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aSchool of Electrical Engineering and Computing, University of Newcastle, Callaghan, NSW 2308, Australia

bDivision of Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, Stockholm 10044, Sweden

Abstract

In this paper, we derive the asymptotic Cramér-Rao lower bound for the continuous-time output error model structure and
provide an analysis of the statistical efficiency of the Simplified Refined Instrumental Variable method for Continuous-time
systems (SRIVC) based on sampled data. It is shown that the asymptotic Cramér-Rao lower bound is independent of the
intersample behaviour of the noise-free system output and hence only depends on the intersample behaviour of the system input.
We have also shown that, at the converging point of the SRIVC algorithm, the estimates do not depend on the intersample
behaviour of the measured output. It is then proven that the SRIVC estimator is asymptotically efficient for the output error
model structure under mild conditions. Monte Carlo simulations are performed to verify the asymptotic Cramér-Rao lower
bound and the asymptotic covariance of the SRIVC estimates.
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1 Introduction

Dynamical systems in the physical world are most often
continuous-time (CT) in nature, thus it is more intuitive
to obtain mathematical descriptions of these systems in
terms of CT models than discrete-time (DT) models.
There are two main approaches for identifying CT sys-
tems, namely the direct and indirect approaches [12].
The indirect approach first identifies a DT model and
then transforms it to a CT model. The direct approach,
on the other hand, identifies a CT model directly from
sampled data. Two well known algorithms in direct CT
identification are the Refined Instrumental Variable
method for Continuous-time system (RIVC) and its
simplest embodiment, the Simplified RIVC (SRIVC)
method [26].

Despite the success that the RIVC and SRIVC algo-
rithms have gained in practical applications in recent
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years [23,25], there has been a lack of theoretical sup-
port available for them. One of the challenges that arises
when estimating a CT model is that only sampled input-
output data are available as measurements. Hence, di-
rectly estimating a CT model requires the measured data
to be interpolated in some manner. It is noted that an in-
correct interpolation of the sampled signals may lead to
unsatisfactory estimates of the system parameters. The
importance of intersample behaviour in CT system iden-
tification has been highlighted in the consistency anal-
ysis of the SRIVC estimator [11], which shows that in
order for the SRIVC estimator to be generically consis-
tent, the intersample behaviour of the model input must
match that of the system input. However, most of the
comments made with respect to the statistical efficiency
of the estimators are based on either empirical observa-
tions [26,23,5,22,21] or theorems developed for DT esti-
mation methods [24,3,2], which have overlooked the im-
portance of the intersample behaviour of the signals in
CT system identification as part of the theoretical anal-
ysis.

A desirable property for a consistent estimator to pos-
sess is statistical efficiency. In addition, a consistent es-
timator is asymptotically unbiased if there is a uniform
upper bound on the variance. An unbiased estimator is

Preprint submitted to Automatica 20 July 2020

ar
X

iv
:2

00
2.

00
51

8v
2 

 [
ee

ss
.S

Y
] 

 1
7 

Ju
l 2

02
0



then said to be efficient if its covariance matrix achieves
the Cramér-Rao lower bound (CRLB) [7,9]. With re-
spect to the efficiency analysis of direct CT estimators
such as SRIVC or RIVC, the existing literature [5,4,1,3]
have claimed that the RIVC and SRIVC estimators are
asymptotically efficient with additive coloured noise and
white noise on the output respectively. Even though the
CRLB expressions for the RIVC and SRIVC estimators
exist in the literature, these expressions have been ob-
tained directly through the results for DT instrumen-
tal variable algorithms developed in [15,18,17]. Hence,
a formal derivation where the intersample behaviour of
the measured signals has been carefully addressed does
not exist. In fact, the CRLB expression stated in [5, p.
105] is dependent on the filtered version of the sampled
noise-free system output, which means that the entries
in the existing CRLB depend on the interpolation of the
output signal prior to the continuous-time filtering op-
erations, e.g., assuming a zero-order hold (ZOH) on the
output will yield a different CRLB expression than as-
suming a first-order hold (FOH). Hence, the existing re-
sults in the literature are not satisfactory.

The current paper is focused on the efficiency analysis
of the SRIVC estimator. The objectives of this paper
are to derive an expression of the asymptotic CRLB for
the continuous-time output error model structure and
to examine the statistical efficiency of the SRIVC esti-
mator. It is shown that the asymptotic CRLB is inde-
pendent of the intersample behaviour of the noise-free
system output and hence only depends on the intersam-
ple behaviour of the system input. In the following sec-
tions, we will employ the notion of a theoretical SRIVC
estimator, in which the measured output is considered
as a CT signal purely for derivation purposes. Since only
sampled data are available as measurements, the practi-
cal implementation of the SRIVC algorithm requires an
assumption on the intersample behaviour of the system
output, such as a FOH, in order to perform the filter-
ing operations. It has been shown in [11] that the effect
of this intersample behaviour assumption on the output
does not impact on the consistency of the SRIVC es-
timator. It is proven in the current paper that, at the
converging point of the iterative algorithm, the standard
SRIVC estimator is equivalent to the theoretical SRIVC
estimator for large sample size. Using this fact, it is then
shown that the asymptotic covariance of the SRIVC es-
timates coincides with the asymptotic CRLB when the
intersample behaviour of the input signal in the regres-
sor and instrument vectors matches that of the system
input. The SRIVC estimator is therefore proven to be
asymptotically efficient.

