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bDepartamento de Matemática, Instituto Tecnológico de Buenos Aires, Av. Eduardo Madero 399, Buenos Aires, Argentina.

Abstract

For time-invariant (nonimpulsive) systems, it is already well-known that the input-to-state stability (ISS) property is
strictly stronger than integral input-to-state stability (iISS). Very recently, we have shown that under suitable uniform
boundedness and continuity assumptions on the function defining system dynamics, ISS implies iISS also for time-varying
systems. In this paper, we show that this implication remains true for impulsive systems, provided that asymptotic
stability is understood in a sense stronger than usual for impulsive systems.
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1. Introduction

One of the main issues in control system theory concerns
understanding the dependence of state trajectories on in-
puts. In this regard, the input-to-state stability (ISS) and
integral-ISS (iISS) are arguably the most important and
useful state-space based nonlinear definitions of stability
for systems with inputs.

The notions of ISS and iISS, originally introduced
for time-invariant continuous-time systems in Sontag
(1989) and Sontag (1998), respectively, were sub-
sequently extended and studied for other classes
of systems: time-varying systems (Edwards et al.,
2000), discrete-time systems (Jiang and Wang, 2001),
switched systems (Mancilla-Aguilar and Garćıa, 2001;
Haimovich and Mancilla-Aguilar, 2018b), impulsive
systems (Hespanha et al., 2008), hybrid systems
(Cai and Teel, 2009; Noroozi et al., 2017) and infi-
nite dimensional systems (Dashkovskiy and Mironchenko,
2013a; Mironchenko and Wirth, 2017).
A natural question regards the exact relationship be-

tween the ISS and iISS properties. Since the intro-
duction of the iISS property it is known that ISS im-
plies iISS and that the converse does not hold for time-
invariant continuous-time systems (Sontag, 1998). The
same implication was proved for discrete-time systems
(Angeli, 1999), switched systems under arbitrary switching
(Mancilla-Aguilar and Garćıa, 2001) and hybrid systems
(Noroozi et al., 2017), assuming time-invariance. The cor-
responding proofs employ Lyapunov characterizations of
the ISS or of the global uniform asymptotic stability
(GUAS) properties in a fundamental way. This hinders the
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extension to classes of systems for which Lyapunov char-
acterizations do not exist, such as switched systems under
restricted switching or impulsive systems. Very recently,
Haimovich and Mancilla-Aguilar (2019) proved that ISS
implies iISS for families of time-varying and switched non-
linear systems without resorting to any Lyapunov converse
theorem, and, in this way, opening the door to proving the
implication for other types of systems.

This paper deals with impulsive systems with inputs,
i.e. dynamical systems whose state evolves continuously
most of the time but may exhibit jumps (discontinuities)
at isolated time instants, and where the inputs affect
both the flow (i.e. the continuous evolution) and the
jump equations (Yang et al., 2019). Sufficient conditions
for ISS and iISS of impulsive systems with inputs,
based on Lyapunov-type functions, have been derived
in Hespanha et al. (2008). Since the appearance of
Hespanha et al. (2008), many works have addressed the
stability of impulsive systems with inputs from ISS-related
standpoints, giving sufficient conditions for the ISS and/or
iISS in terms of Lyapunov functions (Chen and Zheng,
2009; Liu et al., 2011; Dashkovskiy et al., 2012;
Dashkovskiy and Mironchenko, 2013b; Liu et al., 2014;
Li et al., 2017; Dashkovskiy and Feketa, 2017; Li et al.,
2018; Peng et al., 2018; Peng, 2018; Ning et al., 2018;
Li and Li, 2019; Mancilla-Aguilar and Haimovich, 2019).
In addition, some results for hybrid systems may also be
applicable to impulsive systems (Liberzon et al., 2014;
Mironchenko et al., 2018; Liu et al., 2018).

Despite the great progress of the stability theory of im-
pulsive systems with inputs during the last decade, up to
our best knowledge the exact relationship between the ISS
and iISS properties has not yet been established for this
type of systems. The main contribution of the current pa-
per is thus solving this open problem by proving that ISS
implies iISS. The implication is proved assuming that the
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ISS and iISS properties are understood in a stronger sense
than is usually considered in the literature of impulsive
systems, more akin to that employed for hybrid systems.
As is well-known, the ISS/iISS properties impose a bound
on the state trajectory comprising a decaying-to-zero term
whose amplitude depends on the initial state value, and an
input magnitude/energy-dependent term. As already ex-
plained in Hespanha et al. (2008), the decaying term in
the ISS/iISS definitions employed for impulsive systems
decays as time elapses but is insensitive to the occurrence
of jumps. In this paper, we consider definitions of ISS/iISS
where the decaying term decreases also when a jump oc-
curs (see Definition 2.1 below), in agreement with those
considered in the context of hybrid systems (Cai and Teel,
2005, 2009; Noroozi et al., 2017). As a corollary of our
main result, we obtain that ISS implies iISS in the usual
sense when the impulse-time sequence satisfies a specific
bound on the number of impulse times on each bounded
interval. This condition is satisfied, for example, when the
impulse-time sequence is such that the flow periods (i.e.
between jumps) have a minimum or average dwell time.
The current paper generalizes some of our previous

results (Haimovich and Mancilla-Aguilar, 2018b,a, 2019;
Haimovich et al., 2019). Our proof strategy conceptually
follows that of Haimovich and Mancilla-Aguilar (2019), in
the sense of being based on bounding the difference be-
tween state trajectories. The current results cannot be
obtained directly (mutatis mutandis) from the previous
ones, mainly because we do not require the jump maps to
satisfy any kind of Lipschitz continuity property. This led
to the development of novel techniques for comparing tra-
jectories, especially suited to impulsive systems without
Lipschitz continuity of the jump maps. The specific simi-
larities and differences with respect to our previous work
are explained as appropriate along the text.
The remainder of the paper is organized as follows. This

section ends with a brief description of the notation em-
ployed. In Section 2, we precisely explain the type of sys-
tems considered and the stability concepts employed. In
Section 3, we provide a characterization of the strong iISS
property. This characterization is employed in Section 4 in
order to establish that strong ISS implies strong iISS. The
proofs of some technical intermediate results are given in
Section 5. Conclusions are given in Section 6.
Notation. N, R, R>0 and R≥0 denote the natural num-

