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Abstract

State convergence is essential in several scientific areas, e.g. multi-agent consensus/disagreement, distributed optimization,
monotone game theory, multi-agent learning over time-varying networks. This paper is the first on state convergence in both
continuous- and discrete-time linear systems affected by polytopic uncertainty. First, we characterize state convergence in
linear time invariant systems via equivalent necessary and sufficient conditions. In the presence of uncertainty, we complement
the canonical definition of (weak) convergence with a stronger notion of convergence, which requires the existence of a common
kernel among the generator matrices of the difference/differential inclusion (strong convergence). We investigate under which
conditions the two definitions are equivalent. Then, we characterize weak and strong convergence by means of Lyapunov and
LaSalle arguments, (linear) matrix inequalities and separability of the eigenvalues of the generator matrices. We also show
that, unlike asymptotic stability, state convergence lacks of duality.

1 Introduction

Hand in hand with stability, state convergence of dynam-
ical, possibly uncertain, systems represents a fundamen-
tal problem in system theory. However, while stability
and asymptotic stability have been intensively studied
in the system-and-control community, state convergence
has received little attention, especially for uncertain sys-
tems. Unlike asymptotic convergence, where the state
of a certain system is supposed to converge to a known
(desired) state, with state convergence, we mean con-
vergence of a system to some state, which in general is
unknown a-priori. For this reason, we address the state
convergence problem of continuous- and discrete-time
linear systems, both time invariant and affected by poly-
topic uncertainty, by means of spectral and geometrical
analysis, Lyapunov and LaSalle theories. To the best of
our knowledge, we are the first to study convergence in
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uncertain linear systems. The problem of convergence to
a constant, a-priori unknown equilibrium state is ubiq-
uitous and spans, for instance, from distributed con-
sensus problems to multi-agent optimization and games
over networks, positive system dynamics and tuning of
plants with unknown input-output map. Two motivat-
ing problems are presented next. Further applications
are discussed in the example section (§8).

Motivating applications : We consider polar opinion
dynamics in social networks [14,1,20]. Given a group
of N agents indexed by the set I := {1, . . . , N} and
connected in a directed social network, we refer to the
model proposed in [1], where the collective opinion vec-
tor [x1; . . . ;xN ] =: x ∈ [−1, 1]N , evolves according to

ẋ(t) = −A(x(t))Lx(t). (1)

Here, A(x(t)) ∈ diag
(
[0, 1]N

)
, for all t ≥ 0, is the di-

agonal matrix that characterizes the susceptibility to
persuasion of each agent, while L ∈ RN×N is the Lapla-
cian matrix of the graph. The fundamental question in
these models is whether or not the state x(t) converges
to some a-priori unknown state x̄. In that case, we have
consensus as A(x̄)Lx̄ = 0, therefore x̄ is a zero of the
mapping x 7→ A(x)Lx. Since A(x(t)) ∈ diag([0, 1]N ),
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A(x) ∈ conv{A1, . . . , Am} for all x ∈ [−1, 1]N and given
matrices Ai ∈ RN×N , i ∈ M := {1, . . . ,m}, then there
always exist time-varying functions αi(t, x(t)) ≥ 0, for
all i ∈ M and t ≥ 0,

∑

i∈M αi(t, x(t)) = 1, such that
A(x(t)) =

∑

i∈M αi(t, x(t))Ai. In [1], A(x) is chosen

equal to
(
I − diag(x)2

)
, 1

2 (I − diag(x)) or diag(x)2.
Therefore, by denoting with ei the i-th vector of the
canonical basis, in all the three cases, we have

A(x) ∈ conv {[e1,0, . . . ,0] , . . . , [0, . . . ,0, eN ]} .

Thus, the system in (1) can be equivalently rewritten as

ẋ(t) = −
(∑

i∈M αi(t, x(t))AiL
)
x(t). (2)

Clearly, the state solution to (2) belongs to the
set of solutions to the linear differential inclusion
ẋ ∈ conv ({AiL}i∈M)x, whose convergence implies
convergence of the original nonlinear dynamics in (1).

A second motivating application of state convergence
is multi-agent learning over time-varying networks
[21,16,17,18]. For example, in multi-agent games, the
simplest dynamics to learn a Nash equilibrium are the
projected pseudo-gradient dynamics, i.e., for each agent
i ∈ I,

xi(k+1) = projΩi

(
xi(k)− ǫ∇xi

Ji(xi(k),x−i(k))
)
, (3)

where Ωi is a local constraint set, ǫ > 0 is a step size
and Ji is the local cost function, which depends on
the local decision variable xi (first argument) and on
the decision variables of the other agents x−i (sec-
ond argument). For simplicity, let xi be of dimension
1. Let Ji be quadratic in xi and affine in x−i, hence
∇xi

Ji(xi,x−i) = Φ⊤
i x + φi, for some Φi ∈ RN and

φi ∈ R, and Ωi = [ai, bi] ⊃ {0}, hence the projection is
a switched affine operator, i.e., projΩi

(v) ∈ {ai, v, bi}.
Therefore, the dynamics in (3) are contained in switched
affine dynamics x+i = projΩi

(
xi − ǫ∇xi

Ji(xi,x−i)
)
∈

{
ai, xi − ǫΦ⊤

i x− ǫ φi, bi
}
, and in turn in the uncertain

affine dynamics

yi(k) = xi(k)− ǫΦ⊤
i x(k)− ǫ φi

xi(k + 1) =







yi(k) if ai < yi(k) < bi

(b/yi(k)) yi(k) if yi(k) ≥ bi

(a/yi(k)) yi(k) if yi(k) ≤ ai

∈ [0, 1]
(
xi(k)− ǫΦ⊤

i x(k)− ǫ φi
)
,

since b/yi(k), a/yi(k) ∈ [0, 1] in their respective inter-
vals. Thus, for the collective dynamics, we have the fol-
lowing affine difference inclusion:

x(k + 1) = projΩ(x(k)− ǫ F (x(k))

∈ [0, 1]N
(
(I − ǫΦ⊤)x(k)− ǫ φ

)
, (4)

where Ω := ×N
i=1Ωi and F (x) := ×N

i=1∇xi
Ji(xi,x−i)

is the so-called pseudo-gradient mapping. Clearly, con-
vergence of the affine difference inclusion in (4) implies
convergence of the original nonlinear dynamics in (3). In
this paper, we study uncertain linear systems, since the
affine case can be cast into the linear one via additional
auxiliary states, see §8.1.

Essentially, the Nash equilibrium problem is the prob-
lem to ensure that the state x(t) of the system in (4)
converges to some a-priory unknown state x

∗, which
happens to be a Nash equilibrium due to the struc-
ture of the dynamics. Similarly, primal-dual projected
pseudo-gradient dynamics can be designed for comput-
ing a generalized Nash equilibrium in games with cou-
pling constraints [5,22,6]. While multi-agent optimiza-
tion and game equilibrium dynamics are typically non-
linear, the analysis of the linear case provides neces-
sary conditions for convergence [4], e.g. potential certifi-
cates of non-convergence, see [15] for an example of non-
convergent linear time-varying primal-dual dynamics.

Contribution:

• Preliminarily, we start with necessary and sufficient
conditions for state convergence of linear time in-
variant systems. Specifically, we link state conver-
gence with the existence of a (weak) Lyapunov func-
tion, the separability of the eigenvalues, the stabil-
ity of an auxiliary system and (linear) matrix in-
equalities (§3 - for ease of readability, the proofs of
this section are reported in Appendix A);

• We introduce the notions of weak and strong con-
vergence for uncertain linear systems.We show that
a sufficient condition, i.e., the kernel sharing prop-
erty among the generator matrices of the differ-
ence/differential inclusion, implies that the two def-
initions are equivalent (§4);

• We show that the existence of a quadratic or poly-
hedral Lyapunov function is not sufficient for strong
convergence: the existence of a suitable common de-
composition of the generating matrices is required
(§5);

• We associate sufficient (linear) matrix inequalities
to weak and strong convergence (§5-6);

• We investigate weak convergence via LaSalle argu-
ments and define the concept of weak kernel (§6);

• We show the lack of duality of state convergence
in uncertain linear systems. Nevertheless, we show
that the existence of a quadratic Lyapunov function
guarantees duality of strong convergence (§7).