This paper is organised as follows. Section 2 provides the
system and model definitions as well as a brief outline of
the SRIVC estimator and the definition of the Cramér-
Rao lower bound. This is followed by Section 3 where
the theoretical results of the paper, which includes theo-
rems on the expressions for the asymptotic Cramér-Rao

lower bound and the asymptotic covariance matrix of
the SRIVC estimates, are presented. Section 4 provides
simulation results that support the theoretical analysis,
and the paper is concluded in Section 5.

2 Preliminaries

In this section, we define the structures of the continuous-
time single-input single-output system and model, as
well as provide a brief description of the SRIVC estima-
tor and the definition of the Cramér-Rao lower bound.

2.1 System and Model Definitions

Consider a linear time-invariant CT system parame-
terised in the output error (OE) model structure

S :

x̊(t) =
B∗(p)

A∗(p)
ů(t)

y(t) = x̊(t) + e(t),

where p is the differential operator, i.e. py(t) = d
dty(t),

x̊(t) the noise-free system output and ů(t) the CT system
input. The system numerator and denominator polyno-
mials are assumed coprime with orders given by m∗ and
n∗ respectively, i.e.

B∗(p) = b∗0p
m∗

+ b∗1p
m∗−1 + · · ·+ b∗m∗ ,

A∗(p) = a∗1p
n∗

+ a∗2p
n∗−1 + · · ·+ a∗n∗p+ 1,

with the system parameter vector given by

θ∗ :=
[
a∗1 . . . a

∗
n∗ b∗0 . . . b

∗
m∗

]>
.

Only sampled input-output signals, denoted by u(tk)
and y(tk), are available as measurements. Note that
u(tk) = ů(t) at the sampling instants, and the different
notation indicates that u(tk) may be interpolated with
a different intersample behaviour from that of ů(t). Due
to the difficulty of dealing with the time-derivatives of
stochastic noise, which does not have a finite variance,
and the DT nature of the sampled signals, we only con-
sider DT i.i.d. Gaussian noise given by e ∼ N (0, λ). The
output observation equation is then

y(tk) =

{
B∗(p)

A∗(p)
ů(t)

}
t=tk

+ e(tk).

The model of the CT system is also parameterised as a
proper transfer function, i.e.

M :

x(tk) =
B(p)

A(p)
u(tk)

y(tk) = x(tk) + ε(tk),
(1)
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with coprime numerator and denominator polynomials
defined as

B(p) = b0p
m + b1p

m−1 + · · ·+ bm,

A(p) = a1p
n + a2p

n−1 + · · ·+ anp+ 1,

and the model parameter vector is given by

θ :=
[
a1 . . . an b0 . . . bm

]>
.

When a mixed notation of CT operators and DT data
is encountered, such as in (1), it is implied that the in-
put u(tk) is interpolated in some manner [5], e.g., using
either a ZOH or a FOH, and the resultant output is sam-
pled at tk.

2.2 The SRIVC Estimator

The iterative SRIVC estimator minimises the sum of
squares of the generalised equation error (GEE) [20],
ε(tk), which is given by

ε(tk) = y(tk)− x(tk)

= y(tk)− B(p)

A(p)
u(tk)

=
1

A(p)
(A(p)y(tk)−B(p)u(tk))

= A(p)yf (tk)−B(p)uf (tk),

where

yf (tk) =
1

A(p)
y(tk), and uf (tk) =

1

A(p)
u(tk). (2)

Due to the iterative nature of the SRIVC method, the
(j + 1)-th iteration of the SRIVC estimate [26,5] based
on the parameter values estimated with sample size N
in the j-th iteration is given by

θNj+1 =

[
1

N

N∑
k=1

ϕ̂f (tk, θ
N
j )ϕ>f (tk, θ

N
j )

]−1

[
1

N

N∑
k=1

ϕ̂f (tk, θ
N
j )yf (tk, θ

N
j )

]
, (3)

where the filtered regressor vector is

ϕf (tk, θ
N
j ) =

1

Aj(p)

[
−pny(tk) . . . −py(tk)

pmu(tk) . . . u(tk)
]>
, (4)

and the filtered instrument vector is

ϕ̂f (tk, θ
N
j ) =

1

Aj(p)

[
−Bj(p)
Aj(p)p

nu(tk) . . . −Bj(p)
Aj(p)pu(tk)

pmu(tk) . . . u(tk)
]>
. (5)

Note that to emphasise the dependency on the itera-
tion j and the sample size N , the notation of the filtered
output, yf (tk), in (2) is replaced by yf (tk, θ

N
j ) in (3).

The algorithm is stopped either when a maximum num-
ber of iterations is reached or when the relative error be-
tween the previous and current estimate is smaller than
a constant, i.e.

‖θNj+1 − θNj ‖
‖θNj+1‖

< ε. (6)

Next, we define a “theoretical” SRIVC estimator where
the system output is treated as a CT signal. This esti-
mator is used purely for derivation purposes in the the-
oretical results section.

Definition 1 (Theoretical SRIVC estimator) De-
fine a theoretical SRIVC estimator given by (3), where
the filtered regressor vector in (4) is replaced by

ϕ̊f (tk, θ
N
j ) =

[
−
{

pn

Aj(p)
B∗(p)
A∗(p) ů(t)

}
t=tk

+ pn

Aj(p)e(tk) . . .

−
{

p
Aj(p)

B∗(p)
A∗(p) ů(t)

}
t=tk

+ p
Aj(p)e(tk){

pm

Aj(p) ů(t)
}
t=tk

. . .
{

1
Aj(p) ů(t)

}
t=tk

]>
,

(7)

and the filtered output in (2) is replaced by

ẙf (tk, θ
N
j ) =

{
1

Aj(p)

B∗(p)

A∗(p)
ů(t)

}
t=tk

+
1

Aj(p)
e(tk).