bers, reals, positive reals and nonnegative reals, respec-
tively. |x| denotes the Euclidean norm of x ∈ R

p. We
write α ∈ K if α : R≥0 → R≥0 is continuous, strictly in-
creasing and α(0) = 0, and α ∈ K∞ if, in addition, α is
unbounded. We write β ∈ KL if β : R≥0 × R≥0 → R≥0,
β(·, t) ∈ K∞ for any t ≥ 0 and, for any fixed r ≥ 0, β(r, t)
monotonically decreases to zero as t→ ∞. From any func-
tion h : I ⊂ R → R

p, h(t−) and h(t+) denote, respectively,
the left and right limits of h at t ∈ R, when they exist and
are finite. For every n ∈ N and r ≥ 0, we define the closed
ball Bn

r := {x ∈ R
n : |x| ≤ r}. Without risk of confusion,

if γ = {τk}Nk=1, then γ can be interpreted as both the se-

quence {τk}Nk=1 and the set {τk : k ∈ N, k ≤ N} (even if
N = ∞). For a, b ∈ R, we define a ∧ b := min{a, b}.

2. Stability of Impulsive Systems with Inputs

2.1. Impulsive systems with inputs

Consider the time-varying impulsive system with inputs
Σ defined by the equations

ẋ(t) = f(t, x(t), u(t)), for t /∈ γ, (1a)

x(t) = x(t−) + g(t, x(t−), u(t)), for t ∈ γ, (1b)

where t ≥ 0, the state variable x(t) ∈ R
n, the input

variable u(t) ∈ R
m and f and g are functions from

R≥0 × R
n × R

m to R
n such that f(t, 0, 0) = 0 and

g(t, 0, 0) = 0 for all t ≥ 0, and the impulse-time sequence
γ = {τk}Nk=1 ⊂ (0,∞), with N finite or N = ∞. We
shall refer to f and to (1a) as, respectively, the flow map
and the flow equation and to g and to (1b) as, respec-
tively, the jump map and the jump equation. By “input”,
we mean a Lebesgue measurable and locally essentially
bounded function u : [0,∞) → R

m; we denote by U the
set of all the inputs. As is usual for impulsive systems, we
only consider impulse-time sequences γ = {τk}Nk=1 that
are strictly increasing and have no finite limit points, i.e.
limk→∞ τk = ∞ when the sequence is infinite; we employ
Γ to denote the set of all such impulse-time sequences. For
any sequence γ = {τk}Nk=1 ∈ Γ we define for convenience
τ0 = 0; nevertheless, τ0 is never an impulse time, because
γ ⊂ (0,∞) by definition.
In order to guarantee the existence of Carathéodory so-

lutions of the differential equation ẋ(t) = f(t, x(t), u(t)),
we assume that f(t, ξ, µ) is Lebesgue measurable in t, con-
tinuous in (ξ, µ) and that for every compact interval I ⊂
R≥0 and every compact set K ⊂ R

n ×R
m there exists an

integrable function m : I → R such that |f(t, ξ, µ)| ≤ m(t)
for all (t, ξ, µ) ∈ I ×K. Under these conditions, for each
input u ∈ U the map fu(t, ξ) = f(t, ξ, u(t)) satisfies the
standard Carathéodory conditions (see Hale, 1980) and
hence the (local) existence of solutions of the differential
equation ẋ(t) = f(t, x(t), u(t)) is ensured.
The impulsive system Σ is completely determined by

the sequence of impulse times γ and the flow and jump
maps f and g. Hence, we write Σ = (γ, f, g). Given γ ∈ Γ
and an interval I ⊂ [0,∞), we define nγ

I as the number of
elements of γ that lie in the interval I:

nγ
I := #

[

γ ∩ I
]

. (2)

A solution of Σ = (γ, f, g) corresponding to an initial
time t0 ≥ 0, an initial state x0 ∈ R

n and an input u ∈ U
is a function x : [t0, Tx) → R

n such that:

i) x(t0) = x0;

ii) x is locally absolutely continuous on each interval J =
[t1, t2) ⊂ [t0, Tx) without points of γ in its interior,
and ẋ(t) = f(t, x(t), u(t)) for almost all t ∈ J ; and
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iii) for all t ∈ γ ∩ (t0, Tx), the left limit x(t−) exists
and is finite, and it happens that x(t) = x(t−) +
g(t, x(t−), u(t)).

Note that ii) implies that for all t ∈ [t0, Tx), x(t) = x(t+),
i.e. x is right-continuous at t.
The solution x is said to be maximally defined if no other

solution y : [t0, Ty) satisfies y(t) = x(t) for all t ∈ [t0, Tx)
and has Ty > Tx. We will use TΣ(t0, x0, u) to denote the
set of maximally defined solutions of Σ corresponding to
initial time t0, initial state x0 and input u. Every solution
x ∈ TΣ(t0, x0, u) with t0 ≥ 0, x0 ∈ R

n and u ∈ U satisfies

x(t) = x(t0) +

∫ t

t0

f(s, x(s), u(s))ds

+
∑

τ∈γ∩(t0,t]

g(τ, x(τ−), u(τ)), ∀t ∈ [t0, Tx). (3)

Remark 1. Note that even if t0 ∈ γ, any solution x ∈
TΣ(t0, x0, u) begins its evolution by “flowing” and not by
“jumping”. This is because in item iii) above, the time
instants where jumps occur are those in γ ∩ (t0, Tx). ◦

2.2. Families of impulsive systems

Often one is interested in determining whether some sta-
bility property holds not just for a single impulse-time se-
quence γ ∈ Γ but also for some family S ⊂ Γ. For ex-
ample, the family S could contain all those impulse-time
sequences having some minimum, maximum or average
dwell time. Another situation of interest is to determine
if some stability property holds not just for a single pair
of functions (f, g) but also for all pairs (f, g) belonging to
some given set F . To take into account these and other sit-
uations, we consider a parametrized family ΣΛ := {Σλ =
(γλ, fλ, gλ)}λ∈Λ of impulsive systems with inputs, where
Λ is an index set (i.e. an arbitrary nonempty set). For ex-
ample, if we are interested in studying stability properties
of systems modelled by (1) which hold uniformly over a
class S ⊂ Γ, then we set S as the index set, and consider
the parametrized family of systems {Σγ = (γ, f, g)}γ∈S .
By taking as index set Λ = F and considering the family
{Σ(f,g) = (γ, f, g)}(f,g)∈Λ we can handle the other men-
tioned situation. Another interesting situation we can han-
dle in this way is that of impulsive switched systems (see
Mancilla-Aguilar and Haimovich, 2019, for details).