Notation: N, R and R≥0 denote the sets of natural, real
and non-negative real numbers, respectively; bdry(S)
denotes the boundary of a set S. ker(A) denotes the
kernel of matrix A; µ(A) denotes its Lozinski measure,

i.e., µ(A) = limh→0
‖I+hA‖−1

h ; P ≻ (<) 0 denotes that
P is a positive (semi-)definite symmetric matrix. 0 (1)
denotes vectors with elements all equal to 0 (1).
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2 Mathematical background

Let us consider a discrete-time (DT) linear time-
invariant (LTI) system

x(k + 1) = Ax(k), (5)

where x ∈ Rn andA ∈ Rn×n, k ∈ N. For LTI systems, we
are interested in global convergence of the statex to some
vector x̄, which may depend on the initial conditions
x(0), accordingly with the following definition.

Definition 1 (Convergence)
The system in (5) is convergent if, for all x(0) ∈ Rn,
there exists x̄ ∈ Rn such that the solution x(k) to (5)
satisfies limk→∞ ‖x(k)− x̄‖ = 0. �

The convergence of LTI systems is closely related with
the location of the eigenvalues of the matrix A and their
algebraic/geometric multiplicity. Thus, let us recall the
notion of semi-simple eigenvalue [12] and of (weak) Lya-
punov function.

Definition 2 ((Semi-) Simple eigenvalue)
An eigenvalue is semi-simple if it has equal algebraic and
geometric multiplicity. An eigenvalue is simple if it has
algebraic and geometric multiplicities both equal to 1. �

Definition 3 (Weak Lyapunov function)
A positive definite function V : Rn → R≥0 is a weak Lya-
punov function (wLF) for the system in (5) if V (Ax) ≤
V (x), for all x ∈ Rn. �

In particular, to link convergence results and stabil-
ity of dynamical systems, we will consider several
classes of wLFs, as weak Quadratic Lyapunov func-
tions (wQLFs), weak Polyhedral Lyapunov functions
(wPLFs) and, more generally, weak Convex Lyapunov
functions (wCLFs).

The same definitions of convergence and stability apply
to the continuous-time (CT) LTI system

ẋ(t) = Ax(t), (6)

by substituting k ∈ N with t ≥ 0. The definition of wLF
in Definition 3, instead, reads as V̇ (x) ≤ 0 for all x ∈ Rn.

3 Convergence in LTI systems

3.1 Discrete-time systems

We start with some equivalence results that link the con-
vergence of (5) with the (at leastmarginal) stability of an
auxiliary system, (linear) matrix inequality (LMI) con-
ditions and existence of a wLF. The proofs are reported
in the appendix.

Lemma 1 The system in (5) is convergent if and only
if there exists η ∈ (0, 1) such that the system

x(k + 1) =

(
1

η
A−

1− η

η
I

)

x(k) =: Adt
η x(k), (7)

is (marginally) stable. �

Proposition 1 (Convergence in DT LTI systems)

The following statements are equivalent:

(a) The system in (5) is convergent;

(b) ∃ η ∈ (0, 1) such that the system in (7) is
(marginally) stable;

(c) there exists a wPLF for the system in (7);

(d) there exists an invertible matrix T ∈ Rn×n such that

T−1AT =

[

Aas 0

Ar I

]

,

for some Schur matrix Aas;

(e) ∃ η ∈ (0, 1) and P ≻ 0 such that:

η(A⊤PA− P ) + (1− η)(A⊤ − I)P (A− I) 4 0 ;

(f) ∃Q ≻ 0 andP < 0, with rank(P ) = n−dim(ker(A−
I)), such that:

A⊤PA− P + (A⊤ − I)Q(A− I) 4 0 ;

�

We note that if the matrix inequality (e) in Proposition 1
holds for some (η, P ), then it also holds for (η1, P ), where
η < η1 < 1. This is because the function η 7→ −(1−η)/η
is increasing for η > 0. Thus, we can fix η arbitrarily
close to 1 and solve the corresponding LMI for P ≻ 0.

Remark 1 The system in (5) is convergent if and only
if the mapping x 7→ Ax is “averaged” [4]. �

We conclude the subsection by noticing that the exis-
tence of a wPLF does not imply convergence. For exam-
ple, consider the system x(k + 1) =

[
0 −1
1 0

]
x(k), where

the state does not converge, yet ‖x(k)‖∞ is constant.

3.2 Continuous-time systems

To characterize the convergence of the CT LTI in (6),
let us also introduce the following DT auxiliary system.

Definition 4 (Euler Auxiliary System)
Given τ > 0, the DT system

x(k + 1) = (I + τA) x(k) =: Aτx(k) (8)

3



is the Euler Auxiliary System (EAS) of the CT system
in (6). �

We then have the following results.

Lemma 2 The system in (6) is convergent if and only
if there exists ǫ > 0 such that the system

ẋ(t) = A (I + ǫA)−1 x(t) =: Act
ǫ x(t), (9)

is (marginally) stable. �

Proposition 2 (Convergence in CT LTI systems)

The following statements are equivalent:

(a) The system in (6) is convergent;

(b) ∃ ǫ > 0 such that the system in (9) is (marginally)
stable;

(c) there exists a wPLF for the system in (6);

(d) there exists an invertible matrix T ∈ R
n×n such that

T−1AT =

[

Aas 0

Ar 0

]

,

for some Hurwitz matrix Aas;

(e) ∃ τ > 0 such that the EAS in (8) converges;

(f) ∃ ǫ > 0 and P ≻ 0 such that:

A⊤P + PA+ ǫA⊤PA 4 0 ;

(g) ∃Q ≻ 0 and P < 0, with rank(P ) = n −
dim(ker(A)), such that:

A⊤P + PA+A⊤QA 4 0 . �

Similarly to Proposition 1 (e), we can fix an arbitrarily
small ǫ > 0 and solve the corresponding LMI (f) in
Proposition 2 for P ≻ 0.

4 Uncertain linear systems

For difference or differential linear inclusions [2] the defi-
nition of convergence requires some care. Specifically, we
shall distinguish between weak and strong convergence.

4.1 Weak and strong convergence

We consider uncertain DT linear systems of the form

x(k + 1) = A(w(k))x(k), (10)

where A(w(k)) satisfies the following assumption.

Standing Assumption 1 (Polytopic uncertainty)

A(w) :=
∑

i∈MAiwi,

with M := {1, 2, . . . ,M} and w ∈ W, defined as

W :=

{

w ∈ R
M
∣
∣
∣

∑

i∈M

wi = 1, wi ≥ 0 ∀i ∈ M

}

.

�

In CT, we consider the differential inclusion of the form

ẋ(t) = A(w(t))x(t), (11)

with the same polytopic uncertainty structure. As for
LTI systems, we investigate whether x(k) converges to
some x̄, which in general depends on w(k). For instance,

if A(w(k)) =
[
a1,1(k) 0

1 1

]
, with a1,1(k) ∈ {1/2, 3/4} for

all k ∈ N, then x1(k) → 0 and x2(k) → x2 = x2(0) +∑

k≥0 x1(k), which is finite but depends on (a1,1(k))k∈N
.

In view of this example, we give two different definitions
of convergence.

Definition 5 (Weak convergence)
The difference inclusion in (10) (respectively, differen-
tial inclusion in (11)) is weakly convergent if, for all se-
quences w(k) ∈ W (resp., for all w(t) ∈ W) and initial
conditions x(0) ∈ Rn, there exists a vector x̄ ∈ Rn such

that lim
k→∞

‖x(k)− x̄‖ = 0
(

lim
t→∞

‖x(t)− x̄‖ = 0
)

. �

Next, we introduce a stronger notion of convergence,
i.e., convergence to the common kernel of the matrices
{Ai − I}i∈M in DT (10), or {Ai}i∈M in CT (11).