(8)
Note that (7) and (8) implicitly assume that the measured
output is a continuous-time signal. Thus, this estimator
is not implemented in practice.

2.3 Cramér-Rao Lower Bound

When assessing the performance of an estimator, the
requirement of achieving a uniformly minimum mean
square error is too stringent and unrealistic [7]. There-
fore, we concentrate on the class of asymptotically unbi-
ased estimators (in the number of samples N) of the un-
known parameter θ∗, and on the asymptotic covariance
matrix of those estimators given by

AsCov(θN ) := lim
N→∞

NE{(θN − θ∗)(θN − θ∗)>}, (9)
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whose trace coincides with the normalised asymptotic
mean square error of the estimate θN due to its asymp-
totic unbiasedness. It can be shown (see [8, Theorem
2.6, p.440]) that, under mild conditions, the asymptotic
covariance of an estimator (9) is lower bounded, in a
positive semi-definite sense, by the inverse of the Fisher
information matrix per sample given by

PCR =

[
lim
N→∞

1

N
E

{
∂ log p(yN ; θ)

∂θ

(
∂ log p(yN ; θ)

∂θ

)>}∣∣∣∣∣
θ=θ∗

]−1

,

(10)

for all values of θ∗, except for a set of Lebesgue mea-
sure zero. We call (10) the asymptotic Cramér-Rao lower
bound on AsCov(θN ). In (10), the expression inside the
inverse is known as the Fisher information matrix per
sample, and p(yN , θ) is the probability density function
(PDF) of the full data yN , which is parameterised by the
vector θ. Note that the probability density function can
be viewed as the likelihood function when expressed as
a function of the parameter vector θ.

2.4 Small-o Notation

Next, a definition of the small-o notation for stochastic
variables [19] is given in order to provide short expres-
sions for terms that converge in probability to zero to
facilitate the proof of the asymptotic distribution in Sec-
tion 3.2.

Definition 2 (Small-o notation) Let XN and RN be
two sequences of random variables, then

XN = op(RN ) means XN = YNRN and YN
p→ 0,

i.e. the sequence XN converges in probability to zero at
the rate RN .

3 Theoretical Results

In this section, we derive an expression of the asymptotic
CRLB for the OE model structure and provide a theorem
that describes the asymptotic distribution of the SRIVC
estimates. The covariance expression of the estimates is
then compared with the asymptotic CRLB to examine
the statistical efficiency of the SRIVC estimator.

We begin by stating the assumptions required by the
theorems developed in this section:

Assumption 1 The system, B
∗(p)

A∗(p) , is proper (n∗ ≥ m∗)
and asymptotically stable with A∗(p) and B∗(p) being
coprime.

Assumption 2 The input sequence, u(tk), and distur-
bance, e(ts), are stationary and mutually independent for
all k and s.

Assumption 3 The input sequence, u(tk), is persis-
tently exciting of order no less than 2n+ 1.

Assumption 4 All the zeros of Aj(p) have strictly neg-
ative real parts, n ≥ m, with Aj(p) and Bj(p) being co-
prime.

Assumption 5 The model order matches the system or-
der, i.e. n = n∗ and m = m∗.

Assumption 6 The intersample behaviour of the input,
ů(t), applied to the system is known exactly.

3.1 Asymptotic Cramér-Rao Lower Bound

In this subsection, we develop an explicit expression of
the asymptotic CRLB for the continuous-time OE model
structure. It is shown that the derived expression is in-
dependent of the intersample behaviour of the noise-free
system output and hence only depends on the intersam-
ple behaviour of the system input.

Theorem 1 (Asymptotic Cramér-Rao lower
bound) Consider the prediction error

ε(tk, θ) = y(tk)−
{
B(p)

A(p)
ů(t)

}
t=tk

(11)

for an unknown parameter vector θ formed using the
model coefficients of A(p) and B(p). Assume the output
observations come from an output error model structure,
i.e.

y(tk) =

{
B∗(p)

A∗(p)
ů(t)

}
t=tk

+ e(tk),

where e(tk) is i.i.d. Gaussian with variance λ, and B∗(p)
and A∗(p) are the system polynomials. Then, under As-
sumptions 1, 2, and 5, the asymptotic Cramér-Rao lower
bound is given by

PCR = λE
{
ψ(tk, θ

∗)ψ>(tk, θ
∗)
}−1

, (12)

where

ψ(tk, θ
∗) =

[
−p

n∗
B∗(p)

A∗2(p)
ů(t) . . . −pB

∗(p)
A∗2(p)

ů(t)

pm
∗

A∗(p) ů(t) . . . 1
A∗(p) ů(t)

]>∣∣∣∣
t=tk.

(13)

Proof of Theorem 1 According to (11), the joint PDF
of the measured output based on N samples, denoted
by yN , and hence the likelihood of yN when viewed as a
function of unknown parameters θ, is [9, Lemma 5.1]

p(θ; yN ) =

N∏
k=1

pe(ε(tk, θ)).
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The log-likelihood of the measurement is thus given by

L(θ) = log p(θ; yN )

=

N∑
k=1

log pe(ε(tk, θ))

= C − 1

2λ

N∑
k=1

ε2(tk, θ)

= C − 1

2λ

N∑
k=1

[
y(tk)−

{
B(p)

A(p)
ů(t)

}
t=tk

]2

,

where C is a constant.