2.3. Stability definitions

In the context of impulsive systems, the input can be
interpreted as having both a continuous-time and an im-
pulsive component. From (1b) one observes that the values
of u at the instants t ∈ γ may instantaneously affect the
state trajectory. For this reason, input bounds suitable for
the required stability properties have to account for the in-
stantaneous values u(t) at t ∈ γ. Given an input u ∈ U ,

an impulse-time sequence γ ∈ Γ, an interval I ⊂ R≥0, and
functions ρ1, ρ2 ∈ K∞, we thus define

‖uI‖∞,γ := max

{

ess. sup
t∈I

|u(t)|, sup
t∈γ∩I

|u(t)|
}

, (4)

‖uI‖ρ1,ρ2,γ :=

∫

I

ρ1(|u(s)|)ds+
∑

s∈γ∩I

ρ2(|u(s)|). (5)

When I = [0,∞) we simply write u instead of uI .
These definitions are in agreement with those employed
in Cai and Teel (2009); Noroozi et al. (2017) in the con-
text of hybrid systems. In what follows, 0 denotes the
identically zero input.

Definition 2.1. We say that the parametrized family
ΣΛ = {Σλ = (γλ, fλ, gλ)}λ∈Λ of impulsive systems is

a) strongly 0-GUAS if there exist β ∈ KL such that for
all λ ∈ Λ, t0 ≥ 0, x0 ∈ R

n, and x ∈ TΣλ
(t0, x0,0), it

happens that for all t ∈ [t0, Tx),

|x(t)| ≤ β
(

|x0|, t− t0 + nγλ

(t0,t]

)

. (6)

b) strongly ISS if there exist β ∈ KL and ρ ∈ K∞ such
that

|x(t)| ≤ β
(

|x0|, t− t0 + nγλ

(t0,t]

)

+ ρ(‖u(t0,t]‖∞,γλ
); (7)

c) strongly iISS if there exist β ∈ KL and α, ρ1, ρ2 ∈ K∞

such that

α(|x(t)|) ≤ β
(

|x0|, t− t0 + nγλ

(t0,t]

)

+ ‖u(t0,t]‖ρ1,ρ2,γλ
;

(8)

d) UBEBS (Angeli et al., 2000) if there exist α, ρ1, ρ2 ∈
K∞ and c ≥ 0 such that

α(|x(t)|) ≤ |x0|+ ‖u(t0,t]‖ρ1,ρ2,γλ
+ c; (9)

where (7)–(9) hold for all λ ∈ Λ, t0 ≥ 0, x0 ∈ R
n, u ∈ U ,

x ∈ TΣλ
(t0, x0, u), and t ∈ [t0, Tx). The pair (ρ1, ρ2) in

(8) or (9) will be referred to as an iISS or UBEBS gain,
respectively.

Remark 2. Due to causality and the Markov property,
equivalent definitions are obtained if u(t0,t] is replaced by
u in (7), (8) or (9). Note that we do not require the solu-
tions of (1) to be defined for all t ≥ t0 in the definitions of
the different stability properties. Nevertheless, well-known
results for ordinary differential equations ensure the exis-
tence of the solution on [t0,∞) in each case. ◦

Remark 3. It is evident that strong ISS implies strong
0-GUAS (just set u = 0).
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All the properties in Definition 2.1 are uniform with
respect to both initial time t0 and the different systems
within the family ΣΛ. The ISS and iISS properties are
called “strong” because the decaying term given by the
function β forces additional decay whenever a jump oc-
curs. The corresponding weak properties are obtained
by replacing the second argument of β by t − t0 (see
Mancilla-Aguilar and Haimovich, 2019). Strong ISS (and
iISS) is in agreement with the ISS property for hybrid sys-
tems as in Liberzon et al. (2014).
The strong and weak ISS/iISS become equivalent un-

der the following condition, which is satisfied when the
time periods between impulses have a minimum or aver-
age dwell time.

Definition 2.2. Consider a set S ⊂ Γ of impulse-time
sequences. We say that S is uniformly incrementally
bounded (UIB) if there exists a continuous and nonde-
creasing function φ : R≥0 → R≥0 so that nγ

(t0,t]
≤ φ(t− t0)

for every γ ∈ S and all t > t0 ≥ 0.

The proof of the following result can be obtained
following the lines of that of Proposition 2.3 in
Mancilla-Aguilar and Haimovich (2019).

Proposition 2.3. Let ΣΛ = {Σλ = (γλ, fλ, gλ)}λ∈Λ.
Suppose that {γλ : λ ∈ Λ} is UIB. Then ΣΛ is strongly
ISS (resp. iISS) if and only if it is weakly ISS (iISS).

3. A characterization of iISS

In this section we will show that under suitable hypothe-
ses, the strong iISS of a parametrized family of impulsive
systems with inputs is equivalent to the combination of
UBEBS and strong 0-GUAS of the family.

3.1. Assumptions and statement

First, we note that if jumps do not occur (γ =
∅), then (1) becomes the type of system considered in
Haimovich and Mancilla-Aguilar (2018b). We thus require
that the flow maps satisfy the conditions in Assumption 1
of Haimovich and Mancilla-Aguilar (2018b).