Definition 6 (Strong convergence)
The difference inclusion in (10) (resp., differential inclu-
sion in (11)) is strongly convergent if, for all sequences
w(k) ∈ W (resp., for all w(t) ∈ W) and initial condi-
tions x(0) ∈ Rn, there exists a vector x̄ ∈ X̄ ⊆ Rn, where

X̄ :=
⋂

i∈M

ker (Ai − I) ,

(

resp., X̄ :=
⋂

i∈M

ker(Ai)

)

such that lim
k→∞

‖x(k)− x̄‖ = 0
(

lim
t→∞

‖x(t) − x̄‖ = 0
)

. �

Therefore, to have strong convergence, the limit vector
must be a steady state. In other words, if we initialize the
state x(0) ∈ X̄ then x(k) = x(0) for all k > 0 and for all
possible sequences w(k) ∈ W . On the other hand, this is
not ensured with a limit vector in the case of weak con-
vergence. Moreover, as stressed in the following exam-
ple, while strong convergence implies weak convergence,
the converse does not necessarily hold.
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Example 1 The scalar difference inclusion x(k + 1) ∈
{1/2, 1} x(k) is weakly convergent (because the sequence
{x(k)}k∈N is non-increasing over k ≥ 0) but not strongly
convergent. �

4.2 Kernel sharing property: when weak convergence
implies strong convergence

We now investigate under which conditions the weak
convergence of an uncertain system of the form (10) (or
(11)) implies strong convergence.

Proposition 3 If the difference inclusion in (10) (resp.,
differential inclusion in (11)) is strongly convergent, then
thematrices {Ai − I}i∈M (resp., {Ai}i∈M), have exactly
the same kernel:

ker (Ai − I) =
⋂

i∈M

ker (Ai − I) , ∀i ∈ M

(

resp., ker(Ai) =
⋂

i∈M

ker(Ai), ∀i ∈ M

)

.

(12)

�

PROOF. We prove the DT case by contradiction (the
proof in CT is analogous). Let us assume that there exists
some j ∈ M such that we have strict inclusion, i.e., X̄ ⊂
ker (Aj − I). Then, for some x(0) ∈ ker (Aj − I)\X̄ , and
for A(w(k)) = Aj for all k ∈ N, we have the constant
solution x(k) = x(0) /∈ X̄ . �

Along this idea, we link weak and strong convergence via
the Kernel Sharing Property (KSP) introduced next.

Definition 7 (Kernel Sharing Property)
The family of matrices {Ai}i∈M has the Kernel Sharing
Property if (12) holds true. �

Note that the KSP is equivalent to claiming that
ker (A(w)) = K (resp., ker (A(w) − I) = K ) is invariant
with respect to w ∈ W . We now show that, under the
KSP assumption, if the system is weakly convergent,
then it is also strongly convergent. Some preliminary
results are reported first.

Lemma 3 Let x(k) be a solution to (10). If x(k) → x̄,
then (A(w(k)) − I) x̄→ 0. �

PROOF. Let z(k) := x(k) − x̄→ 0. By (10), we have

z(k + 1) = A(w(k))z(k) + (A(w(k)) − I) x̄.

Then, z(k) → 0 implies that (A(w(k)) − I) x̄→ 0. �

The CT counterpart is not immediate, due to some tech-
nical problems, as stressed by the following example.

Example 2 The scalar differential inclusion ẋ(t) ∈
{0, −1} x(t) is weakly convergent (because x(t) is non-
increasing over t ≥ 0). Now, let us consider the case
that A switches to −1 with spikes of decreasing length
∆h < 1, i.e., let A(w(t)) = −1 when t ∈ [h, h+∆h], and
A(w(t)) = 0 otherwise. By considering an interval size
such that

∑

h≥0 ∆h = ln(2), we observe that x(t) tends

asymptotically to x(0)/2, which is not in the common
kernel of the Ai matrices. �

Thus, the natural extension of Lemma 3 to the CT
case does not hold, i.e., x(t) → x̄ does not imply that
A(w(t))x̄ → 0. However, convergence does happen on
average, as formalized next.

Lemma 4 Let x(t) be a solution to (11). If x(t) → x̄,
then

lim
T→∞

1

T

∫ T

0

A(w(t))x̄ dt = 0 .
�

PROOF. Let z(t) := x(t) − x̄→ 0. Then, by (11),

ż(t) = A(w(t))z(t) +A(w(t))x̄.

By integrating and diving by T > 0, we obtain

1

T

∫ T

0

A(w(t))x̄ dt =
1

T

∫ T

0

(ż(t)−A(w(t))z(t)) dt

=
1

T
[x(T )− x(0)]−

1

T

∫ T

0

A(w(t))z(t) dt→ 0.

For T → ∞, the first term converges to 0 because x(t)
is bounded and, since A(w(t))z(t) → 0, the average of
a function converging to 0 converges to 0 as well. Thus,

lim
T→∞

1
T

∫ T

0
A(w(t))x̄ dt = 0. �

Lemma 5 Let x(k) be a solution to (10) (resp., x(t)
solution to (11)). If x(k) → x̄ (resp., x(t) → x̄), then
there exists some w̄ ∈ W such that (A(w̄)− I) x̄ = 0
(resp., A(w̄)x̄ = 0). �

PROOF. In the DT case, by Lemma 3 we have:

u(k) :=
∑

i∈M

(Aiwi(k)− I) x̄ =
∑

i∈M

wi(k) (Ai − I) x̄→ 0.

For all k ∈ N, since w(k) ∈ W , the vector u(k) belongs
to the convex hull of the vectors {(Ai − I)x̄}i∈M, which
is closed and convex. Thus, in the limit for k → ∞,
u(k) shall belong to the convex hull as well, i.e., 0 =
∑

i∈M w̄i (Ai − I) x̄, namely, (A(w̄)− I) x̄ = 0.

5



In the CT case, by Lemma 4, we have:

1

T

∫ T

0

∑

i∈M

wi(t)Aix̄ dt =

(
∑

i∈M

1

T

∫ T

0

wi(t) dt

)

Aix̄

=
∑

i∈M

ωi(T )Aix̄→ 0,

where ωi(T ) := 1
T

∫ T

0
wi(t) dt denotes the nonnegative

average values of {wi(t)}i∈M for every T > 0. Then, to
deriveA(w̄)x̄ = 0 for some w̄, we use the same argument
on the limit used in the DT case. �

We are now ready to exploit the previous lemmas to link
weak and strong convergence under the KSP.

Proposition 4 If the family of matrices {Ai}i∈M has
the Kernel Sharing Property, then weak convergence im-
plies strong convergence. �

PROOF. In view of Lemma 5, the convergence (if it
holds) shall be in the kernel of some (A(w̄) − I) (resp.,
A(w̄)), since the kernel is common. �

Remark 2 In view of the properties of the Laplacian
matrix of a strongly connected graph, the family of ma-
trices {AiL}i∈M in (2), the first motivating application,
has the KSP, since 1 ∈ ker(AiL), for all i ∈ M. �

The KSP, which can be efficiently verified by means of
linear algebra arguments, is crucial to investigate strong
convergence. In fact, it follows from Propositions 3 and 4
that if the matrices do not have a common kernel, there
can not be strong convergence.

5 Strong convergence

5.1 Separability of the eigenvalues

We first characterize the strong convergence property
of difference (differential) inclusions via separability of
the eigenvalues of the generator matrices. Essentially, if
the KSP holds, then the convergence analysis reduces to
investigate the asymptotic stability of a subsystem.