According to [10, Lemma 3.2], the procedures of lineari-
sation and discretisation commute. We can therefore dif-
ferentiate L(θ) with respect to the CT parameters and
then discretise the transfer functions according to the in-
tersample behaviour of the input signal and the sampling
period. Now, differentiating the log-likelihood function
with respect to the denominator coefficients of the model
and then evaluating at the system parameters gives

∂L(θ)

∂ai

∣∣∣∣
θ=θ∗

= − 1

2λ
· 2

N∑
k=1

[
y(tk)−

{
B∗(p)

A∗(p)
ů(t)

}
t=tk

]

·

[{
pn

∗+1−iB∗(p)

(A∗(p))2
ů(t)

}
t=tk

]

= − 1

λ

N∑
k=1

e(tk)

{
pn

∗+1−iB∗(p)

(A∗(p))2
ů(t)

}
t=tk

,

where i = 1, . . . , n∗.

Similarly, differentiating the log-likelihood with respect
to the numerator coefficients gives

∂L(θ)

∂bi

∣∣∣∣
θ=θ∗

= − 1

2λ
· 2

N∑
k=1

[
y(tk)−

{
B∗(p)

A∗(p)
ů(t)

}
t=tk

]

·

[
−
{
pm

∗−i

A∗(p)
ů(t)

}
t=tk

]

=
1

λ

N∑
k=1

e(tk)

{
pm

∗−i

A∗(p)
ů(t)

}
t=tk

,

where i = 0, . . . ,m∗.

Hence,

∂L(θ)

∂θ

∣∣∣∣
θ=θ∗

=
1

λ

N∑
k=1

e(tk)ψ(tk, θ
∗),

where ψ(tk, θ
∗) is given in (13). Note that the signals

in (13) are treated as CT signals and are filtered by CT

transfer functions prior to sampling. Hence, it does not
depend on the intersample behaviour of the noise-free
system output.

The Fisher Information matrix is then given by

IF = E

{(
∂L(θ)

∂θ

∣∣∣∣
θ=θ∗

)(
∂L(θ)

∂θ

∣∣∣∣
θ=θ∗

)>}

=
1

λ2

N∑
k=1

N∑
s=1

E
{
e(tk)ψ(tk, θ

∗)e(ts)ψ
>(ts, θ

∗)
}
.

Since u(tk) and e(tk) are independent by Assumption 2,
and e(tk) is i.i.d. Gaussian noise with variance λ,

IF =
1

λ2

N∑
k=1

N∑
s=1

E {e(tk)e(ts)}E
{
ψ(tk, θ

∗)ψ>(ts, θ
∗)
}

=
1

λ2

N∑
k=1

λE
{
ψ(tk, θ

∗)ψ>(tk, θ
∗)
}
. (14)

Now, ψ(tk, θ
∗) is composed of stationary random pro-

cesses, hence its ensemble average is equal to its time
average as sample size approaches infinity [17, Appendix
B.1], i.e.

E
{
ψ(tk, θ

∗)ψ>(tk, θ
∗)
}

= lim
N→∞

1

N

N∑
l=1

ψ(tl, θ
∗)ψ>(tl, θ

∗)

for every k = 1, ..., N . Therefore, the asymptotic
Cramér-Rao lower bound, given by the inverse of the
Fisher information matrix per sample, can be expressed
as

PCR =

[
lim
N→∞

1

N
IF

]−1

=

[
lim
N→∞

1

N
λ−1NE

{
ψ(tk, θ

∗)ψ>(tk, θ
∗)
}]−1

= λE
{
ψ(tk, θ

∗)ψ>(tk, θ
∗)
}−1

where ψ(tk, θ
∗) is given in (13). 2

3.2 Asymptotic Distribution of the SRIVC Estimates

Next, we derive the asymptotic distribution of the
SRIVC estimates for the OE model structure under
Assumptions 1 - 6.

Theorem 2 (Asymptotic distribution of the
SRIVC estimates) Consider the SRIVC estimator
given in (3) under the output error model structure.
Suppose Assumptions 1 - 6 hold, and assume that the
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estimator is consistent. Let θ̄N be the converging point
of the SRIVC estimator for a fixed sampled size N ,
that is, θ̄N := lim

j→∞ θ
N
j , which corresponds to model poly-

nomials Ā(p) and B̄(p). Then, the SRIVC estimate is
asymptotically Gaussian distributed, i.e.

√
N(θ̄N − θ∗) dist.−−−→ N (0, PSRIV C), (15)

where the asymptotic covariance matrix is

PSRIV C = λE
{
ϕ̃f (tk, θ

∗)ϕ̃>f (tk, θ
∗)
}−1

(16)

with ϕ̃f (tk, θ
∗) given by

ϕ̃f (tk, θ
∗) =

[
−
(
pn

∗
B∗(p)

A∗2(p)

)
u(tk) . . . −

(
pB∗(p)
A∗2(p)

)
u(tk)

pm
∗

A∗(p)u(tk) . . . 1
A∗(p)u(tk)

]>
(17)

and λ being the variance of the discrete-time i.i.d. Gaus-
sian additive output noise.

Proof of Theorem 2 From (3), we know that

θ̄N − θ∗ =

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )ϕ>f (tk, θ̄

N )

]−1

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )yf (tk, θ̄

N )

]
− θ∗

=

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )ϕ>f (tk, θ̄

N )

]−1

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )(yf (tk, θ̄

N )− ϕ>f (tk, θ̄
N )θ∗)

]
.