Assumption 1. The functions fλ : R≥0×R
n×R

m → R
n,

λ ∈ Λ, satisfy the following:

i) there exist νf ∈ K and a nondecreasing function Nf :
R≥0 → R>0 such that for all λ ∈ Λ, |fλ(t, ξ, µ)| ≤
Nf (|ξ|)(1 + νf (|µ|)) for all (t, ξ, µ) ∈ R≥0 ×R

n ×R
m;

ii) for every r > 0 and ε > 0 there exists δ > 0 such that
for all λ ∈ Λ and all t ≥ 0, |fλ(t, ξ, µ)− fλ(t, ξ, 0)| < ε
if |ξ| ≤ r and |µ| ≤ δ;

iii) fλ(t, ξ, 0) is locally Lipschitz in ξ, uniformly in t and
λ, i.e. for every R > 0 there is a constant LR ≥ 0 so
that for every λ ∈ Λ, ξ1, ξ2 ∈ Bn

R and t ≥ 0 it happens
that |fλ(t, ξ1, 0)− fλ(t, ξ2, 0)| ≤ LR|ξ1 − ξ2|.

All the conditions imposed by Assumption 1 on the flow
maps are uniform over all the systems in the family. Item i)
imposes a bound that is, in addition, uniform over all val-
ues of the time variable. Item ii) requires a kind of conti-
nuity in the input variable at its zero value, uniformly over
time and over states in compact sets. Item iii) requires that
the flow map of the zero-input system be locally Lipschitz
in the state variable, uniformly over time.

The Lipschitz condition in item iii) is required in or-
der to allow the application of Gronwall inequality. If
all the conditions of Assumption 1 were imposed on the
jump maps gλ as well, then the required characteriza-
tion of strong iISS would follow, mutatis mutandis, from
Haimovich et al. (2019). However, imposing such a Lips-
chitz continuity requirement on the jump maps is restric-
tive and unnecessary. We will thus require the following
conditions.

Assumption 2. The functions gλ : R≥0×R
n×R

m → R
n,

λ ∈ Λ, satisfy the following:

i) there exist νg ∈ K and a nondecreasing function Ng :
R≥0 → R>0 such that for all λ ∈ Λ, |gλ(t, ξ, µ)| ≤
Ng(|ξ|)(1 + νg(|µ|)) for all (t, ξ, µ) ∈ R≥0 ×R

n ×R
m;

ii) for every r > 0 and ε > 0 there exists δ > 0 such that
for all λ ∈ Λ and all t ≥ 0, |gλ(t, ξ, µ)− gλ(t, ξ, 0)| < ε
if |ξ| ≤ r and |µ| ≤ δ;

iii) gλ(t, ξ, 0) is continuous in ξ, uniformly in t and λ, i.e.
for every R > 0 there is a function ωR ∈ K∞ so that
for every ξ1, ξ2 ∈ Bn

R, t ≥ 0 and λ ∈ Λ, it happens
that |gλ(t, ξ1, 0)− gλ(t, ξ2, 0)| ≤ ωR(|ξ1 − ξ2|).

Items i) and ii) of Assumption 2 are identical to those
of Assumption 1. By constrast, the Lipschitz continu-
ity requirement of Assumption 1iii) has been replaced
by just continuity, keeping the corresponding uniformity
with respect to the other variables. The removal of
the Lipschitz continuity requirement on the jump maps
causes the proof of our current results to become sub-
stantially different and harder than that of the previ-
ous ones (Haimovich and Mancilla-Aguilar, 2018a, 2019;
Haimovich et al., 2019).

The main result of this section is the following charateri-
zation of strong iISS for parametrized families of impulsive
systems with inputs.

Theorem 3.1. Consider the parametrized family ΣΛ =
{Σλ = (γλ, fλ, gλ)}λ∈Λ and let Assumptions 1 and 2 hold.
Then ΣΛ is strongly iISS if and only if it is strongly 0-
GUAS and UBEBS.

The proof of Theorem 3.1 is given in Section 3.3. Note
that Theorem 3.1 does not require uniqueness of solutions
under nonzero inputs because the local Lipschitz continu-
ity of the flow maps imposed by Assumption 1iii) applies
only under zero input.
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3.2. Preliminary results

The proof of Theorem 3.1 requires some preliminary
lemmas. The first of these is a type of generalized Gron-
wall inequality for impulsive systems. The proof is given
in Section 5.1.

Lemma 3.2. Let 0 ≤ t0 < T and let y : [t0, T ] → R≥0

be a right-continuous function having a finite number N
of points of discontinuity s1, . . . , sN satisfying t0 < s1 <
. . . < sN ≤ T . Let y be such that the left-limit y(s−j ) exists
for all j = 1, . . . , N . Let p ∈ R≥0, let a : R≥0 → R≥0 be
locally integrable, let {ck}∞k=1 be a sequence of nonnegative
numbers, and let ω ∈ K∞. Let σ = {sk}Nk=1 and define
c : σ → R≥0 via c(sj) = cj. If y satisfies

y(t) ≤ p+

∫ t

t0

a(s)y(s)ds+
∑

s∈σ∩(t0,t]

c(s)ω(y(s−)) (10)

for all t ∈ [t0, T ], then in the same time interval y satisfies

y(t) ≤ ht0k (p, t), (11)

where k = nσ
(t0,t]

, and the functions ht0j : R≥0 × [t0,∞) →
R≥0, j = 0, 1, . . ., are recursively defined as follows

ht00 (p,t) = pe
∫

t

t0
a(s)ds

, and, for j ≥ 1,

ht0j (p,t) = ht0j−1(p, t)+

cje
∫

t

t0
a(s)ds

sup
t0≤s≤t

[

ω(ht0j−1(p, s))e
−

∫
s

t0
a(τ)dτ

]

.

The function ω on the right-hand side of inequality
(10) makes the third term therein not necessarily affine
in y. This enables the application of Lemma 3.2 to im-
pulsive systems without Lipschitz continuity of the jump
map. In addition, Lemma 3.2 is not a particular case of
other existing comparison-type results (such as those in
Noroozi et al., 2014; Lakshmikantham et al., 1989) and is
hence interesting in its own right.

Remark 4. If the function a(·) is constant, it follows that
ht0j (p, t) = h0j(p, t−t0) for all j ∈ N0, p ≥ 0 and t ≥ t0 ≥ 0.
◦

The following result is a generalization of Lemma 3
of Haimovich and Mancilla-Aguilar (2018b) to the current
setting. The proof is given in Section 5.2.

