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Abstract

Gaussian Processes (GPs) are powerful kernelized methods for non-parameteric regression used in many applications. However, their
use is limited to a few thousand of training samples due to their cubic time complexity. In order to scale GPs to larger datasets, several
sparse approximations based on so-called inducing points have been proposed in the literature. In this work we investigate the connection
between a general class of sparse inducing point GP regression methods and Bayesian recursive estimation which enables Kalman Filter
like updating for online learning. The majority of previous work has focused on the batch setting, in particular for learning the model
parameters and the position of the inducing points, here instead we focus on training with mini-batches. By exploiting the Kalman filter
formulation, we propose a novel approach that estimates such parameters by recursively propagating the analytical gradients of the posterior
over mini-batches of the data. Compared to state of the art methods, our method keeps analytic updates for the mean and covariance of
the posterior, thus reducing drastically the size of the optimization problem. We show that our method achieves faster convergence and
superior performance compared to state of the art sequential Gaussian Process regression on synthetic GP as well as real-world data with
up to a million of data samples.
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1 Introduction
Gaussian process (GPs) regression is used in many

applications, ranging from machine learning, social sci-
ences, natural sciences and engineering, due to its model-
ing flexibility, robustness to overfitting and availability of
well-calibrated predictive uncertainty estimates. In control
engineering, for example, GPs have been used in system
identification for impulse response estimation [25,9,26,24],
nonlinear ARX models [19,3], learning of ODEs [1,21],
latent force modeling [42] and to learn the state space of
a nonlinear dynamical system [12,23,35]. However, GPs
do not scale to large data sets due to their O(N2) memory
and O(N3) computational costs, where N is the number of
training samples. For this reason several sparse GP approxi-
mations have been proposed in the literature. Often such ap-
proximations are based on inducing points methods, where
the unknown function is represented by its values at a set of
M� N pseudo-inputs, called inducing points. Among such
methods, Subset of Regressors (SoR/DIC) approximations
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[32,39,33] produces overconfident predictions when leaving
the training data. On the other hand, Deterministic Train-
ing Conditional (DTC) [11,31], Fully Independent Training
Conditional (FITC) [34], Fully Independent Conditional
(FIC) [27] and Partially Independent Training Conditional
(PITC) [27] all produce sensible uncertainty estimates.
These models differ from each other in the definition of
their joint prior over the latent function and test values. Tit-
sias [36], instead, proposed to retain the exact prior but to
perform approximate (variational) inference for the poste-
rior, leading to the Variational Free Energy (VFE) method
which converges to full GP as M increases. Bui et al. [7]
introduced Power Expectation Propagation (PEP), based on
the minimization of an α-divergence, which unifies most
of the previously mentioned models. Typically, inference
is achieved in O(M2N) time and O(MN) space. In order
to find good parameters (inducing input points and kernel
hyper-parameters), either the log marginal likelihood of the
sparse models or a lower bound are numerically optimized.
The previously mentioned approximations focus on the
batch setting, i.e., all data is available at once and can be pro-
cessed together. For big data, where the number of samples
can be millions, keeping all data in memory is not possible,
moreover the data might even arrive sequentially. Bui et al.
[6] developed an algorithm to update hyper-parameters in
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an online fashion promising in a streaming setting, but with
limited accuracy as each sample is considered only once.

We focus here on the setting where hyper-parameters are
learned by reconsidering mini-batches several times. In order
to speed up the optimization, we would like to update the pa-
rameters more frequently for a subset of data and update the
posterior in a sequential way. In this setting, Hensman et al.
[15] applied Stochastic Variational Inference (SVI, [17]) to
an uncollapsed lower bound of the marginal likelihood. The
resulting Stochastic Variational Gaussian Process (SVGP)
method allows to optimize the parameters with mini-batches.
Although showing high scalability and good accuracy, SVGP
has two main drawbacks: i) the (variational) posterior is not
given analytically, which leads to O(M2) additional many
parameters; ii) the uncollapsed bounds are in practice of-
ten less tight than the corresponding collapsed VFE batch
bounds because the (variational) posterior is not optimally
eliminated. The large number of parameters (≈MD+M2,
where D is the input space dimension) leads to a hard-to-tune
optimization problem which requires appropriately decay-
ing learning rates. Even for fixed parameters, each sample
still needs to be reconsidered many times. An orthogonal di-
rection was pursued by the authors in [14] and [30], where a
connection between GPs and State Space models for partic-
ular kernels was established for spatio-temporal regression
problems, which allows to apply sequential algorithm such
as the Kalman Filter, see also [8,2]. Inspired by this line of
research, the authors in [37] focused on efficient implemen-
tation and extended the methodology to varying sampling
locations over time. These approaches can deal with sequen-
tial data and solve the problem of temporal time complexity,
however the space complexity is still cubic in N. In addition,
the hyper-parameters are usually fixed in advance.

In this work we propose a recursive collapsed lower
bound to the log marginal likelihood which can be optimized
stochastically with mini-batches.

In this respect, the first contribution of this paper is the
derivation of a novel Kalman-filter-like (KF) formulation
for a generic sparse inducing point method. In particular
we show that sparse inducing point models can be seen
as a Bayesian kernelized linear regression model with in-
put dependent observation noise, a particular choice of ba-
sis functions and noise covariance. Given the model hyper-
parameters, KF allows to train sparse GP methods analyti-
cally and exactly in an online setting (considering each sam-
ple only once, as opposed to the work in [15] and [16]). In
this formulation the posterior distribution obtained online is
equivalent to full batch methods. This constitutes an inter-
esting technique on its own for applications where hyper-
parameters are given, however the analysis above provides
a key insight for parameter estimation.

Our second main contribution is a recursive approach to
hyper-parameter estimation based on the KF formulation. It
is based on recursively exploiting the chain rule for deriva-
tives by recursively propagating the analytical gradients of
the posterior which enables us to compute the derivatives
of the lower bound sequentially. We show that, when com-

puting the gradients of the recursive collapsed bound in a
non-stochastic way, they exactly match the corresponding
batch ones. This new Stochastic Recursive Gradient Prop-
agation (SRGP) 1 approach constitutes an efficient method
to train a very general class of sparse GP regression mod-
els with much fewer parameters to be estimated numerically
(≈MD) than state of the art sequential GP regression meth-
ods (≈MD+M2). Since the number M of inducing points
determines the quality of the approximation to full GP, this
reduction in number of parameters from M2 to M is crucial
and results in more accurate and faster convergence than
state of the art approaches such as SVGP. For example, in
the application to learn the input output behavior of a non-
linear plan presented in Sect. 5 the number of parameters
estimated by SVGP is ≈ 10500 while our approach only es-
timates ≈ 500 parameters due to the analytical updates.

