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a b s t r a c t

We consider the hovering control problem for a class of multi-rotor aerial platforms with generically
oriented propellers, characterized by intrinsically coupled translational and rotational dynamics. In
doing this, we first discuss some assumptions guaranteeing the rejection of generic disturbance torques
while compensating for the gravity force. These assumptions are translated into a geometric condition
usually satisfied by both standard models and more general configurations. Then, we propose a control
strategy based on the identification of a zero-moment direction for the exerted force and a dynamic
state feedback linearization based on this preferential direction, which locally asymptotically stabilizes
the platform to a static hovering condition. Stability properties of the control law are rigorously proved
through Lyapunov-based methods and reduction theorems for the stability of nested sets. Asymptotic
zeroing of the error dynamics and convergence to the static hovering condition are then confirmed by
simulation results on a star-shaped hexarotor model with tilted propellers.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, technological advances in miniaturized sen-
sors/actuators and optimized data processing have lead to exten-
sive use of small autonomous flying vehicles within the academic,
military, and commercial contexts (Fuhrmann & Horowitz, 2017;
Shakhatreh et al., 2019; Tang & Kumar, 2018). Thanks to their
high maneuverability and versatility, Unmanned Aerial Vehicles
(UAVs) are rapidly increasing in popularity, thus becoming a
mature technology in several application fields ranging from the
classical visual sensing tasks (e.g., surveillance and aerial pho-
tography (Kim, Mokdad, & Ben-Othman, 2018; Motlagh, Bagaa, &
Taleb, 2017)) to the recent environment exploration and physical
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interaction (e.g., search-and-rescue operations, grasping and ma-
nipulation (Hayat, Yanmaz, Brown, & Bettstetter, 2017; Loianno
et al., 2018; Ollero et al., 2018; Ruggiero, Lippiello, & Ollero, 2018;
Spurnỳ et al., 2019)).

In most of these frameworks, the vehicle is required to stably
hover at a fixed position and many control strategies exists for
UAV, solving this hovering stabilization goal. These controllers
are generally linear solutions based on proportional–derivative
schemes or linear quadratic regulators, see, e.g., Alkhoori, Safwan,
Zweiri, Sahinkaya, and Seneviratne (2017), Liu, Pan, and Chang
(2016) and Sandiwan, Cahyadi, and Herdjunanto (2017). Hovering
nonlinear controllers are instead not equally popular and mainly
exploit feedback linearization (Antonello, Michieletto, Antonello,
& Cenedese, 2018; Lotufo, Colangelo, Perez-Montenegro, Novara,
& Canuto, 2016), sliding mode and backstepping techniques (Abci,
Zheng, Efimov, & El Najjar, 2017; Chen, Jiang, Zhang, Jiang, & Tao,
2016) and/or geometric approaches (Franchi, Carli, Bicego, & Ryll,
2018; Invernizzi & Lovera, 2017).

Although less used, the effectiveness of nonlinear hovering
control schemes has been widely confirmed by experimental
tests. For example, the performance of controllers based on nested
saturations, backstepping and sliding modes has been experimen-
tally evaluated in Carrillo, Dzul, and Lozano (2012) to stabilize the
position of a quadrotor w.r.t. a visual landmark on the ground.
Similarly, in Choi and Ahn (2015) a quadrotor platform has been
used to validate the possibility of stably tracking a point through
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a nonlinear control strategy that exploits a backstepping-like
feedback linearization method. Likewise, the experimental results
reported in Goodarzi and Lee (2017) confirm the performance of
a geometric nonlinear controller during the autonomous tracking
of a Lissajous curve employing a small quadrotor.

An overview of feedback control laws for underactuated UAVs
is given in Hua, Hamel, Morin, and Samson (2013), where the au-
thors claim that nonlinear controllers can also be endowed with
provable global stability and convergence properties, under some
suitable assumptions. In this spirit, Lyapunov theory has been
exploited in Lee, Leoky, and McClamroch (2010) to prove the con-
vergence of the proposed (nonlinear) tracking controller assum-
ing bounded initial errors. The corresponding solution exploits a
geometric approach on the three-dimensional Special Euclidean
manifold and ensures almost global exponential convergence to
zero of the tracking error. A Lyapunov-based approach is used
also in Franchi et al. (2018) to verify the stability of a pose
controller for the class of laterally-bounded force aerial vehicles,
which includes both underactuated and fully actuated systems
with saturation.

In this context, the contribution of our work can be sum-
marized as follows. First, we account for a class of multi-rotor
aerial platforms having more complex dynamics than the stan-
dard quadrotors. More specifically, we address the case where
the propellers are in any number (possibly larger than four)
and their spinning axes are generically oriented (including the
non-parallel case). This entails the fact that the direction along
which the control force is exerted is not necessarily orthogonal
to the plane containing all the propellers centers1 and that the
control moment is not completely independent of the control
force, as in the typical frameworks, see, e.g., Lee et al. (2010). For
such generic platforms, we propose a nonlinear hovering control
law that rests upon the identification of a so-called zero-moment
direction. This concept, introduced in Michieletto, Ryll and Franchi
(2017) and Michieletto, Ryll, and Franchi (2018), refers to a virtual
direction along which the intensity of the control force can be
freely assigned while retaining a zero control moment. Our con-
troller exploits a dynamic feedback linearization scheme exploit-
ing this preferential direction, which can be generically oriented
(contrarily to the state-of-the-art multi-rotor controllers). Its im-
plementation asymptotically stabilizes the platform to a given
constant reference position, constraining its linear and angular
velocities to be zero (static hover condition (Michieletto et al.,
2018)). The proposed control strategy requires some algebraic
prerequisites on the control matrices that map the motors inputs
to the vehicle control force and moment. These are fulfilled by
the majority of quadrotor models and result to be non-restrictive
so that the designed controller can be applied to both standard
multi-rotor platforms, whose propellers’ spinning axes are all par-
allel, and more general ones. The local stability and convergence
properties of our control law are confirmed by the numerical
simulations and are rigorously proved through a Lyapunov-based
proof using reduction theorems for the stability of nested sets.
This work generalizes and extends (Michieletto, Cenedese, Za-
ccarian & Franchi, 2017). In particular, as compared to those
preliminary results, we state a more appealing version of our
basic assumptions, we extend our control goal including a re-
stricted orientation stabilization feature, we provide proofs that
were previously missing and we discuss new simulation tests
better illustrating the benefits of our solution.

The rest of the paper is organized as follows. Since we use
the unit quaternion representation of the attitude, in Section 2
some basic notions on the related mathematics are given. In

1 This is strictly valid for standard star-shaped or H-shaped configurations,
while for the Y-shaped case and other ones this idea can be easily generalized.

Section 3 the dynamic model of a generic multi-rotor UAV is
derived, exploiting the Newton–Euler approach. In Section 4 we
state our main assumption on the allowable propellers configu-
ration providing a set of necessary and sufficient conditions. Our
control law is described in Section 5 and its stability properties
are characterized in Section 6. The validity of our controller is il-
lustrated through numerical simulations in Section 7. In Section 8
some conclusions are drawn and future research directions are
discussed.

2. Preliminaries and notation

In this work, the unit quaternion formalism is adopted to
represent the UAV attitude, overcoming the singularities that
characterize Euler angles and simplifying the equations w.r.t.
the rotation matrices representation. To provide a mathematical
background for the model and the controller described hereafter,
the main properties of unit quaternions are recalled in this sec-
tion. The reader is referred to Diebel (2006) and Kuipers (2002)
for further details.

A unit quaternion q is a hyper-complex number belonging to
the unit hypersphere S3 embedded in R4. This is usually repre-
sented as a four dimensional vector having unitary norm made
up of a scalar part, η ∈ R, and a vector part, ϵϵϵ ∈ R3, so that q :=[
η ϵϵϵ⊤

]⊤ with ∥q∥
2

= η2 + ∥ϵϵϵ∥2
= 1. Each unit quaternion q

corresponds to a unique rotation matrix belonging to the Special
Orthogonal group SO(3) := {R ∈ R3×3

| R⊤R = I3, det(R) = 1}.
Formally, this is

R(q) = I3 + 2η[ϵϵϵ]× + 2[ϵϵϵ]2
×

= I3 + 2η[ϵϵϵ]× + 2(ϵϵϵϵϵϵ⊤
− ϵϵϵ⊤ϵϵϵI3), (1)

where the operator [·]× denotes the map that associates any non-
zero vector in R3 to the related skew-symmetric matrix in the
special orthogonal Lie algebra so(3). Thanks to (1), it can be veri-
fied that R(q)⊤R(q) = R(qI ) = I3 where qI :=

[
1 0 0 0

]⊤ is
the identity (unit) quaternion.