Lemma 3.3. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a strongly 0-
GUAS parametrized family of impulsive systems with in-
puts which satisfies Assumptions 1 and 2. Let β ∈ KL
characterize the 0-GUAS property and let νf and νg be
the functions given by Assumptions 1.i) and 2.i). Let
χf , χg ∈ K∞ satisfy χf ≥ νf and χg ≥ νg. Then, for every
r > 0 and every η > 0, there exist L = L(r), κ = κ(r, η)
and ω = ωr ∈ K∞ such that if x ∈ TΣλ

(t0, x0, u) with
λ ∈ Λ, t0 ≥ 0, x0 ∈ R

n and u ∈ U satisfies |x(t)| ≤ r for

all t ≥ t0, then also

|x(t)| ≤ β(|x0|, t− t0 + nγλ

(t0,t]
)+

h0
n
γλ
(t0,t]

(

(t− t0 + nγλ

(t0,t]
)η + κ‖u(t0,t]‖χf ,χg ,γλ

, t− t0

)

,

(12)

where h0j , for j = 0, 1, . . ., are the functions defined in
Lemma 3.2 in correspondence with a(s) ≡ L and cj ≡ 1.

As in Haimovich and Mancilla-Aguilar (2018b, Lemma 3),
the inequality (12) is only useful when its right-hand side
is less than r, since |x(t)| ≤ r for all t ≥ t0 is already
assumed. If γλ = ∅ (no impulses), and hence nγλ

(t0,t]
= 0,

then (12) reduces to the corresponding bound in Lemma 3
of Haimovich and Mancilla-Aguilar (2018b).
The following result shows that if a system is strongly

0-GUAS, then UBEBS could be equivalently defined set-
ting c = 0 in (9). This generalizes Lemma 4 of
Haimovich and Mancilla-Aguilar (2018b) to the current
setting. The proof is given in Section 5.3.

Lemma 3.4. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a strongly
0-GUAS and UBEBS parametrized family of impulsive
systems with inputs which satisfies Assumptions 1 and
2. Then there exist α̃, ρ̃1, ρ̃2 ∈ K∞, with ρ̃1 ≥ νf and
ρ̃2 ≥ νg, for which the estimate (13) holds for every
x ∈ TΣλ

(t0, x0, u) with λ ∈ Λ, t0 ≥ 0, x0 ∈ R
n and u ∈ U .

α̃(|x(t)|) ≤ |x(t0)|+ ‖u(t0,t]‖ρ̃1,ρ̃2,γλ
∀t ≥ t0. (13)

We now have almost all the ingredients required for
proving Theorem 3.1. The only additional step is an
ǫ-δ characterization of the strong iISS property (see
Haimovich et al., 2019, Theorem 3.2), stated here so that
iISS is uniform over families of systems.

Theorem 3.5. Consider the parametrized family ΣΛ =
{Σλ = (γλ, fλ, gλ)}λ∈Λ of impulsive systems with inputs.
Let ρ1, ρ2 ∈ K∞. Consider the notation ‖u‖λ = ‖u‖ρ1,ρ2,γλ

and, for r ≥ 0, Bλ
r := {u ∈ U : ‖u‖λ ≤ r}. Then ΣΛ is

strongly iISS with gain (ρ1, ρ2) if and only if the following
conditions hold:

i) For every T ≥ 0, r ≥ 0, s ≥ 0, there exists C > 0
such that every x ∈ TΣλ

(t0, x0, u) with λ ∈ Λ, t0 ≥ 0,
x0 ∈ Bn

r and u ∈ Bλ
s satisfies |x(t)| ≤ C for all t ≥ t0

such that t+ nγλ

(t0,t]
≤ t0 + T .

ii) For each ǫ > 0, there exists δ > 0 such that every
x ∈ TΣλ

(t0, x0, u) with λ ∈ Λ, t0 ≥ 0, x0 ∈ Bn
δ and

u ∈ Bλ
δ satisfies |x(t)| ≤ ǫ for all t ≥ t0.

iii) There exists α ∈ K∞ such that for every r, ǫ > 0 there
exists T > 0 so that

α(|x(t)|) ≤ ǫ+ ‖u‖λ

for all x ∈ TΣλ
(t0, x0, u), λ ∈ Λ, t0 ≥ 0, x0 ∈ Bn

r ,
u ∈ U , and t ≥ t0 such that t+ nγλ

(t0,t]
≥ t0 + T .
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3.3. Proof of Theorem 3.1

(⇒) Let x ∈ TΣλ
(t0, x0,0), with λ ∈ Λ, t0 ≥ 0, x0 ∈

R
n. The estimate (8), with γλ instead of γ reduces to

α(|x(t)|) ≤ β(|x(t0)|, t − t0 + nγλ

(t0,t]
) and hence |x(t)| ≤

α−1(β(|x(t0)|, t − t0 + nγλ

(t0,t]
). The function β̃ := α−1

◦β

satisfies β̃ ∈ KL, and hence (6) follows with β replaced by
β̃. Therefore, clearly strong iISS implies strong 0-GUAS.
Consider β ∈ KL from (8), define β0 ∈ K∞ via β0(r) =
β(r, 0). Define ψ ∈ K∞ via ψ(r) := min{β−1

0 (r/2), r/2}.
Applying ψ to each side of (8), we obtain

ψ ◦α(|x(t)|) ≤ ψ
(

β0(|x(t0)|) + ‖u(t0,t]‖ρ1,ρ2,γλ

)

≤ ψ (2β0(|x(t0)|)) + ψ(2‖u(t0,t]‖ρ1,ρ2,γλ
)

≤ |x(t0)|+ ‖u(t0,t]‖ρ1,ρ2,γλ
,

and hence (9) follows with α replaced by α̃ := ψ ◦α ∈ K∞.
We have thus shown that strong iISS implies UBEBS.
(⇐) Let α̃, ρ̃1, ρ̃2 ∈ K∞ be given by Lemma 3.4, so that

(13) is satisfied. We will prove that {Σλ}λ∈Λ is strongly
iISS with iISS gain (ρ̃1, ρ̃2) by establishing each of the
items of Theorem 3.5. Here we use the notation ‖u‖λ =
‖u‖ρ̃1,ρ̃2,γλ