(18)

It has been first stated in Remark 5 of [11] that the in-
tersample behaviour of y(tk) assumed in order to per-
form the filtering operations in the regressor vector does
not affect the SRIVC estimates at the converging point
of the algorithm. Furthermore, it is proven in Lemma 6
(see Appendix) that the standard SRIVC estimator (3)
is equivalent to the theoretical estimator given in Defi-
nition 1 at the converging point for a large sample size.
Hence, according to Lemma 6, at θ̄N , the filtered re-
gressor and the filtered output in (18) can be replaced
by (7) and (8) evaluated at θ̄N respectively. Note that
u(tk) must have the same intersample behaviour as the
system input in order to obtain consistent estimates ac-
cording to [11, Theorem 1], and e(tk) is the DT noise
added to the system output. The second half of (18) can

then be expressed as

ẙf (tk, θ̄
N )− ϕ̊>f (tk, θ̄

N )θ∗

=

{
A∗(p)

Ā(p)

B∗(p)

A∗(p)
ů(t)

}
t=tk

+
A∗(p)

Ā(p)
e(tk)

−
{
B∗(p)

Ā(p)
ů(t)

}
t=tk

=
A∗(p)

Ā(p)
e(tk).

Therefore, (18) simplifies to

θ̄N − θ∗ =

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )ϕ̊>f (tk, θ̄

N )

]−1

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )
A∗(p)

Ā(p)
e(tk)

]
.

Now, the first-order Taylor series expansion of
√
N(θ̄N−

θ∗) can be written as

√
N(θ̄N − θ∗)

=

[
1

N

N∑
k=1

ϕ̂f (tk, θ
∗)ϕ̊>f (tk, θ

∗)

]−1 [
1
√
N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

]

+
∂

∂θ̄N


[

1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )ϕ̊>f (tk, θ̄

N )

]−1

∣∣∣∣∣∣
θ̄N=θ∗[

1
√
N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

]
(θ̄N − θ∗)

+

[
1

N

N∑
k=1

ϕ̂f (tk, θ
∗)ϕ̊>f (tk, θ

∗)

]−1(
1
√
N

N∑
k=1

∂ϕ̂f (tk, θ̄
N )

∂θ̄N

∣∣∣∣∣
θ̄N=θ∗

e(tk)

+
1
√
N

N∑
k=1

ϕ̂f (tk, θ
∗)

∂

∂θ̄N

(
1

Ā(p)

)∣∣∣∣
θ̄N=θ∗

A∗(p)e(tk)

)
(θ̄N − θ∗)

+ op(
√
N‖θ̄N − θ∗‖). (19)

Let

R(θ) =

[
1

N

N∑
k=1

ϕ̂f (tk, θ)ϕ̊
>
f (tk, θ)

]−1

,
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then (19) can be rearranged to be

√
N

{
I −

∂R(θ)

∂θ

∣∣∣∣
θ=θ∗

[
1

N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

]
(20a)

−R(θ∗)
1

N

N∑
k=1

∂ϕ̂f (tk, θ̄
N )

∂θ̄N

∣∣∣∣∣
θ̄N=θ∗

e(tk) (20b)

−R(θ∗)
1

N

N∑
k=1

ϕ̂f (tk, θ
∗)

∂

∂θ̄N

(
1

Ā(p)

)∣∣∣∣
θ̄N=θ∗
A∗(p)e(tk) + op(1)

}
(θ̄N − θ∗)

(20c)

= R(θ∗)

[
1
√
N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

]
, (20d)

where I is the identity matrix.

Next, we will examine the behaviours of (20a) – (20d) for
large sample size. Since the estimator is consistent, the
matrix inverseR(θ∗) in (20b) – (20d) is non-singular [11]
for sufficiently large N . According to Assumption 2, the
input and disturbance are stationary, then by the er-
godic lemma in [13, Lemma 3.1], the matrix product
term in (20a) can be written as

∂R(θ)

∂θ

∣∣∣∣
θ=θ∗

[
1

N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

]

=
∂R(θ)

∂θ

∣∣∣∣
θ=θ∗

E {ϕ̂f (tk, θ
∗)e(tk)}+ op(1)

for large sample size, where op(1) is the small-o notation
given in Definition 2. Since the instrument vector con-
sists of filtered inputs that are independent of the dis-
turbance e(tk) according to Assumption 2, by using the
same method as in the proof of [11, Theorem 1], we can
show that E {ϕ̂f (tk, θ

∗)e(tk)} = 0. Hence,

∂R(θ)

∂θ

∣∣∣∣
θ=θ∗

[
1

N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

]
= op(1).

In addition, by adopting the numerator layout, i.e. the
Jacobian formulation, when performing vector differen-
tiation, we obtain

∂ϕ̂f (tk, θ̄
N )

∂θ̄N

∣∣∣∣
θ̄N=θ∗

= M(p)u(tk),

where

M(p) =

(
1

A∗(p)

)2

·

2B
∗(p)

A∗(p)p
2n∗

. . . 2B
∗(p)

A∗(p)p
n∗+1 −pn∗+m∗

. . . −pn∗

...
...

...
...

2B
∗(p)

A∗(p)p
n∗+1 . . . 2B

∗(p)
A∗(p)p

2 −pm∗+1 . . . −p

−pn∗+m∗
. . . −pm∗+1 0 . . . 0

...
...

...
...

−pn∗
. . . −p 0 . . . 0


.

For a large sample size and by the same reasoning, (20b)
can be written as

R(θ∗)
1

N

N∑
k=1

∂ϕ̂f (tk, θ̄
N )

∂θ̄N

∣∣∣∣
θ̄N=θ∗

e(tk)

= R(θ∗)E{M(p)u(tk)e(tk)}+ op(1)

= op(1).

Furthermore,

∂

∂θ̄N

(
1

Ā(p)

)∣∣∣∣
θ̄N=θ∗

=
1

A∗2(p)
[−pn

∗
. . . − p 0 . . . 0].