The claimed relationship about the attitude representations is
not bijective since each rotation matrix corresponds to two unit
quaternions. To explain this fact, it is convenient to consider the
following axis-angle representation for a unit quaternion, i.e.,

q = q(δ,n) :=
[
cos

(
δ
2

)
sin
(
δ
2

)
n⊤
]⊤
, (2)

where n ∈ S2 is the rotation axis in R3 and δ ∈ (−π,+π ] is
the rotation angle. Using this expression, it can be verified that
a rotation around −n of an angle −δ is described by the same
unit quaternion associated with a rotation by δ about n, namely
R(q) = R(−q), the so-called double coverage property.

In quaternion-based algebra, compositions are performed
through the quaternions product, denoted hereafter by the symbol
◦. Specifically, given q1, q2, it holds that R(q1)R(q2) = R(q3),
where

q3 := q1 ◦ q2 = A(q1)q2 = B(q2)q1, with (3)

A(q) :=

[
η −ϵϵϵ⊤

ϵϵϵ ηI3 + [ϵϵϵ]×

]
, B(q) :=

[
η −ϵϵϵ⊤

ϵϵϵ ηI3 − [ϵϵϵ]×

]
. (4)

According to (3), the inverse of a quaternion q may be chosen
as q−1

= [η − ϵϵϵ⊤
]
⊤

∈ S3. Given two 3D coordinate systems
Fx and Fy such that the unit quaternion q indicates the relative
rotation from Fx to Fy, for any vector wx ∈ R3 expressed in
Fx the corresponding vector wy ∈ R3 in Fy is computed as[
0 w⊤

y
]⊤

= q ◦
[
0 w⊤

x

]⊤
◦ q−1. The time derivative of a unit

quaternion q is given by

q̇ =
1
2
q ◦

[
0
ωωω

]
=

1
2
A(q)

[
0
ωωω

]
=

1
2

[
−ϵϵϵ⊤

ηI3 + [ϵϵϵ]×

]
ωωω, (5)
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Fig. 1. Sample Generically Tilted Multi-Rotor having n = 6 CCW (gray) and CW
(white) propellers, characterized by all parallel spinning axes.

denoting byωωω ∈ R3 the angular velocity of Fx w.r.t. Fy expressed
in Fx. Relation (5) should be replaced by

q̇ =
1
2

[
0
ωωω′

]
◦ q =

1
2
B(q)

[
0
ωωω′

]
=

1
2

[
−ϵϵϵ⊤

ηI3 − [ϵϵϵ]×

]
ωωω′, (6)

when the angular velocity is expressed in Fy, namelyωωω′
= R(q)ωωω.

3. Dynamic model and problem statement

Consider a generic aerial multi-rotor platform, composed by
a rigid body and n ≥ 4 propellers (with negligible mass and
moment of inertia w.r.t. the body inertial parameters), each one
spinning about a generically oriented axis. The relative axes ori-
entations, jointly with the number n of rotors, determines if the
UAV is an underactuated or a fully actuated system (Ryll et al.,
2019). This class of vehicles (also known as Generically Tilted
Multi-Rotors) has been evaluated for the first time in Michieletto,
Ryll et al. (2017), nonetheless, we investigate here the deriva-
tion of the dynamic model by exploiting the unit quaternion
formalism to represent the attitude of the platform.

As reported in Fig. 1, we consider the body frame FB =

{OB, (xB, yB, zB)} attached to the UAV so that its origin OB coin-
cides with the center of mass (CoM) of the vehicle. The pose of
the platform in the inertial world frame FW = {OW , (xW , yW , zW )}
is, thus, described by pair (p, q) ∈ R3

× S3 where vector p ∈ R3

denotes the position of OB in FW and the unit quaternion q ∈ S3

represents the orientation of FB w.r.t. FW (i.e., it corresponds to
the relative rotation from body to world frame, hence its inverse
provides the coordinates in body frame of a vector expressed in
the world frame). The orientation kinematics of the vehicle is
governed by (5), where ωωω ∈ R3 represents the angular velocity
of FB w.r.t. FW , expressed in FB, whereas the linear velocity of
OB in FW is denoted by v = ṗ ∈ R3.

The ith propeller, i ∈ {1 . . . n}, rotates with angular velocity
ωωωi ∈ R3 about its spinning axis, which passes through the rotor
center OPi . The position pi ∈ R3 of OPi and the direction of ωωωi
are assumed to be constant in FB. The propeller angular velocity
can thus be expressed as ωωωi := ωizPi where ωi ∈ R indicates the
(controllable) rotor spinning rate and zPi ∈ S2 is a unit vector
parallel to the rotor spinning axis. While rotating, each propeller
exerts a thrust/lift force fi ∈ R3 and a drag moment τττ i ∈ R3,
both oriented along the direction defined by zPi and exerted at
OPi . According to the most commonly acknowledged model, these
two quantities are related to the rotor rate ωi by way of

fi = σ cfi |ωi|ωizPi and τττ i = −c+

τi
|ωi|ωizPi , (7)

where cfi , c
+
τi
> 0 and σ ∈ {−1, 1} are constant parameters

depending on the propeller shape. The propeller is of counter-
clockwise (CCW) type if σ = 1 and of clockwise (CW) type if
σ = −1. The thrust of CCW propellers has the same direction
as the angular velocity vector, whereas those are opposite for the
CW case; the drag moment, instead, is always oppositely oriented
w.r.t. ωωωi.

Introducing ui := σ |ωi|ωi ∈ R and cτi := −σ c+
τi

∈ R,
relations (7) can be rewritten as

fi = cfiuizPi and τττ i = cτiuizPi . (8)

The sum of all the propeller forces coincides with the control force
fc ∈ R3 exerted at the platform CoM, while the control moment
τττ c ∈ R3 is the sum of the moment contributions due to both the
thrust forces and the drag moments. These can be expressed in
FB as

fc =
∑n

i=1fi =
∑n

i=1cfizPiui, (9)

τττ c =
∑n

i=1(pi × fi + τττ i) =
∑n

i=1(cfipi × zPi + cτizPi )ui. (10)

Defining the control input vector u =
[
u1 . . . un

]⊤
∈ Rn, (9) and

(10) can be written compactly as

fc = Fu and τττ c = Mu, (11)

where F,M ∈ R3×n are the control force input matrix and the
control moment input matrix, respectively. Note that, since cfi > 0
and c+

τi
> 0, none of the columns of both F and M is a zero vector,

and therefore we have both 1 ≤ rk(F) ≤ 3 and 1 ≤ rk(M) ≤ 3 by
construction.

Using the Newton–Euler approach and neglecting second or-
der effects (e.g., the propeller gyroscopic effects), the dynamics
of the multi-rotor vehicle is approximated by the following set of
equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ṗ = v (a)

q̇ =
1
2q ◦

[
0
ωωω

]
(b)

mv̇ = −mge3 + R(q)Fu (c)
Jω̇ωω = −ωωω × Jωωω + Mu (d)

(12)

where m > 0 is the platform mass, g > 0 is the gravitational
constant, and ei ∈ R3 with i ∈ {1, 2, 3} is the ith column of the
identity matrix in R3×3. The positive definite constant matrix J ∈

R3×3 is the vehicle inertia in FB. Model (12)(a)–(12)(d) describes
a nonlinear plant

ẋp = fp(xp,u), (13)

whose state is xp := [p⊤q⊤v⊤ωωω⊤
]
⊤

∈ R3
× S3

× R6.
In this paper, we design a nonlinear control law to stabilize

in static hovering conditions the multi-rotor platform (13) by
solving the following problem.