2 Background on GP Regression

Consider a training set D = {yi,xi}N
i=1 of N pairs of

inputs xi ∈ RD and noisy scalar outputs yi generated by
adding independent Gaussian noise to a latent function
f (x), that is yi = f (xi) + εi, where εi ∼ N

(
0,σ2

n
)
. We

denote by y = [y1, . . . ,yN ]
T the vector of observations and

by X = [xT
1 , . . . ,x

T
N ]

T ∈ RN×D the input points.
We model f with a Gaussian Process (GP), a stochastic
process defined by its mean function m(x) and covariance
kernel k(x,x′). The kernel k is a positive definite function
[28], such as, for instance, the squared exponential (SE) ker-
nel with individual lengthscales li for each dimension, that is
k(x,x′)=σ2

0 exp
(
− 1

2 (x−x′)
T Diag

[
l2
1 , . . . , l

2
D
]
(x−x′)

)
.

We assume m(x)≡ 0 for the sake of simplicity and we use
the SE kernel throughout this paper however all methods
work with any positive definite kernel. Given the training
values f = f (X) = [ f (x1), . . . , f (xN)]

T and a test latent
function value f∗ = f (x∗) at a test point x∗ ∈ RD, then
the joint distribution p(f , f∗) is Gaussian. Our likelihood
is Gaussian, p(y|f) = N

(
y|f ,σ2

n I
)
, and with Bayes the-

orem (see e.g. [28]) we obtain analytically the posterior
predictive distribution p( f∗|y) = N ( f∗|µ∗,Σ∗) with

µ∗ =K∗X
(
KXX +σ

2
n I
)−1

y,

Σ∗ =K∗∗−K∗X
(
KXX +σ

2
n I
)−1

KX∗,
(1)

where [KAB]i j = k(ai,b j) for any A ∈ RM1×D and B ∈
RM2×D with the corresponding rows ai,b j. For brevity, we
use ∗ to indicate x∗. The GP depends via the kernel matrices
on the hyper-parameters φ = {σ0, l1, . . . , lD,σn} typically
estimated by maximizing the log marginal likelihood

log p(y|φ) = logN
(
y|0,KXX +σ

2
n I
)
. (2)

Note that the computations for inference require the inver-
sion of the matrix in Eq. (1) which scales as O(N3) in time
and O(N2) for memory (given φ).

1 Code is available at https://github.com/manuelIDSIA/SRGP.
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2.1 Batch Sparse GP Regression

Sparse GP regression methods based on inducing points
approaches reduce the computational complexity by in-
troducing M � N inducing points u ∈ RM that opti-
mally summarize the dependency of the whole train-
ing data. The inducing inputs R ∈ RM×D are in the D-
dimensional input data space and the inducing outputs
u := f (R) are the corresponding GP-function values,
see also Fig. 1. The GP prior over f and f∗ is aug-
mented with the inducing outputs u, leading to a joint
p(f , f∗,u) and marginal p(u) = N (0,KRR) prior. By
marginalizing out the inducing points, the original prior
p(f , f∗) =

∫
p(f , f∗|u) p(u)du is recovered. The funda-

mental approximation in all sparse GP models is that given
the inducing outputs u, f and f are conditionally indepen-
dent. Consequently, inference in these models can be done
in O(M2N) time and O(MN) space [34].

We briefly recall here the sparse predictive distribution
and the variational lower bound to the log marginal likeli-
hood for the Power Expectation Propagation (PEP) model
[7] because it unifies the main sparse inducing points ap-
proaches. The variational lower bound is used for optimiz-
ing the parameters θ := {φ,R}. In the following, we denote
QAB =KARK

−1
RRKRB andDA =KAA−QAA for any

A,B. The predictive distribution p( f∗|y) =N ( f∗|µ∗,Σ∗)
of PEP is given by

µ∗ =Q∗X
(
KXX +σ

2
n I
)−1

y,

Σ∗ =K∗∗−Q∗X
(
KXX +σ

2
n I
)−1

QX∗,
(3)

whereKXX =QXX+αDiag [DX ]. A lower bound to the
sparse log marginal likelihood is analytically available

LPEP(θ) = logN
(
y|0,KXX +σ

2
n I
)

− 1−α

2α

N

∑
i=1

log
(

1+
α

σ2
n
[DX ]ii

)
,

(4)

where we omit the explicit dependency on θ via KXX and
DX for the sake of brevity. This bound can be used to learn
the parameters θ, similarly to Eq. (2) for full GP.

The special case α→ 0 was originally introduced in [36]
where the author proposed to maximize a variational lower
bound to the true GP marginal likelihood, obtaining the Vari-
ational Free Energy (VFE) or the collapsed lower bound

LV FE(θ) = logN
(
y|0,QXX +σ

2
n I
)
− Tr [DX ]

2σ2
n

. (5)

In (5) the variational distribution over the inducing points is
optimally eliminated and analytically available. The right-
most term in (5) acts as a regularizer that prevents overfitting
and has the effect that the sparse GP predictive distribution
(3) converges [36] to the exact GP predictive distribution (1)
as the number of inducing points increases, when optimiz-
ing θ with (5). See also [7,20,27,28] for recent reviews on
the subject.

PEP = 176.39 PEP = -28.63

fullGP batch PEP

Fig. 1. Full GP and batch sparse GP regression with PEP model
(α = 0.5). N = 100 data samples are summarized with 15 equidis-
tant inducing points (black dots). A slightly smaller than optimal
lengthscale was selected and no parameters θ were optimized. The
numbers in the left and right corner indicate the lower bound to
the log marginal likelihood in (4) and its derivative with respect
to the lengthscale, respectively.

2.2 Sequential Sparse GP Regression

The optimization for θ of the collapsed lower bound (5)
requires to process the whole dataset, which is very ineffi-
cient and not feasible for large N. We would like to update
the parameters more frequently, therefore, we split the data
D = {yk,Xk}K

k=1 into K mini-batches of size B and de-
note fk the corresponding sparse GP value. Stochastic Vari-
ational Gaussian Process (SVGP) [15] achieves this result
by applying stochastic optimization to an uncollapsed lower
bound to the log marginal likelihood

LSV GP(µ,Σ,θ) =−KL [q(u)||p(u|θ)]

+K
K

∑
k=1

∫
q(u)p(fk|u,θ) p(yk|fk,θ)du,

(6)

where the variational distribution q(u) is part of the bound
and explicitly parametrized as q(u)=N (u|µ,Σ). This un-
collapsed bound satisfies LSV GP(µ,Σ,θ)≤LV FE(θ) with
equality when inserting the optimal mean and covariance of
the variational distribution of VFE. The key property of this
bound is that it can be written as a sum of K terms, which al-
lows Stochastic Variational Inference (SVI, [17]). Note that
collapsing the bound, i.e. inserting the optimal distribution,
reintroduces dependencies between the observations, and
eliminates the global parameter u which is needed for SVI.
For this reason, all variational parameters are numerically
estimated by following the noisy gradients of a stochastic
estimate of the lower bound LSV GP. By passing through the
training data a sufficient number of times, the variational
distribution converges to the batch solution of VFE method.
This approach, however, requires a large number of param-
eters: in addition to the parameters θ, all entries in the mean
vector µ and the covariance matrix Σ have to be estimated
numerically, which is in order O(M2).