Theorem 1 The following statements are equivalent:

(a) The difference inclusion in (10) (resp., differential
inclusion in (11)) is strongly convergent;

(b) there exists an invertible matrix T ∈ Rn×n such
that, for all i ∈ M,

T−1AiT =

[

Aas
i 0

Ar
i Im

] (

resp., =

[

Aas
i 0

Ar
i 0m

])

,

(13)

where m := dim(X̄ ) and the matrices {Aas
i }i∈M

generate an asymptotically stable difference inclu-
sion (resp., differential inclusion). �

PROOF. We give the proof for the DT case, since the
one in CT is analogous. Let T2 ∈ Rn×m be the matrix
generated by a basis of X̄ , i.e., (Ai − I)T2 = 0 for all
i ∈ M, and let T1 ∈ R

n×(n−m) be a complement of T2
such that T := [T1 T2] ∈ Rn×n is invertible. Then, T
determines a similarity transformation that separate the
eigenvalues of the matrices {Ai}i∈M as follows:

T−1AiT =

[

Ai1 0

Ai2 Im

]

, for all i ∈ M.

Since the difference inclusion (10) converges to X̄ , this
implies that the matrices {Ai1}i∈M shall generate an
asymptotically stable difference inclusion. �

5.2 Lyapunov-like results

Next, we characterize the strong convergence property
for both difference and differential inclusions by means
of a Lyapunov analysis. First, we show that strong con-
vergence implies the existence of a polyhedral Lyapunov
function.

Theorem 2 If the difference inclusion in (10) (resp.,
differential inclusion in (11)) is strongly convergent, then
it admits a wPLF. �

PROOF. We give the proof for the CT case (the one in
DT is analogous). The strong convergence of (11) allows
to partition each matrix Ai as in (13) with {Aas

i }i∈M

that generate an asymptotically stable differential inclu-
sion. By [10, Prop. 7.39], it admits a PLF whose vertices
are in X ∈ R(n−m)×r such that, for all i ∈ M,

Aas
i X = XPi,

with Pi ∈ Rr×r strictly column diagonally dominant,
i.e., µ(Pi) < 0, for all i ∈ M. Then, let us consider the
augmented system with β > 0:

[

Aas
i 0

Ar
i 0m

]

=:Xaug

︷ ︸︸ ︷
[

X 0

0 βIm

]

=

[

X 0

0 βIm

]

=:P aug

i
︷ ︸︸ ︷
[

Pi 0

1
βA

r
iX 0m

]

.

For β sufficiently large, each matrix P aug
i is such that

µ(P aug
i ) ≤ 0, so that Xaug represents the matrix of ver-

tices of a wPLF. �

While strong convergence implies the existence of a
wPLF, it does not imply the existence of a wQLF. This
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follows by seeing asymptotic stability as a special case
of strong convergence to the kernel {0} (i.e., robust
asymptotic stability). In fact, there are uncertain lin-
ear systems that are asymptotically stable but do not
admit a quadratic Lyapunov function [10]. Conversely,
the existence of either a wPLF or a wQLF in general
does not imply convergence, neither strong nor weak,
as shown by the following examples.

Example 3 For the DT system x(k+1) ∈ {−1, 1}x(k),

with x(0) = 1, V (x) = x2 is a wQLF and
√

V (x) =
|x| is a wPLF. Whenever A(w(k)) = 1 for k even and
A(w(k)) = −1 for k odd, the system does not converge.�

Example 4 Consider a CT system with A(w(t)) ∈
{[

−α β
α −β

]

,
[
−γ δ
γ −δ

]}

for some α, β, γ, δ > 0. This sys-

tem is column weakly diagonally dominant, hence ‖x‖1 is
a wPLF [10]. If we take x(0) such that x1(0)+x2(0) = 1,
then x1(t) + x2(t) = 1 for all t. However, on the plane
x1 + x2 = 1, x2(t) is not constant under persistent
switching. �

Example 5 For the CT system with A(w) =
[
0 −w
w 0

]
,

with w > 0, V (x) = ‖x‖2 is a wQLF. While V̇ (x) =
0, the system exhibits persistent oscillations since the
eigenvalues are on the imaginary axis. �

Moreover, while (marginal) stability is equivalent to
the existence of a homogeneous Lyapunov function [13],
Theorem 2 and the previous examples show that the
existence of a wPLF is necessary but not sufficient for
convergence. In the next statement, we show instead a
necessary and sufficient condition, which is the existence
of a wPLF with special conditions.

Corollary 1 The difference inclusion in (10) (resp., dif-
ferential inclusion in (11)) is strongly convergent if and
only if there exist a full row rank matrix X and matrices

Pi =

[

P as
i 0

P r
i Im

] (

resp., Pi =

[

P as
i 0

P r
i 0m

])

,

where {P as
i }i∈M are such that ‖P as

i ‖1 < 1 (resp.,
µ(P as

i ) < 0) and, for all i ∈ M,

AiX = XPi. �

PROOF. We give the proof for the CT case, since the
one in DT is analogous. The necessity part (only if) has
been proved in Theorem 2. For the sufficiency (if), we

consider the augmented system ż = P (w)z, with z(0)
such that x0 = Xz(0), so that x(t) = Xz(t), t ≥ 0.
Such a system is strongly convergent in view of Theorem
1: z(t) → z̄, with z̄ in the common kernel of the Pi,
i.e. Piz̄ = 0. We conclude the proof by noticing that
x converges as well: x(t) = Xz(t) → Xz̄ =: x̄, which
belongs to ker

(
{Ai}i∈M

)
. The last claim is immediate,

because Aix̄ = AiXz̄ = XPiz̄ = 0. �

As for LTI systems, let us give (sufficient) LMI condi-
tions to characterize strong convergence of difference and
differential inclusions.

Theorem 3 The difference inclusion in (10) (resp., dif-
ferential inclusion in (11)) is strongly convergent if there
exist P < 0, with rank(P ) = n − dim(X̄ ), and Q ≻ 0
such that, for all i ∈ M,

A⊤
i PAi − P + (A⊤

i − I)Q(Ai − I) 4 0

(
resp.,A⊤

i P + PAi +A⊤
i QAi 4 0

)
.

(14)

�

PROOF. The proof in CT mimics the one for the im-
plication (g) ⇒ (d) of Proposition 2, by replacingA with

Ai and Â with Âi1, for all i ∈ M. The positive definite
matrix P1 generates a common wQLF for the subsystem
with matrices {Â1i}i∈M and hence strong convergence.
Analogously, the proof in the DT case mimics the one
for the implication (d) ⇒ (f) of Proposition 1. �

Finally, we characterize the relation between the strong
convergence of the differential inclusion in (11) and the
associated Euler difference inclusion

x(k + 1) = (I + τA(w(k)))x(k). (15)

Proposition 5 The differential inclusion in (11) is
strongly convergent if and only if there exists τ > 0
such that the difference inclusion in (15) is strongly
convergent. �

PROOF. For all i ∈ M, let Aτ,i := I + τAi. The
proof follows from Theorem 1 by first noticing that
ker(Ai) = ker(Aτ,i − I), for all i ∈ M. Moreover, the
fact that µ(P as

i ) < 0 implies ‖I + τP as
i ‖1 < 1 for all

τ < mink {−2/dkk}, where dkk are the diagonal entries
of P as

i . Finally, if τ > 0 is such that ‖P as
i ‖1 < 1, then

µ1((P
as
i − I)/τ) < 0. �
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5.3 Convergence rate

We close the section with a convergence rate estimate
for strong convergence. Let us consider the decompo-
sition in Theorem 1. Since Aas(w) defines an exponen-
tially stable inclusion, the first variable x1(t) converges
to zero exponentially fast, i.e., ‖x1(t)‖ ≤ c0‖x1(0)‖e−βt,
for some 0 < β := −maxi∈M µ(P as

i ), see Corollary 1.
The second component satisfies ẋ2 = Ar(w)x1, thus

x2(t) = x2(0) +

∫ t

0

Ar(w(τ))x1(τ)dτ.

Consider c1 such that ‖Ar(w)‖ ≤ c1 for all w. Then, we
have the following convergence rate for x2(t):

‖x2(t)− x2(∞)‖ = ‖

∫ ∞

t

Ar(w(τ))x1(τ)dτ‖

≤ c1

∫ ∞

t

‖x1(τ)‖dτ ≤ c0c1

∫ ∞

t

e−βtdτ =
c0c1
β

e−βt.