Problem 1. Given the plant (13), corresponding to (12)(a)–
(12)(d), find a dynamic state feedback controller

ẋc = fc(xc, xp, pr ), u = hc(xc, xp, pr ) (14)

that, for any constant reference position pr ∈ R3, (locally) asymp-
totically stabilizes position pr and some hovering orientation.
More precisely, the closed-loop system (13)–(14) should be lo-
cally asymptotically stable to a suitable compact set where p =

pr , and v and ωωω are both zero, while orientation q may be
arbitrary but constant.

The arbitrariness of the orientation is fundamental for the
feasibility of Problem 1, which is in general solvable only if
certain steady-state attitudes are realized by the platform (static
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Fig. 2. Block diagram of the closed-loop system with the proposed dynamic control strategy.

hoverability realizability (Michieletto et al., 2018)). As compared
to Michieletto, Cenedese et al. (2017), in Section 4 we provide
new and more insightful sufficient conditions on matrices F and
M in (11) for solving Problem 1, which is a contribution of this
extension. Then, Section 5, presents the dynamics of the proposed
control scheme, represented in Fig. 2. This controller architecture
is a contribution of our preliminary work (Michieletto, Cenedese
et al., 2017). On the other hand, Section 6 provides additional
contributions of this improved version: first we provide a rig-
orous proof of local asymptotic stability of the error dynamics,
by exploiting a hierarchical structure and the reduction theorems
presented in El-Hawwary and Maggiore (2013); then, we propose
an extension of the proposed control law, accounting also for the
restricted stabilization of a given constant orientation.

4. Zero-moment preferential direction

4.1. Main assumption and zero-moment direction d∗

In order to attain a constant position and orientation for the
platform, the stabilizing controller must be able to simultane-
ously reject moment disturbances in any direction and counteract
the gravity force. These requirements are satisfied under the next
assumption on the control input matrices F and M introduced
in (11) and on certain arbitrary bases of their kernels, namely

F̄ ∈ Rn×(n−rk(F)) such that Im(F̄) = ker(F), (15)

M̄ ∈ Rn×(n−rk(M)) such that Im(M̄) = ker(M). (16)

We emphasize that the properties of F, M, F̄ and M̄ discussed be-
low are geometric properties of the subspaces ker(F) and ker(M)
and are satisfied (or not) independently of the specific choices of
F̄ and M̄ satisfying (15)–(16). We also highlight that a necessary
condition for Assumption 1 to hold is that the UAV has at least
4 propellers. The proof of this fact is nontrivial and is given in
Corollary 1 in Section 4.2.

Assumption 1. With F̄ as in (15), rk(MF̄) = 3.

Assumption 1 implies rk(M) = 3 (matrix M has full row rank),
corresponding to the possibility of freely assigning the control
moment τττ c in (11). Moreover, the condition rk(F) ≥ 1 discussed
after (11) ensures that there exists a zero moment direction
generating a non-zero control force, as established below.2

Proposition 1. Under Assumption 1, there exists ū ∈ ker(M) such
that ∥Fū∥ = 1

2 Differently from Michieletto et al. (2018), no constraint is imposed here on
the positivity of the control input vector.

In view of Proposition 1, whose proof is postponed to Sec-
tion 4.2 to avoid breaking the flow of the exposition, Assump-
tion 1 enables a sufficient level of decoupling between fc and
τττ c in (11), thus ensuring the existence of (at least) a direction
where the intensity ∥fc∥ of the control force can be arbitrarily
assigned with the control moment τττ c equal to zero. Referring to
the notation in Michieletto et al. (2018), Assumption 1 is fulfilled
for uncoupled platforms (UC) having at least a decoupled force di-
rection (D1). Based on the quantity ū introduced in Proposition 1,
this zero-moment preferential direction is defined as

d∗ := Fū ∈ Im(F) ∩ S2. (17)

We emphasize that Assumption 1 is more intuitive than (although
equivalent to) the convoluted algebraic property introduced in
our preliminary work (Michieletto, Cenedese et al., 2017). More
specifically, we observe that Assumption 1 implies that MF̄ is
right-invertible, namely there exists a matrix X ∈ R(n−rk(F))×3,
whose dimensions depend on the rank of F, such that MF̄X =

I3. This corresponds to the property assumed in Michieletto,
Cenedese et al. (2017) requiring the existence of a generalized
right pseudo-inverse of M, as stated next.

Lemma 1. Assumption 1 holds if and only if there exists a matrix
K ∈ Rn×n such that MKM⊤ is invertible and FM†

K = 0, where M†
K =

KM⊤(MKM⊤)−1
∈ Rn×3 is the generalized right pseudo-inverse of

M.

Proof. (⇒) We assume that rk(MF̄) = 3. Then, selecting
K := F̄(F̄)⊤ we obtain from the rank condition that MKM⊤

=

MF̄(MF̄)⊤ ∈ R3×3 is invertible. Moreover FM†
K = 0 because

FF̄ = 0.
(⇐) Proceeding ab absurdo, we assume that rk(MF̄) < 3 and

that a matrix K exists satisfying the properties in the statement
of the lemma; for that matrix we have

FM†
K = 0, MM†

K = I. (18)

Consider now any nonzero τττ c /∈ Im(MF̄) (its existence is guar-
anteed by the stated rank assumption) and denote u := M†

Kτττ c .
Then the left equation in (18) implies that u ∈ ker(F), i.e., there
exists w ∈ Rn such that u = F̄w. Using the right equation in (18),
through simple substitutions, we get τττ c = MM†

Kτττ c = Mu =

MF̄w, which clearly contradicts the assumption that τττ c /∈ Im(MF̄),
leading to an absurd and completing the proof. □

4.2. Proof of Proposition 1

The following lemma, of independent interest, holds true for
any selection of the matrices in (15)–(16) and is useful to the end
of proving Proposition 1.
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Lemma 2. The following are equivalent:

(i) rk(FM̄) ≥ 1;
(ii) ∃ū ∈ ker(M) such that ∥Fū∥ = 1.

Proof. (i) ⇒ (ii). Since Im(M̄) = ker(M), one can always select a
unit vector u⋆ ∈ ker(M) as a linear combination of the columns
of M̄ and the rank condition ensures that Fu⋆ ̸= 0. Choosing
ū = u⋆/∥Fu⋆∥ completes the proof.

(ii) ⇒ (i). Since ū ∈ ker(M) we may write ū = M̄a for some
a ∈ Rn−rk(M). Since 1 = ∥Fū∥ = ∥FM̄a∥, then it follows that
rk(FM̄) ≥ 1. □

We are now ready to prove Proposition 1.

Proof of Proposition 1. By virtue of Lemma 2 it is enough to
prove that Assumption 1 implies rk(FM̄) ≥ 1, which is done next.
Ab absurdo, we assume that rk(FM̄) = 0, i.e., the product FM̄
corresponds to the null matrix. This implies ker(M) ⊆ ker(F),
namely, ker(M) ∩ ker(F) = ker(M). We recall that for generic
matrices A and B of suitable dimensions it holds that rk(AB) =

dim(Im(AB)) = rk(B) − dim(ker(A) ∩ Im(B)) (Zhang, 2011). Since
rk(M) = 3 from Assumption 1, it follows that

rk(MF̄) = rk(F̄) − dim
(
ker(M) ∩ Im(F̄)

)
= dim (ker(F))− dim (ker(M))
= n − rk(F) − (n − rk(M))
= 3 − rk(F).

Under Assumption 1, this gives rk(F) = 0, which contradicts the
fact that F is non-zero by construction. □

A relatively interesting corollary of Lemma 2 is a rank property
for the overall input matrix [F⊤M⊤

]
⊤

∈ R6×n which is not a priori
assumed but is instead a consequence of Assumption 1.

Corollary 1. Assumption 1 holds only if
(i) the UAV has n ≥ 4 propellers and
(ii) the control input matrices satisfy rk([F⊤M⊤

]
⊤) ≥ 4.