3 Recursive Sparse GP Regression
In this section we establish the connection between

Bayesian recursive estimation and sparse inducing point GP
models. We recall the weight-space view for a large class of
sparse inducing point GP models, which we present here as
a particular kernelized version of a Bayesian linear regres-
sion model. See [28, Ch. 2.1], for an analogous discussion
on the full GP model. Here, however, we show how to ex-
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ploit the KF to train many sparse methods analytically either
in an online setting for fixed hyper-parameters. This allows
us to introduce a recursive log marginal likelihood with a
model specific regularization term for parameter estimation.

3.1 Weight-Space View of Generic Sparse GP

For a mini-batchX ∈RB×D of size B, consider the generic
sparse GP model

f (X) = H (X)u+ γ (X) (7)

where the sparse GP value f (X) is modeled by a linear
combination of basis-functions H (X) ∈RB×M , (stochastic)
weights u ∈ RM with a prior p(u) = N (0,Σ0) and an
input dependent error term γ (X)∼N (0,V (X)) that takes
into account the sparse approximation. For k = 1, . . . ,K, the
noisy observations yk are obtained by adding independent
noise εk ∼N

(
0,σ2

n I
)

to f (Xk), yielding the model

yk = fk +εk; (8)
fk =Hku+γk and f∗ =H∗u+γ∗, (9)

where we distinguish the training fk = f (Xk) and test f∗ =
f (X∗) cases depending on the inputXk andX∗. Assuming
γk, γ∗ and εk are independent, by linearity and Gaussianity
we can compactly write

p(yk|fk) = N
(
yk|fk,σ

2
n I
)

; (10)
p(u) = N (0,Σ0) ; (11)

p(fk|u) = N
(
fk|Hku,V k

)
; (12)

p(f∗|u) = N (f∗|H∗u,V∗) , (13)

Combining (10) and (12) and by integrating out fk we
obtain the likelihood p(yk|u) = N (yk|Hku,Vk) where
Vk =V k +σ2

n I. This shows that a generic sparse GP regres-
sion model can be seen as a Bayesian non-linear regression
model with additional input dependent observation noise,
a particular choice of basis functions Hk and covariance
structures V k, V∗. For inducing inputs R ∈RM×D, we have
Σ0 =KRR,Hk =KXkRK

−1
RR andH∗ =K∗RK−1

RR. Dif-
ferent choices of the quantities V k and V∗ lead to a range of
sparse GP models summarized in the bottom table in Fig. 2.

3.2 Training

Given the prior p(u) and the likelihood p(yk|u), the
posterior over the weights u conditioned on the data y1:k
can be computed either in a batch or in a recursive manner.

3.2.1 Batch Estimation
The batch likelihood is p(y|u) = ∏

K
k=1 p(yk|u) =

N (y|Hu,V ) with H =
[
HT

1 , . . . ,H
T
K
]T ∈ RN×M and V

a block-diagonal matrix with blocks Vk. The posterior over
u given the data y can be obtained by Bayes’ rule, i.e.

p(u|y) ∝ p(y|u) p(u) ∝ N (u|µK ,ΣK) , (14)

with ΣK =
(
Σ−1

0 +HTV −1H
)−1

andµK =ΣKH
TV −1y.

VFE [34]

DIC [31]

DTC [9]

FITC [32]

FIC [26]

PITC [26]

PEP [6]

PEP

V k

0

0

0

DXk

αDXk

Diag[DXk
]

Diag[DXk
]

αDiag[DXk
] 1−α

2α

∑
i
log(1 + α

σ
2
n

[DXk
]ii)

ak

0

0

0

0

0
1

2σ2
n

Tr[DXk
]

1−α

2α
log |I + α

σ
2
n

DXk
|

III) optimizationI) training

V∗

0

D∗

D∗

D∗

D∗

D∗

D∗

Diag[D∗]

II) prediction

a) parameters

H̃∗

K∗R

b) transformed parameters

Σ̃0

K−1

RR
KXkR

H̃k
H∗

K∗RK
−1

RR

Hk

KXkR
K−1

RR

Σ0

KRR

B

Fig. 2. Summary of parameters for sparse GP models for recursive
estimation. For all models, we have µ0 = 0, Vk = V k +σ2

n I and
Σ0, Hk, H∗ from the table a) or a transformed version b). Using
the model specific quantities for the observation noise V k, the
prediction covariance V∗ and the regularization term ak from the
bottom table allows the training with the recursive approaches.

3.2.2 Recursive Estimation
An equivalent solution can be obtained by propagating

recursively p(u|y1:k−1). By interpreting this previous pos-
terior as the prior, the updated posterior can be recursively
computed by

p(u|y1:k) ∝ p(yk|u) p(u|y1:k−1) ∝ N (u|µk,Σk) , (15)

where µk = Σk
(
HT

k V
−1

k yk +Σ−1
k−1µk−1

)
and Σk =(

Σ−1
k−1 +H

T
k V

−1
k Hk

)−1
.

Kalman Filter like updating: the KF constitutes an effi-
cient way to update the mean and covariance of p(u|y1:k).
Applying the Woodbury identity to Σk in Eq. (15) and in-
troducing temporary variables yields

rk = yk−Hkµk−1;

Sk =HkΣk−1H
T
k +Vk;

Gk = Σk−1H
T
k S
−1
k ;

µk = µk−1 +Gkrk;

Σk = Σk−1−GkSkG
T
k .

(16)

Starting the recursion with µ0 = 0 and Σ0, the posterior dis-
tribution at step K is equivalent to (14) independent of the
order of the data. We want to emphasize that the only differ-
ence in the estimation part between the sparse GP models
is the form of the additional noise Vk = V k +σ2

n I.

Transformation: instead of running a KF with Σ0 =KRR,
Hk =KXkRK

−1
RR andH∗=K∗RK−1

RR, an equivalent pre-
dictive distribution is also obtained when using Σ̃0 =K

−1
RR

and H̃k =KXkR together with H̃∗ =K∗R. For any k we
then propagate a transformed posterior distribution µ̃k =
K−1
RRµk, Σ̃k = K−1

RRΣkK
−1
RR and µk = KRRµ̃k, Σk =
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KRRΣ̃kKRR, respectively. This parametrization consti-
tutes a computational shortcut, since the basis functions are
very easy to interpret and do not include any matrix multipli-
cation. Note that also the log marginal likelihood discussed
below is not affected by this transformation.

