j](x, t) = −Λ̌uj ǔx[j](x, t) + F̌u[j]((û, v̂)[j](x, t), x, t),

(109)

ûj,x[j](x, t) = F̂uj [j]((û, v̂)[j](x, t), x, t), (110)

v̂t[j](x, t) = Λ̂vj v̂x[j](x, t) + F̂ v[j]((û, v̂)[j](x, t), x, t),

(111)

with boundary conditions

ûi[j](0, t) = fi(v̂[j](0, t), t− duj ), i = j + 1, . . . , n,

(112)

ûi[j](1, t) = Yi(t), i = 1, . . . , j, (113)

v̂[j](1, t) = U(t), (114)

and “initial” conditions

ǔ[j](x, φuj (x)) = u0(x), (115)

v̂[j](x, φuj (x)) = v0(x), (116)

where

Λ̌uj (x) = diag
(
λ̂uj,1 . . . λ̂

u
j,j−1 λ̂

u
j,j+1 . . . λ̂

u
j,n

)
, (117)

Λ̂vj (x) = diag
(
λ̂vj,1(x) . . . λ̂vj,n(x)

)
, (118)

with

λ̂uj,i(x) =
λui λ

u
j

λuj − λui
, i 6= j, (119)

λ̂vj,i(x) =
λvi λ

u
j

λvi + λuj
, (120)

and

F̌u[j] =
(
F̂u1 [j] . . . F̂uj−1[j] F̂uj+1[j] . . . F̂un [j]

)T
,

(121)

F̂ v[j] =
(
F̂ v1 [j] . . . F̂ vm[j]

)T
, (122)

with

F̂ui [j] ((y, z), x, t) =
λuj (x)

λu
j

(x)−λu
i

(x) ,

×Fui ((y, z), x, t− φuj (x))
, i 6= j, (123)
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F̂uj [j] ((y, z), x, t) = 1
λu
j

(x)

×Fuj ((y, z), x, t− φuj (x))
, (124)

F̂ vi [j] ((y, z), x, t) =
λuj (x)

λu
j

(x)+λv
i
(x)

×F vi ((y, z), x, t− φuj (x))
. (125)

PROOF. The proof is very similar to the proof of
Lemma 6. �

Note that because of (14),

λ̂uj,j−1 < . . . < λ̂uj,1 < 0 < λ̂uj,n < . . . < λ̂uj,j+1. (126)

Therefore, the boundary conditions for ûi[j] are specified
at the inflow boundary at x = 0 for i > j and at x = 1
for i < j, while ûj [j] is an ODE in x and therefore has no
direction of propagation. The states (û, v̂) [j] are related
to the current state (u, v) via a prediction operator that
is independent of the input U(t).

Lemma 20 For j = 1, . . . , n there exists a Lipschitz-
continuous operator

Σtj : Xn+m
[0,1) → X

n+m
[0,1)

(û, v̂)[j](·, t) 7→ (u, v) (·, t).
(127)

Evaluating Σtj is independent of U(t).

PROOF. By Lemma 28 (after shifting time), (1)-(4)
with initial condition

(u, v)(x, t− φuj (x)) = (û, v̂)[j](x, t) (128)

has a unique solution in the domain{
(x, s) : x ∈ [0, 1), s ∈ [t− φuj (x), t+ φv1(x))

}
(129)

that is independent of U(t). This domain includes the
current state at ([0, 1), t), which is the output argument
of Σtj . Moreover, by Theorem 25, the solution in this do-
main depends Lipschitz-continuously on the input argu-
ments of Σtj . �

4.2 Observer

In order to estimate the states (û[j], v̂[j]) for some j by
use of an observer, it is desirable to have the boundary
values of all states at the inflow boundary available to
the observer, and to have that the inflow boundary (ei-
ther x = 0 or x = 1) is equal for all states, i.e. that
all states propagate in the same direction. In (113) the

boundary value is the measurement, i.e. known, whereas
the boundary value (112) depends on v̂(0, t), which is
not measured and needs to be estimated. Moreover, the
direction of propagation of v̂[j] is always negative (due

to positivity of λ̂vj,i for all i, j), and the boundary value
v̂(1, t), the control input, is known.

Therefore, j = n is the only choice that ensures that the
inflow boundary of all states is equal and that all inflow
boundary values are known. We design the observer for
the (û[n], v̂[n])-state as a copy of (109)-(111) comple-
mented by the boundary values and an initial estimate.