Proof. Since [F⊤M⊤
]
⊤ has n columns, then (ii) ⇒ (i). Hence we

only need to prove that Assumption 1 implies item (ii). Assump-
tion 1 implies rk([F⊤M⊤

]
⊤) = rk(M) + rk(F − FM†M) ≥ 3 (Tian,

2004). Ab absurdo, suppose that rk([F⊤M⊤
]
⊤) = 3, namely rk(F−

FM†M) = 0. Then F − FM†M = 0, but this contradicts the
statement of Proposition 1, thus concluding the proof. □

5. Proposed dynamic controller

Based on Assumption 1 and its implications in Proposition 1,
we propose here a dynamic controller where the control input u
is selected as

u = M†
Kτττ r + ūf , (19)

so that the reference moment τττ r ∈ R3 and force intensity f ∈ R
conveniently appear in expression (11). Indeed, by Proposition 1
using the zero-moment direction in (17), selection (19) implies,

fc = Fu = d∗f , (20)

τττ c = Mu = τττ r , (21)

which clearly reveals a favorable decoupling in the wrench com-
ponents. Taking advantage of this decoupling, we are interested
in steering the platform toward a desired orientation qd ∈ S3

such that the resulting force R(qd)fc acting on the translational
dynamics (12)(c) (in the direction of R(qd)d∗ because of (20))
coincides with a desired stabilizing action selected here as a

simple PD + gravity compensation feedback function fr ∈ R3

corresponding to

fr := mge3 − kppep − kpdev, (22)

where ep = p − pr ∈ R3 and ev = v ∈ R3 are the position
error and the velocity error, respectively, while kpp, kpd ∈ R+ are
arbitrary (positive) scalar PD gains governing the proportional
and derivative actions of the attitude transient. Rather than al-
gebraically computing qd, an auxiliary state can be introduced in
the controller, accounting for the evolution of qd in S3 through
the quaternion-based dynamics (5), namely

q̇d =
1
2
qd ◦

[
0
ωωωd

]
, (23)

whereωωωd ∈ R3 is an additional virtual input to be selected so that
the actual input to the translational dynamics (12)(c) converges
to the state feedback (22). In other words,ωωωd should drive to zero
the following mismatch, motivated by (12)(c) and (20),

f∆ := R(qd)fc − fr = R(qd)d∗f − fr . (24)

We will ensure that f∆ converges to zero by considering the
variable f in (19) as an additional scalar state of the controller,
and then imposing

ωωωd =
1
f
[d∗]× R(qd)⊤ννν, (25)

ḟ = (R(qd)d∗)
⊤ ννν, (26)

where

ννν :=
kpdkpp
m

ep +

(
k2pd
m

− kpp

)
ev −

(
kpd
m

+ k∆

)
f∆, (27)

with k∆ ∈ R+ being an additional (positive) scalar gain. Note
that Eq. (25) requires f ̸= 0 (this is guaranteed by the stated
assumptions and will be formally established in Fact 2 in Sec-
tion 6.2).

The scheme is completed by an appropriate selection of τττ r
in (19) ensuring that the attitude q tracks the desired attitude qd.
This task is easily realizable because of Assumption 1, which guar-
antees full-authority control action on the rotational dynamics.
To simplify the exposition, we introduce the mismatch q∆ ∈ S3

between the current and the desired orientation, namely

q∆ := q−1
d ◦ q =

[
ηdη + ϵϵϵ⊤

d ϵϵϵ

−ηϵϵϵd + ηdϵϵϵ − [ϵϵϵd]×ϵϵϵ

]
=

[
η∆
ϵϵϵ∆

]
. (28)

Then moment τττ r in (19) entailing the convergence to zero of this
mismatch can be selected as

τττ r = −kapϵϵϵ∆ − kadωωω∆ +ωωω × Jωωω + Jωωωdd, (29)

where ωωω∆ = ωωω − ωωωd ∈ R3 is the angular velocity mismatch
and the PD gains kap ∈ R+ and kad ∈ R+ allow to tune
the proportional and derivative actions of the attitude transient,
respectively.

Note that a feedforward term appears in (29), compensating
for the quadratic terms in ωωω emerging in (12)(d), in addition to
a correction term ωωωdd ∈ R3 ensuring forward invariance of the
set where q = qd and ωωω = ωωωd. The expression of this term is
reported in (30), and can be proved to be equal to ω̇ωωd along the
solutions (the proof is available in Appendix).

Eqs. (22)–(35) may be gathered in the dynamics ẋc =

fc(xc, xp, pr ) of controller (14), represented by the dashed blue
block in Fig. 2, whose state is xc =

[
q⊤

d f
]⊤

∈ S3
× R and

whose inputs are the plant state vector xp introduced at the end of
Section 3, and the reference position pr ∈ R3 (see Eqs. (30)–(35)
in Box I).
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ωωωdd =
1
f
[d∗]×R⊤(qd)

(
k1R(q)d∗ξ f + k2(ep, ev, f∆)ep + k3(ep, ev, f∆)ev + k4(ep, ev, f∆)f∆

)
, where (30)

k1 =
k2pd
m2 −

kpp
m
, (31)

k2(ep, ev, f∆) = −

(
k2pdkpp
m2 +

k2pp
m

+ κ(ep, ev, f∆)
kpdkpp
m

)
, (32)

k3(ep, ev, f∆) = −

(
k2pdkpp
m2 +

k2pp
m

+ κ(ep, ev, f∆)
kpdkpp
m

)
, (33)

k4(ep, ev, f∆) =
k2pd
m2 −

kpp
m

+
kpdk∆
m

+ k2∆ + κ(ep, ev, f∆)
(
kpd
m

+ k∆

)
, (34)

κ(ep, ev, f∆) = −
2
f
d⊤

∗
R(qd)⊤

(
kpdkpp
m

ep +

(
k2pd
m

− kpp

)
ev −

(
kpd
m

+ k∆

)
f∆

)
. (35)

Box I.

Remark 1. The feedback interconnection between (13) and (14)
provides a smooth vector field in the region where f ̸= 0, evolv-
ing in a closed set comprising Cartesian products of Euclidean
spaces and S3. Due to these regularity properties, the local asymp-
totic stability results reported in Section 6 enjoy a certain degree
of robustness, whose details are reported in Goebel, Sanfelice, and
Teel (2012) (Ch. 7), ensuring a graceful performance degradation
in the presence of unmodeled phenomena such as sensor noise
and actuator dynamics. These useful properties are numerically
illustrated in Section 7.

6. Stability analysis

6.1. Reduction theorem and invariance principle

To suitably formalize and prove closed-loop stability, we sum-
marize here some essential results and notation from El-Hawwary
and Maggiore (2013). First, given a closed set S , an open neigh-
borhood N (S) of S is an open set such that S ⊂ N (S). Given
ε > 0, the ε ball around S is Bε(S) := {x; | miny∈S ∥y − x∥ < ε}.
Then, denote by ϕ(t, x0) the (unique) solution to the closed loop
(13)–(14) starting at x(0) = (xp(0), xc(0)) = x0 and evaluated at
time t ∈ R≥0. The following are some basic stability definitions
from El-Hawwary and Maggiore (2013) and Maggiore, Sassano,
and Zaccarian (2019).

Definition 1. (Set Stability and Attractivity) Given3 a closed (not
necessarily bounded) set Γ1,

(i) Γ1 is stable for (13)–(14) if for each ε > 0 there exists
a neighborhood N (Γ1) of Γ1 such that all solutions starting in
N (Γ1) never leave Bε(Γ1);

(ii) Γ1 is (locally) attractive for (13)–(14) if there exists a
neighborhood N (Γ1) such that all solutions starting in N (Γ1)
converge to Γ1 and it is globally attractive if all solutions converge
to Γ1;

(iii) Γ1 is (locally, respectively, globally) asymptotically stable
for (13)–(14) if it is stable and (locally, respectively, globally)
attractive for (13)–(14);

3 Note that in El-Hawwary and Maggiore (2013) forward invariance of Γ1 is
assumed. However, as noted in the generalizations discussed in Maggiore et al.
(2019), this assumption is not necessary. Moreover, the definition of stability
near a set is slightly different from the one given in El-Hawwary and Maggiore
(2013) and coincides with the (equivalent) formulation in Maggiore et al. (2019).

(iv) given a closed set Γ2 ⊃ Γ1, set Γ1 is stable, (locally or
globally) attractive or (locally or globally) asymptotically stable
relative to Γ2, if the properties (i), (ii), (iii) above hold with initial
conditions restricted to the set Γ2.

