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Abstract

This paper proposes an adaptive control allocation approach for uncertain over-actuated systems with actuator saturation.
The proposed method does not require uncertainty estimation or a persistent excitation assumption. Using the element-wise
non-symmetric projection algorithm, the adaptive parameters are restricted to satisfy certain optimality conditions leading
to overall closed loop system stability. Furthermore, a sliding mode controller with a time-varying sliding surface, working in
tandem with the adaptive control allocation, is proposed to guarantee the outer loop stability and reference tracking in the
presence of control allocation errors and disturbances. Simulation results are provided, where the Aerodata Model in Research
Environment is used as an over-actuated system with actuator saturation, to demonstrate the effectiveness of the proposed
method.
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Nomenclature

θv Adaptive parameter matrix.
θvj The jth column of θv.
θvi,j The element at the ith row and jth column of θv.
θmini,j The minimum value of θvi,j , assigned by the pro-

jection algorithm.
θmaxi,j The maximum value of θvi,j , assigned by the

projection algorithm.
θ∗v Ideal parameter matrix.
θ∗vi,j The element at the ith row and jth column of θ∗v .
θ∗mini,j The minimum value of θ∗vi,j .

θ∗maxi,j The maximum value of θ∗vi,j .
θ∗I θ∗v when Λ = I.
θ∗Ii,j The element at the ith row and jth column of θ∗I .

θ̃v The deviation of the adaptive parameter matrix
from the ideal parameter matrix.

θ̃vi,j The element at the ith row and jth column of θ̃v.

θ̃max The upper bound of the norm of θ̃v when θ∗vi,j ∈
[θmini,j θmaxi,j ].

θ̃MAX The upper bound of the norm of θ̃v when θ∗vi,j /∈
[θmini,j θmaxi,j ].

Email addresses: shahabaldin@bilkent.edu.tr (Seyed
Shahabaldin Tohidi), yyildiz@bilkent.edu.tr (Yildiray
Yildiz), ilya@umich.edu (Ilya Kolmanovsky).

ζi,j The projection tolerance of the element at the
ith row and jth column of θv.

Mi The bound on the ith virtual control signal vi.
ρ The vector of upper bound of the the ele-

ments of the disturbance vector d, denoted as
ρ = [ρ1, ..., ρr]

T .
ρ̄i The upper bound of the norm of the ith row of

the multiplicative uncertainty (∆B).

1 Introduction

Control allocation is the process of distributing control
signals among redundant actuators. Thanks to the ben-
efits of actuator redundancy in systems, such as im-
proved maneuverability, flexibility and fault tolerabil-
ity, in addition to the decrease in actuator costs due to
advances in microprocessors and actuator miniaturiza-
tion, the number of applications of control allocation has
been growing in recent years in such domains as aircraft,
spacecraft, unmanned air vehicles [1, 4, 16,30,34–36,47,
49, 50], ships, underwater vehicles [10, 11, 23, 27, 32, 37],
automobiles [15, 43], robots [41], and power systems [6,
33].

Control allocation methods can generally be categorized
into the following three sets: Pseudo-inverse-based meth-
ods, optimization based methods and dynamic control
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allocation. Given a mapping between a virtual control in-
put v and the actuator input vector u defined asBu = v,
in pseudo inverse based control allocation [2, 17, 18, 44],
the control input is distributed to the individual actu-
ators by the pseudo inverse of this mapping u = B+v.
It is known that this distribution minimizes the 2-norm
of the actuator input vector. This approach can be ex-
tended to account for actuator saturation [17,18,28,44].
Daisy chaining [7] and redistributed pseudo inverse [5,
39,48] are the other modified versions of pseudo inverse
method that consider actuator constraints. In optimiza-
tion based control allocation [8, 24, 25, 31, 51, 52], con-
trol input is distributed by minimizing the cost function
|Bu−v|+J0, where J0 refers to secondary objectives such
as minimizing actuator deflections. In dynamic control
allocation [20, 21, 42, 45, 46, 53], the control signals are
distributed among actuators using a set of rules dictated
by differential equations. A survey on control allocation
methods can be found in [26].

Control allocation is an appealing approach for the de-
sign of active fault-tolerant control systems [16, 19, 38,
54]. Optimization based control allocation is used in [43]
to improve the performance of steering in faulty automo-
tive vehicles. In another study [32], thruster forces of an
autonomous underwater vehicle are allocated among re-
dundant thrusters using control allocation so that faults
are accommodated. In [34], experimental results are re-
ported demonstrating the redistribution of the control
effort, after a fault, among the redundant actuators of
a quadrotor helicopter. In several applications, fault de-
tection and isolation methods are employed in parallel
with control allocation [16]. In others, faults are assumed
to be estimated a priori. In [2], a sliding mode controller
is coupled with a pseudo inverse based control alloca-
tion to obtain a fault tolerant controller wherein faults
are assumed to be estimated. Similarly in [38], it is as-
sumed that there exists a fault detection and isolation
scheme which is able to estimate and identify stuck-in-
place, hard-over, loss of effectiveness and floating actua-
tor faults. In [13], an unknown input observer is applied
to identify actuator and effector faults. A fault detec-
tion and isolation method, for nonlinear systems with
redundant actuators, by using a family of unknown in-
put observers is proposed in [14]. In [44] and [8], faults
are estimated adaptively using a recursive least square
method, and an online dither generation method is pro-
posed to guarantee the persistence of excitation.

This paper proposes an adaptive control allocation
method for uncertain systems with redundant actua-
tors in presence of actuator saturation. The method
builds upon successful approaches mentioned above by
eliminating the need for uncertainty estimation, and
therefore it does not require persistence of excitation.
Furthermore, in the proposed approach, a closed loop
reference model [22] is employed for fast convergence
without inducing undesired oscillations. The stability of
the overall closed loop system, including the controller,

control allocator and the plant is rigorously studied.
Preliminary results of this study were previously pre-
sented in [45] and [46]. A modified version of the adap-
tive control allocation method based on reducing the
difference between the derivative of virtual and actual
control signals was introduced in [47]. It was demon-
strated in [47] that the proposed approach can mitigate
pilot induced oscillations. In this paper, we provide the
complete picture with an overall closed loop stability
proof in the presence of actuator saturation, which was
missing in these earlier studies.

Other adaptive approaches to control allocation have
been described in [42] and [20]. Different from these
approaches, we explicitly consider the actuator satura-
tion, where we guarantee that the control signals remain
within their limits all the time, which allows a system-
atic design of the outer loop controller without assuming
its existence a priori.

Apart from the contributions to the control allocation
literature mentioned above, we also showed that it is
possible to employ the projection algorithm [29] in a
stable manner even if the ideal adaptive parameters are
not inside the projection boundaries. To the best of our
knowledge, this result was not reported earlier in the
literature.

This paper is organized as follows. Section II introduces
notations and preliminary results. Section III presents
the uncertain over-actuated plant dynamics and the pro-
posed model reference adaptive control allocation ap-
proach with a closed loop reference model. A discussion
of actuator saturation and its effects on virtual control
limits together with the projection algorithm are given
in Section IV. The controller design, producing the vir-
tual control input, is presented in section V. The AD-
MIRE model is used in Section VI to demonstrate the
effectiveness of the proposed approach in the simulation
environment. Finally, a summary is given in Section VII.

2 Background

In this section, we collect several definitions and ba-
sic results which are exploited in the following sections.
Throughout this paper, ||.|| refers to the Euclidean norm
for vectors and induced 2-norm for matrices, and ||.||F
refers to the Frobenius norm.

