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Abstract

In this paper a novel approach is presented for control design with guaranteed transient performance for multiple-input
multiple-output discrete-time linear polytopic difference inclusions. We establish a theorem that gives necessary and sufficient
conditions for the state to evolve from one polyhedral subset of the state-space to another. Then we present an algorithm which
constructs a time-varying output feedback law which guarantees that the state evolves within a time-varying polyhedral target-
tube specifying the system’s desired transient performance. We present generalisations involving constraints on the control,
and a bounded additive disturbance term. Our formulation is very general and includes reference tracking with any desired
transient behaviour in the face of disturbances, as specified, for example, by the most popular step response specifications.
The approach is demonstrated by an example involving the control of water levels in two coupled tanks.
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1 Introduction

Research in control theory is often concerned with sta-
bility without regarding the transient behaviour of a sys-
tem. However, in industry this aspect is very important:
a stable system with big transient errors or a very long
settling time is obviously undesirable and very likely to
be put aside by engineers. PID has enjoyed much suc-
cess in industry not only because it is relatively sim-
ple, but also because the design often addresses per-
formance specifications, such as rise-time, settling-time,
over-shoot and steady-state error, see [37]. However, one
of PID’s shortcomings is the fact that it does not explic-
itly take constraints and performance requirements into
account, resulting in engineers often resorting to their
experience and trial-and-error.

The problem of designing control systems capable of
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shaping transient performance has received the atten-
tion of a number of researchers, and we present a sum-
mary of the problem’s history. Typical adaptive control
schemes are plagued by unacceptable transients and it
is in this field that, to our knowledge, one of the first
papers on shaping a system’s transient response accord-
ing to explicit performance specifications, see [32], was
produced. Concentrating on single-input single-output
(SISO) systems that are minimum phase, the authors
approach the problem by dynamically adjusting the con-
troller’s feedback gains. Other works in adaptive control
that are concerned with transient performance usually
present results in the form of guaranteed bounds on the
evolution of the state, output, or control signals, see for
example [38,33]. Note, however, that these works do not
consider the derivation of control laws such that explicit
performance requirements are satisfied.

Funnel control, introduced in [23], approaches the prob-
lem by specifying time-varying constraints (the “fun-
nel”) on the output and letting the control magnitude
be dependent on the distance of the output to the funnel
boundary. The theory is applicable to a great diversity
of dynamical systems of known relative degree that sat-
isfy a “high frequency gain condition”, and which have
the same number of inputs as outputs. Later works, see
[20,19], consider constrained inputs in the formulation;
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and [30] considers a bang-bang implementation. Funnel
control has found application in many fields, see for ex-
ample [34,16,17]. The reader may also refer to the refer-
ences [18,21,22].

Another approach to shaping transients is presented in
[1] and [2] for feedback linearisable nonlinear systems,
and systems in strict-feedback, respectively. The authors
specify performance requirements through time-varying
constraints on the state and introduce a transformation
that recasts this problem into an unconstrained one, the
stability of which leads to a solution of the original per-
formance problem. Though the method is applicable to
unknown nonlinear systems with mild assumptions, one
still needs to solve a new stabilisation problem. More re-
cently, the paper [3] introduces a similar, but simpler,
idea to systems in pure feedback form.

Then there are approaches that may be described as
target-tube problems (introduced in [4] and [13]), where
one specifies a time-varying set, called the target-tube,
over a finite horizon and then seeks a control law that
keeps the state in this tube. In [4] the authors showed
that under the assumption that the target-tube and
control constraints are ellipsoidal, a linear time-varying
feedback can be constructed backwards in time for
discrete-time linear systems with an additive distur-
bance term. They also presented results for polyhedral
target tubes, under the assumption of an invertible
system matrix. The work of [27,29] and [28, Ch.8], ad-
dresses the problem using an “ellipsoidal calculus”. The
approach involves finding a problem’s “solvability set”
through the solution of a “funnel equation” and at ev-
ery time instant selecting a control value that results in
the state evolving towards the solvability set’s interior.
Under the assumptions of linear systems and ellipsoidal
constraint sets the solvability set may be obtained from
the solutions of differential equations. The papers [25]
and [15] consider linear discrete-time systems subjected
to mixed polyhedral constraints and a bounded additive
disturbance term, with the goal of finding a sequence
of disturbance feedback laws. They show that the set of
feedbacks is convex, but the approach requires exact
knowledge of all past states and inputs and an accurate
model of the system. The work [26] considers the prob-
lem for a class of uncertain discrete-time systems under
the assumption of parallelepipeds in the problem data.
An iterative algorithm to solve the control synthesis
problem is then presented.

In this paper we present a novel target-tube approach to
ensuring desired transient performance. We build on our
previous conference paper, see [10], where some of the
ideas in this work were introduced, and present a much
improved and more complete approach, along with some
results on the existence of a solution to our introduced
algorithm. The contributions are summarised as follows.