3.3 Prediction

Given a new X∗ ∈RA×D, the predictive distribution after
seeing y1:k of the sparse GP methods can be obtained by

p(f∗|y1:k) =
∫

p(f∗|u) p(u|y1:k)du

= N
(
f∗|H∗µk,H∗ΣkH

T
∗ +V∗

) (17)

using p(f∗|u) = N (f∗|H∗u,V∗) with H∗ =K∗RK−1
RR

and V∗ the model specific prediction covariance. The pre-
dictions for y∗ are obtained by adding σ2

n I to the covariance
of f∗|y1:k. At step K, by applying the Woodbury identity to
the batch covariance ΣK in (14), we get for the predictive
distribution in (17)

µ∗K =H∗Σ0H
T Σy, (18)

Σ∗K =H∗Σ0H
T
∗ −H∗Σ0H

T ΣHΣ0H
T
∗ +V∗,

where Σ =
(
HΣ0H

T +V
)−1. Inserting the particular

choices for Σ0, H and H∗ yields the usual formulation for
the sparse predictive distribution

µ∗K =Q∗X (QXX +V )−1y;

Σ∗K =Q∗∗−Q∗X (QXX +V )−1QX∗+V∗.
(19)

Depending on the choice of the covariances V and V∗, we
obtain for instance (3) for PEP, or the analogous predictions
for VFE and FITC, respectively.

3.4 Online learning

This connection between sparse GP models and recursive
estimation allows us to train the sparse GP models analyti-
cally online for streaming data for fixed θ.

As an illustrative example consider N = 100 data samples
in D = 1, we are interested in training a PEP model with
α = 0.5 with M = 15 inducing points with fixed θ. Let’s
assume that the data samples {xk,yk} arrive sequentially in
a stream. Thus we have B = 1 and K = 100. Here we use
the transformation and we apply, for each data sample k,
the recursion in (16). We note that here r̃k, Ṽk and S̃k are
numbers as B = 1 and H̃k,G̃k ∈ R15.

We obtain predictions for new data X∗, by applying (17)
with H̃∗ =K∗R and V∗ =K∗RK−1

RRKR∗. Note that there
is no need to transform back the posterior over the inducing
points, since it is already taken into account in the prediction
step. After processing all N samples, the predictive distri-
bution and the cumulative bound of log marginal likelihood
correspond to the batch version, as shown in Fig. 3.

3.5 Marginal Likelihood

In the batch setting, the log marginal likelihood log p(y)
can be computed by marginalizing out u, that is

log p(y) = log
∫

p(y|u) p(u)du

= logN
(
y|0,HΣ0H

T +V
)
.

(20)

In the recursive setting, p(y) can be factorized into
∏

K
k=1 p(yk|y1:k−1) , where

p(yk|y1:k−1) = N
(
yk|Hkµk−1,HkΣk−1H

T
k +Vk

)
= N (rk|0,Sk) . (21)

The log of the joint marginal likelihood involving all terms
of (21) can be explicitly written as

log
K

∏
k=1

p(yk|y1:k−1) =
K

∑
k=1

logN (rk|0,Sk)

=−N
2

log2π− 1
2

K

∑
k=1

log |Sk|+rT
k S
−1
k rk.

(22)

The iterative maximization of a lower bound of the recursive
factorized marginal likelihood in (21) leads to the recursive
KF updates in (16) for the posterior and to the lower bound

ψ(θ) =
K

∑
k=1

logN
(
rθk |0,Sθk

)
−ak(θ) (23)

which includes a model specific regularization term ak (see
the right-most column in Fig. 2). We refer to this as the
recursive collapsed bound and a detailed derivation for the
VFE model is given in App. B. Using the model specific
quantitiesV k and ak, this recursive computation of the lower
bound of the marginal likelihood are equivalent to the batch
counterparts for all sparse models, for instance (5) and (4)
for VFE and PEP, respectively.

4 Hyper-parameters Estimation
The previous section presented an online procedure for

training sparse GP models at fixed hyper-parameters θ. Here
we show that, by exploiting the connections highlighted
before, we can optimize θ sequentially. The recursive col-
lapsed bound in (23) decomposes into a recursive sum
over the mini-batches which allows to optimize the hyper-
parameters θ sequentially as opposed to the collapsed bound
(5). Our bound (23) enables the application of stochastic
optimization without needing to estimate all entries in the
posterior mean vector and covariance matrix as in SVGP.
Compared to the uncollapsed bound in (6), the variational
distribution is recursively and analytically eliminated, thus
reducing the number of parameters to be numerically esti-
mated drastically from O(MD+M2) to O(MD).

Finding a maximizer θ ∈ Θ of an objective function
Ψ(θ) = ∑

K
k=1 ψk(θ) can be achieved by applying Stochastic

5
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Fig. 3. Online learning for the toy example in Sect. 3.4 for fixed θ with batch size B = 1. In each step k, the sample yk,Xk is updated to
the current posterior represented by µk and Σk according to Eq. (16) together with the cumulative recursive bound ψ(k) (Eq. (25) and the
numbers in the left corners of the plots). For recursive parameter estimation as discussed in Sect. 4.1, in addition to the posterior and the
cumulative bound, the recursive derivatives are propagated for each k. The derivatives of this bound w.r.t. to the lengthscale are indicated in
the right corners of the plots. The cumulative bound and its derivative at step k = 100 are equal to the corresponding batch version in Fig. 1.

Gradient Descent(SGD), with the update

θ(t) = θ(t−1)− γ
(t−1) ∂ψk

∂θ |θ=θ(t−1)
, (24)

where γ(t−1) might be a sophisticated function of θ(0), . . . ,θ(t−1)

(for instance using ADAM [18], where also a bias correction
term is included). We call one pass over the K mini-batches
an epoch. We denote θ(e,k) ∈ Θ(e,k) the estimate of θ in
epoch e ∈ E for mini-batch k.