The projection operator, denoted as Proj, for two vectors
θ and y is defined as [29]

Proj(θ, y)

≡


y − ∇f(θ)(∇f(θ))T

||∇f(θ)||2 yf(θ) if f(θ) > 0

& yT∇f(θ) > 0

y otherwise,

(1)
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where f(.) is a convex and smooth (C1) function, and
∇(.) : R → R is the gradient operator. If θv ∈ Rr×m
and Y ∈ Rr×m are matrices, the projection operator is
defined as

Proj
(
θv, Y

)
=
(
Proj(θv,1, Y1), ...,Proj(θv,m, Ym)

)
, (2)

where θv,j and Yj are the jth columns of θv and Y ,
respectively, and Proj(θv,j , Yj) is defined using (1). A
particular choice of (1) is given by

Proj
(
θv,j , Yj

)
=
(
Proj(θv1,j , Y1,j), ...,Proj(θvm,j , Ym,j)

)
,

(3)
where θvi,j and Yi,j are the ith components of θv,j and
Yj respectively, and Proj(θvi,j , Yi,j) : R × R → R is an
“element-wise projection” defined as

Proj(θvi,j , Yi,j)

≡


Yi,j − Yi,jf(θvi,j ) if f(θvi,j ) > 0

& Yi,j

(
df(θvi,j )

dθvi,j

)
> 0

Yi,j otherwise,

(4)

where f(.) : R→ R is a convex function defined as

f(θvi,j ) =
(θvi,j − θmini,j − ζi,j)(θvi,j − θmaxi,j + ζi,j)

(θmaxi,j − θmini,j − ζi,j)ζi,j
,

(5)
where ζi,j is the projection tolerance of the i, jth element
of θv that should be chosen as 0 < ζi,j < 0.5(θmaxi,j −
θmini,j ). Also, θmaxi,j and θmini,j are the upper and lower
bound of the i, jth element of θv. These bounds also form
the projection boundary (see figure 1). In comparison to
the projection algorithm in [29], the projection algorithm
(4) is element-wise and the proposed convex function in
(5) considers the cases where θmini,j 6= −θmaxi,j . In the
convex function (5), f(θvi,j ) = 0 when θvi,j = θmaxi,j −
ζi,j or θvi,j = θmini,j +ζi,j , and f(θvi,j ) = 1 when θvi,j =
θmaxi,j or θvi,j = θmini,j .

Lemma 1. If θ̇vi,j = Proj(θvi,j , Yi,j) with initial condi-
tions θvi,j (0) ∈ Ωi,j = {θvi,j ∈ R|f(θvi,j ) ≤ 1}, where
f(θvi,j ) : R → R is a convex function, then θvi,j ∈ Ωi,j
for ∀t ≥ 0.

Proof. The proof of Lemma 1. can be found in [22]. 2

Lemma 2. For θ∗vi,j ∈ [θmini,j + ζi,j , θmaxi,j − ζi,j ],

θvi,j ∈ Rr×m, Y ∈ Rr×m and the projection algorithm
in (4) and (5), the following inequality holds:

tr

(
(θTv − θ∗v

T )
(
− Y + Proj(θv, Y )

))
≤ 0, (6)

where tr(.) refers to the trace of a matrix.

Fig. 1. Convex function f(θvi,j ).

Proof. Let Ii,j = 1 if f(θvi,j ) > 0 and Yi,j

(
df(θvi,j )

dθvi,j

)
>

0, and let Ii,j = 0, otherwise. Then,

tr

(
(θTv − θ∗v

T )
(
− Y + Proj(θv, Y )

))
=

m∑
j=1

r∑
i=1

(θvi,j − θ∗vi,j )
(
− Yi,j + Proj(θvi,j , Yi,j)

)
=

m∑
j=1

r∑
i=1

(θvi,j − θ∗vi,j )
(
− Yi,j + Yi,j − Yi,jf(θvi,j ))

)
Ii,j

=

m∑
j=1

r∑
i=1

(θ∗vi,j − θvi,j )Yi,jf(θvi,j )Ii,j ≤ 0.

2

3 Model Reference Adaptive Control Alloca-
tion

The closed loop system studied in this paper is presented
in Figure 2. Consider the following plant dynamics,

ẋ = Ax+Bu(Λu+ du), (7)

where x ∈ Rn is the state vector, u = [u1, ..., um]T ∈ Rm
is the actuator input vector, where ui ∈ [−umaxi , umaxi ],
A ∈ Rn×n is the known state matrix, Bu ∈ Rn×m is
the known input matrix and du ∈ Rm is a bounded
disturbance input. The matrix Λ ∈ Rm×m is assumed
to be diagonal, with non-negative elements represent-
ing actuator effectiveness uncertainty. It is assumed that
the pair (A,BuΛ) is controllable. Due to actuator re-
dundancy, the input matrix is rank deficient, that is
Rank(Bu) = r < m. Consequently, Bu can be written
as Bu = BvB, where Bv ∈ Rn×r is a full column rank
matrix, i.e. Rank(Bv) = r, and B ∈ Rr×m. The decom-
position of Bu helps exploit the actuator redundancy
using control allocation. Employing this decomposition,
(7) can be rewritten as

ẋ = Ax+Bv(BΛu+ d̄), (8)

3



Fig. 2. Block diagram of the closed loop system with the
proposed adaptive control allocation method.

where d̄(t) = Bdu(t) is assumed to have an upper bound
||d̄(t)|| ≤ L̄, for all t ≥ 0. The control allocation task is
to achieve

BΛu+ d̄ = v, (9)

where v ∈ Rn is the virtual control signal and also the
output of the nominal controller which will be defined
in Section V (See Figure 2). Considering the following
dynamics,

ẏ = Amy +BΛu+ d̄− v, (10)

where Am ∈ Rr×r is a stable (Hurwitz) matrix, a refer-
ence model is constructed as

ẏm = Amym. (11)

Defining the actuator input as a mapping from v to u,

u = θTv v, (12)

where θv ∈ Rr×m represents the adaptive parameter
matrix to be determined, and substituting (12) into (10),
we obtain

ẏ = Amy + (BΛθTv − Ir)v + d̄, (13)

where Ir is an identity matrix of dimension r × r.

It is assumed that there exists an ideal matrix θ∗v such
that

BΛθ∗v
T = Ir. (14)

Defining e = y − ym and subtracting (11) from (13), it
follows that

ė = Ame+BΛθ̃Tv v + d̄, (15)

where θ̃v = θv − θ∗v .

Theorem 1. If the adaptive parameter matrix (10) is
updated using the following adaptive law,

θ̇v = ΓθProj
(
θv,−veTPB

)
, (16)

where the projection operator “Proj” is defined in (4),
with convex and smooth (C1) function f(θvi,j ) in (5),
and where Γθ = γθIr, γθ > 0, then given any initial

condition e(0) ∈ Rr, θvi,j (0) ∈ [θmini,j , θmaxi,j ], and

θ∗vi,j ∈ [θmini,j+ζi,j , θmaxi,j−ζi,j ], e(t) and θ̃v(t) remain
uniformly bounded for all t ≥ 0 and their trajectories
converge exponentially to the set

E1 = {(e, θ̃v) : ||e||2 ≤ (
sθ̃2

max

γθ
+

2m4L̄2

σ2
)
4sm2

σ
,

||θ̃v|| ≤ θ̃max},
(17)

where constants s, σ, m and θ̃max will be defined in the
proof of the theorem.

Proof. Consider a Lyapunov function candidate,

V = eTPe+ tr(θ̃Tv Γ−1
θ θ̃vΛ), (18)

where Γθ = ΓTθ = γθIr, γθ > 0, tr refers to the trace op-
eration and P is the positive definite symmetric matrix
solution of the Lyapunov equation,

ATmP + PAm = −Q, (19)

and where Q is a symmetric positive definite matrix.
The derivative of the Lyapunov function candidate (18)
along the trajectories of (15)-(16) can be calculated as

V̇ = eT (AmP + PAm)e+ 2eTPBΛθ̃Tv v

+ 2tr(θ̃Tv Γ−1
θ

˙̃
θvΛ) + 2eTP d̄ (20)

= −eTQe+ 2eTPBΛθ̃Tv v + 2tr(θ̃Tv Γ−1
θ

˙̃
θvΛ) + 2eTP d̄.

Using the property of the trace operation, aT b = tr(baT )
where a and b are vectors, (20) can be rewritten as

V̇ = −eTQe+ 2tr

(
θ̃Tv

(
veTPB + Γ−1

θ
˙̃
θv

)
Λ

)
+ 2eTP d̄.

(21)
Using the following adaptive law,

θ̇v = ΓθProj
(
θv,−veTPB

)
, (22)

(21) can be written as

V̇ = −eTQe+ 2eTP d̄

+2tr

(
θ̃Tv

(
veTPB + Proj

(
θv,−veTPB

))
Λ

)
.