Theorem 21 Consider the observer

ǔot (x, t) = −Λ̌unǔ
o
x(x, t) + F̌u[n]((ûo, v̂o)(x, t), x, t),

(130)

ûon,x(x, t) = F̂un [n]((ûo, v̂o)(x, t), x, t), (131)

v̂ot (x, t) = Λ̂vnv̂
o
x(x, t) + F̂ v[n]((ûo, v̂o)(x, t), x, t),

(132)

ûo(1, t) = Y (t), (133)

v̂o(1, t) = U(t), (134)

ǔo(x, 0) = ǔo0(x), (135)

v̂o(x, 0) = v̂o0(x). (136)

For any initial guess ǔo0, v̂o0, the state-estimates satisfy

ûo(x, t) = û[n](x, t), v̂o(x, t) = v̂[n](x, t), (137)

for all x ∈ [0, 1], t ≥
∫ 1

x
1

λ̂vn,m(ξ)
dξ.

PROOF. The estimation error

êu(x, t) = ûo(x, t)− û[n](x, t), (138)

êv(x, t) = v̂o(x, t)− v̂[n](x, t), (139)

satisfies (subtracting (109)-(114) from (130)-(134))

ěut (x, t) = −Λ̌uně
u
x(x, t) + Eu(û[n], v̂[n], ûo, v̂o, x, t),

(140)

êun,x(x, t) = Eun(û[n], v̂[n], ûo, v̂o, x, t), (141)

êvt (x, t) = Λ̂vnê
v
x(x, t) + Ev(û[n], v̂[n], ûo, v̂o, x, t),

(142)

eu(1, t) = 0, (143)

ev(1, t) = 0, (144)

with

Eu(û[n], v̂[n],ûo, v̂o, x, t) = F̂u[n]((ûo, v̂o)(x, t), x, t)

− F̂u[n]((û[n], v̂[n])(x, t), x, t), (145)

Ev(û[n], v̂[n],ûo, v̂o, x, t) = F̂u[n]((ûo, v̂o)(x, t), x, t)

− F̂u[n]((û[n], v̂[n])(x, t), x, t). (146)
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Note that

êu(x, t) = êv(x, t) = 0, (147)

i.e. ûo(x, t) = û[n](x, t) and v̂o(x, t) = v̂[n](x, t), implies

Eu(û[n], v̂[n], ûo, v̂o, x, t) =0, (148)

Ev(û[n], v̂[n], ûo, v̂o, x, t) =0. (149)

After a change of coordinates from x to 1−x and order-
ing the states according to speeds, the error dynamics
(140)-(144) has the form (A.1)-(A.7) and satisfies all as-

sumptions of Lemma 27 with slowest speed λ̂vn,m. There-
fore, applying Lemma 27 completes the proof. �

Combining Lemma 20 and Theorem 21, we obtain the
main result on state estimation.

Theorem 22 The observer consisting of (130)-(134)
with

(uest, vest) (·, t) = Σtn ((ûo, v̂o)(·, t)) (150)

achieves exact state-estimation within dvm + dun, i.e.

(uest, vest) (x, t) = (u, v) (x, t) (151)

for all x ∈ [0, 1], t ≥ dvm + dun.

Note that evaluating Σtn does not depend on U(t). U(t)
is only needed to update the observer (130)-(134) as time
proceeds.

Remark 23 (Anti-collocated observer) It is straight-
forward to design an observer that uses measurements
that are anti-collocated with the control input, i.e.

Y1(t) = u(0, t), Y2(t) = v(0, t), (152)

by making a change of coordinates from x to 1−x, switch-
ing the roles of u and v, and repeating the previous steps.
Similar to (109)-(114), the states

ú = u

(
x, t−

∫ x

0

1

λvm(ξ)
dξ

)
, (153)

v́ = v

(
x, t−

∫ x

0

1

λvm(ξ)
dξ

)
, (154)

all evolve in positive x-direction, and the inflow boundary
at x = 0 as given in (152) is available to the observer.
Therefore, (ú, v́) can be estimated in finite time, and the
current state can be determined by use of a prediction
operator similar to Σtj.

4.3 Output feedback control

The output-feedback control problem is solved by com-
bining the observer from Section 4.2 with the state-
feedback controller from Section 3.3.