.
i) Let T ≥ 0, r ≥ 0 and s ≥ 0. Let x ∈ TΣλ

(t0, x0, u)
with λ ∈ Λ, t0 ≥ 0, x0 ∈ Bn

r and u ∈ Bλ
s . From (13), it fol-

lows that α̃(|x(t)|) ≤ r+s, and hence |x(t)| ≤ α̃−1(r+s) =:
C for all t ≥ t0. This establishes item i) of Theorem 3.5.
ii) Let ǫ > 0 and δ = α̃(ǫ)/2. Then, if x ∈ TΣλ

(t0, x0, u)
with λ ∈ Λ, t0 ≥ 0, x0 ∈ Bn

δ and u ∈ Bλ
δ , it follows

from (13) that |x(t)| ≤ α̃−1(2δ) = ǫ for all t ≥ t0. This
establishes item ii) of Theorem 3.5.
iii) Let α = α̃/2 ∈ K∞. Let r, ǫ > 0 and let x ∈

TΣλ
(t0, x0, u) with λ ∈ Λ, t0 ≥ 0, x0 ∈ Bn

r and u ∈ U .
We distinguish two cases:

(a) ‖u‖λ ≥ r,

(b) ‖u‖λ < r.

In case (a), from (13) we have α̃(|x(t)|) ≤ r + ‖u(t0,t]‖λ ≤
r + ‖u‖λ ≤ 2‖u‖λ, hence α(|x(t)|) ≤ ‖u‖λ ≤ ǫ + ‖u‖λ for
all t ≥ t0.
Next, consider case (b). From (13), we have α̃(|x(t)|) ≤

r + ‖u‖λ < 2r for all t ≥ t0. Then |x(t)| ≤ r̃ := α̃−1(2r)
for all t ≥ t0. Let β ∈ KL characterize the strong 0-GUAS
property, so that (6) is satisfied under zero input, and let
L = L(r̃) > 0 and ω = ωr̃ ∈ K∞ be given by Lemma 3.3
with χf = ρ̃1 and χg = ρ̃2, and let hj := h0j , j = 0, 1, . . .,
be the functions defined in Lemma 3.2 in correspondence
with a(s) ≡ L and cj ≡ 1. Let ǫ̃ = ǫ and T̃ > 0 satisfy

β(r̃, T̃ ) < ǫ̃/2. Let k̃ = ⌈T̃ ⌉ + 1, where ⌈s⌉ denotes the
least integer not less than s ∈ R. Since hk̃ is continuous

and hk̃(0, t) = 0 for all t ≥ 0, then there exists δ̃ > 0 such

that hk̃(δ̃, k̃) < ǫ̃/2. Define η = δ̃
2k̃

and let κ = κ(r̃, η) > 0

be given by Lemma 3.3. Set δ = δ̃
2κ and define N :=

⌈

r
δ

⌉

and T := Nk̃.

Consider the sequence t0 = s0 < s1 < . . . < sN , recur-
sively defined as follows:

sj = inf{t ≥ sj−1 : t− sj−1 + nγλ

(sj−1,t]
≥ T̃}.

Consider the intervals Ii = (si, si+1], with i = 0, . . . , N−1.
We claim that there exists j ≤ N − 1 for which ‖uIj‖λ ≤
δ. For a contradiction, suppose that ‖uIj‖λ > δ for all

0 ≤ j ≤ N − 1. Then, ‖u‖λ ≥ ∑N−1
j=0 ‖uIj‖λ > Nδ ≥ r,

contradicting case (b). Therefore, let 0 ≤ j ≤ N − 1 be
such that ‖uIj‖ ≤ δ.
Since x ∈ TΣλ

(sj , x(sj), u) and |x(t)| ≤ r̃ for all t ≥ sj ,
from Lemma 3.3 it follows that

|x(sj+1)| ≤ β
(

|x(sj)|, sj+1 − sj + nγλ

Ij

)

+

hnγλ
Ij

([

sj+1 − sj + nγλ

Ij

]

η + κ‖uIj‖λ, sj+1 − sj

)

.

Since |x(sj)| ≤ r̃, T̃ ≤ sj+1−sj+nγλ

Ij
≤ k̃, k̃η = δ̃/2, κδ ≤

δ̃/2 and the functions hj(p, t) are separately increasing in

p and in t, and hj(p, t) ≤ hk̃(p, t) for all 0 ≤ j ≤ k̃, it
follows that

|x(sj+1)| ≤ β(r̃, T̃ ) + hk̃(δ̃, k̃) <
ǫ̃

2
+
ǫ̃

2
= ǫ̃.

Therefore, using (13) with t0 replaced by sj+1, we reach

α̃(|x(t)|) ≤ |x(sj+1)|+ ‖u(sj+1,t]‖λ ≤ ǫ̃+ ‖u‖λ

for all t ≥ sj+1. Since si+1 − si + nγλ

(si,si+1]
≤ k̃ for all

0 ≤ i ≤ N − 1, sj+1 − t0 + nγλ

(t0,sj+1]
=

∑j
i=1[si+1 − si +

nγλ

(si,si+1]
] ≤ Nk̃ = T . In consequence, if t ≥ t0 is such that

t − t0 + nγλ

(t0,t]
≥ T , then t ≥ sj+1, and hence α̃(|x(t)|) ≤

ǫ̃ + ‖u‖λ. Since α = α̃/2 ≤ α̃, it follows that item iii) of
Theorem 3.5 also is satisfied.

4. Strong ISS implies strong iISS

To establish that strong ISS implies strong iISS, we need
Assumption 3, which strengthens Assumptions 1 and 2.

Assumption 3. The functions fλ satisfy B1)–B3) with
the subscript ‘a’ replaced by ‘f ’. The functions gλ sat-
isfy B1)–B2) with fλ replaced by gλ and the subscript ‘a’
replaced by ‘g’:

B1) There exists ϕ̃a ∈ K∞ and nondecreasing and contin-
uous functions Na, Oa : R≥0 → R≥0 such that1

|fλ(t, ξ, µ1)− fλ(t, ξ, µ2)|
≤ ϕ̃a(|µ1 − µ2|)

[

Na(|ξ|) +Oa

(

|µ1| ∧ |µ2|
)]

holds for all t ≥ 0, ξ ∈ R
n, µ1, µ2 ∈ R

m and λ ∈ Λ.