(23)

In the absence of a disturbance d̄, it can be shown, by
using Lemma 2, that V̇ ≤ 0 and therefore e and θ̃v are
bounded. Furthermore, using Barbalat’s lemma it can
be shown that the error e converges to zero. When d̄ 6= 0,
it can be shown that all the trajectories converge to a
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compact set E1. To find E1, it is necessary to define the
following parameters [22]

σ ≡ −max
i

(Real(λi(Am))), (24)

s ≡ −min
i

(λi(Am +ATm)/2), (25)

a ≡ ||Am||, (26)

where λi(Am) refers to the ith eigenvalue of the matrix
Am. If the matrix Q in (19) is selected as an identity
matrix of dimension r × r, then the matrix P satisfies
the following properties [22]

||P || ≤ m2

σ
, (27)

λmin(P ) ≥ 1

2s
, (28)

where σ and s are defined in (24) and (25), λmin(.) de-

notes the minimum eigenvalue and m =
3

2
(1+4

a

σ
)(r−1),

and where a is defined in (26).

Using the Lyapunov function candidate (18), it follows
that

V = eTPe+ tr(θ̃Tv Γ−1
θ θ̃vΛ)

≤ ||e||2||P ||+ tr(θ̃Tv Γ−1
θ θ̃vΛ)

= ||e||2||P ||+ (1/γθ)tr(θ̃
T
v θ̃vΛ)

≤ ||e||2||P ||+ (1/γθ)||θ̃v||2F
≤ ||e||2||P ||+ (1/γθ)θ̃

2
max,

(29)

where Γ−1
θ = (1/γθ)Ir, γθ > 0, Λ = diag(λ1, ..., λm), 0 <

λi ≤ 1 and considering θ∗vi,j ∈ [θmini,j + ζi,j , θmaxi,j −
ζi,j ] and using (5), we have ||θ̃v(t)||F ≤ θ̃max, for all

t ≥ 0, where θ̃max is defined as

θ̃max ≡
√∑

i,j

(θmaxi,j − θmini,j − ζi,j)2. (30)

Using (29), we have

V

||P ||
− θ̃2

max

γθ||P ||
≤ ||e||2. (31)

Since θ∗vi,j ∈ [θmini,j + ζi,j , θmaxi,j − ζi,j ], using (23),

(6), and considering Q = Ir, we have V̇ ≤ −||e||2 +
2||e||||P d̄||. In addition, by using the inequality,

|xy| ≤ x2

2c
+
c|y|2

2
, (32)

for c = 2, x = ||e||, y = ||P d̄||, it follows that we have
2||e||||P d̄|| ≤ 1

2 ||e||
2 + 2||P d̄||2. Recalling that the upper

bound of d̄ is L̄, it follows that V̇ ≤ − 1
2 ||e||

2 +2||P ||2L̄2.
Thus, using (31), we have

V̇ (t) ≤ −1

2
||e||2 + 2||P ||2L̄2

≤ − V

2||P ||
+

θ̃2
max

2γθ||P ||
+ 2||P ||2L̄2 ≤ −ω1V + ω2,

(33)

where ω1 = σ
2m2 and ω2 = s

γθ
θ̃2

max + 2m4L̄2

σ2 . By using the

Gronwall inequality, whose statement is that for V̇ (t) ≤
b(t)V (t) + h(t), we have

V (t) ≤ V (0)exp(

∫ t

α

b(s)ds) +

∫ t

α

h(s)exp(

∫ t

s

b(τ)dτ)ds,

(34)

(33) can be rewritten as

V (t) ≤
(
V (0)− ω2

ω1

)
e−ω1t +

ω2

ω1
. (35)

Using e(t)TPe(t) ≤ V (t) ≤
(
V (0)− ω2

ω1

)
e−ω1t + ω2

ω1
and

taking the limits of the leftmost and rightmost sides as
t goes to infinity, we have

lim sup
t→∞

e(t)TPe(t) ≤ ω2

ω1
= (

sθ̃2
max

γθ
+

2m4L̄2

σ2
)
2m2

σ
.

(36)
By using the following inequality

λmin(P )||e||2 ≤ eTPe ≤ λmax(P )||e||2, (37)

and (28), we have

1

2s
||e||2 ≤ λmin(P )||e||2 ≤ eTPe. (38)

By using (36) and taking the limit of both sides of (38)
as t goes to infinity,

lim sup
t→∞

||e(t)||2 ≤ (
sθ̃2

max

γθ
+

2m4L̄2

σ2
)
4sm2

σ
. (39)

Therefore, for the initial conditions e(0) and θvi,j (0) ∈
[θmini,j , θmaxi,j ], e(t) and θ̃v(t) are uniformly bounded
for all t ≥ 0 and system trajectories converge to the
following compact set

E1 = {(e, θ̃v) : ||e||2 ≤ (
sθ̃2

max

γθ
+

2m4L̄2

σ2
)
4sm2

σ
,

||θ̃v|| ≤ θ̃max}.
(40)
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2

It is noted that the bound on θ̃v in (40) is a direct result
of Lemma 1 and the definition given in (30).

The analysis provided above shows that θv and e are
bounded. Assuming that v is bounded, (12) implies that
u is bounded. In the sequel, the boundedness of v will be
established by using a soft saturation bound on v during
the design of the controller, the effect of which will be
analyzed in section 5.3. Since Am is Hurwitz, the vari-
able y, whose dynamics is given in (10), is also bounded.
Therefore, all the signals in the adaptive control alloca-
tion system are bounded.

Remark 1. Note that θ∗v ∈ Rr×m is the ideal parameter
matrix that should satisfy (14). Since Λ is unknown, θ∗v
is also unknown. However, although the diagonal matrix
Λ is unknown, the range of its elements can be taken
as (0, 1], assuming that the uncertainty originates from
possible loss of actuator effectiveness. Thus, using (14),
the range of θ∗v can be obtained, and expressed as θ∗i,j ∈
[θ∗mini,j , θ

∗
maxi,j ].

Remark 2. Let [θmini,j , θmaxi,j ] ⊂ [θ∗mini,j , θ
∗
maxi,j ]

and θ∗vi,j /∈ [θmini,j+ζi,j , θmaxi,j−ζi,j ], and consider the

projection algorithm (4) with convex function (5). Then,

θ̃max, which was defined in (30), should be redefined so

that ||θ̃v(t)||F ≤ θ̃MAX , for all t ≥ 0, where θ̃MAX is
defined as

θ̃MAX ≡√∑
i,j

(max(|θ∗maxi,j − θmini,j |, |θ
∗
mini,j − θmaxi,j |))

2.

(41)

We note that to delineate two different cases (the ideal
parameter θ∗v being inside or outside the projection
bounds), the maximum value of adaptive parameter

deviation from its ideal value is designated by θ̃max for
the former and θ̃MAX for the latter case. Below, we
provide a lemma and a theorem, regarding the stability
of the control allocation for the latter case, i.e. when
θ∗vi,j /∈ [θmini,j + ζi,j , θmaxi,j − ζi,j ].

Lemma 3. For θ∗vi,j /∈ [θmini,j + ζi,j , θmaxi,j − ζi,j ],

θvi,j ∈ Rr×m, Y ∈ Rr×m with r ≤ m and the projection
algorithm (4)-(5), the following inequality holds:

tr

(
(θTv − θ∗v

T )
(
− Y + Proj(θv, Y )

))
≤
√
rθ̃MAX ||Y ||.

(42)
Proof. For both cases in projection algorithm (4), we

have

tr

(
(θTv − θ∗v

T )
(
− Y + Proj(θv, Y )

))
=

m∑
j=1

r∑
i=1

(θvi,j − θ∗vi,j )
(
− Yi,j + Proj(θvi,j , Yi,j)

)
≤

m∑
j=1

r∑
i=1

|(θvi,j − θ∗vi,j )Yi,jf(θvi,j )|

≤
m∑
j=1

r∑
i=1

|θ̃i,jYi,j | = tr(|θ̃Tv ||Y |)

≤ ||θ̃v||F ||Y ||F ≤
√
r||θ̃v||F ||Y || ≤

√
rθ̃MAX ||Y ||,

where we used the property, ||Y ||F ≤
√
min(r,m)||Y ||,

and |θ̃Tv | and |Y | which are the matrices of absolute val-

ues of the elements of θ̃Tv and Y , respectively. 2

Theorem 2. Consider (10), the reference model (11),
the controller (12), and the adaptive law,

θ̇v = ΓθProj
(
θv,−veTPB

)
, (43)

where Γ−1
θ = (1/γθ)Ir, γθ > 0, and the projection is

defined in (4) and (5). Assume ||v(t)|| ≤M and ||d̄(t)|| ≤
L̄ for all t ≥ 0. Then, for any initial condition e(0) ∈
Rr, θvi,j (0) ∈ [θmini,j , θmaxi,j ], and θ∗vi,j /∈ [θmini,j +

ζi,j , θmaxi,j−ζi,j ], e(t) and θ̃v(t) are uniformly bounded
for all t ≥ 0 and their trajectories converge exponentially
to

Ê1 = {(e, θ̃v) : ||θ̃v|| ≤ θ̃MAX , ||e||2 ≤ (
sθ̃2

MAX

γθ

+
4m4L̄2 + 4rθ̃2

MAXm
4||B||2M2

σ2
)
4sm2

σ
}, (44)

where the constants σ, s and m are defined in the proof
of Theorem 1 and θ̃MAX is defined in Remark 2.