Theorem 24 Consider the output feedback controller
consisting of the observer (130)-(134) with the state-
estimate as in (150) and U(t) as constructed in Algo-
rithm 1 with U∗[m](t) = 0 for all t ≥ t0. For any ini-
tial guess (ǔo0, v̂

o
0) and all initial conditions (u0, v0), the

closed-loop solution satisfies u(x, t) = v(x, t) = 0 for all
t ≥ max{t0+dvm+dun, 2(dvm+dun)}, and remains bounded
for t < max{t0+dvm+dun, 2(dvm+dun)} ifU∗(t) is bounded.

PROOF. By Theorem 22, the estimation errors be-
come zero after t ≥ dvm + dun. Once both the estimation
errors andU∗[m] are zero, whichever occurs last, by The-
orem 14 it takes another dvm + dun units of time until the
states reach the origin.

To prove boundedness of the solution for t < max{t0 +
dvm + dun, 2(dvm + dun)}, one can apply the methodology
in the proof of Theorem 25. The overall closed-loop dy-
namics consisting of the observer dynamics (ûo, v̂o), the
state (u, v) as well as the dynamics in the operators
Σtn, Φti and Ψt

i, i = 1, . . . , n, have a slightly more com-
plex structure than (A.1)-(A.7) but satisfy the same ba-
sic assumptions, namely boundedness of external inputs
(only the virtual inputs U∗ in this case) and Lipschitz-
continuity of state-dependent functions. Therefore, one
can transform the overall closed-loop dynamics into in-
tegral equations and apply a successive approximation
method to prove existence of the solution as well as a
bound that grows at most exponentially in time with a
rate proportional to the Lipschitz constants. �

5 Numerical example and implementation

We demonstrate the controller performance in a numer-
ical example with n = m = 2 with

λu1 = 2, λu2 = 1.5, λv1 = 1.5,

λv2 =

{
1 x ≥ 0.5

0.8 x < 0.5
, f =

(
−5 min{|v1|, v2

1}
−v2

)
,

Fu =

(
sin(u1 + v2)

sin(u1) cos(u2)

)
, F v =

(
sin(v1 − u1)

F v2 = (v2 − u2)

)
.

(155)
The resulting delays are dun = 2

3 and dvm = 1.125. The
initial conditions of all states are set to one and the
initial condition of the observer is set to zero. In open
loop (U ≡ 0), the states u2 and v2 diverge.
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Fig. 3. Closed-loop trajectories (top row) and estimation errors eu = uest − u and ev = vest − v with uest, vest as in (150)
(bottom row). The red lines indicate the measurement, control input and boundary estimation error, respectively.

The closed-loop trajectories using the output-feedback
controller (Algorithm 1 combined with the observer
(130)-(134) with (150)) with U∗(t) = 0 for all t ≥ 0,
and the estimation errors are depicted in Figure 3. The
evolution of the state norm is also shown in Figure
4. The input propagation fronts are clearly visible. In
accordance with theory, states and estimation errors
become zero in finite time, up to numerical errors. In
Figure 4 one can also see the faster convergence time in
the state-feedback case.

For the simulations, all PDEs (i.e. the system (1)-(6) and
those in the prediction operators Φtj , j = 0, . . . ,m − 1,

and Σtn) are discretized in space using first-order fi-
nite differences, leading to a high-order ODE (“method
of lines”) that is solved by use of Matlab’s ode45. In
the implementation of Φtj , Remark 10 is exploited to
avoid having to solve the PDEs over non-rectangular do-
mains. The operator Σtn is implemented similarly over a
rectangular domain. In the present implementation, the
continuous-time algorithm is used, i.e. the control law
is evaluated every time ode45 evaluates the right-hand
side of the discretized PDEs. For a spatial grid with 50
elements, which has been used to produce the figures,
the average computation time to evaluate the output
feedback controller is about 0.15 s on a standard laptop,
although it should be emphasized that the current code
has not been optimized for performance. In practical ap-
plications the sampled-time Algorithm 2 would be more
appropriate, and there seems to be a trade-off between
sampling time, which likely affects prediction errors due
to model uncertainty, and the number of discretization
elements, which affects both numerical prediction errors
and the allowable sampling time (via the computation
time). All this is the subject of further research. Also
note that for most practical systems, a state transforma-
tion is required to first bring the model to form (1)-(6)
before the control law can be implemented. Then, the

measurement Y (t) is obtained from the physical mea-
surements and the state transformation, the control law
is implemented in the characteristic form (1)-(6) as out-
lined in this paper, and the control input U(t) is mapped
back into the physical actuation signal by inverting the
transformation. See also Remark 5 and [25].