(1) We consider discrete-time linear polytopic differ-

ence inclusions. This type of model, which can be
interpreted as an uncertain linear model, also often
appears in the literature as a surrogate model for
some nonlinear systems. Examples include linear
parameter varying systems, see [8, Ch. 7] and [35],
and fuzzy nonlinear system modelling, [36]. Most
other works that address the target-tube problem
assume an exact linear time-invariant model, pos-
sibly with a bounded additive disturbance term.

(2) We require the output to be contained in a time-
varying polyhedral target-tube, which specifies the
desired performance characteristics. Polyhedral
constraints are often more natural to impose on
physical systems in comparison with, for exam-
ple, time-varying ellipsoidal constraint sets, which
the vast majority of other works on target-tubes
consider.

(3) We present an algorithm where we start with the
target set, XT , at the end of the horizon and find
a sequence of output feedbacks, of the form u(k) =
F (k)y(k) with F (k) a matrix for every k, backwards
in time in a dynamic programming fashion, as in
[4], along with an initial set, X0, such that for ev-
ery initial condition x0 ∈ X0 the feedback results
in the state evolving within the target-tube until
it reaches the target set. This is an improvement
over the method used in [10] where the feedback
was found forwards in time, which made the con-
structed sets susceptible to the wrapping effect. To
our knowledge, the current paper, as well as the pa-
per [10], are the first that attempt to find a time-
varying linear state/output feedback under the as-
sumption of a polyhedral target-tube.

(4) We emphasise that in our approach the sequence of
feedbacks is found off-line via the solution of linear
programming problems, and that there are no on-
line optimisation problems that need to be solved.
Thus, our approach shares no similarity with model
predictive control.

(5) We generalise the results so that one may include a
bounded additive disturbance term in the dynamics,
as well as polytopic constraints on the control.

To arrive at our results we exploit ideas that appear in
set-theoretic methods. In that context, when studying
the performance of systems, one is usually concerned
with concepts such as decay-rate, transient estimates
and reachable sets, see for example [8], [9] and [12], and
the references therein.We adapt a well-known result that
appears in [6] and [8], which is related to polyhedral
invariant sets, to produce a theoremwith conditions that
guarantee that the state evolves from one polyhedral set
to another. We then use this theorem to arrive at an
algorithm that constructs a feedback backwards in time,
as mentioned in point (3) above.

The paper is organised as follows: in Section 2 we specify
the system under investigation and the problem we wish
to solve. In Section 3 we present an overview of reach-
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able sets and state our main tool: a theorem that gives
necessary and sufficient conditions for the state to evolve
from one polyhedral set to another. Section 4 presents
an algorithm that uses Theorem 1 to construct a time-
varying feedback that solves our problem. In Section 5
we generalise the results to systems with a bounded ad-
ditive disturbance term and polytopic constraints on the
control. Section 6 is dedicated to a discussion on stabil-
ity issues. In Section 7 we present an example, involving
the control of fluid levels in two coupled tanks via out-
put feedback. Finally, we conclude with Section 8.

Notation

If M is a matrix, M [i] refers to its i-th row. The nota-
tion M ≥ 0 means that every element of the matrix M
is nonnegative. (M ≥ 0 does not mean M is positive-
semidefinite.) If r is an n-dimensional vector, then ri
refers to its i-th coordinate, and r ≥ 0, r ≤ 0 and r 6= 0
indicates that ri ≥ 0, ri ≤ 0 and ri 6= 0, respectively,
for i ∈ {1, . . . , n}. If both r and s are n-dimensional
vectors, then the notation r ≤ s is to be interpreted
element-wise. The notation rT indicates the transpose
of the vector r. A column vector of appropriate dimen-
sion with all its elements equal to one is given by 1.
A matrix, of appropriate dimensions, with all its ele-
ments equal to 0 is given by 0. In×n refers to the n di-
mensional identity matrix. The notation R

n refers to n-
dimensional Euclidean space; Rm×n to the set of all ma-
trices withm rows and n columns, and with real entries;
and Z≥0 to the set of nonnegative integers. The acronym
s.t. stands for “subject to”. A polyhedral set is specified
by P(M,m) = {x ∈ R

n : Mx ≤ m} where M ∈ R
p×q,

with not all the elements of the row vector M [i] equal
to 0; and m ∈ R

p. If S ⊂ R
n, TS , {Ts : s ∈ S}

and βS = {βs, s ∈ S}, where T is a linear transforma-
tion and β ≥ 0 a real number. Given two subsets of Rn,
S1 and S2, the Minkowski sum is given by S1 ⊕ S2 ,

{s1+ s2 : s1 ∈ S1, s2 ∈ S2}. A C-set, [8], is a convex and
compact subset of Rn containing the origin as an inte-
rior point. The C-set S is said to be η-contractive, [8],
for the system x(k+1) = Ax(k) provided that for every
x ∈ S we haveMS(Ax) ≤ η, 0 ≤ η < 1. The notation
co{Mi} = {M =

∑s

i=1 βiMi : βi ≥ 0,
∑s

i=1 βi = 1},
where the summation is done element-wise.