Proof. By using (18), (19) with Q = Ir, (23) and (42)
with Y = −veTPB, we have

V̇ ≤ −||e||2 + 2||e||||P ||L̄+ 2
√
rθ̃MAX ||Y ||

≤ −||e||2 + 2||e||||P ||L̄+ 2
√
rθ̃MAX ||e||||P ||||B||M,

(45)

where ||d̄|| ≤ L̄ and v is the control command vector
produced by the controller with an upper bound M .

By using the inequality (32) with x = ||e||, y = 2||P ||L̄,
c = 2 for 2||e||||P ||L̄ in (45), and x = ||e||, y =

2
√
rθ̃MAX ||P ||||B||M , c = 2 for 2

√
rθ̃MAX ||e||||P ||||B||M

6



in (45), we obtain that

V̇ ≤ −1

2
||e||2 + 4||P ||2L̄2 + 4rθ̃2

MAX ||P ||2||B||2M2.

(46)

Using (31), we obtain that

V̇ ≤ − V

2||P ||
+

θ̃2
MAX

2γθ||P ||
+ 4||P ||2L̄2 (47)

+ 4rθ̃2
MAX||P ||2||B||2M2 ≤ −ω̂1V + ω̂2,

where ω̂1 =
σ

2m2
and ω̂2 =

s

γθ
θ̃2

MAX + 4
m4L̄2

σ2
+

4
rθ̃2MAXm

4||B||2M2

σ2 , and where σ and s are defined in (24)

and (25). Following the same procedure as for E1, Ê1 is
obtained as

Ê1 = {(e, θ̃v) : ||θ̃v|| ≤ θ̃MAX , ||e||2 ≤ (
sθ̃2

MAX

γθ

+
4m4L̄2 + 4rθ̃2

MAXm
4||B||2M2

σ2
)
4sm2

σ
}. (48)

2

Remark 3. A discussion about putting an upper bound
M on the control command, without assuming a stable
control allocation, is given in section IV.

To obtain fast convergence without introducing exces-
sive oscillations, the open loop reference model (11) is
modified to obtain the following closed loop reference
model [22].

ẏm = Amym − L(y − ym), (49)

where Am ∈ Rr×r is Hurwitz, L = −`Ir, ` > 0, and
Ir ∈ Rr×r is an identity matrix. Defining Ām = Am+L,
and subtracting (49) from (13), it follows that

ė = Āme+BΛθ̃Tv v + d̄. (50)

We assume that the matrix Ām is made Hurwitz through
an appropriate selection of L.

Theorem 3. Consider (10), the reference model (49),
the controller (12), and the adaptive law

θ̇v = ΓθProj
(
θv,−veTPB

)
, (51)

where Γ−1
θ = (1/γθ)Ir, γθ > 0 and the projection is de-

fined by (4) and (5). For any initial condition e(0) ∈ Rr,

and θvi,j (0) ∈ [θmini,j , θmaxi,j ], e(t) and θ̃(t) are uni-
formly bounded for all t ≥ 0 and their trajectories con-
verge exponentially to a closed and bounded set defined
either by (60) or (61) in the proof of Theorem 3.

Proof. Consider the following Lyapunov function can-
didate,

V1 = eT P̄ e+ tr(θ̃Tv Γ−1
θ θ̃vΛ), (52)

where P̄ is the symmetric positive definite matrix solu-
tion of the following Lyapunov equation,

ĀTmP̄ + P̄ Ām = −Ir, (53)

where Ir is an identity matrix of dimension r × r. The
time derivative of V1 along the trajectories of (50)-(51)
can be obtained as

V̇1 = −eT Q̄e+ 2eTP d̄+ 2tr

(
θ̃Tv

(
veT P̄B + Γ−1

θ
˙̃
θv

)
Λ

)
.

(54)
Aassume first that θ∗vi,j ∈ [θmini,j + ζi,j , θmaxi,j − ζi,j ].
To find the set to which e and θ̃v converge, it is necessary
to define the following parameters [22]

σ̄ ≡ −max
i

(Real(λi(Ām))), (55)

s̄ ≡ −min
i

(λi(Ām + ĀTm)/2), (56)

ā ≡ ||Ām||. (57)

Then, P̄ satisfies the following properties [22]:

||P̄ || ≤ m̄2

σ̄ + 2`
, (58)

λmin(P̄ ) ≥ 1

2(s̄+ `)
, (59)

where λmin(.) denotes the minimum eigenvalue and m̄ =
3

2
(1 + 4

ā

σ̄
)(r−1).

Proceeding as in the proof of Theorem 1, and using (55-

57), for the initial conditions e(0) and ||θ̃v(0)|| ≤ θ̃max,

e and θ̃v can be shown to be uniformly bounded and
converge to the following set,

E2 ={(e, θ̃v) : ||e||2 ≤ (
(s̄+ `)θ̃2

max

γθ
+

2m̄4L̄2

(σ̄ + 2`)2
)

× 4(s̄+ `)m̄2

(σ̄ + 2`)
, ||θ̃v|| ≤ θ̃max}. (60)

If θ∗vi,j /∈ [θmini,j+ζi,j , θmaxi,j−ζi,j ], proceeding similar
as in the proof of Theorem 2, the convergence set is
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characterized as

Ê2 ={(e, θ̃v) : ||e||2 ≤ (
(s̄+ `)θ̃2

MAX

γθ
+

4m̄4L̄2

(σ̄ + 2`)2

+
4rθ̃2

MAXm̄
4||B||2M2

(σ̄ + 2`)2
)
4(s̄+ `)m̄2

(σ̄ + 2`)
,

||θ̃v|| ≤ θ̃MAX}. (61)

2

4 Determination of the projection boundaries

In the previous section, the adaptive control alloca-
tor was designed based on the projection operator and
proved to be stable. In this section, the selection of
the projection boundaries, which define the bounds on
adaptive control parameters, is explained. The projec-
tion boundaries are determined to satisfy two require-
ments: 1) The actuator command signals should not
saturate the actuators and 2) a specific requirement
in the controller design, which will be provided in the
following subsections, to obtain a stable closed loop
system, including the controller, the control allocator
and the plant (see Fig. 2), should be satisfied. The de-
sign procedure to achieve these goals is composed of
three main steps. In the first step, an attainable set for
virtual control signal vector v is found in the absence
of disturbance based on the actuators constraints and
v = BΛu. In the second step, using the calculated at-
tainable set for v, projection bounds are calculated to
satisfy −umax ≤ θTv v ≤ umax. In the first two steps, the
attainable sets are obtained, and as long as the signals
are inside these set, we can guarantee that the actua-
tor constraints are satisfied. In the third step, a subset
of the projection boundaries calculated in step 2 that
satisfies an overall closed loop stability requirement is
determined.

Step 1

In this step, realizable values of virtual control signals
are found.

Note that the actuator constraints are known: u(t) ∈ Ωu,
where Ωu = {[u1, ..., um]T : −umaxi ≤ ui ≤ umaxi , i =
1, ...,m}. Therefore, using Ωu, the set Ωv ∈ Rr, defining
all realizable values of the virtual control input v, can
be obtained as Ωv = {v : v = Bu, u ∈ Ωu, B

†v ∈ Ωu}.
Note that Ωv also defines the upper and lower bounds
of each element of the realizable virtual control, v =
[v1, ..., vr]

T . To make sure that vi remains within its real-
izable bounds, vi ∈ [−Mi,Mi], ∀i = 1, ..., r, we use a soft
saturation bound on the control signal v. In Section V,
we will design the controller by taking this saturation
bound into account.