4.1 Recursive Gradient Propagation (RGP)

We rewrite the recursive collapsed bound in (23) as

ψ
(K)(θ) =

K

∑
k=1

dk(θ)−ak(θ) =
K

∑
k=1

ψk(θ) (25)

where dk(θ) = logN
(
rθk |0,Sθk

)
and ak(θ) the model spe-

cific regularization term. Since ψ(K)(θ) decomposes into a
(recursive) sum over the mini-batches, we directly compute
the derivative of ψk(θ) w.r.t. θ ∈Θ. The derivative of ak is
straightforward, for dk we have

∂dk(θ)

∂θ
=−1

2
∂ log

∣∣Sθk ∣∣
∂θ

− 1
2

∂ (rθk )
T (Sθk )

−1rθk
∂θ

(26)

with rθk = yk−Hθ
k µ

θ
k−1 and Sθk =Hθ

k Σθk−1(H
θ
k )

T +V θk .
It is important to note that ignoring naively the dependency
of θ through µθk−1 and Σθk−1 completely forgets the past and
thus results in overfitting the current mini-batch. In order to
compute the derivatives of µθk and Σθk , we exploit the chain
rule for derivatives and recursively propagate the gradients
of the mean and the covariance over time, that is

∂uk

∂θ
=

∂uk−1

∂θ
+

∂Gk

∂θ
rk +Gk

∂rk

∂θ
(27)

∂Σk

∂θ
=

∂Σk−1

∂θ
− ∂Gk

∂θ
SkG

T
k −Gk

∂Sk

∂θ
Gk−GkSk

∂GT
k

∂θ
,

where ∂Gk
∂θ

, ∂rk
∂θ

and ∂Sk
∂θ

are computed recursively according
to (16). Computing the derivatives of dk as explained in (26)
and (27), the stochastic gradient

∂ψk(θ)

∂θ
=

∂dk(θ)

∂θ
− ∂ak(θ)

∂θ
(28)

can be computed for each mini-batch k.
Proposition 1 Consider a fixed parameter vector θ̄ ∈ Θ,
the gradients of the full batch lower bound LPEP(θ̄) in (4)
with respect to θ are equal to the cumulative partial deriva-

tives ∂ψ(K)

∂θ
of the recursive collapsed bound with the above

learning procedure. That is, it holds ∂LPEP(θ̄)
∂θ

= ∂ψ(K)(θ̄)
∂θ

.

This shows that, when the gradients are cumulated over all
data samples, each gradient step of our recursive procedure
is equivalent to a gradient step for LPEP and, therefore,
follows the gradients of an optimal collapsed lower bound.

The toy example in Fig. 3 also shows this equivalence.
The numbers in the bottom left and right corners show the
cumulative recursive collapsed bound ψ(k) and its cumula-

tive derivative ∂ψ(k)

∂ l (abbreviated as ψ̇(k)) with respect to
the lengthscale. The lower bound of the marginal likelihood
as well as its derivatives are exactly the same value as the
corresponding batch counterpart in Fig. 1.

For Stochastic Recursive Gradient Propagation (SRGP),
in each epoch e and mini-batch k, we interleave the update
step of the inducing points in Eq. (15) with the SGD update
(24) of the parameters θ(e,k), i.e.

p
(
u|y1:k,θ

(e,k)
)

∝∼ p
(
yk|u,θ(e,k)

)
p
(
u|y1:k−1,θ

(e,k−1)
)
.

More concretely, we update after each mini-batch k the pa-
rameters θ(e,k) with (28),(24) and propagate recursively the
posterior with (16) and its derivative (27). In order to com-
pute all the derivatives with respect to θ ∈Θ, we exploit
several matrix derivative rules which simplify the compu-
tation significantly, see App. A. Finally note that the form
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of the gradients in eq. (26) and (28) implies that the noise
in the stochastic gradient at step k depends on the noise at
step k-1, thus excluding standard convergence proofs such
as [5]. Recent results on non-convex optimization problems
[10,40,41] show convergence proofs for function classes that
include our objective, nonetheless the Markov noise of our
problem still excludes it from this general theory. For this
reason we leave a convergence analysis to future work.

4.2 Computational complexity

In the following, we assume that the batch size B is larger
than the number of inducing points M. For one mini-batch,
the time complexity to update the posterior is dominated
by matrix multiplications of size B and M, thus O(B2M).
In order to propagate the gradients of the posterior and to
compute the derivative of the bound needs O(BM2) for a
mini-batch and a parameter θ ∈Θ. Thus, updating a mini-
batch including all O(MD) parameters costs O(BM3D+
B2M) for the SRGP method. Since SRGP stores the gradients
of the posterior, it requires O(M3D+BM) storage.
On the other hand, SVGP needs O(M2 +BM) storage and
O(BM3+B2M) time per mini-batch, where the latter can be
broken down into once O(B2M) and O(BM) for each of the
O(M2) parameters. This means, for moderate dimensions,
our algorithm has the same time complexity as state of the
art method SVGP. However, due to the analytic updates of
the posterior we achieve an higher accuracy and less epochs
are needed as shown in Fig. 4 and in Sect. 5 empirically.

Fig. 4 shows the convergence of SRGP on a 1-D toy exam-
ple with N = 1000 data samples and M = 15 inducing points.
The parameters are sequentially optimized with our recur-
sive approach (blue) and as comparison with SVGP (green)
with a mini-batch size of B = 100 over several epochs. The
root-mean-squared-error (RMSE) computed on test points,
the bound of the log marginal likelihood (LML) as well as
the hyper-parameters converge in a few iterations to the cor-
responding batch values of VFE (red). Due to the analytic
updates of the posterior, the accuracy is higher and SRGP
needs much less epochs until convergence.

4.3 Mini-batch size

The size of the mini-batches has an impact on the speed
of convergence of the algorithm. Proposition 1 tells us that if
we use a full batch, our algorithm requires the same number
of gradient updates as a full batch method to converge. On
the other hand smaller batches should require more updates
and should lead to a higher variance in the results. Fig. 5
shows a comparison of different mini-batch sizes on a 1-D
toy example with N = 10′000 data samples generated with
the same parameters as in Sect. 5.1. The convergence to
the full batch value is slower as the batch size decreases.
Moreover the variance of the error, over the repetitions, is
much larger for smaller batch sizes: in the last 10 normalized
gradient updates, the standard deviation of the error is on
average 3.8×10−3 for B= 100 and 8.1×10−4 for B= 5′000,
denoting a more stable procedure for higher batch sizes.
As the mini-batch size increases the computational cost for
each gradient update also increases. In this example one

gradient update requires on average 4.9×10−3 sec and 5.8×
10−2 sec with B = 100 and B = 5′000 respectively. 2 These
considerations suggest that a reasonable choice is a large
mini-batch size within the computational and time budgets.

5 Experiments
We first benchmark our method with N = 100′000 syn-

thetic data samples generated by a GP in several dimensions.
Next, we apply our approach to the Airline data used in [15]
with a million of data samples. Finally a more realistic setup
is presented where we use up to a million data samples to
train a nonlinear plant. We compare our SRGP method to
full GP and sparse batch method VFE for a subset of data
(using the implementation in GPy [13]) and to the state of
the art stochastic parameter estimation method SVGP imple-
mented in GPflow [22]. Our algorithm works also for many
other sparse models, however, only large-scale implementa-
tions of standard SVGP are available (corresponding to the
VFE model), thus we restrict the investigation to this model.