1Recall the notation a ∧ b = min{a, b}.
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B2) There exist ηa, ϕa ∈ K∞, and Pa : R≥0 → R≥0 non-
decreasing and continuous, such that for all t ≥ 0,
ξ1, ξ2 ∈ R

n, µ ∈ R
m, and λ ∈ Λ,

|fλ(t, ξ1, µ)− fλ(t, ξ2, µ)|
≤ ηa(|ξ1 − ξ2|)[Pa(|ξ1| ∧ |ξ2|) + ϕa(|µ|)].

B3) Item B2) holds, in addition, with ηa such that for
every M ≥ 0 there exists Lf = Lf (M) so that

ηa(s) ≤ Lfs for all 0 ≤ s ≤M, (14)

where the function Lf(·) is continuous, nondecreas-
ing, and positive for M > 0.

It is easy to show that Assumptions 1 and 2 follow from
Assumption 3 and the blanket assumptions fλ(t, 0, 0) = 0
and gλ(t, 0, 0) = 0 for all t ≥ 0 and λ ∈ Λ.
The conditions in Assumption 3 are equivalent to the fol-

lowing set of conditions, which are similar to those consid-
ered in Assumption 1 of Haimovich and Mancilla-Aguilar
(2019) (see also Lemma 3.4 therein).

A1) There exists ω1 ∈ K∞ and for every r, s ≥ 0, there
exists L1 = L1(r, s) ≥ 0 such that

|fλ(t, ξ, µ1)− fλ(t, ξ, µ2)| ≤ L1ω1(|µ1 − µ2|) (15)

for all t ≥ 0, ξ ∈ Bn
r , µ1, µ2 ∈ Bm

s and λ ∈ Λ.

A2) There exists ω2 ∈ K∞ and for every r, s ≥ 0, there
exists L2 = L2(r, s) ≥ 0 such that

|fλ(t, ξ1, µ)− fλ(t, ξ2, µ)| ≤ L2ω2(|ξ1 − ξ2|) (16)

for all t ≥ 0, ξ1, ξ2 ∈ Bn
r , µ ∈ Bm

s and λ ∈ Λ.

A3) Item A2) holds with ω2(r) ≡ r.

By proceeding as in the proof of Lemma 3.4 in
Haimovich and Mancilla-Aguilar (2019), it follows that
B1)–B2) are equivalent to A1)–A2) and that B1)–B3) are
equivalent to A1)–A3). It is thus clear that Assumption 3
imposes local Lipschitz continuity of the flow maps and
hence uniqueness of solutions.
Our main result is the following.

Theorem 4.1. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a strongly
ISS parametrized family of impulsive systems with inputs
and let Assumption 3 hold. Then, {Σλ}λ∈Λ is strongly
iISS.

The structure of the proof of Theorem 4.1 is given in
the following diagram. In this diagram, the application
of Theorem 3.1 is possible because Assumption 3 implies
Assumptions 1 and 2.

strong

0-GUAS

��strong

ISS

Remark 3
19❥❥❥❥❥❥❥❥❥❥

❥❥❥❥❥❥❥❥❥❥

Thm 4.3 %-❘
❘❘

❘❘
❘❘

❘

❘❘
❘❘

❘❘
❘❘

and
Thm 3.1 +3

strong

iISS

UBEBS

OO

Before giving the remaining step, indicated as Theo-
rem 4.3, we pose the following simple consequence of The-
orem 4.1 and Proposition 2.3.

Corollary 4.2. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a weakly
ISS parametrized family of impulsive systems with inputs
and let Assumption 3 hold. Suppose that {γλ}λ∈Λ is UIB
(Definition 2.2). Then, {Σλ}λ∈Λ is strongly iISS and
hence also weakly iISS.

Proof. Since {γλ}λ∈Λ is UIB, then by Proposition 2.3 the
weak and strong versions of ISS (or iISS) are equivalent.
Applying Theorem 4.1, the result follows. �

We next give a theorem that establishes that
strong ISS implies UBEBS. This theorem is an ex-
tension to impulsive systems of Theorem 3.12 in
Haimovich and Mancilla-Aguilar (2019). However, due
to the absence of any type of Lipschitz continuity as-
sumption on the jump maps, the current proof does
not follow straightforwardly from the corresponding
one in Haimovich and Mancilla-Aguilar (2019). More-
over, the proof is not a simple consequence of re-
placing the application of Gronwall inequality by that
of the current Lemma 3.2. Specifically, the expres-
sion to be bounded does not anymore have the mul-
tiplicative form given as g1(r)g2(s) in Lemma 3.11 of
Haimovich and Mancilla-Aguilar (2019), leading to a novel
bounding strategy.

Theorem 4.3. Let {Σλ = (γλ, fλ, gλ)}λ∈Λ be a strongly
ISS parametrized family of impulsive systems with inputs
and let Assumption 3 hold. Then, {Σλ}λ∈Λ is UBEBS.

Proof. Let β ∈ KL and ρ ∈ K∞ characterize the strong
ISS property. Define ha1 , h

a
2 : R2

≥0 → R via

ha1(r, b) := Na(β(r, 0) + ρ(b)) +Oa(b), (17)

ha2(r, b) := Pa(β(r, 0) + ρ(b)), (18)

where a ∈ {f, g}. Let Lf : R≥0 → R≥0 be continuous,
nondecreasing, and such that for every M ≥ 0, (14) holds
with the subscript ‘a’ replaced by ‘f ’ and Lf = Lf (M). In
correspondence with every r > 0, define Tr > 1 continuous
and such that

β(r, Tr − 1) ≤ r/3, and also (19)

br := ρ−1(r/3), Mr := r/3, (20)

h̄1(r) := hf1(r, br) + hg1(r, br) Lf
r := Lf (Mr). (21)

For each j ∈ N0, consider the functions h̃j : R4
≥0 → R≥0

given by

h̃0(p,T, r, s) = pe[h
f
2(r,br)T+s]Lf

r , and for j ≥ 1,

h̃j(p,T, r, s) = h̃j−1(p, T, r, s)+

[hg2(r, br) + s]e[h
f
2(r,br)T+s]Lf

r ηg(h̃j−1(p, T, r, s)),
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and define, for r > 0 and s ≥ 0,

p̃(r, s) := sup
{

p ≥ 0 : h̃j(p, T, r, s) ≤
Mr

2
,

∀(j, T ) s.t. T ≥ 0, T + j ≤ Tr

}

.