Step 2

The projection boundaries that limit the adaptive pa-
rameters are calculated in this step, to make sure that
the actuator signal vector u does not saturate the actu-
ators.

From Step 1, we obtained the attainable set for the vir-
tual control signals (Ωv). The actuator limits, umax and
umin = −umax are known. With this information, the set
Ωθ = {vec(θv) : −umax ≤ θTv v ≤ umax, v ∈ Ωv}, where
vec(.) : Rr×m → Rrm puts the elements of a matrix in a
column vector, can be obtained. Note that θ∗I ∈ Ωθ, that
is, in the absence of any uncertainty, the ideal adaptive
parameter matrix, θ∗I , always exists in Ωθ. This leads to
the smallest convergence set for error trajectories when
Λ = I.

Step 3

In this step, a subset of Ωθ, which satisfies a necessary
condition for controller stability, is obtained. This sub-
set of Ωθ also determines the ultimate projection bound-
aries, and is denoted by Ωproj.

After Step 2, establishing that the control allocation out-
put, which is the actuator input signal vector u, does not
saturate the actuators, the plant dynamics (8) can be

rewritten, by using (12), (14) and defining θ̃v = θv − θ∗v ,
as

ẋ = Ax+Bv(BΛu+ d̄)

= Ax+Bv(BΛθTv v + d̄)

= Ax+Bv(I +BΛθ̃Tv )v +Bvd̄.

(62)

Defining ∆B ≡ BΛθ̃Tv , and substituting in (62), it fol-
lows that

ẋ = Ax+Bv(v + d), (63)

where d = ∆Bv + d̄ ∈ Rr.

To be able to design a stabilizing controller, one must
make sure that the ith element of the disturbance vector
d = [d1, ..., dr]

T in (63), is smaller in absolute value than
the upper bound of the ith element of the virtual control
input which was defined in Step 1, that is |di| < Mi,
i = 1, ..., r. Since each di = rowi(∆B)v + d̄i, where d̄i is
the ith element of d̄, and rowi(.) designates the ith row
of a matrix, satisfying the following condition ensures
that |di| < Mi, i = 1, ..., r:

Mi − ||rowi(∆B)||Mmax > |d̄i|, i = 1, ..., r, (64)

where Mmax = maxiMi. A necessary condition
for satisfying the inequality (64), is ||rowi(∆B)|| =

||rowi(BΛθ̃Tv )|| < Mi

Mmax
for all i = 1, ..., r. (Sufficient

conditions required to satisfy (64) will be discussed later
in Remark 4). Thus, the elements of the matrix θv should
be properly bounded in order to satisfy the necessary
condition ||rowi(BΛθ̃Tv )|| < Mi

Mmax
for all i = 1, ..., r, and

for all Λ ∈ ΩΛ1
, where ΩΛ1

⊂ ΩΛ, and ΩΛ is the set of all
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m×m diagonal matrices with elements in [0, 1]; further-
more, ΩΛ1 should have diagonal elements λi ∈ (γ, 1],
where γ is precisely defined later in Theorem 4.

Remark 4. In order to find a non-empty set, for which,
the elements of θv satisfy the necessary condition dis-
cussed above, an optimization problem needs to be
solved over the following set,

E = {vec(θv) : ||rowi(BΛθTv − Ir)||2 ≤
M2
i

M2
max

− ε,

Λ ∈ ΩΛ1
, i = 1, ..., r}, (65)

where vec(.) : Rr×m → Rrm puts the elements of a ma-
trix in a column vector and ε is a small positive con-
stant used to have a close set, since typical numeri-
cal optimizers only optimize over a close set. Note that
BΛθ̃Tv = BΛ(θTv − θ∗v

T ) = BΛθTv − Ir.

The optimization problem,

R2 = min
θv

(
vec(θv − θ∗I )Tvec(θv − θ∗I )

)
s.t.

∥∥rowi(BΛθTv − Ir)
∥∥2

=
M2
i

M2
max
− ε, i = 1, ..., r,

Λ ∈ ΩΛ1
,

vec(θv) ∈ Ωθ,

(66)
which needs to be solved offline, finds the minimum dis-
tance, R, from the vec(θ∗I ) to the boundary of the set
(65). Figure 3 depicts a visualization of the projection
boundaries for the case when there are only two adap-
tive parameters, θ1 and θ2. It is noted that the calcu-
lated θmaxi,j and θmini,j are not unique, and different
boundaries can be found by defining different cost func-
tions in (66). After calculating θmaxi,j and θmini,j , the
projection parameters region is obtained as,

Ωproj = {vec(θv) : θi,j ∈ [θmaxi,j , θmaxi,j ]}. (67)

Remark 5. For all elements of ΩΛ1
, the optimization

problem (66) finds the largest neighborhood of θ∗I in Ωθ
that satisfies the necessary condition. This neighborhood
is an n-sphere, with the center at vec(θ∗I ) and with the
radius R.

Remark 6. The reason to include θ∗Ii,j inside the pro-

jection boundaries is that it is preferred that e converges

Fig. 3. Projection boundaries when there are two adaptive
parameters. The circle defines the border of the neighbor-
hood obtained from the optimization. The square defines the
projection boundaries for θ1 and θ2.

to the smallest set around zero. For this, θ∗Ii,j should be

inside [θmini,j + ζi,j , θmaxi,j − ζi,j ] (see (17) and (44)).

In order to show that the optimization problem (66)
is feasible, it should be proven that the set E always
includes vec(θ∗I ).

Theorem 4. The set Υ = {vec(θv) : ||rowi(BΛθTv −
Ir)||2 ≤ M2

i

M2
max
− ε,Λ ∈ ΩΛ1 ⊂ ΩΛ, i = 1, ..., r} ∩

vec(θ∗I ) 6= ∅ when λmin(Λ) > γ ≡ maxi(1 −
√

γMi
γBi

),

where λmin(.) denotes the minimum eigenvalue,

γBi ≡ ||rowi(B)||||BT (BBT )−1|| and γMi
≡ M2

i

M2
max
− ε.

Proof. To prove the non-emptyness of Υ, we should

show that ||rowi(BΛθ∗I
T − Ir)||2 ≤ M2

i

M2
max
− ε. Using (65)

and the definition of θ∗I
T = BT (BBT )−1, we have,

||rowi(BΛθ∗I
T − Ir)||2

=||rowi(BΛBT (BBT )−1 − Ir)||2

=||rowi(BΛBT (BBT )−1 −BBT (BBT )−1)||2

=||rowi(B(Λ− Im)BT (BBT )−1)||2

≤||rowi(B(Λ− Im))||2||BT (BBT )−1||2

≤(λmax(Λ− Im))2||rowi(B)||2||BT (BBT )−1||2

=(λmin(Λ)− 1)2||rowi(B)||2||BT (BBT )−1||2, (68)

where λmin(.) denotes the minimum eigenvalue. It is
noted that since Λ and Im are diagonal matrices and di-
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agonal elements of Λ are between zero and one, we have,
(λmax(Λ − Im))2 = (λmin(Λ) − 1)2. Therefore, in order

to show that ||rowi(BΛθ∗I
T − Ir)||2 ≤ M2

i

M2
max
− ε, for all

i = 1, ..., r, we should satisfy

(λmin(Λ)− 1)2||rowi(B)||2||BT (BBT )−1||2 ≤ M2
i

M2
max

− ε

⇒ −
√
γMi

γBi
≤ λmin(Λ)− 1 ≤

√
γMi

γBi
, i = 1, ..., r,

(69)

where γBi ≡ ||rowi(B)||||BT (BBT )−1|| and γMi
=

M2
i

M2
max
− ε for all i = 1, ..., r. Since the maximum value

for the diagonal elements of Λ is one, the only condition

that should be satisfied is that 1−
√

γMi
γBi
≤ λmin(Λ) for

i = 1, ..., r or γ ≡ maxi(1−
√

γMi
γBi

) ≤ λmin(Λ). 2

Based on the above theorem, and by defining γBi ≡
||rowi(B)||||BT (BBT )−1||, and γ ≡ maxi(1− Mi

γBiMmax
),

the definition of ΩΛ should be modified as

ΩΛ1
= {Λ : Λ ∈ Dm×m, diagi(Λ) ∈ (γ, 1], i = 1, ...,m},

(70)

where D denotes the set of real diagonal matrices, and
diagi(.) : Rm×m → R provides the ith diagonal element
of square matrices.