(16)

6 Weak convergence

6.1 Lyapunov-like results

We now characterizeweak convergence for uncertain sys-
tems via Lyapunov arguments. First, we have a converse
Lyapunov theorem.

Theorem 4 If the difference inclusion in (10) (resp. the
diffrential inclusion (11)) is weakly convergent, then it
admits a wCLF. �

PROOF. Let us consider any polytopic, 0-symmetric,
set X ⊆ Rn including the origin in its interior, and de-
note Rk as the set of reachable states for the uncertain
system (10) in at most k steps from x(0) ∈ X0. Let R∞

be the union of all these sets, i.e., R∞ :=
⋃

k∈N
Rk.

By [3], R∞ is bounded, namely there exists some b ≥ 0
such that ‖x(k)‖ ≤ b, for all x ∈ R∞. Indeed, for all
k ∈ N, there exists some x(k) that belongs to a trajec-
tory originating from x(0) ∈ X0 (actually on a vertex
[3]) which is on the boundary. Therefore, the bounded-
ness of R∞ is necessary for weak convergence. Thus, by
defining C := conv{R∞}, we note that its closure is a
convex, compact, 0-symmetric set including the origin
in its interior, and by [7, Th. 5.3] the norm induced by
this set is a wCLF. The proof is similar (although a bit
more involved) in the CT case. �

Then, we provide sufficient matrix inequality conditions
for weak convergence via a common wQLF.

Theorem 5 If there exist P ≻ 0 and η ∈ (0, 1)
(resp., ǫ > 0 ) such that, for all i ∈ M, the LMI

η(A⊤
i PAi − P ) + (1− η)(A⊤

i − I)P (Ai − I) 4 0

(
resp., A⊤

i P + PAi + ǫA⊤
i PAi 4 0

)

(17)
holds, then the difference inclusion in (10) (resp., dif-
ferential inclusion in (11)) is weakly convergent. �

PROOF. Let ǫ = (1− η)/η. By considering the wQLF
V (x) = x⊤Px, the Schur complement applied to the
first inequality in (17) gives, for any w ∈ W ,

[

V (x(k + 1))− V (x(k)) (x(k + 1)⊤ − x(k)⊤)P

P (x(k + 1)− x(k)) − 1
ǫP

]

4 0.

Then, V (x(k + 1))− V (x(k)) ≤ 0 and x(k + 1) = x(k)
for some x(k) = x̄. By noticing that the first inequality
in (17) can be equivalently rewritten as







P A(w(k))⊤P (A(w(k))⊤ − I)P

PA(w(k)) P 0

P (A(w(k)) − I) 0 1
ǫP






< 0,

for all k ≥ 0, and by averaging in the interval [0,K − 1],
we finally conclude that x̄ belongs to ker(A(w̄)), where

w̄ = limK→∞
1
K

∑K−1
k=0 w(k). Hence, the difference in-

clusion in (10) converges and V (x) is a common wQLF.

The CT version is analogous: we consider the wQLF
V (x) = x⊤Px and we apply the Schur complement to
the second inequality in (17), hence obtaining, for any
w ∈ W ,

[

V̇ (x) ẋ⊤P

P ẋ − 1
ǫP

]

4 0.

Then, V̇ (x) ≤ 0 and V̇ (x) = 0 for ẋ(t) = 0, i.e, for some
x = x̄. By noticing that the second inequality in (17)
can be equivalently rewritten as

[

A(w(t))⊤P + PA(w(t)) A(w(t))⊤P

PA(w(t)) − 1
ǫP

]

4 0,

for all t ≥ 0, and by averaging in the interval [0, T ],
we finally conclude that x̄ is in the null space of A(w̄),

where w̄ = limT→∞
1
T

∫ T

0 w(t) dt. Thus, the differential
inclusion converges and V (x) is a common wQLF. �

Remark 3 The first inequality in (17) (resp., the second
inequality in (17)) is equivalent to

(
Adt

η,i

)⊤
PAdt

η,i 4 P
(

resp.,
(
Act

ǫ,i

)⊤
P + PAct

ǫ,i 4 0
)
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for all i ∈ M, where Adt
η,i = ηAi −

1−η
η I (resp., Act

ǫ,i =

Ai(I+ ǫ)
−1), implying weak stability of the auxiliary dif-

ference inclusion (resp., differential inclusion)

x(k+1) = Adt
η (w(k))x(k),

(
resp., ẋ(t) = Act

ǫ (w(t))x(t)
)
.

�

Remark 4 Differently from strong convergence, we can-
not characterize the speed of convergence in the weak case,
since it can be arbitrarily slow and strongly depends on
the uncertain parameter. An example in CT is the scalar
system ẋ = w(t)x, with w(t) ∈ [0, 1], for each t ≥ 0. �

6.2 LaSalle-like criteria

A necessary condition for convergence requires that the
difference (differential) inclusion is at least marginally
stable. To have convergence to a non-zero vector x̄, at
least one matrix inside the convex hull of the matrices
{Ai − I}i∈M (resp., {Ai}i∈M) shall be singular. In this
case, the convergence does not need a common kernel
and it can be associated with a specific singular element.
As an example in CT, let us consider

A(w(t)) ∈ {A1, A2} =
{[

0 −1
1 −1

]
,
[

0 1
−1 −1

]}
,

where Ā = 1
2 (A1 +A2) is singular. Then, if A(w) “con-

verges” to Ā, then the trajectory converges to a non-zero
vector of the form [x̄1; 0], otherwise x→ 0. Next, we in-
vestigate LaSalle arguments of this type.

Lemma 6 Let V be a positively homogeneous wLF for
the differential inclusion in (11) with derivative

D+V (x,A(w)x) := lim sup
h→0+

V (x+ hA(w)x) − V (x)

h
,

and assume that

D+V (x,A(w)x) ≤ −φ(x,A(w)x), (18)

for some positive semi-definite, locally Lipschitz function
φ. Then x(t), solution to (11), converges to the set

N :=

{

x ∈ R
n
∣
∣
∣ min
w∈W

{φ(x,A(w)x)} = 0

}

.

�

PROOF. Let x(t) be any trajectory of (11). We have:

V (x(0)) ≥

∫ t

0

−D+V dσ ≥

∫ t

0

φ(x(σ), A(w(σ))x(σ)) dσ

≥

∫ t

0

min
w∈W

{φ(x(σ), A(w)x(σ))} dσ. (19)

The function φ is Lipschitz continuous inside the set {x ∈
Rn | V (x) ≤ V (x(0)}. Since W is a compact and convex
set, the min function is also nonnegative and Lipschitz
[2, Th. 7, p. 93]. Therefore, in view of the Barbalat’s
lemma, limt→∞ minw∈W {φ(x,A(w)x)} = 0. �

The next two results follow as a direct consequence of
Lemma 6.

Proposition 6 Let V be a smooth wLF for the differen-
tial inclusion in (11). Then x(t), solution to (11), con-
verges to the set

N :=

{

x ∈ R
n
∣
∣
∣ min
i∈M

{−∇V (x)Aix} = 0

}

. (20)

�

PROOF. The proof follows by applying Lemma 6 with
φ(x,A(w)x) = −∇V (x)A(w)x ≥ 0 and by noticing that
the minimum in (19) is achieved on the vertices, i.e.,
min
w∈W

{−∇V (x)A(w)x} = min
i∈M

{−∇V (x)Aix}. �

Remark 5 Barbalat’s lemma requires Lipschitz conti-
nuity of D+V (x,A(w)x). Consequently, if the differen-
tial inclusion in (11) admits a non-smooth wLF, V , then
we cannot guarantee the convergence to the set where
min {−D+V (x,A(w)x)} = 0. In that case, we shall rely
on some locally Lipschitz function φ, as in Lemma 6. �

Proposition 7 Let V be a positively homogeneous
wCLF for the Euler auxiliary difference inclusion in
(15) and define

∆τV (x,w) :=
V (x+ τA(w)x) − V (x)

τ
,

which is non-positive. Then x(t), solution to (11), con-
verges to the set

D :=

{

x ∈ R
n
∣
∣
∣ min
w∈W

{−∆τV (x,w)} = 0

}

.
�

PROOF. Since V is convex, for all x and w, we have
that D+V (x,A(w)x) ≤ ∆τV (x,w) [19]. The proof then
follows by taking −φ = ∆τV , which is Lipschitz contin-
uous. �

Let us observe that if V is a positively homogeneous
wPLF for (11), we can choose φ(x,A(w)x) = ∆τV (x,w)
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in (18), for some small enough τ > 0. This follows by
the fact that a polyhedral function is a wPLF for the
differential inclusion (11) if and only if, for some τ > 0,
it is a wPLF for the associated Euler auxiliary difference
inclusion.