2 Problem Formulation

We consider linear polytopic difference inclusions:

x(k + 1) = A(k)x(k) +B(k)u(k) (1)

y(k) = Cx(k), (2)

where k = 0, 1, . . . ,K is the time index and K ∈ Z≥0

specifies the time horizon; x(k) ∈ R
n is the state, y(k) ∈

R
r is the output, and u(k) ∈ R

m is the control. The con-
catenated matrix [A(k) B(k)] is assumed to be “poly-

topic”, that is, [A(k) B(k)] ∈ co{[Ai Bi]}si=1 for every
k, and C is assumed to be constant.

We now introduce two polyhedral sets: withQT ∈ R
qT×n

a constant matrix, XT ⊂ R
n is the target set:

XT = P(QT , ψT ),

with ψT having compatible dimension. With Q(k) ∈
R
q(k)×n (i.e., the number of rows of the matrixQ(k) may

vary in time), and φ(k) a vector of compatible dimension
for every k, the performance requirements of the system
are specified with a time-varying polyhedral set, called
the target-tube:

H(k) = P(Q(k), φ(k)), k ∈ {0, . . . ,K},

with H(K) = XT . We make the following assumption,
which is introduced in connection with the existence of
solutions to our algorithm, which is to follow:

(A1) H(k) is bounded for every k ∈ {0, 1, . . . ,K}.

We point out that our formulation allows for the specifi-
cation of transient performance for the state or output,
and that one may opt to only specify the performance of
some of the coordinates. As an example, suppose that for
a planar system there are two outputs, y1 = x1+x2 and
y2 = x2 − x1, subjected to constant performance con-
straints: |y1| ≤ 1 and |y2| ≤ 1 for all k. We would then

have Q(k) ≡
(

1 −1 −1 1

1 −1 1 −1

)T

φ(k) ≡
(

1 1 1 1
)T

.

Furthermore, it is simple to specify the setH(k) in order
to enforce traditional performance specifications for reg-
ulation and tracking problems over finite horizons. For
example, let system (1)-(2) be the discrete-time descrip-
tion of a continuous-time system over a horizon [0, T ].
Then, suppose it is desired that the i-th output variable,
yi, initiating at yi(0), reaches a set-point, yspi , within
a settling-time, ts, and with a steady-state error of λs.
Moreover, suppose this should occur within a peak over-
shoot of ypi and that the output variable rises to within
λr of yspi with a rise-time of tr. Letting the sampling
time be denoted by Ts, one could use sampled versions
of functions hi(t) and hi(t), like in Figure 1, where t ∈
[0, T ], and specify Qj1(k) ≡ Ci, φj1 (k) = hi(kTs) + yspi ,
Qj2(k) ≡ −Ci, and φj2(k) = −hi(kTs) − yspi , where j1
and j2 refer to two arbitrary rows of Q(k).

Problem Statement

Given the system (1)-(2) along with a time horizon,
K ≥ 0, a target set XT and a time-varying target-
tube, H(k), satisfying XT = H(K), find a linear time-
varying feedback control, u(k) = F (k)y(k), and an ini-
tial set, X0 ⊂ H(0), such that the solution to (1) satisfies
x(k) ∈ H(k), for all k ∈ {0, . . . ,K}, for all x0 ∈ X0.
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Fig. 1. Transient performance specifications for a step set–
point change. The set-point is specified by y

sp
i , the steady-s-

tate error by λs, the λr-rise-time by tr and the peak
over-shoot by y

p
i .

3 Reachable Sets

Reachable sets play a central role in the derivation of our
results. In the next definition assume that a feedback
matrix, F (k), has been specified, resulting in the control
u(k) = F (k)y(k) = F (k)Cx(k).

Definition 1 (One-step reachable set) Consider
the closed-loop system:

x(k + 1) = (A(k) +B(k)F (k)C)x(k), (3)

for k ∈ Z, with [A(k) B(k)] ∈ co{[Ai Bi]}si=1 and
x(k) ∈ S1 ⊂ R

n. The one-step reachable set from S1 via
(3) is given by:

R([A(k) +B(k)F (k)C], S1)

, {x ∈ R
n : x = (A(k) +B(k)F (k)C) x(k),

x(k) ∈ S1, [A(k) B(k)] ∈ co{[Ai Bi]}si=1}.

The one-step reachable set is the set of all possible suc-
cessor states. Note that R([A(k) +B(k)F (k)C], S1) =
co{R([Ai +BiF (k)C], S1)}.

In order to give the reader some background as to where
our main result (Theorem 1) comes from, we briefly
present ideas concerning polyhedral invariant sets. The
next proposition, which we have slightly modified, orig-
inally appeared in [5] and [6] in a form that guarantees
invariance, i.e. the case where η = 1.