Fig. 4. Comparison of the state norm trajectory using the
nonlinear controller presented in this paper to the backstep-
ping controller from [16] for both state and output feedback.

In Figure (4), we compare the performance of our non-
linear controller to the linear backstepping controller
from [16]. As the backstepping controller is not well-
defined for discontinuous transport speeds and to allow a
fairer comparison, we modified λv2 to the constant value
λv2(x) = 8

9 (for both our nonlinear and the backstepping
controller). The backstepping controller is computed by
linearizing (155) (with the modified λv2) around the ori-
gin. As opposed to the nonlinear controller, the backstep-
ping controller fails to steer the state to the origin. By use
of state feedback backstepping, the state diverges only
slightly slower than the uncontrolled system (U = 0).
For this initial condition, the output feedback controller
actually performs better than the state-feedback con-
troller and the closed-loop trajectory converges to a non-
zero value. By simulating a large sample of initial condi-
tions, it appears that the output feedback backstepping
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controller can asymptotically stabilise the origin of the
nonlinear system if ‖(u0, v0)‖∞ . 0.07 (mind numerical
inaccuracies and that only a finite number of initial con-
ditions has been tested). In any case, the backstepping
controller cannot reliably stabilise the nonlinear system
if the initial conditions are far from the origin, whereas
the nonlinear controller presented in this paper has no
restriction on the initial condition.

6 Conclusions

We solved the problem of stabilizing systems governed
by general semilinear hyperbolic PDEs in one dimension
with actuation and sensing restricted to one boundary
of the domain. The design exploits the dynamics and
predictability of the states on the characteristic lines of
the system. The result is applicable to relevant practical
systems such as multiphase flow or multi-lane traffic.

In the presented design, the virtual inputs U∗ are a de-
gree of freedom. Convergence to the origin is guaranteed
if the virtual inputs become zero, but the transients be-
fore reaching the origin can be tuned via U∗. Therefore,
the design of U∗ should be investigated further.

Future work will also investigate robustness of the pro-
posed control scheme with respect to model uncertainty,
which is of high interest for practical application. One
line of current research is trying to prove robustness by
exploiting continuous dependence of the solution on the
model parameters [5], so that it might be possible to
show that the prediction error and the error between de-
sired and actual trajectories is small if appropriate as-
sumptions are made. While simulations suggest a certain
degree of robustness at least in some cases, rigorous ro-
bustness certificates would be highly desirable. Further,
the effect of the prediction horizon in the sampled-time
control law (Algorithm 2) on robustness compared to
the continuous-time implementation is of interest.

Finally, the method should be extended to different
classes of systems such as systems with bilateral actu-
ation and sensing, which should improve performance
and robustness compared to the unilateral case, un-
deractuated systems with less inputs than states, net-
worked systems, and quasilinear systems (see [27] for a
first result on quasilinear systems).
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Analyse non linéaire, volume 10, pages 109–129, 1993.

A Transformation to integral equations and
technical proofs

In the following we establish several technical results.
Due to page restrictions, detailed proofs cannot be
shown here but references to similar cases in the litera-
ture are given.

The following class of systems is generic enough to con-
tain all systems occurring in this paper except the full
closed-loop system in Theorem 24.

αt(x, t) = −Λα(x)αx(x, t) +Gα(η(x, t), x, t), (A.1)

βt(x, t) = −Λβ(x)βx(x, t) +Gβ(η(x, t), x, t), (A.2)

γx(x, t) = Gγ(η(x, t), x, t), (A.3)

δt(x, t) = Λδ(x)δx(x, t) +Gδ(η(x, t), x, t), (A.4)

where η =
(
αT βT γT δT

)T
, with boundary conditions

α(0, t) = g(η0(t), t), β(0, t) = V β(t), (A.5)

γ(0, t) = V γ(t), δ(1, t) = V δ(t), (A.6)

where η0(t) =
(
β(0, t) γ(0, t) δ(0, t)

)T
and V β , V γ and

V δ are inputs, and initial conditions

α(x, 0) = α0(x), β(x, 0) = β0(x), δ(x, 0) = γ0(x).
(A.7)

The states are vector-valued with

χ(x, t) =
(
χ1(x, t) . . . χnχ(x, t)

)T
(A.8)

for χ = α, β, γ, δ with nχ ≥ 0 (this includes the case
where one or more of the states α, β, γ, δ is not present).
The system coefficients are assumed to satisfy

‖Gχ(ζ1, x, t)−Gχ(ζ2, x, t)‖ ≤ Lχ‖ζ1 − ζ2‖, (A.9)