Remark 7. Using ΩΛ1 , defined in (70), and Ωproj, de-
fined in step 3, the upper bound on ||rowi(∆B)|| =

||rowi(BΛθ̃Tv )|| can be found, which we denote as ρ̄i.
Therefore, recalling that Mi is defined as the upper
bound on the absolute value of ith virtual control signal
vi, the disturbance d̄i, which is defined after (8), should
be smaller than Mi − ρ̄iMmax, i.e. d̄i < Mi − ρ̄iMmax.
Note that ρ̄i <

Mi

Mmax
is guaranteed by the solution of

(66). Therefore, the condition |di| < Mi is satisfied.

5 Controller design

In this section, a design procedure for the controller that
generates the virtual control signal v in (63) is proposed.

During the design of the controller, the following two
assumptions are made about the plant dynamics:

Assumption 1. The dynamics in (63) can be written as[
ẋ(1)

ẋ(2)

]
=

[
A1,1 A1,2

A2,1 A2,2

][
x(1)

x(2)

]
+Bv(v+d), y = C

[
x(1)

x(2)

]
,

(71)
where A1,1 ∈ R(n−r)×(n−r) is a Hurwitz matrix, A1,2 ∈
R(n−r)×r, A2,1 ∈ Rr×(n−r), A2,2 ∈ Rr×r, x(1) ∈ R(n−r),

x(2) ∈ Rr, y ∈ Rr and C = [0r×(n−r) Ir].

Assumption 2. The matrix Bv ∈ Rn×r is in the form
[0r×(n−r) Ir]

T .

Both of the above assumptions are justified for typical
aircraft models [16, 40]. In the simulation section, these
assumptions are validated using the AeroData Model in
Research Environment (ADMIRE) [25,50].

Remark 8. For systems for which Assumption 2 does
not hold, given thatBv has full column rank, it is possible
to find (see [3, 12]) a transformation matrix, TB , such

that B̂v = TBBv = [0r×(n−r) Ir]
T . However, employing

this transformation may lead to a state space realization
which violates Assumption1.

Remark 9. It is desired to design a controller which
makes y = Cx = x(2) follow the reference input. Since
A1,1 is Hurwitz, by Assumption 1, showing that the

states x(2) are bounded will be sufficient to demonstrate
for the boundedness of x(1).

5.1 Dynamics on the Time Varying Sliding Sur-
face

The sliding surface, inspired by [12], is given as

s(x(2)(t), x(2)(t0), t) =

x(2)(t)− x(2)(t0)e−λ̄(t−t0) − 2

π
r(t)tan−1

(
λ̄(t− t0)

)
= 0,

(72)

where λ̄ > 0 is a scalar parameter, x(2) ∈ Rr is defined
in (71), s ∈ Rr is the sliding surface, and r(t) ∈ Rr is
the reference to be tracked.

The response of a system controlled by a sliding mode
controller includes two phases. The first phase is called
the reaching phase. During this phase, the controller
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drives the system towards the sliding surface so that
s(t) → 0. In the second, sliding phase, the trajectory
evolves on the sliding manifold. For the sliding sur-
face (72), no reaching phase exists since the sliding
surface is a function of the initial condition and the
trajectories are on the sliding surface at t = t0 i.e.
s(x(2)(t), x(2)(t0), t0) = 0. In the next subsection, via
Theorem 5, the control law v that ensures that the tra-
jectories remain on the sliding surface for all t ≥ t0 is
provided.

Using (72), the trajectories of x(2) on the sliding surface
satisfy

x(2)(t) = x(2)(t0)e−λ̄(t−t0) +
2

π
r(t)tan−1

(
λ̄(t− t0)

)
.

(73)

For A satisfying Assumption 1, and if (73) holds, it fol-
lows that

ẋ(1) = A1,1x
(1) +A1,2[x(2)(t0)e−λ̄(t−t0)

+
2

π
r(t)tan−1(λ̄(t− t0))]. (74)

By defining G1 ≡ A1,2x
(2)(t0), and G2(t) = 2

πA1,2r(t)

tan−1(λ̄(t− t0)), we have,

ẋ(1) = A1,1x
(1) +G1e

−λ̄(t−t0) +G2(t) = A1,1x
(1) + g(t),

(75)

where g(t) ≡ G1e
−λ̄(t−t0) +G2(t).

Lemma 4. When x(2)(t) is on the sliding surface (72),
x(1)(t) and x(2)(t) are bounded and for all t ≥ t0,
||x(1)(t)|| ≤ kx̄(1)(t0) + K2x̄

(2)(t0) + K2r̄, where
K2 = k

ξ ||A1,2||, and where k and ξ are constants.

Also, x̄(1)(t0), x̄(2)(t0) and r̄ are the upper bounds of
||x(1)(t0)||, ||x(2)(t0)|| and supt≥t0 ||r(t)||, respectively.
Furthermore, limt→∞ y(t) = r(t).

Proof. Per Assumption 1, A1,1 is Hurwitz, hence the

homogeneous system ẋ
(1)
h (t) = A1,1x

(1)
h (t) is globally ex-

ponentially stable at the origin. The solution of this sys-

tem is given as x
(1)
h (t) = Φ(t, t0)x

(1)
h (t0), where Φ(t, t0)

is the state transition matrix and there exist constants
k > 0 and ξ > 0 such that

||Φ(t, t0)|| ≤ ke−ξ(t−t0), ∀t ≥ t0. (76)

Since the state transition matrices of ẋ
(1)
h (t) =

A1,1x
(1)
h (t) and ẋ(1)(t) = A1,1x

(1)(t)+g(t) are the same,
we use the state transition matrix Φ(t, t0) used in (76)
to provide the solution of (75) as

x(1)(t) = Φ(t, t0)x(1)(t0) +

∫ t

t0

Φ(t, η)g(η)dη. (77)

Taking the norm of both sides of (77), we obtain that

||x(1)(t)|| ≤ ||Φ(t, t0)x(1)(t0)||+
∫ t

t0

||Φ(t, η)||||g(t)||dη.

(78)

Using the definition of g(t) given after (75), it fol-

lows that ||g(t)|| = ||G1e
−λ̄t + G2(t)|| ≤ ||G1|| +

supt≥t0 ||G2(t)||. Note that G2(t) is a function of the
reference input r(t), and that supt≥t0 ||G3(t)|| exists.

Therefore, ||g(t)|| ≤ ||A1,2||||x(2)(t0)|| + ||A1,2||||r(t)||.
Defining K1 = ||A1,2||||x(2)(t0)|| + ||A1,2||r̄, where r̄ is
the upper bound on ||r(t)|| for t ≥ 0, and using (76),
(78) can be written as,

||x(1)(t)|| ≤ k||x(1)(t0)||e−ξ(t−t0) + kK1

∫ t

t0

e−ξ(t−η)dη

≤ k||x(1)(t0)||e−ξ(t−t0) + kK1
1

ξ
(1− e−ξ(t−t0))

≤ k||x(1)(t0)||+ kK1
1

ξ

≤ kx̄(1)(t0) +K2x̄
(2)(t0) +K2r̄, (79)

where K2 = k
ξ ||A1,2||, while x̄(1)(t0) and x̄(2)(t0) repre-

sent bounds on ||x(1)(t0)|| and ||x(2)(t0)||, respectively.
Since the reference signal r(t), x(1)(t0) and x(2)(t0) are
bounded, (79) shows that x(1)(t) is bounded. Since x(t0)
and r(t) are bounded, it can be shown, using (73), that
x(2)(t) is bounded and converges to r(t). Since y = x(2),
this completes the proof. 2

5.2 Control Law

We now describe the control law and characterize its
properties.

Definition 1. signv(a), where a is a column vector, is
a diagonal matrix whose elements are the signs of the
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elements of the vector a. For example, signv([a1 a2]T ) =
diag(sign(a1), sign(a2)), where a1 and a2 are scalars.

Definition 2. |a|v ≡ signv(a)a and |aT |v ≡ aT signv(a),
where a is a column vector and signv(.) is de-
fined in Definition 3. For example, |[a1 a2]|v =
[a1 a2]signv([a1 a2]T ) = [|a1| |a2|], where a1 and a2 are
scalars.