Proposition 1 ( [5], [6], [8]) Consider the linear sys-
tem:

x(k + 1) = Ax(k), (4)

k ∈ Z≥0, and let P(W,1) be a polyhedral C-set. The set
P(W,1) is η-contractive for the system (4) if and only if

there exists a matrix G that satisfies:

G ≥ 0,

GW =WA,

G1 ≤ η1,

where 0 ≤ η < 1.

We omit the proof in the interest of conciseness but
present its ideas in Figure 2. Next we state a result that
was originally introduced in [10]. It is, in turn, an adap-
tation of the result in Proposition 1. In our adaptation
the state evolves from an arbitrary polyhedral set to
another. We also mention that this theorem has been
utilised in the study of finite-time stability with polyhe-
dral domains, see [11].

Theorem 1 Consider the system x(k + 1) = Ax(k)
along with two polyhedral sets, P(M1, µ) ⊂ R

n and
P(M2, ν) ⊂ R

n, with x(k) ∈ P(M1, µ) for an arbitrary
k ∈ Z. The following holds: R(A,P(M1, µ)) ⊂ P(M2, ν)
if and only if there exists a matrix G satisfying:

G ≥0, (5)

GM1 =M2A, (6)

Gµ ≤ν. (7)

PROOF. (if) We have x(k) ∈ P(M1, µ) for an arbi-
trary k ∈ Z, thusM1x(k) ≤ µ. If there exists aG satisfy-
ing (5)-(7) thenM2Ax(k) = GM1x(k) ≤ Gµ ≤ ν. Hence
we have Ax(k) ∈ P(M2, ν) and thus R(A,P(M1, µ)) ⊂
P(M2, ν).

(only if) We have x(k) ∈ P(M1, µ) and Ax(k) ∈
P(M2, ν) for an arbitrary k ≥ 0. For each j ∈
{1, . . . , q2}, where M2 ∈ R

q2×n, consider the following
linear program:

ρj = max
x

M
[j]
2 Ax, s.t. M1x ≤ µ.

The dual problem is

ρj = min
gj

gTj µ, s.t. gTj M1 =M
[j]
2 A, gTj ≥ 0,

where gj is the vector of dual variables for the j−th linear
program. Let G[j] (a row vector) be a feasible solution
to the dual problem, and let G be the matrix formed
by stacking these q2 solutions. Then, GM1 = M2A and
every entry of G is nonnegative, so that (5) and (6) are

true. Noting that ρj = maxx∈P(M1,µ)M
[j]
2 Ax ≤ νj and

the fact that ρj = G[j]µ (by strong duality), we have

G[j]µ ≤ νj for each j, which implies Gµ ≤ ν, which is
(7).
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(a) (b)

Fig. 2. The figure labelled (a) summarises Proposition 1:
if its conditions are met, then at an arbitrary k we have
x(k) ∈ ηkS , 0 ≤ η < 1. The figure labelled (b) summarises
Theorem 1: if its conditions are met, then for x(k) ∈ P(W,w)
it is guaranteed that x(k+1) ∈ P(Z, z), where P(W,w) and
P(Z, z) are arbitrary polyhedral subsets of Rn.

We nowgeneralise Theorem 1 to the case of the uncertain
system (3).

Corollary 1 Consider the closed loop system (3) with
an input u(k) = F (k)y(k) = F (k)Cx(k), along with
two polyhedral sets, P(M1, µ) ⊂ R

n and P(M2, ν) ⊂
R
n, with x(k) ∈ P(M1, µ) for an arbitrary k ∈ Z. The

following holds: R([A(k) + B(k)F (k)C],P(M1, µ)) ⊂
P(M2, ν) if and only if for every i ∈ {1, 2, . . . , s} there
exists a matrix Gi satisfying:

Gi ≥0, (8)

GiM1 =M2[Ai +BiF (k)C], (9)

Giµ ≤ν. (10)

PROOF. BecauseP(M2, ν) is convex, we haveR([Ai+
BiF (k)C],P(M1, µ)) ⊂ P(M2, ν) for i ∈ {1, 2, . . . , s}
if and only if co{R([Ai + BiF (k)C],P(M1, µ))}si=1 =
R([A(k) + B(k)F (k)C],P(M1, µ) ⊂ P(M2, ν). From
Theorem 1 we have R([Ai + BiF (k)C],P(M1, µ)) ⊂
P(M2, ν) for every i ∈ {1, 2, . . . , s} if and only if condi-
tions (8)-(10) hold for i ∈ {1, 2, . . . , s}, which completes
the proof.

Remark 1 Corollary 1 says that for the system (3) one
only needs to be concerned with the “extreme” matrices
[Ai Bi].