‖g(ζ3, t)− g(ζ4, t)‖ ≤ Lg‖ζ3 − ζ4‖, (A.10)

for all ζ1, ζ2 ∈ Rnα+nβ+nγ+nδ , ζ3, ζ4 ∈ Rnβ+nγ+nδ , x ∈
[0, 1], t ≥ 0 and χ = α, β, γ, δ,

λχ1 (x) > λχ2 (x) > . . . > λχnχ(x) > 0 (A.11)

for all x and χ = α, β, δ, and

Gχ(0, x, t) = 0, g(0, t) = 0, (A.12)

for all x ∈ [0, 1], t ≥ 0 and χ = α, β, γ, δ.

A.1 Transformation to integral equations

Define the characteristic lines as

φχi (x) =

∫ x

0

1

λχi (ξ)
dξ, φδi (x) =

∫ 1

x

1

λδi (ξ)
dξ, (A.13)

for χ = α, β,

ξχi (x, t, s) = (φχi )−1 (φχi (x) + (s− t)) (A.14)

for χ = α, β, δ, and

s0
χ,i(x, t) = max {0, t− φχi (x)} (A.15)

for χ = α, β, δ. Note that all φχi are strictly increasing
and, hence, invertible. Therefore, for all (x, t), ξχi (x, t, s)
is well-defined for all s ∈ [s0

χ,i(x, t), t]. Also note that for

all t ≥ φχi (x),

ξχi (x, t, s0
χ,i(x, t)) = 0, χ = α, β, (A.16)

ξχi (x, t, s0
χ,i(x, t)) = 1, χ = δ. (A.17)

The PDEs (A.1)-(A.4) can be converted into integral
equations by integrating them along the characteristic
lines defined by (A.13)-(A.15). The integration paths for
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a point (x, t) in the special case t = φδ1(x) is sketched in
Figure A.1. This gives

αi(x, t) = Hα
i (x, t) + Jαi [η](x, t) + Iαi [η](x, t), (A.18)

βi(x, t) = Hβ
i (x, t) + Iβi [η](x, t), (A.19)

γi(x, t) = Hγ
i (x, t) + Iγi [η](x, t), (A.20)

δi(x, t) = Hδ
i (x, t) + Iδi [η](x, t), (A.21)

where the initial conditions (A.7) and state-independent
boundary conditions in (A.5)-(A.6) are

Hα
i (x, t) =

{
α0,i (ξαi (x, t, 0)) t < φαi (x)

0 t ≥ φαi (x)
, (A.22)

Hβ
i (x, t) =

β0,i

(
ξβi (x, t, 0)

)
t < φβi (x)

V βi

(
s0
β,i(x, t)

)
t ≥ φβi (x)

, (A.23)

Hγ
i (x, t) = V γi (t), (A.24)

Hδ
i (x, t) =

{
δ0,i
(
ξδi (x, t, 0)

)
t < φδi (x)

V δi

(
s0
β,i(x, t)

)
t ≥ φδi (x)

, (A.25)

the state-dependent boundary condition in (A.5) is

Jαi [η](x, t) =

{
0 t < φαi (x)

g
(
η0(s0

α,i(x, t)), s
0
α,i(x, t)

)
t ≥ φαi (x)

,

(A.26)
and the coupling terms Gχ appear in

Iχi [η](x, t) =

t∫
s0
χ,i

Gχi (η(ξχi (x, t, s), s), ξχi (x, t, s), s) ds,

χ = α, β, δ, (A.27)

Iγi [η](x, t) =

∫ x

0

Gγi (η(ξ, t), ξ, t) dξ. (A.28)

Finally, let Hχ, Jχ and Iχ be the vector-valued function
with components as defined in (A.22)-(A.28).

A.2 Existence and boundedness of solutions

Theorem 25 For bounded initial conditions and inputs
and any T > 0, and assuming (A.9)-(A.12), the inte-
gral equations (A.18)-(A.21) have a unique solution on
[0, 1]× [0, T ] that satisfies the a-priory bound

sup
x∈[0,1]

‖η(x, t)‖ ≤ c1(t)c2e
c3t (A.29)

for all t ≤ T , where

c1(t) =
∑

χ=α,β,δ

‖χ0‖∞ +
∑

χ=β,γ,δ

sup
s∈[0,t]

‖V χ(s)‖∞,

(A.30)

and the constants c2 and c3 depend on Lχ for χ =
α, β, γ, δ, g. Moreover, the solution depends Lipschitz-
continuously on χ0, χ = α, β, δ and V χ, χ = β, γ, δ.