In the DT case, we have the following LaSalle-like state-
ment.

Proposition 8 Let V be a positively homogeneous
wCLF for the difference inclusion (10). Then x(k),
solution to (10), converges to the set

D :=

{

x ∈ R
n
∣
∣
∣ min
w∈W

{V (A(w)x) − V (x)} = 0

}

.
�

PROOF. We have V (x(0)) =
∑∞

k=0 [V (x(k)) −
V (A(w(k))x(k))] ≥

∑∞
k=0 minw∈W{−∆V (x(k), w)},

where −∆V (x(k), w(k)) = V (x(k)) − V (A(w(k))x(k)).
The terms of the series are positive, hence boundedness
implies that min

w∈W
{−∆V (x(k), w)} → 0. �

6.3 Weak kernel

To further characterize weak convergence for differential
inclusions, let us introduce the notion of weak kernel.

Definition 8 (Weak Kernel)
The weak kernel of the differential inclusion in (11) is
denoted by the set

K := {x ∈ R
n | ∃w ∈ W s.t. A(w)x = 0} . �

By referring to the setN in (20), in general K ⊆ N . The
next example shows a case in which K and N coincide,
and the solution to (11) converges to the weak kernel.

Example 6 For the differential inclusion withA(w(t)) ∈
{A1, A2} = {diag(−1, 0), diag(0,−1)} , V (x) =
1
2 (x

2
1+x

2
2) is a wQLF. The setN in (20) is characterized

by the equation

min
i∈M

{x⊤Aix} = min {x21, x
2
2} = 0,

which represents the (nonconvex) union of the two
axes. Note that, in general, if there exists a wQLF
for the differential inclusion in (11), since AiP +
PAi = −Qi, with Qi < 0 for all i ∈ M, the set
N =

{
x ∈ Rn | mini∈M {x⊤Qix} = 0

}
can be computed

as the union of the kernels. �

Our result is that, under the existence of a wPLF, asymp-
totic stability of the differential inclusion in (11) is equiv-
alent to the fact that the weak kernel is trivial.

Theorem 6 Let V be a wPLF for the differential inclu-
sion in (11). Then A(w) is robustly non-singular, i.e.,
K = {0}, if and only if the solution to (11), x(t), tends
to 0 for all x(0) and (w(t))t≥0. �

PROOF. If A(w) is singular for some w ∈ W , then
we can not have robust stability. Thus, we only need
to prove the converse statement Let A(w) be robustly
non-singular and let V be defined by s-planes, indexed
in S := {1, . . . , s}. Given some ρ > 0, we introduce the
set L(V/ρ) := {x ∈ Rn | V (x) ≤ ρ} = {x ∈ Rn | f⊤

i x ≤
ρ, ∀i ∈ S}. Moreover, let A(x) be the set indexing the
active planes, i.e., A(x) := {i ∈ S | f⊤

i x = V (x)} and
let FA be any arbitrary ℓ-dimensional face

FA := {x ∈ L(V/ρ) | f
⊤
i x = ρ, ∀i ∈ E},

where E indexes the “active” planes at bdry
(
L(V/ρ)

)
.

The remainder of the proof exploits [9, Lemma 3]. Thus,
for some ℓ-dimensional face, and hence for some indices
i ∈ A(x), we shall have, for all x ∈ FA and w ∈ W ,
D+V (x,A(w)x) = f⊤

i A(w)x < 0. Otherwise, the ex-
istence of some w̄ ∈ W such that f⊤

i A(w̄)x = 0 for
all i ∈ A(x) implies the positive invariance of the LTI
system ẋ = A(w̄)x, and hence the singularity of A(w̄).
Thus, let x(t) be the solution to (11) with initial con-
dition x(t0). If x(t0) ∈ FA, by continuity there exists a
right neighborhood [t0, τ1] of t0, with τ1 > 0, such that
the active set can not grow, i.e,A(x(t)) ⊂ A(x(t0)) for all
t ∈ [t0, τ1]. By repeating the same argument, x(t) shall
reach a face of dimension 1 where there is only a single
active constraint, i.e.,A(x(t)) = {i}. Here, in view of the
considerations above, f⊤

i A(w)x < 0 for all x ∈ FA and
w ∈ W . Therefore, for any initial condition x(t0) such
that V (x(t0)) = ρ, in an arbitrary small neighborhood
[t0, τ ] of t0, for some τ > 0, we have V (x(τ)) < ρ. Then,
V (x(t)) ≥ 0 is monotonically non-increasing along any
x(t), and hence it has a limit V (x(t)) → ρ̄ from above.
From now on, the proof replicates the one in [9, Proof of
Th. 2], and hence is here omitted. �

Finally, we note that robust non-singularity, i.e., trivial
weak kernel, along with the existence of a wLF (which
is not polyhedral), does not imply convergence. For ex-
ample, consider the system ẋ =

[
0 −1
1 0

]
x and V = ‖x‖.

7 Convergence lacks of duality

It is known that the stability (asymptotic or marginal)
of x(k + 1) = A(w(k))x(k) (resp., ẋ(t) = A(w(t))x(t))
implies the stability of the dual system x(k + 1) =
A⊤(w(k))x(k) (resp., ẋ(t) = A⊤(w(t))x(t)). Similarly,
it can be shown that duality holds in the LTI case, i.e., if
x(k + 1) = Ax(k) (resp., ẋ(t) = Ax(t)) converges, then
x(k + 1) = A⊤x(k) (resp., ẋ(t) = A⊤x(t)) converges
as well. Interestingly, the convergence of an uncertain
linear system lacks of duality.
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Proposition 9 The convergence of x(k + 1) =
A(w(k))x(k) (resp., ẋ(t) = A(w(t))x(t)) does not im-
ply the convergence of the dual system x(k + 1) =
A⊤(w(k))x(k) (resp., ẋ(t) = A⊤(w(t))x(t)). �

PROOF. The proof goes bymeans of two examples.We
consider the DT case first. With a ∈ (0, 1), the system

A(w(k)) ∈ {A1, A2} =

{[

a 1

0 1

]

,

[

a 2

0 1

]}

is neither strong nor weak convergent. In fact, while
x2(k) = x2(0), for all k > 0, by taking alternatively
A(w(k)) = A1 for k even and A(w(k)) = A2 for k odd,
x1(k) exhibits persistent oscillations. However, the dual
system is strongly convergent, since it is in the block-
triangular form in Theorem 1 (b).

In CT, the differential inclusion characterized by

A(w(t)) ∈ {A1, A2} =

{[

−α β

α −β

]

,

[

−γ δ

γ −δ

]}

,

for some α, β, γ, δ > 0, does not converge (see Exam-
ple 4) while the dual system with A⊤(w(t)) is strongly
convergent to κ1, κ ∈ R. It follows by considering
V (x) = |x1 − x2| as a common Lyapunov function. �

However, an intriguing fact is that weak quadratic Lya-
punov functions provide some kind of duality.