Theorem 5. Consider the dynamics in (71), with dis-
turbance d, t0 = 0, and the control law,

v(t) =−A2,1x
(1)(t)−A2,2x

(2)(t)− λ̄x(2)(0)e−λ̄t

+
2

π
ṙ(t)tan−1(λ̄t) +

2

π
r(t)

λ̄

1 + λ̄2t2

− signv(s(x(2)(t), x(2)(0), t))ρ, (80)

where ρ ∈ Rr contains the upper bounds on the absolute
values of the elements of the disturbance vector d, and
s(x(2)(t), x(2)(0), t) is the sliding surface (72). Then the
trajectories of x(2) stay on the sliding surface (72).

Proof. Consider a Lyapunov function candidate V2(s) =
1
2s
T s, where the arguments of s(x(2)(t), x(2)(t0), t) are

dropped for clarity. By taking the derivative of V2, and
using (72) with t0 = 0, we obtain,

V̇2 = sT ṡ = sT
(
ẋ(2)(t) + λ̄x(2)(0)e−λ̄t − 2

π
ṙ(t)tan−1(λ̄t)

− 2

π
r(t)

λ̄

1 + λ̄2t2

)
. (81)

Using (71) and Assumption 2, we have ẋ(2)(t) =
A2,1x

(1)(t) + A2,2x
(2)(t) + v + d. By substituting it in

(81) we have

V̇2 = sT ṡ = sT
(
A2,1x

(1)(t) +A2,2x
(2)(t) + v + d

+ λ̄x(2)(0)e−λ̄t − 2

π
ṙ(t)tan−1(λ̄t)− 2

π
r(t)

λ̄

1 + λ̄2t2

)
.

(82)

By substituting the control law (80) into (82), and using
Definitions 1 and 2, it follows that

V̇2 = sT [d− signv(s)ρ] = sT d− |sT |vρ
≤ |sT |v(|d|v − ρ). (83)

Fig. 4. Block diagram of the closed loop system with soft
saturation.

Since ρ contains the upper bounds on the absolute values
of the elements of the disturbance vector d, the elements
of |d|v − ρ are non-positive, which leads to V̇2 ≤ 0, and
consequently proves that x(2) trajectories which are on
sliding surface at t = t0, will remain there for all t >
0. 2

5.3 Bounding the control input

Remark 10. Up until now, we showed that the con-
trol signal v given in (80) keeps x(2) trajectories on the
sliding surface defined in (72), and as long as the states
of the system remain on the sliding surface, the system
output y follows the reference r while all the states re-
main bounded. In the control allocation development,
we stated that the boundedness of the control signal v is
ensured by using a soft saturation bound, the limits of
which are set in Section 4 as vi ∈ [−Mi,Mi], i = 1, ..., r.
The overall closed loop system block diagram is pre-
sented in Figure 4. In this section, we provide a method
inspired by [12], to make sure that the control signal v
remains within this saturation bounds.

To ensure that |vi| ≤ Mi for i = 1, ..., r, the following
inequality, obtained by using (80), should be satisfied for
all i = 1, ..., r,

|vi(t)| =
∣∣∣− n∑

j=1

a2i,jxj(t)− λ̄xn−r+i(0)e−λ̄t

+
2

π
ṙi(t)tan−1(λ̄t) +

2

π
ri(t)

λ̄

1 + λ̄2t2

− s̄i(x(t))ρi

∣∣∣ ≤Mi, (84)

where xj , ri, ṙi and ρi denote the jth component of
x(t) and ith components of r(t), ṙ(t) and ρ, respec-
tively. Moreover, s̄i(x(t)) is the ith diagonal element of
signv(s(x(2)(t), x(2)(0), t)). Defining A1 = [A1,1 A1,2],
A2 = [A2,1 A2,2], where Ai,j is defined in (74), a2i,j refer
to the elements of A2. Using the inequalities |a − b| <
|a| + |b| and |a + b| < |a| + |b| for two scalars a and b,
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it can be shown that satisfying the following inequality,
ensures (84):

∣∣∣ n∑
j=1

a2i,jxj

∣∣∣+
∣∣∣λ̄xn−r+i(0)e−λ̄t

∣∣∣+
∣∣∣ 2
π
ṙitan−1(λ̄t)

∣∣∣
+
∣∣∣ 2
π
ri

λ̄

1 + λ̄2t2

∣∣∣ ≤ (Mi − ρi). (85)

Remembering that ρi is the upper bound of the distur-
bance element di, and |di| is always smaller than Mi (see
Remark 4), we obtain that (Mi − ρi) > 0, meaning that
the right hand side of the inequality (85) is positive.

It can then be shown that satisfying the following in-
equality ensures (85)

(∣∣∣ n∑
j=1

a2i,jxj

∣∣∣+
∣∣∣ṙi∣∣∣−Mi + ρi

)
+ λ̄

(∣∣∣xn−r+i(0)
∣∣∣

+
2

π

∣∣∣ri∣∣∣) ≤ 0. (86)

Remembering that x(1) = [x1, ..., xn−r]
T and x(2) =

[xn−r+1, ..., xn]T , and using (73), it follows that
|xn−r+i(t)| ≤ |xn−r+i(0)| + |ri(t)| for i = 1, ..., r, and
||x(1)(t)|| ≥ xj for all j = 1, ..., n− r.

(∣∣∣ n−r∑
j=1

a2i,jxj

∣∣∣+
∣∣∣ n∑
j=n−r+1

a2i,j

(
|xn−r+i(0)|+ |ri|

)∣∣∣
+
∣∣∣ṙi∣∣∣−Mi + ρi

)
+ λ̄
(∣∣∣xn−r+i(0)

∣∣∣+
2

π

∣∣∣ri∣∣∣) ≤ 0.

(87)

Furthermore, the upper bound of ||x(1)(t)|| is obtained
in Lemma 4. Therefore, defining x̄(1)(0), x̄(2)(0), r̄, r̄i
and ¯̇ri as bounds on ||x(1)(0)||, ||x(2)(0)||, ||r(t)||, |ri(t)|
and |ṙi(t)|, it can be shown that satisfying the following
inequality ensures (86):

(∣∣∣ n−r∑
j=1

a2i,j

∣∣∣(kx̄(1)(0) + (1 +K2)x̄(2)(0) +K2r̄ + r̄i
)

+ ¯̇ri −Mi + ρi

)
+ λ̄
(∣∣∣x̄(2)(0)

∣∣∣+
2

π

∣∣∣r̄i∣∣∣) ≤ 0, (88)

where k and K2 are defined in Lemma 4. Equation (88)

can be rewritten as

Wi,1 + λ̄Wi,2 ≤ 0, (89)

where Wi,1 is the first term, and Wi,2 is the term multi-
plying λ̄ in (88). Note that Wi,1 and Wi,2 are functions

of x̄(1)(0), x̄(2)(0), r̄i, and ¯̇ri and remain constant along
the closed-loop trajectory. Since Wi,2 is positive, a value
of λ̄ > 0 satisfying (89) can always be found if Wi,1 < 0,
which can be realized by putting suitable bounds on
x̄(1)(0), x̄(2)(0), r̄, r̄i and ¯̇ri. A step by step design pro-
cedure to determine the controller parameters is given
in the Appendix.

6 SIMULATION RESULTS

The Aerodata Model in Research Environment (AD-
MIRE), which represents the dynamics of an over-
actuated aircraft model, is used to demonstrate the
effectiveness of the adaptive control allocation in the
presence of uncertainty. The linearized ADMIRE model
is introduced in [25], and is given below:

x = [α β p q r]T

y = [p q r]T

u = [uc ure ule ur]
T

ẋ = Ax+Buu = Ax+Bvv

v = Bu, Bu = BvB, Bv =

[
02×3

I3×3

]
,

(90)

where α, β, p, q and r are the angle of attack, sideslip
angle, roll rate, pitch rate and yaw rate, respectively. u
represents the control surface deflections vector which
consists of canard wings, right and left elevons and the
rudder. The state and control matrices are given by:

A =

−0.5432 0.0137 0 0.9778 0

0 −0.1179 0.2215 0 −0.9661

0 −10.5123 −0.9967 0 0.6176

2.6221 −0.0030 0 −0.5057 0

0 0.7075 −0.0939 0 −0.2127


,

(91)
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Bu =



0.0069 −0.0866 −0.0866 0.0004

0 0.0119 −0.0119 0.0287

0 −4.2423 4.2423 1.4871

1.6532 −1.2735 −1.2735 0.0024

0 −0.2805 0.2805 −0.8823


. (92)

The position limits of the control surfaces are given as

uc ∈ [−55, 25]× π
180rad, ure, ule, ur ∈ [−30, 30]× π

180rad,

with first-order dynamics and a time constant of
0.05(sec). Note that the control surfaces influence on

derivatives of the first two states i.e. α̇ and β̇ is ne-
glected, that is the control surfaces are considered to
be pure moment generators, so that control allocation
implementation becomes possible [25].