PROOF. The Lemma can be proven by use of a succes-
sive approximation argument similar to [23, Proposition
26]. Alternatively it can be proven by use of a contrac-
tion argument similar to [5, Theorem 3.1]. �

A.3 Proof of Lemma 8

The following lemma is essential in the proof of Lemma 8

Lemma 26 Consider the solution of (A.1)-(A.7). The
states α(x, t) in the domain

Aα =
{

(x, t) : x ∈ [0, 1], t ≤ φδ1(x)
}
\ {(0, φδ1(0))},

(A.31)
β(x, t) and γ(x, t) in the domain

Aβγ =
{

(x, t) : x ∈ [0, 1], t ≤ φδ1(x)
}
, (A.32)

δi(x, t) for i = 2, . . . , nδ in the domain

Aδ =
{

(x, t) : x ∈ [0, 1), t ≤ φδ1(x)
}
, (A.33)

and δ1(x, t) in the domain

A =
{

(x, t) : x ∈ [0, 1], t < φδ1(x)
}
, (A.34)

are independent of the input V δ(t) for t ≥ 0.

Fig. A.1. Integration paths of integral equations
(A.18)-(A.21) at a point (x, t) with t = φδ1(x). The area
shaded in green indicates the domain A (see also Equations
(A.31)-(A.34)).

PROOF. The integration paths for the integral equa-
tions for a point (x, t) with t = φδ1(x) is shown in Figure
A.1. Briefly speaking, on the respective sets all terms in
the integral equations (A.18)-(A.21) are independent of
the input V δ. See also [23, Appendix A] for a detailed
proof for the case m = n = 1, and [5, Chapter 3] for a
more general discussion of determinate sets. �
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Note that at the solution at points α(0, φδ1(0)) depends
on δ1, i.e. on V δ, via the boundary condition (A.5), while
the boundary value δ(1, 0) is V δ by definition. Therefore,
these points are exempted from the sets Aα and Aδ,
respectively.

A.4 Proof of Theorems 12 and 22

The following lemma about convergence to the origin is
used in Theorems 12 and 22.

Lemma 27 Consider (A.1)-(A.7) for nδ = 0 and as-
sume λαnα(x) < λβnβ (x) for all. If V β(t) = V γ(t) = 0 for

all t ≥ 0, then η(x, t) = 0 for all x ∈ [0, 1], t ≥ φαnα(x).

PROOF. One can show that under the given assump-
tions, t ≥ φαnα(x) implies

s0
χ,i(x, t) ≥ 0 ∀χ = α, β, i = 1, . . . , nχ, (A.35)

φαnα(ξχi (x, t, s)) ≤ s ∀s ∈ [s0
χ,i(x, t), t], χ = α, β,

i = 1, . . . , nχ, (A.36)

φαnα(ξ) ≤ t ∀ξ ∈ [0, x]. (A.37)

Because of (A.36)-(A.37), the domain B = {(x, t) : x ∈
[0, 1], t ≥ φαnα(x)} is a determinate set, i.e. for (x, t) ∈
B all state-dependent terms in the integral equations
(A.18)-(A.21) depend on the state evaluated at points
in B only. Because of (A.35) and (A.5), Hα(x, t) =
Hβ(x, t) = Hγ(x, t) = 0 for t ≥ φαnα(x). Moreover, there

is no δ and Hδ. Therefore, one can see that for points
t ≥ φαnα(x) the zero-solution solves the integral equa-
tions (A.18)-(A.21). Uniqueness of the solution com-
pletes the proof. �

A.5 Proof of Lemma 20

The following lemma, which is tailored to prove Lemma
20, can be proven using similar ideas as in Lemma 26.
Define

φ̂αi (x) = −
∫ 1

x

1

λαi (ξ)
dξ. (A.38)

Lemma 28 For nβ = nγ = 0, j = 1, . . . , n and given

(α̂0, δ̂0), system (A.1)-(A.6) with the modified initial con-
ditions

α(x, φ̂α,j(x) = α̂0(x), δ(x, φ̂α,j(x) = δ̂0(x), (A.39)

has a unique solution in the determinate set

C =
{

(x, t) : x ∈ [0, 1), t ∈ [φ̂α,j(x), φδ1(x))
}

(A.40)

that is independent of V δ(t) for t ≥ 0.
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