4 Algorithm

We now present an algorithm that takes advantage of
Corollary 1 to construct a time-varying feedback that
addresses the problem statement. We introduce the set:

X (k) = P(Q(k), ψ(k)), k ∈ {0, 1, . . . ,K},

with X (K) = XT , where Q(k) is the same matrix that
appears in the definition ofH(k). Taking a dynamic pro-
gramming approach, as in [4], the idea is to start with the
target set, XT , and, working backwards in time, to find a
feedback F (K−1) and a set X (K−1) ⊂ H(K−1) such
thatR([A(K−1)+B(K−1)F (K−1)C],X (K−1)) ⊂

H(K). We then find an F (K − 2) and an X (K − 2) ⊂
H(K − 2) such that R([A(K − 2) + B(K − 2)F (K −
2)C],X (K − 2)) ⊂ X (K − 1), and continue going back-
wards in this fashion until k = 0.

Algorithm 1

Inputs: Q(k), φ(k) for k = 0, . . . ,K
Outputs: ψ(k), F (k) for k = 0, . . .K − 1.
Begin.
Let ψ(K)← φ(K).

1: for k = K − 1,K − 2, . . . , 0 do
2: Solve LP1.
3: Let (ǭ(k), {Ḡi(k)}si=1, F̄ (k)) be the solution

to LP1.
4: Let F (k)← F̄ (k).
5: if ǭ(k) = 0 then
6: Let ψ(k)← φ(k).
7: else
8: Solve LP2, with {Ḡi(k)}si=1.
9: Let ψ̄(k) be the solution to LP2.
10: Let ψ(k)← ψ̄(k).
11: end if
12: end for

End.

Linear Programming Problem 1 (LP1)

min
ǫ(k),{Gi(k)}s

i=1
,F (k)

ǫ(k)T1

s.t. for i ∈ {1, 2, . . . , s} :
Gi(k) ≥ 0,

Gi(k)Q(k) = Q(k + 1)[Ai +BiF (k)C], (11)

Gi(k)φ(k) ≤ ψ(k + 1) + ǫ(k), (12)

ǫ(k) ≥ 0.

Linear Programming Problem 2 (LP2)

max
ψ(k)

ψ(k)T1

s.t. for i ∈ {1, 2, . . . , s} :
Ḡi(k)ψ(k) ≤ ψ(k + 1), (13)

ψ(k) ≤ φ(k). (14)

4.1 Explanation of Algorithm

For an arbitrary k ∈ {0, 1, . . . ,K−1} LP1 considers the
set X (k+1), which satisfies X (k+1) ⊂ H(k+1), along
with the set H(k), and attempts to find an F (k) such
that:

R([A(k) +B(k)F (k)C(k)],H(k)) ⊂ X (k + 1).

If ǭ(k) 6= 0 one can conclude that there does not exist
an F (k) such that this is possible. However, there might
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still be an X (k) ⊂ H(k) such that F̄ (k), computed from
LP1, results in:

R([A(k) +B(k)F̄ (k)C(k)],X (k)) ⊂ X (k + 1).

LP2 then attempts to find an X (k) that satisfies this.
The constraint (14) ensures that X (k) ⊂ H(k), and the
cost in LP2 is included in order to find a “large” set
contained inH(k). Thus, the idea is that at an arbitrary
k LP1 finds an F (k) such that the resulting one-step
reachable set is as close as possible to being contained in
H(k + 1). Then, LP2 tries to find a subset of H(k) such
that this is true.

Remark 2 The main difficulty associated with the con-
ditions of Corollary 1 is that, if one assumes Gi(k) and
φ(k) are decision variables, the constraint (12) is non-
linear and nonconvex. The algorithm is an attempt at
working around this difficulty.

4.2 Solution to the Problem

Proposition 2 Suppose that Algorithm 1 success-
fully executes and produces a pair (ψ(k), F (k)) for

k ∈ {0, 1, . . . ,K − 1}. Then, for every x0 ∈ X0 ,

X (Q(0), ψ(0)) the computed feedback results in a so-
lution to the system (1)-(2) satisfying x(k) ∈ X (k) ⊂
H(k), k ∈ {0, 1, . . . ,K}.
PROOF. The proof is by induction. Consider an arbi-
trary k ∈ {0, 1, . . . ,K − 1}, with x(k) ∈ X (k) ⊂ H(k).
If the pair (ψ(k), F (k)) was produced from the solution
of LP1 and ǭ(k) = 0, we can conclude from Theorem 1
that:

R([A(k) +B(k)F (k)C],H(k)) ⊂ X (k + 1) ⊂ H(k+ 1).

Otherwise, if the pair (ψ(k), F (k)) was produced from
the solution of LP2 (due to the fact that LP1 produced a
solutionwith ǭ(k) 6= 0), we can conclude fromTheorem 1
that:

R([A(k) +B(k)F (k)C],X (k)) ⊂ X (k + 1) ⊂ H(k+ 1).

Thus, for x(k) ∈ X (k) at an arbitrary k ∈ {0, 1, . . . ,K−
1}, it is guaranteed that x(k+1) ∈ X (k+1) ⊂ H(k+1).
We have x0 ∈ X0, and so the proof follows by induction.