To represent actuator loss of effectiveness and distur-
bance, a diagonal matrix Λ and a vector du, respectively,
are augmented to the model (90) as

ẋ = Ax+BuΛu+Budu = Ax+Bvv +Bvd̄

v = BΛu, d̄ = Bdu, Bu = BvB, Bv =

[
02×3

I3×3

]
.

(93)

The system (93) with state and input matrices (92) can
be decomposed into two subsystems:

[
α̇

β̇

]
=

[
−0.5432 0.0137

0 −0.1179

][
α

β

]

+

[
0 0.9778 0

0.2215 0 −0.9661

]
p

q

r

 ,

ṗ

q̇

ṙ

 =


0 −10.5123

2.6221 −0.0030

0 0.7075


[
α

β

]

+


−0.9967 0 0.6176

0 −0.5057 0

−0.0939 0 −0.2127



p

q

r

+ v + d̄.

These two subsystem representation satisfy the assump-
tions required for implementing the sliding mode con-
troller design in the previous section. In the simulations,
the disturbance d̄ is a sinusoidal function with ampli-
tude 0.1 and frequency 1 rad/s while a zero-mean white
Gaussian noise with standard deviation σx = 0.0035 rad
represents the measurement noise. Following the steps
in the Appendix, the controller design parameter λ̄ is
calculated as λ̄ = 3. In addition, to avoid chattering, a
boundary layer approach is implemented [9].

The simulation results for a conventional pseudo inverse
based control allocation are reported in Figure 5 for the
case without actuator loss of effectiveness, that is, Λ1 =
I.

With the actuator loss of effectiveness modeled as

Λ2(t) =

{
diag(1, 1, 1, 1) for t < 7(sec),

diag(0.85, 0.85, 0.85, 0.85) for t ≥ 7(sec),

the simulation results for the conventional control allo-
cation are given in Figure 6. It is seen that 15% loss of
effectiveness in all actuators at t = 7 sec causes instabil-
ity.

The proposed adaptive control allocation introduced
in Section III will be used in the following sim-
ulations. Using Steps 1-3 in Section IV, the val-
ues of M1 = 1.4, M2 = 1.4 and M3 = 0.3 are
obtained and Ωproj, which determines the maxi-
mum and minimum of each element of the adap-
tive parameter matrix is computed corresponding
to θv1,1 ∈ [−0.0129, 0.0129], θv1,2 ∈ [0.0307, 0.5225],
θv1,3 ∈ [−0.1357, 0.1371], θv1,4 ∈ [−0.212, 0], θv2,1 ∈
[−0.3149,−0.1113], θv2,2 ∈ [−0.217,−0.1416], θv2,3 ∈
[−0.0241, 0.2363], θv2,4 ∈ [−0.4162,−0.01], θv3,1 ∈
[0.1587, 0.1977], θv3,2 ∈ [0.0673, 0.0675], θv3,3 ∈
[−0.001, 0.001], θv3,4 ∈ [−1.2755,−0.7641]. We use a
closed loop reference model with l = 4 and Am selected
as

Am = −


0.2 0 0

0 0.1 0

0 0 0.1

 .
Figure 7 shows the simulation results for the system with
our adaptive control allocation and the actuator loss of
effectiveness matrix Λ2(t).
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It is seen that the first two states, α and β, are bounded,
and the other states (p, q and r) follow the reference
inputs (pref , qref and rref ) even after the introduction of
30% actuator loss of effectiveness at t = 7 sec. Also, it is
seen that the elements of (BΛu)i for i = 1, 2, 3, converge
to the virtual control signal elements vi for i = 1, 2, 3.
The time histories of the adaptive parameters, which
are the elements of θv matrix, are shown in Figure 8.
Two adaptive parameters are selected to illustrate their
deviation inside their projection boundaries in Figure
10.

Another scenario is considered next, where a 50% loss
of effectiveness for the control surfaces are simulated,
specifically, with

Λ3(t) =

{
diag(1, 1, 1, 1) for t < 7(sec),

diag(0.5, 0.5, 0.5, 0.5) for t ≥ 7(sec).

It is seen in Figure 9 that the system remains stable
after the introduction of the loss of effectiveness. The
time histories of the adaptive parameters, which are the
elements of θv matrix, are shown in Figure 11. Moreover,
two adaptive parameters are selected to illustrate their
deviation within their projection boundaries in Figure
12.

7 SUMMARY

An adaptive control allocation for uncertain over-
actuated systems with actuator saturation is proposed
in this paper. The method needs neither uncertainty
identification nor persistence of excitation. A sliding
mode controller with time-varying sliding surface is
also proposed, to guarantee the stability of the overall
closed loop system while realizing reference tracking.
The simulation results with the ADMIRE model show
the effectiveness of the proposed method.

A Controller design procedure

The following procedure can be followed to obtain the
controller design parameters:

Step 1- Use Step 1 in Section IV, to determine Mi,
i = 1, ..., r.

Step 2- Calculate Ωθ using Step 2 in Section IV.
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Fig. 5. System states, virtual control signals and actuators’
deflections using conventional control allocation when actu-
ator loss of effectiveness is Λ1 = I.

Step 3- Using Theorem 4, calculate γ ≡ maxi(1 −√
γMi
γBi

), where Mmax = maxiMi, γMi
≡ M2

i

M2
max
− ε for a

small positive ε, and γBi ≡ ||rowi(B)||||BT (BBT )−1||.

Step 4- Using γ, obtain ΩΛ1
in (70).

Step 5- Solve the optimization problem (66), which
leads to obtaining the Ωproj, which is defined in Section
IV, step 3.

Step 6- Using (70) and Ωproj, calculate ρ̄i for i = 1, ..., r,
which are defined in Remark 4.

Step 9- Calculate k and ξ using (76).

Step 10- In the proposed controller design, since the
controllers’ goal is reference tracking in the presence of
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Fig. 6. System states, virtual control signals and actuators’
deflections using conventional control allocation when actu-
ator loss of effectiveness is Λ2.

saturation, the initial states, x(1)(0) and x(2)(0), the ele-
ments of reference input, r, the elements of the derivative
of the reference input, ṙ, and the elements of disturbance
d̄, should be bounded. Let x̄(1)(0), x̄(2)(0), r̄i, ¯̇ri and L̄i
be upper bounds on the norms of x(1)(0), x(2)(0), ri, ṙi
and d̄i, respectively, for i = 1, ..., r. These values can be
obtained by an expert, who has information about the
plant and its constraints. Also, these values can be writ-
ten in the data sheets.

Step 11- Check if Wi,1 < 0.

If yes, continue to the next step.

If no, the expert should reduce x̄(1)(0), x̄(2)(0), r̄i, ¯̇ri
and L̄i to satisfy this inequality. Most of the time, this is
done by confining the initial value of states to a smaller

Fig. 7. System states, virtual control signals and actuators’
deflections using adaptive control allocation, when actuator
loss of effectiveness matrix is Λ2.
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Fig. 8. Adaptive parameters when the actuator loss of effec-
tiveness matrix is Λ2.
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Fig. 9. System states, virtual control signals and actuators’
deflections using adaptive control allocation when actuator
loss of effectiveness matrix is Λ3.
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Fig. 10. Two adaptive parameters and their projection
boundaries when the actuator loss of effectiveness matrix is
Λ2. The dashed lines are the projection boundaries.
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Fig. 11. Adaptive parameters when the actuator loss of ef-
fectiveness matrix is Λ3.
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Fig. 12. Two adaptive parameters and their projection
boundaries when the actuator loss of effectiveness matrix is
Λ3. The dashed lines are the projection boundaries.

limit. In this design, it can be done even by reducing the
derivative of the reference input, if fast maneuver is not
required in the plant.

Step 12- Calculate Wi,2 in (89).

Step 13- Find a λ̄ satisfying (89) and design the control
signal (80).
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