Theorem 7 Assume that the difference inclusion in
(10) (differential inclusion in (11)) admits a wQLF.
Then, it is strongly convergent if and only if the dual
system is strongly convergent. �

PROOF. We prove the CT version first. By applying
the state decomposition of Theorem 1, we consider a
wQLF for (11) such that, for all i ∈ M,

[

P R

R⊤ Q

][

Aas
i 0

Ar
i 0m

]

+

[

(Aas
i )⊤ (Ar

i)
⊤

0 0m

][

P R

R⊤ Q

]

=

[

PAas
i + (Aas

i )⊤P +RAr
i + (RAr

i)
⊤ (∗)

R⊤Aas
i +QAr

i 0m

]

4 0,

where (∗) = (Aas
i )⊤R+(Ar

i)
⊤Q. The relation above im-

plies R⊤Aas
i + QAr

i = 0, for all i ∈ M. Then, we use
the matrices R⊤ and Q to introduce an additional state
transformation as follows

[

I 0

R⊤ Q

][

Aas
i 0

Ar
i 0m

] [

I 0

R⊤ Q

]−1

=

[

Aas
i 0

0 0m

]

.

Since {Aas
i }i∈M generate asymptotically stable differen-

tial inclusions, the same holds for
{
(Aas

i )⊤
}

i∈M
. Hence

the strong convergence of diag (Aas
i , 0m) implies the

strong convergence of the linear differential inclusion

defined by
{
A⊤

i

}

i∈M
, where A⊤

i =

[

(Aas
i )⊤ (Ar

i)
⊤

0 0m

]

.

The proof is similar for the difference inclusion in (10).
Indeed, by considering a wQLF, we have

[

(Aas
i )⊤ (Ar

i)
⊤

0 Im

][

P R

R⊤ Q

] [

Aas
i 0

Ar
i Im

]

−

[

P R

R⊤ Q

]

4 0,

which implies, for all i ∈ M, R⊤Aas
i + QAr

i − R⊤ = 0.
Moreover, by adopting the same additional state trans-
formation introduced above, we have

[

I 0

R⊤ Q

][

Aas
i 0

Ar
i I

][

I 0

R⊤ Q

]−1

=

[

Aas
i 0

0 Im

]

,

where {Aas
i }i∈M generate an asymptotically stable dif-

ference inclusion. So is
{
(Aas

i )⊤
}

i∈M
, and by following

the same reasoning for the CT case, we obtain the strong
convergence of the dual system. �

Let us summarize the main implications for linear dif-
ferential/difference inclusions next, in Table 1.

AS ⇐⇒ ∃PLF ⇐⇒ ∃PLF* ⇐⇒ AS*

⇓ ⇓

sCON =⇒ ∃wPLF ⇐⇒ ∃wPLF* ⇐= sCON*

⇓ ⇓

wCON wCON*

⇓ ⇓

MS ⇐⇒ ∃wCVXLF ⇐⇒ ∃wCVXLF* ⇐⇒ MS*

Table 1
Summary of the implications. AS = asymptotic stability;
PLF = (existence of) polyhedral Lyapunov function; sCON
= strong convergence; wCON = weak convergence; MS =
marginal stability; wCVXLF = weak convex Lyapunov func-
tion. The asterisk ∗ refers to the dual system.

8 Examples

8.1 Uncertain linear systems with persistent input

Let us consider the system

ẋ(t) = A(w(t))x(t) +Bū

11



where ū ∈ R is a constant scalar, and assume that the
unforced system is asymptotically stable for any signal
w(t) ∈ W . We observe that the state of such system con-
verges if and only if the following extended (marginally
stable) system is strongly convergent:

[

ẋ

u̇

]

=

[

A(w) B

0⊤
n 0

][

x

u

]

. (21)

In fact, strong convergence implies that the ex-
tended state converges to the common kernel K ={
[x̄ ; ū] ∈ Rn+1 | A(w)x̄ +Bū = 0

}
. This subspace has

dimension 1, since A(w) is non-singular. Let (x̄, ū) ∈ K:

with the transformation T =

[

In x̄

0⊤
n ū

]

, we have that

T−1

[

A(w) B

0⊤
n 0

]

T = diag (A(w), 0) , hence, by Theorem

1, the extended system in (21) is strongly convergent.

The DT case is analogous, since the uncertain affine sys-
tem x(k + 1) = A(w(k))x(k) + Bū, where ū ∈ R is
constant, reads as the following uncertain linear system,
where u(0) = ū:

[

x+

u+

]

=

[

A(w) B

0⊤
n 1

][

x

u

]

.

8.2 Uncertain opinion dynamics in social networks

An example of uncertain system with persistent input
is the following model of the probability distribution
of a linear emulative network of stochastic agents. Let
x[r](t) ∈ RM denote the unit-sum opinion probability
vector for the r-th agent, r ∈ N := {1, 2, . . . , N}, in lin-
ear emulative model with an arbitrary network topology.
It is shown in [11] that the probability distribution of the
r-th agent can be written as, for j ∈ M := {1, 2, . . . ,M},

ẋ
[r]
j =

∑

i∈M

q
[r]
i,jx

[r]
i + λ

(∑

k∈Nr
x
[k]
j

|Nr|
− x

[r]
j

)

where λ > 0 represents the influence intensity, equal for
different opinions, Nr the set of neighbors of agent r,

and q
[r]
i,j the probability transition rate from opinion i

to opinion j for agent r in absence of influence. From
now on, we assume that all the transition rate matri-
ces Q[r], r ∈ N , of the isolated agents are irreducible
and M = 2. Since 1⊤

2 x
[r] = 1, we can discard the sec-

ond component of each probability vector, so that the
reduced N -dimensional model reads as

ż(t) = (−∆+ λG)z(t) + q

whereG is the graph matrix, a Metzler matrix such that
1⊤
NG = 0⊤

N , ∆ = diag(δ1, . . . , δN) is a positive diagonal

matrix with elements δr = q
[r]
1,2 + q

[r]
2,1 and q is a column

vector with qr = q
[r]
2,1. Let us consider that the graph

matrix is uncertain and given by

G(w) =
∑g

i=1G
[i]wi

with G[i], i = 1, 2, . . . , g, suitable graph matrices of con-
nected graphs. The augmented system is then

[

ż

u̇

]

=

[ ∑g
i=1(−∆+ λG[i])wi q

0 0

][

z

u

]

. (22)

We note that no common kernel exists unless q = β̄∆1N ,
and in this case, the common (1-dimensional) ker-
nel is given by span([1⊤

N , (∆1N )⊤]⊤), since −(−∆ +

λG[i])−11N = 1N , ∀i ∈ N . This is the well known
unbiased network case, i.e., the bias parameters

βr = q
[r]
21/(q

[r]
21 + q

[r]
12 ) are all equal to β̄ < 1. It follows

from §8.1 that the augmented uncertain system in (22)
is strongly convergent, in particular, for all z(0) and
u(0), limt→∞ z(t) = 1N β̄u(0).

8.3 Kolmogorov–like equations

Let us consider the system

ẋ(t) =
(∑

i∈MAiwi(t)
)
x(t), (23)

where each Ai is an irreducible, Metzler matrix with
strictly positive off-diagonal elements. If Ai are column-
stochastic matrices, i.e., if 1⊤Ai = 1⊤ for all i ∈ M,
then V (x) = ‖x‖1 is a wPLF for the system in (23),
while if Ai are row-stochastic matrices, i.e., if Ai1 = 1
for all i ∈ M, then V (x) = ‖x‖∞ is a wPLF.

In general, as shown in Example 4, column-stochastic
matrices do not share a common kernel. Conversely,
in the row-stochastic case, for τ > 0 small enough,
we note that the associated Euler difference inclusion
x(k+1) = F (w(k))x(k) =

(∑

i∈M wi(k)Fi

)
x(k), where

Fi := I + τAi, ∀i ∈ M, is a positive, row-stochastic ma-
trix. Then, we have ‖Fi x‖∞ ≤ ‖x‖∞ where, unless x1 =
x2 = · · · = xn, the relation holds as strict inequality
since, for all i ∈ M,

∑

j (Fi)hj |xj | < maxj |xj |. There-
fore, the state of the system converges to the set K =
{x ∈ Rn | x1 = x2 = · · · = xn}. Under the irreducibility
assumption, K corresponds to the common kernel of the
generator matrices {Ai}i∈M.