4.3 Existence of Solution

We introduce the following two assumptions:

(A2) For every k ∈ {0, 1, . . . ,K} the target tube H(k)
contains the origin in its interior.

(A3) For an arbitrary k the constraint ψ(k) ≥ 0 is
added to LP2.

Proposition 3 Consider the system (1) - (2). Suppose
(A1), (A2) and (A3) hold. Then there always exists a
solution (ψ(k), F (k)), for k ∈ {0, 1, . . . ,K − 1}, as the
output of Algorithm 1.

PROOF. Because the entries of the matrices Ai and
Bi, i ∈ {1, 2 . . . , s} are real (and thus finite) and the set
H(k) is bounded for k ∈ {0, 1, . . . ,K} (from (A1)), the
one-step reachable set, R([A(k) + B(k)F (k)C],H(k))
for k ∈ {0, 1, . . . ,K−1} is bounded for any choice of feed-
back matrix F (k). Thus, there always exists a bounded
polyhedral set, with the normals of its constituent hy-
perplanes specified byQ(k+1), that contains this reach-
able set, which, via Corollary 1, implies that there must
exist a solution to LP1. (The vector ǫ(k) in LP1 may be
chosen arbitrarily large, but finite.) The problem spec-
ified by LP2, with Assumption (A3), always has a so-
lution: because of assumption (A2), for any k we have
φ(k) ≥ 0. Also, because of lines 6 and 10 of the algo-
rithm and (A3), we have ψ(k + 1) ≥ 0. Thus, for any k,
ψ(k) = 0 is always a solution to LP2 with Assumption
(A3).

Remark 3 Assumptions (A2) and (A3) imply that one
may always resort to the singleton {0} as the set X (k),
because R([A(k) + B(k)F (k)C], {0}) = {0} ∈ H(k +
1) for any feedback F (k). For some problems, especially
ones with large uncertainty, it may be that the sets X (k)
become small neighbourhoods of the origin as k iterates
down from K−1. In this case, it may make sense to drop
(A2) and (A3) at the cost of not having a guarantee of
finding a solution from Algorithm 1.

5 Generalisations

5.1 Additive Disturbance Term

Consider the system:

x(k + 1) = A(k)x(k) +B(k)u(k) +Dv(k), (15)

y(k) = Cx(k), (16)

where for every k,A(k) andB(k) are the same as before,
and the disturbance, v(k) ∈ R

p, is assumed to be located
in a time-varying polyhedral set, given by

V(k) = P(W (k), γ(k)) k ∈ {0, . . . ,K − 1},

withW (k) ∈ R
qv(k)×p, qv(k) ∈ Z≥0, and γ(k) a vector of

compatible dimension for every k. At an arbitrary k ∈ Z,
consider the extended vector (x(k)T , v(k)T )T ∈ R

n+p.
With a feedback, u(k) = F (k)y(k), we can consider the
equation:

x(k + 1) = [A(k) +B(k)F (k)C D][x(k)T , v(k)T ]T ,

and define a modification of the one-step reachable set.
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Definition 2 Consider the closed-loop system:

x(k + 1) = [A(k) +B(k)F (k)C]x(k) +Dv(k), (17)

for k ∈ Z, with [A(k) B(k)] ∈ co{[Ai Bi]}si=1, x(k) ∈
S1 ⊂ R

n and v(k) ∈ S2 ⊂ R
p. The one-step reachable

set with disturbance from S1 and S2 via (17) is given by:

R([A(k) +B(k)F (k)C D], S1, S2)

, {x : x = [A(k) +B(k)F (k)C D][x(k)T , v(k)T ]T ,

x(k) ∈ S1, v(k) ∈ S2, [A(k) B(k)] ∈ co{[Ai Bi]}si=1}.

Note that:

R([A(k) +B(k)F (k)C D], S1, S2)

= co{R([Ai +BiF (k)C], S1)} ⊕DS2

= co{R([Ai +BiF (k)C D], S1, S2)}.

We generalise Corollary 1 as follows:

Corollary 2 Consider the system (17), along with
three polyhedral sets, P(M1, µ) ⊂ R

n, P(M2, ν) ⊂ R
n,

and P(M3, ξ) ⊂ R
p, with x(k) ∈ P(M1, µ) and v(k) ∈

P(M3, ξ) for an arbitrary k ∈ Z. The following holds:
R([A(k) + B(k)F (k)C D],P(M1, µ),P(M3, ξ)) ⊂
P(M2, ν), if and only if for every i ∈ {1, 2, . . . , s} there
exists a matrix Gi satisfying:

Gi ≥0, (18)

Gi

[

M1 0

0 M3

]

=M2[Ai +BiF (k)C D], (19)

Gi

[

µ

ξ

]

≤ν. (20)

PROOF. The proof of Theorem 1 is easily adapted to
the current setting, and we can conclude that R([Ai +
BiF (k)C D],P(M1, µ),P(M3, ξ)) ⊂ P(M2, ν) for ev-
ery i if and only if conditions (18)-(20) hold for every
i. Then, as argued in the proof of Corollary 1, R([Ai +
BiF (k)C D],P(M1, µ),P(M3, ξ)) ⊂ P(M2, ν) for ev-
ery i if and only if

R([A(k) +B(k)F (k)C D],P(M1, µ),P(M3, ξ))

⊂ P(M2, ν),

which completes the proof.