5.1 GP Simulation

In this section we test our proposed learning proce-
dure on simulated GP data. We generate N = 100′000
data samples from a zero-mean (sparse) GP with SE co-
variance kernel with hyper-parameters σ0 = 1,σn = 0.1
and l = {0.1,0.2,0.5} in D = {1,2,5} dimensions. The
initial M = {20,50,100} inducing points are randomly se-
lected points from the data and the hyper-parameters of
a SE kernel with individual lengthscales for each dimen-
sion are initialized to the same values for both algorithms
(σ0 = 1,σn = 1, l1, . . . , lD = 1). All parameters are sequen-
tially optimized with our recursive approach and with SVGP
with a mini-batch size of B = 5000. The stochastic gradient
descent method ADAM [18] is employed for both methods
with learning rates {0.001,0.005,0.005} for SVGP and
{0.0001,0.001,0.005} for SRGP (based on some prelimi-
nary experiments). Each experiment is replicated 10 times.

Fig. 6 shows the bound to the log marginal likelihood, the
RMSE and the coverage of 10′000 test points for the data
dimensions D = {1,2,5} of both methods over 50 epochs.
The shaded lines indicates the 10 repetitions and the thick
line correspond to the mean. The recursive propagation of
the gradients achieves faster convergence and more accurate
performance regarding mean RMSE and smaller values for
the log marginal likelihood. The higher accuracy and faster
convergence can possibly be explained by the analytic up-
dates of the posterior mean and covariance which leads to
less parameters to be optimized numerically.

5.2 Airline Data

For the second example we apply our recursive method
to the Airline Data used in [15]. It consists of flight arrival
and departure times for more than 2 millions flights in the
USA from January 2008 and April 2008. We preprocessed

2 The times are measured on a laptop with a Intel i5-7300U CPU
@ 2.6 GHz.
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Fig. 4. Convergence of SRGP (blue) on a 1-D toy to batch version VFE (red). Compared to SVGP (green), the convergence of the
root-mean-squared-error (RMSE) of test points, the bound of the log marginal likelihood (LML) as well as the hyper-parameters is faster
and more accurate.
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Fig. 6. Convergence over 50 epochs for N = 100′000 synthetic GP
data samples in several dimensions obtained by SVGP and our
proposed method SRGP.

the data as similar as possible as described in [15] result-
ing in 8 variables: age of the aircraft, distance that needs to
be covered, airtime, departure time, arrival time, day of the
week, day of the month and month. We trained our recursive
method as well as SVGP with an SE kernel on N = 1′000′000
data samples with M = 500 inducing points randomly se-
lected from the data and a mini-batch size of B = 10′000.
The ADAM learning rates are set to 0.005 for both methods
and the size of the test set is 50′000. For 5 different repeti-

tions, the RMSE as a function of epochs is depicted in Fig.
7. The mean coverage on test data (at 95%) is comparable
for both methods with values of 0.92 and 0.97 for SVGP
and SRGP respectively. The overall performance of SRGP
is superior to SVGP.
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Fig. 7. Convergence over several epochs of RMSE and bound
to log marginal likelihood for N = 1′000′000 samples from the
Airline data for SRGP and SVGP.

5.3 Non-Linear Plant

GPs are a powerful way to model complex functions in a
non-parametric way, thus they are suitable to learn the com-
plex input output behavior of a non-linear plant. However,
with full or even sparse batch GP methods the use is re-
stricted to a few thousands of samples. With our sequential
learning method, we are able to exploit the huge amount of
available data by training with up to a million of samples.

We consider a Continuous Stirred Tank Reactor (CSTR).
The dynamic model of the plant is

d
dt h(t) = w1(t)+w2(t)−0.2

√
h(t)

d
dt Cb(t) = (Cb1−Cb(t))

w1(t)
h(t) +(Cb2−Cb(t))

w2(t)
h(t) −

k1Cb(t)
(1+k2Cb(t))2 ,

where Cb(t) is the product concentration at the out-
put of the process, h(t) is the liquid level, w1(t) is the
flow rate of concentrated feed Cb1, and w2(t) is the flow
rate of the diluted feed Cb2. The input concentrations are
Cb1 = 24.9 and Cb2 = 0.1. The constants associated with
the rate of consumption are k1 = k2 = 1. The objective
of the controller is to maintain the product concentra-
tion by changing the flow w1(t). To simplify the exam-
ple, we assume that w2(t) = 0.1 and that the level of
the tank h(t) is not controlled. We denote the controlled
outputs Cb(t),Cb(t − 1), . . . ,Cb(t − p) as ft , ft−1, . . . , ft−p
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and the control variables as wt ,wt−1, . . . ,wt−p. There-
fore, the plant identification problem can be shaped
into the problem of estimating the non-linear function
ft = g( ft−1, . . . , ft−p,wt ,wt−1, . . . ,wt−p) which depends on
the p previous values as well as on the current and the
p past control values w. However, we can only observe a

998500 999000 999500 1000000 1000500 1001000 1001500
time t

3

2

1

0

1

observations yt

control wt

true ft
fullGP1000

SRGP10000
95%-CI

Fig. 8. Training and prediction phases for non-linear plant.

noisy version of the controlled response, that is yt = ft + εt
with ε ∼ N

(
0,σ2

n
)
. Using a sampling rate of 0.2s, we

have generated 1′200′000 observations (about 3 days of
observations). The plant input is a series of steps, with
random height (in the interval [0,4]), occurring at random
intervals (in the interval [5,20]s). For different numbers
Ntrain, we use the samples y106−Ntrain

, . . . ,y106 for train-
ing and the last 200′000 are used as a test set. The goal
is to learn a model for the controlled response yt given
xt = [yt−1,yt−2,wt ,wt−1,wt−2]

T ∈ R5 for the particular
choice of p = 2. We model the non-linear function g with
a GP with a SE kernel. For comparison, we train full GP
and sparse batch GP (with 100 inducing points) on a time
horizon Ntrain of up to 10′000 and 50′000 past values,
respectively. With the sequential version SVGP and our
recursive gradient propagation method SRGP (both with
100 inducing points and mini-batch size of 1′000), we use
a time horizon of up to a million. This situation is depicted
in Fig. 8, where for 1500 training samples yt (red dots), the
true (unknown) function ft (green) and the control input wt
(grey) is shown together with the predicted values with full
GP (red dotted) and recursive GP (blue dotted) trained on
a time horizon of 1′000 and 10′000, respectively. In Fig. 9,
the RMSE and the median computed on the test set (with 10
repetitions) is depicted for full GP, sparse GP (VFE), SVGP
and SRGP trained with varying time horizons. For small
and medium training sizes, when the batch methods are
applicable, our recursive method achieves the same perfor-
mance as the batch counterpart (VFE) and is comparable to
full GP. Due to the analytic updates of the posterior, SRGP
outperforms SVGP regarding both RMSE and median for
all training sizes. By exploiting more than several thousand
past values, a significant increase in performance of SRGP
can be still observed, thus it constitutes an approach to
accurately scale GPs up to a million of past values.