8.4 Plant tuning with singularity

Given a static plant governed by an unknown mapping

y(t) = f(u(t))

12



such that the Jacobian matrix of f belongs to a polytope
M in which all the elements are non-singular (robust
non-singularity) and such that f(ū) = 0 for some unique
ū, then there exists a dynamic control law u̇(t) = φ(y(t))
that steers u(t) to ū [8]. Conversely, let us consider the
case in which there are isolated singular elements in M,
hence we cannot guarantee convergence to 0, but we still
need to ensure state convergence.

As an example, let us consider the flow system governed
by the equations

{
y1 = −φ(u1 − u2) + r1
y2 = φ(u1 − u2) + ψ(u2)− r1 + r2,

where r1 and r2 are references, amin ≤ a := φ′(u) ≤
amax, bmin ≤ b := ψ′(u) ≤ bmax. Next, we consider an
integral control law u̇ = −k y, with k > 0 and derive the
dynamics ẏ = Jf(u) u̇, i.e.,

[

ẏ1

ẏ2

]

= −k

[

a −a

−a a+ b

] [

y1

y2

]

,

which is a linear differential inclusion since a ∈
[amin, amax] and b ∈ [bmin, bmax]. For this system,
V (y) = ‖y‖ is a wLF and, in view of Corollary 6, the state
weakly converges to the setN =

{
y ∈ R2 | y1 − y2 = 0

}
.

9 Conclusion

The state convergence problem is highly relevant within
the system-and-control community, since it occurs in
several areas, from multi-agent learning, consensus and
opinion dynamics to plant tuning. For LTI systems, state
convergence can be characterized via necessary and suffi-
cient linear matrix inequalities and Lyapunov-like condi-
tions. In the presence of uncertainty, two different defini-
tions of state convergence, i.e., strong and weak conver-
gence, shall be considered. These two are equivalent un-
der the kernel sharing property. In general, while strong
convergence is structurally guaranteed by the separabil-
ity of the eigenvalues of the generator matrices, weak
convergence is not. Lyapunov-like sufficient conditions
for weak convergence can be established via linear ma-
trix inequalities. Necessary and sufficient conditions for
weak convergence are currently unknown.

A Proofs of statements in Section 3

A.1 Proof of Lemma 1

Let Dr := {z ∈ C | |z − (1 − r)| ≤ r}, the disk of
radius r > 0 centered in (1 − r, 0). The system in (7) is
(marginally) stable if and only if the eigenvalues of Adt

η

are contained in the unit disk D1 and those at 1 are semi-
simple. By [4, Lemma 4] the eigenvalues of A are in Dη

and those at bdry(Dη), which always containts {1}, are
semi-simple. Therefore, the system in (5) is (marginally)
stable and it converges. �

A.2 Proof of Proposition 1

(a) ⇔ (b) follows from Lemma 1, while (b) ⇔ (c) follows
by [10, Th. 4.50]. (a) ⇔ (d) follows from the fact that A
has all the eigenvalues strictly inside the unit disk and
the eigenvalues in 1 are semi-simple, thus there always
exists a state transformation that allows to separate sta-
ble and critical eigenvalues. (c) ⇔ (e) : By the Lyapunov
theorem, the system in (7) is (marginally) stable if and

only if
(
Adt

η

)⊤
PAdt

η 4 P , which leads to inequalities (e).
(d) ⇒ (f) : Assume that

T−1AT =
[
Aas 0
Ar I

]
,

for some Schur matrix Aas; and take P1 ≻ 0 such that

(Aas)⊤P1A
as − P1 +W ≺ 0,

where W := (Aas − I)⊤(Aas − I) + (Ar)⊤Ar ≻ 0. Then
the inequality in the statement is satisfied with P and
Q such that T⊤PT = diag(P1, 0) and T

⊤QT = I.

(f) ⇒ (d) : Let Â = U⊤Q1/2AQ−1/2U , P̂ =
U⊤Q−1/2PQ−1/2U , where U is an orthogonal matrix
such that P̂ = diag(P1, 0), with P1 ≻ 0. Hence, the ma-
trix inequality in the statement can be rewritten as

Â⊤P̂ Â− P̂ + (Â⊤ − I)(Â− I) 4 0 ,

Letting Â =
[
Â1 Â3

Â2 Â4

]

, the previous inequality implies

that Â3 = 0, Â4 = I, so that Â =
[
Â1 0

Â2 I

]

,. Moreover,

P1 < Â⊤
1 P1Â1 +W,

where Ŵ := (Â⊤
1 − I)(Â1 − I) + Â⊤

2 Â2. Due to the

assumption on the rank of P , Ŵ is positive definite,
hence A1 is Schur and the system is convergent. �

A.3 Proof of Lemma 2

The proof follows by noticing that there exists a relation
among the eigenvalues λ ∈ Λ(A) and ν ∈ Λ(Act

ǫ ) that
does not alter both geometric and algebraic multiplici-
ties, i.e., ν = (λ)/(1 + ǫλ). The system in (6) converges
if and only if all its eigenvalues have strictly negative real
part and those on the imaginary axis are semi-simple
and all equal to 0. Hence, there always exists ǫ > 0 small
enough that maps each λ ∈ Λ(A) with strictly negative
real part to some ν ∈ Λ(Act

ǫ ) belonging to the open left-
half plane. Therefore, by noticing that the eigenvalues
of A at 0 are mapped in 0, the system in (9) is stable. �
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A.4 Proof of Proposition 2

(a) ⇔ (b) follows from Lemma 2. (a) ⇔ (c) ⇔ (d)
follows from [10, Th. 4.49]. (a) ⇔ (e) : As in Lemma 2,
there exists a relation among the eigenvalues λ ∈ Λ(A)
and ν ∈ Λ(Aτ ) that does not alter both geometric and
algebraic multiplicities, i.e., ν = 1 + τλ. Moreover, the
eigenvectors of Aτ are respectively the same of those of
A. Therefore, the eigenvalues at 0 of A are semi-simple
if and only if the eigenvalues at 1 of Aτ are semi-simple.
(b) ⇔ (f) : By the Lyapunov theorem, the system in (9)

is (marginally) stable if and only if (Act
ǫ )

⊤
P+PAct

ǫ 4 0.
Hence, by pre and post-multiplying by (I + ǫA)⊤ and
(I + ǫA), respectively, we obtain the inequality in (f).
(d) ⇒ (g) : Assume that

T−1AT =
[
Aas 0
Ar 0

]
,

for some Hurwitz matrix Aas; and take P1 ≻ 0 such that

(Aas)⊤P1 + P1A
as +W ≺ 0,

where W := (Aas)⊤Aas + (Ar)⊤Ar ≻ 0. Then the in-
equality in the statement is satisfied with P and Q such
that T⊤PT = diag(P1, 0) and T

⊤QT = I.

(g) ⇒ (d) : Let Â = U⊤Q1/2AQ−1/2U , P̂ =
U⊤Q−1/2PQ−1/2U , where U is an orthogonal matrix
such that P̂ = diag(P1, 0), with P1 ≻ 0. Hence, the ma-
trix inequality in the statement can be rewritten as

Â⊤P̂ + P̂ Â+ Â⊤Â 4 0 ,

Letting Â =
[
Â1 Â3

Â2 Â4

]

, the previous inequality implies

that Â3 = 0, Â4 = 0, so that Â =
[
Â1 0

Â2 0

]

. Moreover,

P1 < Â⊤
1 P1Â1 +W,

where Ŵ := Â⊤
1 Â1 + Â⊤

2 Â2. Due to the assumption on

the rank of P , Ŵ is positive definite, henceA1 is Hurwitz
and the system is convergent. �
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