Given a compact set Γ1 and a closed set Γ2 ⊃ Γ1, the set
Γ2 is locally asymptotically stable near Γ1 for (13)–(14) if there
exists r > 0 such that all solutions starting in Br (Γ1) converge to
Γ2 (local attractivity near Γ1) and the following property holds:
(local stability near Γ1) for each ε > 0, there exists δ > 0 such
that for any t̄ > 0, all solutions starting from x0 ∈ Bδ(Γ1) satisfy
(ϕ(t, x0) ∈ Br (Γ1), ∀t ≤ t̄) ⇒ ϕ(t̄, x0) ∈ Bε(Γ2).

The reader is referred to El-Hawwary and Maggiore (2013)
and Maggiore et al. (2019) for further details about Definition 1,
nonetheless we recall here that (local) asymptotic stability of Γ2
implies (local) asymptotic stability of Γ2 near Γ1 for any Γ1 ⊂ Γ2.
The following result is the reduction theorem used in our proof,
which is a corollary of Thm. 4.7 in Maggiore et al. (2019).

Proposition 2. Consider three closed sets Γ1 ⊂ Γ2 ⊂ Γ3 with
Γ1 compact. If (i) Γ1 is locally asymptotically stable for (13)–(14)
relative to Γ2 and (ii) Γ2 is locally asymptotically stable for (13)–
(14) near Γ1, relative to Γ3, then Γ1 is locally asymptotically stable
for (13)–(14) relative to Γ3.

We also present below a formulation of the invariance prin-
ciple corresponding to a corollary of Thm. 1 in Seuret, Prieur,
Tarbouriech, Teel, and Zaccarian (2019) that will be useful in the
proofs of Section 6.3.

Proposition 3. Consider system ξ̇ξξ = f(ξξξ ), ξξξ ∈ Ξ , where f is
continuous and Ξ is a closed set, and a compact set A ⊂ Ξ . If there
exists a scalar r > 0 and a continuously differentiable function V ,
positive definite w.r.t. A (namely zero in A and positive outside A),
such that

V̇ (ξξξ ) := ⟨∇V (ξξξ ), f(ξξξ )⟩ ≤ 0, ∀ξξξ ∈ Br (A), (36)

and such that no solution ϕ exists starting from ξξξ 0 ∈ Br (A) for which
V (ϕ(t, ξξξ 0)) = V (ξξξ 0) ̸= 0, then A is locally asymptotically stable for
ξ̇ξξ = f(ξξξ ).

Proof. The proof is a direct consequence of Seuret et al. (2019,
Thm 1). Continuity of f and closedness of Ξ ensures that the
dynamics satisfies the hybrid basic conditions of As. 6.5 in Goebel
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et al. (2012). Since the dynamics is only continuous-time (corre-
sponding to D = ∅ and G(ξ ) = ∅ in Thm. 1 in Seuret et al. (2019)
then only (Seuret et al., 2019, eqn. (2)) needs to be checked,
which is guaranteed by (36) for a continuously differentiable
V . Finally, for a local version of Thm. 1 in Seuret et al. (2019),
radial unboundedness is not necessary and the local proof follows
exactly the same steps as Thm. 1 in Seuret et al. (2019) with all
the bounds restricted to a sublevel set Eµ := {ξξξ : V (ξξξ ) ≤ µ} of V ,
with µ > 0, satisfying Eµ ⊂ Br (A). □

6.2. Error dynamics

We consider here the closed loop between plant dynamics
ẋp = fp(xp,u), as defined at the end of Section 3 and controller
dynamics ẋc = fc(xc, xp, pr ) through the expression of u in (19),
introduced and discussed in Section 5. In particular, we select in
this section suitable error coordinates enabling the stability proof
carried out below in Section 6.3. We start by characterizing the
dynamics of the orientation error variable q∆ in (28) and of the
associated angular velocity mismatch ωωω∆. As long as f ̸= 0, so that
ωd in (25) is well defined, we may write:

q̇∆ =
1
2
q∆ ◦

[
0
ωωω∆

]
, (37)

Jω̇ωω∆ = −ωωω × Jωωω − Jω̇ωωd + τττ r = −kapϵϵϵ∆ − kadωωω∆, (38)

where we used (29) and the fact that ω̇ωωd = ωωωdd, as proven in
Appendix. Moreover, to establish useful properties of the trans-
lational dynamics, we use the translational error vector et :=[
e⊤
p e⊤

v

]⊤
∈ R6, introduced after (22), which well characterizes

the deviation from the reference position pr and the reference
linear velocity vr = 03. Combining (12)(c) with the definition of
f∆ given in (24) the dynamics of et can be written as follows

ėp = ev (39)

mėv = −mge3 + (R(q) − R(qd))fc + fr + f∆. (40)

A last mismatch variable that needs to be characterized is the
(scalar) controller state f . To this end, combining (12)(c) with (20),
we observe that the zero position error condition ep = 03 can
only be reached if the state f , governed by (26), converges to
mg . Nonetheless, instead of describing the error system in terms
of the deviation f − mg , we prefer to use the redundant set of
coordinates f∆ in (24) and the attitude q ∈ S3 of the platform
whose dynamics is described by (12)(b). This choice of (error)
variables is motivated by the following fact.

Fact 1. As long as f ̸= 0, the dynamics of the forces mismatch f∆
in (24) is given by

ḟ∆ = −k∆f∆. (41)

Proof. Using its definition in (24), the dynamics of the forces
mismatch f∆ in (24) is given by

ḟ∆ = R(qd)d∗ ḟ + Ṙ(qd)d∗f − ḟr (42)

= ḟ∆,1 + ḟ∆,2 + ḟ∆,3 (43)

with the following quantities being well defined because f ̸= 0
and derived by using the selections of ωωωd, ḟ in (25), (26), the ex-
pression of fr in (22) and the relation [[ϵϵϵ1]×ϵϵϵ2]× = [ϵϵϵ1]×[ϵϵϵ2]× −

[ϵϵϵ2]×[ϵϵϵ1]× = ϵϵϵ2ϵϵϵ
⊤

1 − ϵϵϵ1ϵϵϵ
⊤

2 :

ḟ∆,1 = R(qd)d∗ ḟ = (R(qd)d∗) (R(qd)d∗)
⊤ ννν (44)

= R(qd)d∗d⊤

∗
R(qd)⊤ννν (45)

ḟ∆,2 = Ṙ(qd)d∗f = R(qd)[ωωωd]×d∗f (46)

= −R(qd)[d∗]× [d∗]× R(qd)⊤ννν (47)

ḟ∆,3 = −ḟr = kppėp + kpdėv (48)

= kppev +
kpd
m

(
−kppep − kpdev + f∆

)
. (49)

Summing up the terms (45), (47) and (49), we get

ḟ∆ = ννν −
kpdkpp
m

ep −

(
k2pd
m

− kpp

)
ev +

kpd
m

f∆, (50)

and, finally, employing the definition of ννν in (27), we obtain
(41). □

All the previously introduced error variables can be used to
prove that the proposed control scheme solves Problem 1. To for-
malize this observation, rather than using coordinates (xp, xc) =

(p, q, v,ωωω, qd, f ) ∈ R3
×S3

×R6
×S3

×R, we consider the following
equivalent coordinates for the error dynamics

z := (q∆,ωωω∆, f∆, et , q) (51)

∈ Z := S3
× R3

× R3
× R6

× S3
⊆ R20.

The ensuing error dynamics ż = fz(z) is given by (37)–(40), (41)
and (12)(b).

In the following, we restrict the attention to the next compact
set (that results from the Cartesian product of compact sets)

Z0 :=
{
z ∈ Z | q∆ = qI ,ωωω∆ = 0, f∆ = 0, et = 0,

R(q)d∗ = e3
}
, (52)

capturing the requirements of Problem 1. In particular, if z ap-
proaches asymptotically Z0, then the desired position is asymp-
totically reached (et = 0) with some constant orientation q
ensuring that the selected zero-moment direction d∗ is correctly
aligned with the steady-state action mge3, thus compensating for
the gravity force. Before proceeding with the stability analysis, we
establish a useful property of the compact set Z0.