To now use Algorithm 1 to find a feedback sequence for
the system with disturbance, the conditions (11) and
(12) of LP1 need to replaced with:

Gi

[

Q(k) 0

0 W (k)

]

= Q(k+1)[Ai+BiF (k)C D], (21)

and

Gi(k)

[

φ(k)

γ(k)

]

≤ ψ(k + 1) + ǫ(k), (22)

respectively, and the condition (13) of LP2 needs to be
replaced with:

Ḡi(k)

[

ψ(k)

γ(k)

]

≤ ψ(k + 1). (23)

The existence result of Proposition 3 can be modified as
follows; we need to enforce additional assumptions:

(A4) DV(k) ⊂ H(k+1) for every k ∈ {0, 1, . . . ,K−1},
(A5) The constraintDV(k) ⊂ X (k+1) is added to LP2
for k ∈ {K − 2,K − 3, . . . , 0}.

Then, we can state:

Proposition 4 Consider the system (15) - (16). Sup-
pose (A1)-(A5) hold, that the conditions (11) and (12) of
LP1 have been replaced with (21) and (22) respectively,
and that constraint (13) of LP2 has been replaced with
(23). Then there always exists a solution (ψ(k), F (k)),
for k ∈ {0, 1, . . . ,K − 1}, as the output of Algorithm 1.

PROOF. As in the proof of Proposition 3, because of
Assumption (A1) there always exists a solution to LP1
with the conditions (11) and (12) replaced with condi-
tions (21) and (22), respectively. Now, let k = K−1 and
suppose LP1 has been solved with ǫ(K−1) 6= 0, produc-
ing F̄ (K− 1). Consider LP2 with the constraint (13) re-
placed with (23), and k = K − 1. Because of (A2)-(A4),
with ψ(K − 1) = 0, we have:

R([A(K − 1) +B(K − 1)F̄ (K − 1)C D],

{0},P(W (K − 1), γ(K − 1))

= {0} ⊕DP(W (K − 1), γ(K − 1)) ⊂ H(K).

Otherwise, with k ∈ {K− 2,K− 3, . . . , 0} and Assump-
tions (A4) and (A5), we have with ψ(k) = 0:

R([A(k) +B(k)F̄ (k)C D], {0},P(W (k), γ(k))

= {0} ⊕DP(W (k), γ(k)) ⊂ X (k + 1) ⊂ H(k + 1).

Thus, under Assumptions (A2)-(A5), ψ(k) = 0 is always
a solution to LP2 with (13) replaced with (23).

Remark 4 If, for every k, the set V(k) is bounded and its
vertices, denoted by vert(V(k)), are known, then impos-
ing the constraints in (A5) on LP2 is straightforward. It
translates to: Q(k)Dv ≤ ψ(k) for every v ∈ vert(V(k)).
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5.2 Control Constraints

Considering the system (1)-(2), or (15)-(16), suppose the
control is required to be constrained in a polyhedral set
for every k, i.e.:

u(k) ∈ P(U(k), θ(k)). (24)

If we introduce the assumption:

(A6) The vertices of the set H(k), denoted vert(H(k)),
are known for every k,

then it is straightforward to show that the constraint
(24) can be enforced by including the following con-
straint:

U(k)F (k)Ch ≤ θ(k) for every h ∈ vert(H(k)),

in LP1. However, note that with this constraint it is not
guaranteed that a solution will exist to LP1.

6 Stability

Note that for system (15)-(16) it is impossible to achieve
asymptotic stability because of the presence of a con-
sistent disturbance. However, it may be desirable that
the state remain in the target set for all k ≥ K. Briefly,
one way this may be achieved is as follows: consider
the system (15)-(16) in closed loop with a particular

(static) linear control law u(k) = F̂ y(k), resulting in
the closed-loop system x(k + 1) = Acl(k)x(k) +Dv(k),

where Acl(k) = [A(k)+B(k)F̂C]. Assume that the dis-
turbance set is time-invariant, i.e., V(k) ≡ V , and define
the following set:

Definition 3 (Robust Invariant set) A set S ⊂ R
n

is said to be a robust invariant set with respect to the
closed loop system x(k + 1) = Acl(k)x(k) +Dv(k) pro-
vided that for all k, for all x ∈ S and for all v ∈ V we
have Acl(k)x +Dv ∈ S.