6 Conclusion
In this paper we introduced a recursive inference and

parameter estimation method SRGP for a general class of
sparse GP approximations. Since the posterior updates are
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Fig. 9. RMSE and median for full GP, batch sparse GP (VFE),
sequential SVGP, and our recursive method (SRGP) trained on
varying time horizons (logarithmic scale). The grey dotted vertical
lines at 10′000 and 50′000 indicate the maximal samples used for
training full GP and sparse batch GP (VFE), respectively.

given analytically, one pass through the data is sufficient to
compute the posterior for given parameters. For parameter
estimation, we proposed a recursive collapsed bound to the
log marginal likelihood that matches exactly the batch ver-
sion but can be used for stochastic estimation. Due to the
analytic updates of the posterior our method has much less
parameters to be estimated numerically. As a consequence,
the experimental section showed that our recursive method
needs less epochs and has superior accuracy compared to
state of the art, thus constitutes an efficient methodology for
scaling GPs to big data problems.
Our approach could be enhanced in several directions. While
the proposed method only exploits the update equations of
the KF, an interesting direction would be to include a dy-
namic in a state space model that takes into account the
varying hyper-parameters which makes it also applicable for
the streaming setting as [6]. Moreover, we further plan to
investigate distributed parameter estimation based on an in-
formation filter formulation of the problem. Finally, we aim
to provide a convergence analysis of the proposed method
to recursively learn the hyper-parameters using a similar ap-
proach recently employed for ADAM or AMSGrad [29,38].
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A Details for Recursive Gradient Propagation
We show here the computation for the recursive gra-

dient propagation from Sect. 4.1 for the PEP model.
For other models, ak and V from the Table 2 could be
used correspondingly. We will use the following nota-
tion: diag [A] = d,di = aii, Diag [d] = A,aii = di,ai j = 0,
A�B = C,ci j = ai jbi j, A÷B = C,ci j =

ai j
bi j

, A�2 =

C,ci j = a2
i j, Ȧ = ∂A(θ)

∂θ
,∀θ ∈ Θ, sum [A] = ∑i, j ai j,

1[z] = 1 if z = true,0 other.
Initialization

η0 = 0; η̇0 = 0;

Λ0 =K
−1
RR; Λ̇0 =−K−1

RRK̇RRK
−1
RR;

ψ0 =−
N
2

log2π; ψ̇0 = 0;

Σ0 =KRR; logDet0 = log |Λ0| ;

Natural Mean and Precision Updates
Hk =KXkRK

−1
RR;

dk = diag
[
KXkXk −KXkRK

−1
RRKRXk

]
;

vk = αdk +σ
2
n1; V −1

k = Diag [1÷vk] ;

ak =
1−α

α

(
B

∑
i=1

log([vk]i)−B logσ
2
n

)
;

rk = yk−HkΣk−1ηk−1;

ηk = ηk−1 +H
T
k V

−1
k yk;

Λk = Λk−1 +H
T
k V

−1
k Hk;

Σk, log |Λk|= Λ−1
k , log |Λk| ;

S−1
k = V −1

k −V −1
k HkΣkH

T
k V

−1
k ;

ψk = ψk−1−
1
2
(log |Λk|− log |Λk−1|

− log
∣∣V −1

k

∣∣+rT
k S
−1
k rk +ak

)
Intermediate Derivatives

L̇dHk = 2
(
V −1

k HkΣk−S−1
k rk(Σk−1ηk−1

+ ΣkH
T
k V

−1
k rk)

T )
L̇dvk =−

(
diag

[
HkΣkH

T
k
]
− 1

α
vk

+ (rk−HkΣkH
T
k V

−1
k rk)

�2)÷v�2
k

L̇dKXkR
= L̇dHkK

−1
RR−2αDiag

[
L̇dvk

]
Hk

L̇dKRR
=−HT

k
(
L̇dHkK

−1
RR−αDiag

[
L̇dvk

]
Hk
)

L̇dkXkXk
= αL̇dvk

L̇dΛk = Σk−Σk−1 +2Σk−1H
T
k S
−1
k rkη

T
k−1Σk−1

+ΣkH
T
k V

−1
k rkr

T
k V

−1
k HkΣk

L̇dηk =−2Σk−1H
T
k S
−1
k rk

L̇d dn = 2σ
2
n sum

[
L̇dvk

]
−2B

1−α

α

Derivative Updates
Loop over θi ∈ θ:

ψ̇k = ψ̇k−1−
1
2
(
sum

[
L̇dηk � η̇k−1

]
+ sum

[
L̇dΛk � Λ̇k−1

]
+ sum

[
L̇dKRR

�K̇RR

]
+ sum

[
L̇dKXkR

�K̇XkR

]
+ sum

[
L̇dkXkXk

� k̇XkXk

]
+1[θk=σn]L̇d dn

)
Ḣk = K̇XkRK

−1
RR−KXkRK

−1
RRK̇RRK

−1
RR;

ḋk = diag
[
K̇XkXk −K̇XkRK

−1
RRKRXk

+KXkRK
−1
RRK̇RRK

−1
RRKRXk

−KXkRK
−1
RRK̇RXk

]
;

V̇ −1
k =−1[θi 6=σn]αV

−1
k Diag

[
ḋk
]
V −1

k

−1[θi=σn]2σ
2
n V̇
−1

k V̇ −1
k ;

η̇k = η̇k−1 +Ḣ
T
k V

−1
k yk +H

T
k V̇

−1
k yk;

Λ̇k = Λ̇k−1 +Ḣ
T
k V

−1
k Hk

+HT
k V̇

−1
k Hk +H

T
k V

−1
k Ḣk

For the noise σn, all kernel derivatives are zero, therefore
the calculations simplify significantly.