Fact 2. There exists a scalar r > 0 such that the controller state f
is (uniformly) bounded away from zero in the set Br (Z0).

Proof. Since in Z0 we have et = 0 and f∆ = 0, then from
(24) it follows that d∗f = mgR⊤(qd)e3. Taking norms on both
sides and due to the property of rotation matrices, it holds that
|f | = mg > 0 in Z0. Continuity of f and compactness of Z0
then implies the existence of r > 0 such that |f | >

mg
2 in

Br (Z0). To prove this, assume by a contradiction that such an
r > 0 does not exist. Then there exists a sequence of points
arbitrarily close to Z0 where |f | ≤

mg
2 and from these points we

can extract a converging subsequence whose limit belongs to Z0
and satisfies (by continuity) |f | ≤

mg
2 , which contradicts f = mg ,

thus completing the proof. □

6.3. Proof of asymptotic stability

In this section we apply the reduction approach summarized
in Section 6.1 to prove the following main result.

Theorem 1. Consider the closed-loop system in Fig. 2 between
plant (13) and controller (14). The compact set Z0 in (52) is locally
asymptotically stable for the corresponding dynamics. In particular,
controller (14) is a solution to Problem 1.

The reduction-based proof is carried out by focusing on in-
creasingly large nested sets, each of them characterized by a
desirable behavior of certain components of the error dynamics
state z in (51). These sets satisfy the inclusion Z0 = Zq ⊂ Zf ⊂

Za ⊂ Z with Z0 and Z defined in (51) and (52), respectively,
Za being the subset of Z where the attitude mismatch (q∆,ωωω∆)
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is null and Zf being the subset of Za where the virtual input fr
in (22) is the actual input of the translational dynamics (12)(a),
namely the force mismatch f∆ is null. More precisely,

Za := {z ∈ Z | q∆ = qI , ωωω∆ = 0} , (53)

Zf := {z ∈ Za | f∆ = 0} , (54)

Zq :=
{
z ∈ Zf | et = 0

}
. (55)

We first establish that Z0 coincides with Zq. Then we exploit the
reduction approach of Proposition 2 to hierarchically enlarge the
set of allowable initial conditions in a sequence of nested lemmas.

Lemma 3. Set Z0 in (52) and set Zq in (55) coincide.

Proof. It is immediate to see that any point in Z0 also belongs
to Zq. Consider now any point in Zq. Since q∆ = qI , then qd = q.
Together with f∆ = 0 and et = 0, this implies from (22) and (24)
that R(q)d∗f = fr = mge3, namely |f | = mg and R(q)d∗ = e3
thus proving that the point is also in Z0. □

Lemma 4. Set Z0 is locally asymptotically stable relative to Zf for
the error dynamics.

Proof. By virtue of Lemma 3 we may equivalently prove lo-
cal asymptotic stability of Zq. To this end, consider dynamics
(39)–(40) for initial conditions in Zf . Such dynamics corresponds
to the situation of input fr acting directly on the translational
component of the plant (12)(c), which provides the following
autonomous system:

ėp = ev, mėv = −kppep − kpdev. (56)

Consider the Lyapunov function candidate

Vp :=
1
2
me⊤

v ev +
1
2
kppe⊤

p ep, (57)

which is clearly positive definite (w.r.t. the origin) and whose
derivative along (56) corresponds to

V̇p = me⊤

v ėv + kppe⊤

p ėp
= e⊤

v (−kppep − kpdev) + kppe⊤

p ev = −kpd∥ev∥2,

which is negative semi-definite. Due to the left equation in (56),
no solution (either from the zero one) can evolve with ev identi-
cally zero, therefore no solution keeps Vp constant and nonzero,
and local asymptotic stability of the origin for dynamics (56)
follows from Proposition 3 applied with A = {0}. Since (56)
coincides with the error dynamics ż = fz(z) restricted to Zf , and
with the origin coinciding with Zq, the proof is completed. □

Lemma 5. Set Z0 is locally asymptotically stable, relative to Za, for
the error dynamics.

Proof. We prove the result by applying Proposition 2 with
Γ1 = Z0, Γ2 = Zf and Γ3 = Za. In particular, hypothesis
(i) of Proposition 2 is proven by Lemma 4. Hypothesis (ii) is
proven next by showing that Zf is locally asymptotically stable
for (13)–(14) near Z0, relative to Za. To this end, consider the
derivative of f∆, along dynamics (39)–(40) restricted to Za (so
that, using q∆ = qI , we may use q = qd) and close to Z0 (so that,
according to Fact 2 f is bounded away from zero). From Fact 1,
this corresponds to ḟ∆ = −k∆f∆ in (41). Then positivity of k∆
establishes exponential stability of Zf near Z0 for the dynamics
restricted to Za, using the Lyapunov function V∆ := f⊤∆f∆. □

Lemma 6. Set Z0 is locally asymptotically stable, relative to Z , for
the error dynamics, i.e., Theorem 1 holds.

Proof. Theorem 1 holds under the main statement of the lemma
because Z is the overall state for the error dynamics. There-
fore local asymptotic stability relative to Z coincides with local
asymptotic stability.

We prove the main statement of the lemma by applying
Proposition 2 with Γ1 = Z0, Γ2 = Za and Γ3 = Z . In particular,
hypothesis (i) of Proposition 2 is proven by Lemma 5. The proof
is completed next by showing hypothesis (ii), namely that Za
is locally asymptotically stable for (13)–(14) near Z0, relative to
Z . To this end, we focus the attention on the states q∆ and ωωω∆
whose evolution near Z0 (where f is bounded away from zero
as established in Fact 2) is autonomous and has been computed
in (37)–(38). To establish asymptotic stability of Za it is enough
to focus on the compact set A := {(q∆,ωωω∆) ∈ S3

× R3
: q∆ =

qI ,ωωω∆ = 0} for (37)–(38). In particular, we apply Proposition 3
by defining the Lyapunov function candidate

Va := 2kap(1 − η∆) +
1
2
ωωω⊤

∆Jωωω∆, (58)

which is positive definite w.r.t. A, due to the fact that |η∆| ≤ 1
because q∆ ∈ S3 by the definition of Z . The derivative of Va along
(37), (38) turns out to be

V̇a = −2kapη̇∆ +ωωω⊤

∆Jω̇ωω∆ (59)

= kapωωω⊤

∆ϵϵϵ∆ +ωωω⊤

∆(−kapϵϵϵ∆ − kadωωω∆) (60)

= −kad∥ωωω∆∥
2. (61)

From standard Lyapunov-based attitude control (see, e.g., May-
hew, Sanfelice, and Teel (2009)) the only solution to (37)–(38)
associated to a constant and nonzero Va is the constant solution
starting at (q∆(0),ωωω∆(0)) = (−qI , 0), which is an equilibrium
associated to a value of Va(−qI , 0) = 4kap > 0. By continuity
of Va there exists a small enough neighborhood satisfying the
hypotheses of Proposition 3 and the proof is completed. □

Remark 2. Our main result establishes local stability results
rather than global ones. Two main obstructions motivate our local
results. The first one arises from the fact that topological obstruc-
tions prevent a continuous feedback from inducing global robust
stability properties in the attitude stabilization problem solved
in Lemma 6 (where robustness is of the type commented in
Remark 1). Alternative attitude stabilization solutions may be ob-
tained following the hybrid approach proposed in Mayhew et al.
(2009), among others. The second obstruction is related to the
fact that, due to (25), our control law is not locally bounded when
approaching the points in the state space where the controller
state f is zero. While this is a well known and typical problem
in UAV control, overcoming this limitation is less straightforward
and could be addressed by following the hybrid approach in the
recent work of Casau, Sanfelice, and Silvestre (2017). We empha-
size here that both of the above limitations do not prevent large
operating regions for our stabilizer: the attitude stabilization
proof of Lemma 6 shows almost global results and the condition
f = 0 is far from the typical operating conditions, due to the
gravity action. The size of the operating region is well illustrated
by the simulations carried out in Section 7 with large initial
errors.