Then, for a large sample size, the product term inside
the bracket of (20c) can be expressed as

R(θ∗)
1

N

N∑
k=1

ϕ̂f (tk, θ
∗)

∂

∂θ̄N

(
1

A(p)

)∣∣∣∣
θ̄N=θ∗
A∗(p)e(tk)

= R(θ∗)E
{
ϕ̂f (tk, θ

∗)
1

A∗(p)
[−pn . . . − p 0 . . . 0]e(tk)

}
+ op(1)

= op(1).

Now, (20a) – (20c) is simplified to

√
N (I + op(1)) (θ̄N − θ∗), (21)

and (20) then becomes

√
N(θ̄N − θ∗) = (I + op(1))

−1

[
1

N

N∑
k=1

ϕ̂f (tk, θ
∗)ϕ̊>f (tk, θ

∗)

]−1

[
1√
N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

]
.

7



According to [13], as the sample size approaches infinity,

1

N

N∑
k=1

ϕ̂f (tk, θ
∗)ϕ̊>f (tk, θ

∗)→ E
{
ϕ̂f (tk, θ

∗)ϕ̊>f (tk, θ
∗)
}

with probability 1, Hence, by [16, Lemma A4.3],

[
1

N

N∑
k=1

ϕ̂f (tk, θ
∗)ϕ̊>f (tk, θ

∗)

]−1

p→E
{
ϕ̂f (tk, θ

∗)ϕ̊>f (tk, θ
∗)
}−1
.

Let ϕ̃f (tk, θ
∗) in (17) be the noise-free version of

ϕ̊f (tk, θj) given in (7) evaluated at θ∗. Then, for largeN ,

√
N(θ̄N − θ∗) = (I + op(1))

−1 E{ϕ̂f (tk, θ
∗)ϕ̊>f (tk, θ

∗)}−1[
1√
N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

]
= (I + op(1))

−1 E{ϕ̂f (tk, θ
∗)ϕ̃>f (tk, θ

∗)}−1[
1√
N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

]
.

Since both ϕ̂(tk) and e(tk) are stationary and indepen-
dent, by [16, Lemma A4.1],

1√
N

N∑
k=1

ϕ̂f (tk, θ
∗)e(tk)

dist.−−−→ N (0, P ),

where

P = lim
N→∞

1

N

N∑
k=1

N∑
s=1

E
{

[ϕ̂f (tk, θ
∗)e(tk)][ϕ̂f (ts, θ

∗)e(ts)]
>}

= lim
N→∞

1

N

N∑
k=1

N∑
s=1

E {e(tk)e(ts)}E
{
ϕ̂f (tk, θ

∗)ϕ̂>f (ts, θ
∗)
}

= lim
N→∞

1

N

N∑
k=1

λE
{
ϕ̂f (tk, θ

∗)ϕ̂>f (tk, θ
∗)
}

= lim
N→∞

1

N
λNE

{
ϕ̂f (tk, θ

∗)ϕ̂>f (tk, θ
∗)
}

= λE
{
ϕ̂f (tk, θ

∗)ϕ̂>f (tk, θ
∗)
}
. (22)

Now, by [16, Lemma A4.2] and its corollary, and that (I+
op(1))−1 = I+op(1) (which follows from the continuous
mapping theorem [19, Theorem 2.3]), this implies that

√
N(θ̄N − θ∗) dist.−−−→ N (0, PSRIV C),

where

PSRIV C = E
{
ϕ̂f (tk, θ

∗)ϕ̃>f (tk, θ
∗)
}−1

P

E
{
ϕ̃f (tk, θ

∗)ϕ̂>f (tk, θ
∗)
}−1

, (23)

with P given in (22). Substituting (22) into (23), we can
express the asymptotic covariance matrix as

PSRIV C = λE
{
ϕ̂f (tk, θ

∗)ϕ̃>f (tk, θ
∗)
}−1

E
{
ϕ̂f (tk, θ

∗)ϕ̂>f (tk, θ
∗)
}
E
{
ϕ̃f (tk, θ

∗)ϕ̂>f (tk, θ
∗)
}−1
,

(24)

where ϕ̃f (tk, θ
∗) is given in (17).

Note that if the intersample behaviours of the input sig-
nal in the instrument vector, in the form of (5), are
chosen to be exactly the same as that of the input sig-
nal in the regressor vector, i.e. ϕ̂f (tk, θ

∗) = ϕ̃f (tk, θ
∗),

then (24) simplifies to

PSRIV C = λE
{
ϕ̃f (tk, θ

∗)ϕ̃>f (tk, θ
∗)
}−1

. 2

Remark 3 From Theorems 1 and 2, (17) is equal
to (13) when the intersample behaviour of the model
input matches that of the system input. Hence, the
asymptotic covariance of the SRIVC estimates in (16)
coincides with the asymptotic CRLB in (12). We there-
fore conclude that the SRIVC estimator is asymptotically
efficient under the output error model structure.

Remark 4 The result in Remark 3 implies that in order
for the SRIVC estimator to be asymptotically efficient,
the instrument vector must be chosen in the same form
as the noise-free regressor of the theoretical SRIVC esti-
mator in (7). This means that in the digital implemen-
tation of the SRIVC estimator, the two filtering opera-
tions for the generation of the model output, x(tk), and

the filtered derivatives of the model output, x
(i)
f (tk), must

be combined into a single filtering process to ensure the
asymptotic efficiency of the SRIVC estimator. The fil-
tered instrument vector in (5), which is usually how it is
presented in the existing literature (see e.g. [5]), can be
rewritten more explicitly in the form of (17).

Corollary 5 In general, the SRIVC estimator is not
asymptotically efficient if the intersample behaviour of
the input in the filtered instrument vector in (5) does not
match that of the system input under the output error
model structure.