The state can then be made to remain in XT for all
k ≥ K as follows: suppose the control law u(k) = F̂ y(k)
renders a set S ⊂ R

n robustly invariant with respect to
the closed-loop system. Now, execute Algorithm 1 under
the assumption:

(A7) XT ⊂ S,

to obtain the feedback sequence F̄ (k). Then, clearly, the
control law:

u(k) =

{

F̄ (k)y(k) k ∈ {0, 1, . . . ,K − 1},
F̂ y(k) k ≥ K,

results in x(k) ∈ X (k) for k ∈ {0, 1, . . . ,K}, and x(k) ∈
XT for all k ≥ K. This is an idea that shares some re-
semblance to “dual mode” control that appears in MPC
stability studies, see for example [31]. We note that the
effective computation of robustly invariant sets is a dif-
ficult problem in general, and the reader is directed to
the works [8,24,7], and the references therein.

7 Example

Consider the well-known example of two coupled tanks,
as in Figure 3. The left and right tanks, labelled tank
1 and tank 2, respectively, have cross-sectional areas of
R1 m

2 andR2 m
2. Water can be pumped into tank 1 at a

rate of fi m
3.s−1 and out of tank 2 at a rate of fe m

3.s−1.
The two tanks are connected and water may freely flow
between them, this flow being denoted by f12.

Fig. 3. Two coupled water tanks. The control consists of fi,
the input flow rate, and fe, the exit flow rate.

For completeness, we briefly show the derivation of a
suitable linear model for this system, as done in [14,
Ch. 18]. Let x1 and x2 be the water level, in metres, in

tank 1 and 2, respectively. If we define u1 , fi/R1 and

u2 , fe/R2, a nonlinear model for this system is given
by:

ẋ1 = −L1

√
x1 − x2 + u1,

ẋ2 = L2

√
x1 − x2 + u2,

where Li =
√
2g
Ri

, i = 1, 2, g = 10 m.s−2 is the accel-

eration due to gravity. Let (x̄1, x̄2), with x̄1 ≥ x̄2, be a

desired state. We introduce the error: e1(t) , x1(t) −
x̄1, e2(t) , x2(t) − x̄2, and a new control: ũ1 , u1 −
L1
√
x̄1 − x̄2, ũ2 , u2+L2

√
x̄1 − x̄2. If we linearise about

the equilibrium point (e1, e2, ũ1, ũ2) = (0, 0, 0, 0), we get
the system:

ė(t) =
1

2
(x̄1 − x̄2)−

1

2

[

−L1 L1

L2 −L2

]

e(t) +

[

1 0

0 1

]

ũ(t).

Our particular problem is as follows: both tanks have
a height of 3 m, R2 = 5, and R1 ∈ {3, 4, 5}. Our de-
sired state is (x̄1, x̄2) = (2, 1.6), and we want to find a
time-varying linear feedback, along with a set of initial
conditions, such that the following performance spec-
ifications are met for all initial conditions: t1r = 5s,
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λ1r = 0.1, t1s = 10s, λ1s = 0.01, e1-overshoot = 0.01;
t2r = 5s, λ2r = 0.05, t2s = 10s, λ2s = 0.01, e2-overshoot
= 0.01, where the superscripts 1 and 2 refer to tank
1 and 2 respectively. See Figure 4 for further clarifica-
tion. Moreover, we want to achieve this by only mea-
suring the water level in tank 2, i.e. ũ(k) = F (k)e2(k).
We have three models, one for each value of R1, which
we discretise using a sampling time of Ts = 1 s. From
our performance requirements we identify the target set
XT = [−0.01, 0.01]× [−0.01, 0.01]. The set H(k) is eas-
ily specified by referring to hi(t) and hi(t), i = 1, 2, in
Figure 4 (a) and (b). We specify the matrix U(k) and
θ(k), as explained in Subsection 5.2, to ensure fi ≥ 0
and fe ≤ 0. We run Algorithm 1 to obtain the desired
feedback along with the sets X (k), shown in Figure 4.

8 Conclusion

In this paper we have presented a new “target-tube” ap-
proach to the design of a control law that guarantees
desired transient performance for linear polytopic differ-
ence inclusions. A notable aspect of our study is that we
produce a time-varying linear output-feedback law un-
der the assumption of a polyhedral target-tube, H(k),
which, to our knowledge, has not appeared in the liter-
ature. We presented a theorem that provides necessary
and sufficient conditions for the state of the system to
evolve from one polyhedral set to another.We then spec-
ified an algorithm that uses this theorem to construct a
time-varying feedback along with a set, X (k), that sat-
isfies X (k) ⊂ H(k), such that the trajectory of the sys-
tem, initiating at any point in X (0) is contained in X (k)
for all k. We provided generalisations that allows one to
include a bounded additive disturbance term and con-
straints on the input. We stated some assumptions un-
der which it is guaranteed that the algorithm would suc-
cessfully execute with a solution, noting that this may
result in conservatism.
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