Remark 3 (Restricted Orientation Stabilization). It is possible to
extend the proposed solution with an additional requirement
of restricted stabilization of a given reference orientation qr ∈

S3, where ‘restricted’ refers to the fact that such an orientation
should be tracked with a lower hierarchical priority as com-
pared to the translational error stabilization. This extended goal
is achieved by first introducing the attitude error q′

∆ ∈ S3 defined
as

q′

∆ := q−1
r ◦ qd =

[
ηrηd + ϵϵϵ⊤

r ϵϵϵd
−ηdϵϵϵr + ηrϵϵϵd − [ϵϵϵr ]×ϵϵϵd

]
=

[
η′

∆

ϵϵϵ′

∆

]
, (62)
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and then replacing the expression of ωωωd in (25) using an addi-
tional term:

ωωωd =
1
f
[d∗]× R(qd)⊤ννν +ωωω′

d, with (63)

ωωω′

d = −kqd∗d⊤

∗
ϵϵϵ′

∆, (64)

where kq ∈ R+ is a proportional gain. The projection d∗d⊤
∗
in (64)

ensures that [ωωω′

d]×d∗ = 0, so that the equalities in (46) remain
unchanged and Fact 1 remains valid. As a consequence, the proofs
in Lemma 3–6 are valid and Theorem 1 holds with (25) replaced
by (64).

The appealing feature of using (63) instead of (25) is under-
stood by looking at the Lyapunov-like function V ′

∆ = 2(1 + η′

∆),
which is lower bounded. Since solutions converge to Z0, where
ννν = 0 andωωωd = ωωω′

d, using (23), (62), (63), restricting the attention
to this set, we get

V̇ ′

∆ = 2η̇′

∆ = (ϵϵϵ′

∆)
⊤ωωωd

= −kq(ϵϵϵ′

∆)
⊤d∗d⊤

∗
ϵϵϵ′

∆ = −kq∥d⊤

∗
ϵϵϵ′

∆∥
2,

which, from lower boundedness of V ′

∆, implies that d⊤
∗
ϵϵϵ′

∆ con-
verges to zero, namely the projection of the orientation error ϵϵϵ′

∆

in the direction of d∗ is zero. This extension is well illustrated by
our simuations of Section 7.

7. Simulation results

The effectiveness of the proposed controller for solving Prob-
lem 1 is here validated by numerical simulations on the multi-
rotor platform introduced in Ryll et al. (2019) characterized by
n = 6 tilted propellers with fixed tilting angles, all sharing the
same geometric and aerodynamics features (i.e., w.r.t. (8), cfi = cf
and cτi = cτ , i = 1 . . . 6). This is depicted in Fig. 3.

To accurately describe the platform, we consider a local frame
FPi = {OPi , (xPi , yPi , zPi )} for each rotor i ∈ {1 . . . 6}. The origin OPi
coincides with the CoM of the ith motor–propeller combination,
xPi , yPi ∈ S2 determine its spinning plane, while zPi ∈ S2

identifies its spinning axis. As shown in Fig. 3, OP1 . . .OP6 lie on
the same plane where they are equally spaced on a circle, i.e., the
considered multi-rotor is a star-shaped hexarotor. Formally, for
i ∈ {1 . . . 6}, the position pi ∈ R3 of OPi in FB is given by

pi = q(γi, e3) ◦
[
0 ℓ 0 0

]⊤
◦ q(γi, e3)−1, (65)

where, adopting (2), q(γi, e3) ∈ S3 is the unit quaternion associ-
ated to the rotation by γi = (i − 1)π/3 about e3, according to
the axis-angle representation given in Section 2, and ℓ > 0 is
the distance between OPi and OB. Moreover, we assume that the
orientation of each FPi w.r.t. FB can be represented by the unit
quaternion qi ∈ S3 such that

qi = q(γi, e3) ◦ q(βi, e2) ◦ q(αi, e1), (66)

where q(βi, e2), q(αi, e1) ∈ S3 agree with the axis-angle repre-
sentation and the constant tilt angles αi, βi ∈ (− π

2 ,
π
2 ] uniquely

define the direction of zPi in FB. Indeed, the frame FPi is obtained
from FB by first rotating by αi about x-axis and then by βi around
the resulting y-axis. In particular, these angles are chosen so that
αi = −αi+1 and αi =

π
6 for i = 1, 3, 5, while βi =

π
18 for i =

1 . . . 6. Since the tilting is fixed, all angles αi and βi, i = 1, . . . , 6,
are constant during the flight.

The described hexarotor, whose physical and aerodynamic
parameters are summarized in Table 1, satisfies Assumption 1,
and the associated matrix K in (19) is not simply the identity
matrix. In particular, K can be chosen as the product between an
orthogonal basis of the null space of F and its transpose (i.e., K =

F̄(F̄)⊤ as in the proof of Lemma 1).

Fig. 3. Star-shaped hexarotor with tilted propellers described in Section 7 -
red/blue discs correspond to CW/CCW rotors.

Table 1
Physical and aerodynamic parameters of the hexarotor.
cf cτ ℓ m J

10−5 N
Hz2

10−7 N
Hz2

0.5 m 1.5 kg diag{[0.075 0.075 0.15]} kg m2

Table 2
Standard deviation of the modeled sensor noise added to the corresponding
physical quantities.
p v q ωωω

6.4 × 10−4 m 1.4 × 10−3 m/s 1.2 × 10−3 2.7 × 10−3 rad/s

The performed simulations use dynamics (12)(a)–(12)(d) aug-
mented with several unmodeled real-world effects, which should
be well handled by the control scheme because of the robustness
properties emphasized in Remark 1.

• The position and orientation feedback and their derivatives
are affected by time delay tf = 0.012 s and Gaussian noise
corrupts the measurements according to Table 2. The actual
position and orientation are fed back with a lower sampling
frequency of 100Hz while the controller runs at 500Hz.
These properties are reflecting a typical motion capture
system and an inertial measurement unit (IMU).

• The electronic speed controller (ESC) driving the motors
is modeled by quantizing the desired input u via a 10bit
discretization in the feasible motor speed, thus resulting in
a step size of ≈ 0.12Hz. Additionally, the motor–propeller
combination is modeled as a first order transfer function(
G(s) = (1 + 0.005s)−1

)
. The resulting signal is corrupted by

a rotational velocity dependent Gaussian noise (see Table 2).
This combination reproduces quite accurately the dynamic
behavior of a common ESC motor–propeller combination,
such as BL-Ctrl-2.0, by MikroKopter, Robbe ROXXY 2827-35
and a 10 inch rotor blade (Franchi & Mallet, 2017).

To well illustrate the proposed control scheme, in the fol-
lowing we report the results of a simulation composed of three
phases. The first phase ([0, 10]s) corresponds to the take off
maneuver during which the platform is required to lift up from
the ground starting from its initial position (the origin of the
world frame). During the second phase ([10, 20]s), the control
goal is to steer the vehicle to a new reference position without
imposing any reference orientation. Finally, in the third phase
([20, 30]s), the platform stabilizes a specific orientation (accord-
ing to the developments of Remark 3), while maintaining the
achieved position.

To accomplish the described tasks sequence, two different
preferential directions are imposed: in the first phase we select
d∗ = e3 since a vertical force is needed for the take off maneuver,
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in both the second and third phase, instead, the preferential
direction is chosen so that the vehicle is required to hover with
a tilting of π

18 w.r.t. the x-axis of the world frame (identified by
the unit vector xW ∈ S2 in Fig. 3). This last scenario might occur,
for instance, in environmental inspection applications wherein
the employed aerial vehicle is equipped with a rigidly attached
end effector (Ollero et al., 2018). The gains of the controller are
chosen as kpp = 12, kpd = 8, kap = 5, kad = 2.5, k∆ = 1.3 and
kq = 0 for the first two phases, kq = 1 in the third one. These
values induce desirable transients on the equivalent PD-like error
dynamics. Furthermore, note that ωωωd accounts for the additional
termωωω′

d in (64) only when kq ̸= 0, i.e., only during the third phase
when a specific reference orientation is imposed.