Proof of Corollary 5 The proof follows from [16,
Lemma A3.9], which states that

E{ϕ̂f (tk)ϕ̃>f (tk)}−1E{ϕ̂f (tk)ϕ̂>f (tk)}E{ϕ̃f (tk)ϕ̂>f (tk)}−1

� E{ϕ̃f (tk)ϕ̃>f (tk)}−1.

8



Note that a strict inequality is achieved when there exists
no invertible matrix that relates ϕ̂f (tk) to ϕ̃f (tk). 2

4 Simulation Results

In this section, Monte Carlo (MC) simulations are per-
formed with both first and second order systems to pro-
vide empirical evidence to the theoretical results pre-
sented in the previous section.

4.1 Simulation 1: First order system

The first order system is chosen to be

G∗(p) =
b∗0

a∗1p+ 1
,

where the parameters are given by θ∗ = [a∗1 b∗0]> =
[0.1 10]>. The input/output signals are sampled at T =
0.01 sec, and the input is chosen to be an i.i.d. Gaussian
sequence with a unity variance, which is then interpo-
lated with a ZOH. The additive noise on the output is
also an i.i.d. Gaussian sequence with a unity variance
and is uncorrelated with the input. The sample size, N ,
is 2× 105, and 5× 104 MC runs are performed with the
SRIVC estimator initialised at θ∗. The maximum num-
ber of iterations of the SRIVC algorithm is set to 200,
and the relative error bound in (6) is set to 10−12. The
covariance of the asymptotic distribution of the SRIVC
estimate given in (16) is then approximated using 5×104

sets of estimates, giving

PSRIV C ≈

 (8.0327 ± 0.0508) × 10−3 0.3996 ± 0.0021

0.3996 ± 0.0021 39.8223 ± 0.2519

 ,

(25)
where the mean and standard deviation of each covari-
ance entry in (25) are determined using the method out-
lined in [17, Appendix B.9].

The expectation of two signals filtered by CT transfer
functions can be computed by first converting the CT
transfer functions to their DT ZOH equivalents and then
using the method outlined in [14, Section 5]. The CRLB
in (13) can thus be computed analytically at θ∗ to be

PCR =

[
8.0334× 10−3 0.4010

0.4010 40.0333

]
, (26)

where (26) is rounded to four decimal places. The an-
alytical expression of the CRLB in (26) matches well
with the approximated covariance matrix in (25) being
within the standard deviations.

Now, it has been stated in the existing literature [5,4,1,3]
that the SRIVC estimator is asymptotically efficient

with the covariance matrix, and therefore also the
CRLB, defined in the same form as (16) but with the
filtered regressor given by (see e.g. [5, p. 105])

ϕ̃f (tk)

=
1

A∗(p)

[
x̊(n∗)(tk) . . . x̊(1)(tk) u(m∗)(tk) . . . u(tk)

]>
=

1

A∗(p)

[
pn

∗
x̊(tk) . . . px̊(tk) pm

∗
u(tk) . . . u(tk)

]>
,

(27)

where x̊(tk) is the sampled version of the noise-free sys-
tem output. It can be seen that (27) is different to the
filtered regressor defined in (17) in Theorem 2. Comput-
ing the covariance matrix of the SRIVC estimator or the
CRLB expression using (27) will lead to the wrong re-
sults as the intersample behaviour of the noise-free sys-
tem output x̊(tk) is not captured correctly since only
sampled signals are available in practice. The key differ-
ence between the CRLB and covariance expressions de-
rived in this paper and the expressions given in the exist-
ing literature is that the evaluation of the filtered regres-
sor in (17) implicitly assumes that the noise-free system
output is a CT signal, whereas (27) assumes the noise-
free output x̊(tk) is interpolated in some manner where
a mixed notation of CT transfer function and sampled
data is used [5, p. 96]. For instance, assuming a ZOH
for x̊(tk) during the filtering operations when comput-
ing the covariance matrix from the existing literature [5]
will result in

P litSRIV C =

[
7.2629× 10−3 0.3813

0.3813 40.0333

]
,

which does not match the covariance matrix approxi-
mated using the MC simulations in (25).

The covariance matrix approximated through the MC
simulations is plotted against the number of MC runs
as shown in Figure 1. The CRLB/covariance derived in
this paper and the CRLB/covariance in the existing lit-
erature are also shown in Figure 1. It can be seen that
the covariance matrix obtained in simulation converges
to the CRLB derived in this paper, which also coincides
with the derived covariance matrix of the SRIVC es-
timates, with an increasing number of MC runs. This
provides empirical evidence that the SRIVC estimator
is asymptotically efficient under the output error model
structure. However, the CRLB or the covariance expres-
sion in the existing literature does not match the simu-
lation results.
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Fig. 1. Covariance of the first order transfer function esti-
mates.

4.2 Simulation 2: Second order system

The second order system is chosen to be

G∗(p) =
b∗0

a∗1p
2 + a∗2p+ 1

,

where the parameters are given by θ∗ = [a∗1 a
∗
2 b
∗
0]> =

[0.04 0.2 1]>. The input and additive noise settings as
well as the relative error bound and maximum iterations
of the SRIVC algorithm are the same as the settings for
Simulation 1. The signals are sampled at T = 0.1 sec,
the sample size N is varied from 103 to 2× 105 in eight
steps, and 104 MC simulations are performed for each N
with the SRIVC estimator initialised at θ∗. The covari-
ance matrix of the estimates are then approximated from
the distributions generated by the MC simulations, and
the three diagonal entries are plotted against N in Fig-
ure 2. In addition to the CRLB calculated using (12), the
system parameters are also estimated with an asymp-
totically efficient indirect PEM method proposed in [6]
for comparison as shown in Figure 2. This method en-
forces a fixed relative degree in the estimated CT trans-
fer function, and its statistical efficiency has been shown
in [6]. Furthermore, the fourth instance in Figure 2 cor-
responds to the situation where the SRIVC estimator
uses a FOH input signal in the filtered instrument vector
with the covariance matrix labelled as P ∗SRIV C/N .