B Derivation of Recursive Collapsed Bound
We provide more details and a detailed derivation for the

recursive collapsed lower bound (25) for the VFE model
from Sect. 4.1. Instead of lower bounding directly the
batch log marginal likelihood as done by Titsias [36] in
the batch case, our approach relies on the recursive factor-
ization of the joint log marginal likelihood log p(y|θ) =
log∏

K
k=1 p(yk|y1:k−1,θ) = ∑

K
k=1 log p(yk|y1:k−1,θ) . The

properties induced by the sparse augmented inducing point
model yield log p(y|θ) =
∑

K
k=1 log

∫
p(yk|fk,θ) p(fk|u,θ) p(u|y1:k−1,θ)dfk du.

We first introduce the variational distributions qk(fk,u) =
p(fk|u,θ)qk(u) ≈ p(fk,u|y1:k,θ), then by applying
Jensen’s inequality to each individual term in the true log
marginal likelihood, we obtain the lower bound

log p(y|θ)≥
K

∑
k=1

∫
p(fk|u,θ)qk(u) . . .

. . . log
p(yk|fk,θ) p(fk|u,θ) p(u|y1:k−1,θ)

p(fk|u,θ)qk(u)
dfk du.

The quantity p(u|y1:k−1,θ) is unknown, however, we can
replace it with qk−1(u) leading to L (q1, . . . ,qK ,θ)

K

∑
k=1

∫
p(fk|u,θ)qk(u) log

p
(
y f |fk,θ

)
qb−1(u)

qk(u)
dfk du.

(B.1)

Maximizing this lower bound recursively with respect to the
distributions qk(u) leads to a sequence of optimal variational
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distributions q∗k(u) for the inducing outputs

N

(
u|Σk

{
1

σ2
n
HT

k yk +Σ−1
k−1µk−1

}
,Σk

)
, (B.2)

where Σk =
(
Σ−1

k−1 +
1

σ2
n
HT

k Hk

)−1
andHk =KXkRK

−1
RR.

Plugging q∗k(u) into (B.1) yields

LREC(θ) =
K

∑
k=1

[logN (yk|Hkµk−1, . . .

. . .HkΣk−1H
T
k +σ

2
n I
)
− Tr

[
DXkXk

]
2σ2

n

]
.

(B.3)

The recursive bound LREC(θ) is equivalent to the batch col-
lapsed bound LV FE(θ) in (5) and it holds LSV GP(µ,Σ,θ)≤
LREC(θ) with equality when inserting the optimal varia-
tional posterior. The variational posterior update in (B.2) has
the same form as the recursive updates in (15). Similarly, the
recursive collapsed lower bound in (B.3) is equal to (25).

We provide below a detailed derivation that follows
closely the proof in [36] for the recursive collapsed bound
(B.3) as well as the sequence of optimal distributions (B.2).
We assume mini-batches of size B, that is, we have training
data D = {yk,Xk}K

k=1 and the corresponding latent func-
tion values{fk}K

k=1. We briefly recap the involved quantities
and introduce abbreviations:

p(yk|fk,θ) = N
(
yk|fk,σ

2
n I
)

;
p(fk|u,θ) = N

(
fk|Hku,KXkXk −QXkXk

)
;

p(u|θ) = N (u|0,KRR) = q0(u);
qk−1(u) = N (u|µk−1,Σk−1)≈ p(u|y1:k−1,θ)

Hk =KXkRK
−1
RR;

QXkXk =KXkRK
−1
RRKRXk .

Starting from (B.1), we have the bound

K

∑
k=1

∫
p(fk|u,θ)qk(u) log

p(yk|fk,θ)qk−1(u)

qk(u)
dfk du

which can be rearranged to

K

∑
k=1

∫
qk(u)

{
logG(u,yk)+ log

qk−1(u)

qk(u)

}
du,

where logG(u,yk) =
∫

p(fk|u,θ) log p(yk|fk,θ)dfk.
The integral involving fk is computed as logG(u,yk) =∫

p(fk|u,θ) log p(yk|fk,θ)dfk, which equals

= Efk|u

[
−B

2
log(2πσ

2
n )−

1
2
[yk−fk]

T 1
σ2

n
[yk−fk]

]
=−B

2
log(2πσ

2
n )−

1
2σ2

n

(
yT

k yk +Efk|u
[
fT

k fk−2yT
k fk
])
.

Using E
[
xTAx

]
= Tr [AΣ] + µTAµ with p(x) =

N (x|µ,Σ) yields

logG(u,yk) =−
K
2

log(2πσ
2
n )−

1
2σ2

n

(
yT

k yk

+Tr
[
KXkXk −QXkXk

]
+uTHT

k Hku−2yT
k Hku

)
= log

[
N
(
yk|Hku,σ

2
n I
)]
− 1

2σ2
n

Tr
[
KXkXk −QXkXk

]
.

Substitute this expression back, the lower bound becomes

K

∑
k=1

[∫
qk(u) log

N
(
yk|Hku,σ

2
n I
)

qk−1(u)

qk(u)
du

− 1
2σ2

n
Tr
[
KXkXk −QXkXk

]]
.

We can now maximize this bound with respect to qk(u).
Here since we have not constrained qb to belong to any fixed
family of distributions, we can compute the optimal bound
by reversing the Jensens inequality leading to

LREC(θ) =
K

∑
k=1

[
log
∫

N
(
yk|Hku,σ

2
n I
)

qk−1(u)du

− 1
2σ2

n
Tr
[
KXkXk −QXkXk

]]
=

K

∑
k=1

[
logN

(
yk|Hkµk−1,HkΣk−1H

T
k +σ

2
n I
)

− 1
2σ2

n
Tr
[
KXkXk −QXkXk

]]
where we used a linear Gaussian identity (see, e.g.,
[4] Ch. 2.3) in the last step . This is equal to Eq.
(25). The optimal distribution q∗k that gives rise to this
bound is proportional to N

(
yk|Hku,σ

2
n I
)

qk−1(u) =

N
(
yk|Hku,σ

2
n I
)
N (u|µk−1,Σk−1) and can be analyti-

cally computed leading to

q∗k(u) = N
(
u| 1

σ2
n
ΣkH

T
k yk +Σ−1

k−1µk−1,Σk

)
where Σk =

(
Σ−1

k−1 +
1

σ2
n
HT

k Hk

)−1
. This matches the result

in Eq. (15) and (16) and completes the proof.

C Proof of proposition 1
We showed (App. B) how the batch approximate log-

likelihood LPEP in (4) can be recursively computed. In Sect.
4.1, we showed an equivalent way to compute it, that is,
we have the cumulative bound ψ(K)(θ) = ∑

K
k ψk(θ) and it

satisfies LPEP(θ) =∑
K
k ψk(θ). By induction and linearity of

derivatives, we therefore get ∂ψ(K)(θ)
∂θ

= ∂ψk(θ)
∂θ

+ ∂ψ(K−1)(θ)
∂θ

and ∂LPEP
∂θ

= ∂ψ(K)

∂θ
.
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