The simulation results are depicted in Fig. 4. The first and
second plots report the position and orientation of the hexarotor,
respectively, compared to their reference values. We emphasize
that qr coincides with qd during phases 1 and 2, when a reference
orientation is not imposed. The trend of the error variables q∆,
ωωω∆, ep and ev is depicted in the subsequent four plots. The
seventh plot reports the controller state f , compared to its equi-
librium value mg (dashed). Finally, the last plot shows the control
inputs commanded to the propellers. Note that we use the roll-
pitch-yaw (RPY) angles (φ•, θ•, ψ•) to represent the attitude to
give a better insight of the vehicle attitude, however the internal
computations are all carried out with unit quaternions.

During the take-off (first) phase, the hexarotor smoothly
reaches the reference position in roughly 5 s, while maintaining
a constant orientation. Note that take-off happens after almost
1 s from the beginning of the simulation because the controller
state f (seventh plot) is initialized at 1

2mg , and the equilibrium
value mg needs to be reached to counteract the gravity force,
thereby enabling take-off. In general it is advisable to initialize
the controller state to qd(0) = q(0) and f (0) = mg , to minimize
the transients, but we deliberately select large initial errors in our
simulations to validate the closed-loop performance with non-
ideal controller initializations. In the second phase, the selected
zero-moment direction d∗ induces a rotation of the platform
whose roll angle φ quickly sets to π

18 , as shown in the second
plot. At the same time, the vehicle is required to track a new
position by moving on the (xy)-plane of the world frame. The
position error ep (shown in the fifth plot) converges to zero in
roughly 5 s, similar to the first phase, since the controller gains are
unchanged. From the third plot we also observe that the position
and attitude errors converge with comparable transient time
scales, a feature that is not allowed in two-loops control schemes
requiring time-scale separation between position and attitude
transients. Finally, one can notice that the second phase of the
conducted simulation is also marked by a different distribution of
the propellers command inputs. The two propellers whose CoMs
lie on the rotation axis, namely rotors 1 and 4 in Fig. 3, are,
indeed, required to decrease their spinning rates. Nonetheless,
at the steady-state, all the spinning rates belong to [60, 110]Hz,
which represents a feasible range of values from a technological
point of view. Finally, in the third phase, the proposed controller,
extended as in Remark 3, guarantees the stabilization of the ve-
hicle to the given reference orientation (φr , θr , ψr ) =

(
π
18 , 0,

π
4

)
,

which coincides with a rotation about the preferential direction
and justifies the fact that q∆ = q−1

r ◦q converges to zero. Remark-
ably, this maneuver does not modify the steady-state propeller
inputs.

In our last simulation we illustrate the comments in Remark 2
by using the same position reference as in phase 2 of the previous
simulation, but starting from large initial attitude errors, which
also cause large position transients, due to the cascaded structure
of the error dynamics. Fig. 5 reports the RPY angles associated to
the orientation error q∆, the position error ep, the controller state

Fig. 4. The three phases in Section 7: take off in [0, 10]s, hovering in [10, 20]s
and orientation stabilization in [20, 30]s.

f and the spinning rate ωi of the platform propellers for multiple
selections of the initial attitude. In particular, the initial angles
(φ0, θ0, ψ0) associated to q0 = q(0) are chosen with ψ0 = 0 and
(φ0, θ0) assuming multiple values (reported in the legend) in the
set

{
−
π
3 , 0,

π
3

}
×
{
−
π
3 , 0,

π
3

}
. In all of the considered cases both

the position and orientation error converge to zero in less than
10 s with smooth transients. The large overshoots reveal that, as
anticipated in Remark 2, the region of attraction associated to our
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Fig. 5. Second phase of the simulation of Fig. 4 with different attitude initial
conditions.

local asymptotic stability proofs of Section 6 is rather large. In
addition, we observe that the rotor commands are in the feasible
spinning rate range in all the cases.

8. Conclusions

We addressed the hovering control task for a generic class of
multi-rotor aerial vehicles (MAV) whose propellers are arbitrary

in number and position/orientation. Adopting the quaternion at-
titude representation, we designed a state feedback nonlinear
controller to stabilize the MAV at a reference position with an
arbitrary but constant orientation. The proposed solution relies on
some non-restrictive assumptions on the control input matrices
F and M that ensure the existence of a preferential direction in
the feasible force space, along which the control force and the
control moment are decoupled. Stability and asymptotic conver-
gence of the tracking error have been rigorously proven through
a cascaded-like proof exploiting nested sets and reduction the-
orems. The theoretical findings are confirmed by the numerical
simulation results, supporting the test of the control scheme on
a real platform in the near future.

Appendix. Proof of the identity ω̇ωωd = ωωωdd

The identity ω̇ωωd = ωωωdd stated in Section 5 is proven below
using [[ϵϵϵ1]×ϵϵϵ2]× = [ϵϵϵ1]×[ϵϵϵ2]× − [ϵϵϵ2]×[ϵϵϵ1]× = ϵϵϵ2ϵϵϵ

⊤

1 − ϵϵϵ1ϵϵϵ
⊤

2 . The
derivative ofωωωd in (25) results from the sum of three components,
namely ω̇ωωd = ω̇ωωd,1 + ω̇ωωd,2 + ω̇ωωd,3 with

ω̇ωωd,1 = −
1
f 2

[d∗]×R⊤

d ννν ḟ
(26)
= −

1
f 2

[d∗]×R⊤

d νννd
⊤

∗
R⊤

d ννν

= −

(
d⊤

∗
R⊤

d ννν
)

f 2
[d∗]×R⊤

d ννν

ω̇ωωd,2 =
1
f
[d∗]×Ṙ⊤

d ννν = −
1
f
[d∗]×[ωωωd]×R⊤

d ννν

(25)
= −

1
f 2

[d∗]×

[
[d∗]× R⊤

d ννν
]
×
R⊤

d ννν

= −

(
d⊤

∗
R⊤

d ννν
)

f 2
[d∗]×R⊤

d ννν

where R⊤

d stands for R⊤(qd). Thus, we get

ω̇ωωd,1 + ω̇ωωd,2 = −
2
f 2
(
d⊤

∗
R⊤

d ννν
)
[d∗]×R⊤

d ννν, (A.1)

= −
1
f
κ(ep, ev, f∆)[d∗]×R⊤

d ννν, (A.2)

by introducing the gain κ(ep, ev, f∆) ∈ R that, exploiting (27),
results as in (35). The derivation of ω̇ωωd,3 is instead reported
in (A.3)–(A.7) where Rd = R(qd) and R = R(q) to simplify the
notation.

ω̇ωωd,3 =
1
ξ f

[d∗]×R⊤

d ν̇νν

(27)
=

1
ξ f

[d∗]×R⊤(qd)

(
kpdkpp
m

ėp +

(
k2pd
m

− kpp

)
ėv

−

(
kpd
m

+ k∆

)
ḟ∆

)
(A.3)

(40)
=

1
ξ f

[d∗]×R⊤

d

(
kpdkpp
m

ev −

(
kpd
m

+ k∆

)
ḟ∆

+

(
k2pd
m2 −

kpp
m

)
(−mge3 + (R − Rdd∗ξ f + fr + f∆))

)
(A.4)

=
1
ξ f

[d∗]×R⊤

d

(
kpdkpp
m

ev −

(
kpd
m

+ k∆

)
ḟ∆



12 G. Michieletto, A. Cenedese, L. Zaccarian et al. / Automatica 117 (2020) 108991

+

(
k2pd
m2 −

kpp
m

)
(−mge3 + Rd∗ξ f + fr + f∆)

)
(A.5)

(22)
=

1
ξ f

[d∗]×R⊤

d

(
kpdkpp
m

ev −

(
kpd
m

+ k∆

)
ḟ∆

+

(
k2pd
m2 −

kpp
m

)(
Rd∗ξ f − kppep − kpdev + f∆

))
(A.6)

(41)
=

1
ξ f

[d∗]×R⊤

d

(
kpdkpp
m

ev +

(
kpd
m

+ k∆

)
k∆f∆

+

(
k2pd
m2 −

kpp
m

)(
Rd∗ξ f − kppep − kpdev + f∆

))
(A.7)

Using (A.2) and (A.7), and setting k1, k2(ep, ev, f∆), k3(ep, ev, f∆)
and k4(ep, ev, f∆) as in (31)–(34), it is straightforward to verify
that ω̇ωωd = ωωωdd.
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