It can be observed in Figure 2 that the variance of the
SRIVC estimates converges quickly to the CRLB with an
increasing sample size, and the small discrepancies are
due to the finite sample approximation of the covariance
matrix. The variance of the SRIVC estimates are indis-
tinguishable from that of the asymptotically efficient in-
direct PEM estimates as seen in the upper right windows
(zoom view of the last sample size) in Figure 2. These
provide empirical evidence to the asymptotic efficiency

of the SRIVC estimator. On the other hand, when the
intersample behaviour of the input signal in the filtered
instrument vector does not match the system input in
the SRIVC estimator, a higher variance of the estimates
can be observed, which indicates that the estimator is
not efficient in this case and it aligns with Corollary 5.
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Fig. 2. Variance of the second order transfer function esti-
mates.

5 Conclusion

In this paper, we have derived the asymptotic Cramér-
Rao lower bound for the continuous-time output error
model structure and provided the asymptotic covariance
expression of the SRIVC estimator by explicitly incor-
porating the intersample behaviour of the signals as part
of the analysis. The asymptotic CRLB and the covari-
ance expression derived in this paper are both different
to the results reported in the existing literature. It has
been shown that the asymptotic CRLB is independent
of the intersample behaviour of the noise-free system
output and hence only depends on the intersample be-
haviour of the system input. It has also been shown that
the standard SRIVC estimator is equivalent to a theoret-
ical SRIVC estimator at the converging point for large
sample size, and this result has been employed to de-
rive the asymptotic covariance of the SRIVC estimates.
We conclude that the SRIVC estimator is asymptoti-
cally efficient under the output error model structure,
i.e. the asymptotic covariance expression coincides with
the asymptotic CRLB, when the intersample behaviour
of the input signal in both the filtered regressor and in-
strument vectors matches that of the system input.
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Appendix

Lemma 6 (Equivalence between practical and
theoretical SRIVC estimators) Consider the SRIVC
iterations in (3) for finite N with ϕf (tk, θ

N
j ), ϕ̂f (tk, θ

N
j )

and yf (tk, θ
N
j ) defined in (4), (5) and (2) respectively. Let

the converging point of the iterations be θ̄N := lim
j→∞ θ

N
j ,

and assume the matrix

1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )ϕ>f (tk, θ̄

N ) (28)

is non-singular. Also consider the theoretical SRIVC es-
timator given in Defintion 1 at the converging point θ̄N ,
and further assume that (28) remains non-singular with
the filtered regressor replaced by (7). Then, there ex-
ists an integer N0 such that the SRIVC estimator given
in (3) is equivalent to the theoretical SRIVC estimator
given in Definition 1 evaluated at the converging point
for N > N0, that is, (3) at the converging point can be
expressed as

θ̄N =

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )ϕ̊>f (tk, θ̄

N )

]−1

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )ẙf (tk, θ̄

N )

]
.

Proof of Lemma 6 The converging point θ̄ of the
SRIVC estimator must satisfy (3), i.e.

θ̄N =

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )ϕ>f (tk, θ̄

N )

]−1

[
1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )yf (tk, θ̄

N )

]
.

Equivalently,

1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )yf (tk, θ̄

N )

− 1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )ϕ>f (tk, θ̄

N )θ̄N = 0. (29)

Note that

yf (tk, θ̄
N )− ϕ>f (tk, θ̄

N )θ̄N

=
1

Ā(p)
y(tk)− −ā1p

n − · · · − ānp
ā1pn + · · ·+ ānp+ 1

y(tk) +
B̄(p)

Ā(p)
u(tk),

where the filtering on y(tk) depends on the hold recon-
struction that is chosen. Therefore, (29) reduces to

1

N

N∑
k=1

ϕ̂f (tk, θ̄
N )

(
y(tk)− B̄(p)

Ā(p)
u(tk)

)
= 0, (30)

which does not depend on the hold chosen for y(tk).

Now, consider the theoretical SRIVC estimator evalu-
ated at the converging point with the filtered regressor
and the filtered output given by (7) and (8), we have

ẙf (tk, θ̄)− ϕ̊>f (tk, θ̄)θ̄

=
B∗(p)

Ā(p)A∗(p)
u(tk) +

1

Ā(p)
e(tk)

+
(ā1p

n + · · ·+ ānp)B
∗(p)

Ā(p)A∗(p)
u(tk)

+
ā1p

n + · · ·+ ānp

Ā(p)
e(tk)− B̄(p)

Ā(p)
u(tk)

=
Ā(p)B∗(p)

Ā(p)A∗(p)
u(tk) +

Ā(p)

Ā(p)
e(tk)− B̄(p)

Ā(p)
u(tk)

= y(tk)− B̄(p)

Ā(p)
u(tk),

which gives the same expression as the standard SRIVC
estimator in (30). This means that both estimators solve
the same equation for the parameters at the converging
point for any N > 0. Following the proof in Statement 2
of Theorem 1 in [11], it can be shown that there is a
unique converging point for the SRIVC estimator as the
sample size approaches infinity. Therefore, replacing the
filtered regressor vector and filtered output in the SRIVC
estimator by (7) and (8) will result in the same estimate
θ̄ for large sample size. 2
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