Note that the functions h̃j are nondecreasing in j, p, T ,
r and s, continuous in (p, T, r, s) over R

4
≥0, and satisfy

h̃j(0, T, r, s) = 0 for all j ∈ N0 and (T, r, s) ∈ R
3
≥0. In

addition, the function h̃j(·, T, r, s) is increasing for every

j ∈ N0 and (T, r, s) ∈ R
3
≥0, and h̃j(p, T, r, ·) is increasing

whenever p > 0 and r > 0. These facts make p̃(r, s) > 0
for all r > 0 and s ≥ 0, and p̃(r, ·) decreasing. From the
definition of p̃(r, s), we have that for all r > 0 and s ≥ 0,

h̃j(p, T, r, s) ≤Mr/2

whenever p ≤ p̃(r, s), T ≥ 0, T + j ≤ Tr. (22)

Consider the function ℓ : [1,∞) → R≥0, defined via

ℓ(r̄) := sup
1≤r≤r̄

h̄1(r)(r − 1)

p̃(r, r − 1)
. (23)

It is clear that ℓ is nondecreasing.

Claim 1. ℓ(r̄) <∞ for all r̄ ≥ 1.

Proof of Claim 1: Let r̄ ≥ 1 and consider

T̄ := sup
1≤r≤r̄

Tr,

p̄ := sup
{

p ≥ 0 : max
j∈N0,j≤T̄

h̃j(p, T̄ , r̄, r̄ − 1) ≤ M1

2

}

.

Since Tr is positive and continuous for r > 0, then T̄ is
finite and positive. From the continuity and monotonicity
properties of h̃j , it follows that p̄ > 0. From the corre-
sponding definitions, it also follows that p̃(r, r− 1) ≥ p̄ for
all 1 ≤ r ≤ r̄. In consequence, by also taking into account
the continuity of h̄1 it follows that

ℓ̄(r̄) ≤ max
1≤r≤r̄

h̄1(r)(r − 1)

p̄
<∞.

◦
It follows that there exists κ ∈ K∞ such that ℓ(r) ≤ κ(r)

for all r ≥ 1. Define α ∈ K∞ via

α(b) = κ(3ρ(b)). (24)

Given an input u ∈ U and a constant b ≥ 0, let ub denote
a new input, defined as follows

ub(t) =







bu(t)

|u(t)| if t ∈ Ωu(b),

u(t) otherwise,
(25)

Ωu(b) := {t ≥ 0 : |u(t)| > b}. (26)

Note that |ub(t)| = min{|u(t)|, b} for all t ≥ 0 and hence
‖ub‖∞,γ ≤ b for all γ.

Let χ1, χ2 ∈ K∞ satisfy χ1 ≥ max{ϕf , ϕ̃
2
f , α

2} and

χ2 ≥ max{ϕg, ϕ̃
2
g, α

2}. We will establish UBEBS with
gain (χ1, χ2). Let t0 ≥ 0, ξ ∈ R

n, λ ∈ Λ, set γ = γλ, and
consider an input u ∈ U such that

E :=

∫ ∞

0

χ1(|u(s)|)ds+
∑

s∈γ

χ2(|u(s)|) <∞. (27)

Let x ∈ TΣλ
(t0, ξ, u) and define α̃ ∈ K∞ via

α̃(r) = β(r, 0) +
2r

3
. (28)

Claim 2. Let r be any real number such that r ≥ 1 + E
and |x(t0)| ≤ r, then

|x(t)| ≤ α̃(r) ∀t ≥ t0. (29)

Proof of Claim 2: For a fixed b ≥ 0, let xb ∈
TΣλ

(t0, x(t0), ub), and ∆x = x − xb. From the strong ISS
property, then

|xb(t)| ≤ β
(

|x(t0)|, t− t0 + nγ
(t0,t]

)

+ ρ(‖ub‖∞,γ)

≤ β(r, 0) + ρ(b)

for all t ≥ t0. From (3) and Assumption 3, it follows that

|∆x(t)| ≤
∫ t

t0

∣

∣

∣
fλ(s, x(s), u(s)) − fλ(s, xb(s), ub(s))

∣

∣

∣
ds+

∑

τ∈γ∩(t0,t]

∣

∣

∣
gλ(τ, x(τ

−), u(τ))− gλ(τ, xb(τ
−), ub(τ))

∣

∣

∣

≤
∫ t

t0

∣

∣

∣
fλ(s, x(s), u(s)) − fλ(s, xb(s), u(s))

∣

∣

∣
ds+

∑

τ∈γ∩(t0,t]

∣

∣

∣
gλ(τ, x(τ

−), u(τ))− gλ(τ, xb(τ
−), u(τ))

∣

∣

∣
+

∫ t

t0

∣

∣

∣
fλ(s, xb(s), u(s)) − fλ(s, xb(s), ub(s))

∣

∣

∣
ds+

∑

τ∈γ∩(t0,t]

∣

∣

∣
gλ(τ, xb(τ

−), u(τ)) − gλ(τ, xb(τ
−), ub(τ))

∣

∣

∣

≤
∫ t

t0

ηf (|∆x(s)|)[Pf (|x(s)|∧|xb(s)|)+ϕf (|u(s)|)]ds+

∑

τ∈γ∩(t0,t]

ηg(|∆x(τ−)|)[Pg(|x(τ
−)|∧|xb(τ

−)|)+ϕg(|u(τ)|)]+

∫ t

t0

ϕ̃f (|u(s)− ub(s)|)[Nf (|xb(s)|)+Of (|u(s)|∧|ub(s)|)]ds+

∑

τ∈γ∩(t0,t]

ϕ̃g(|u(τ) − ub(τ)|)[Ng(|xb(τ
−)|)+Og(|u(τ)|∧|ub(τ)|)]
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holds for all t ≥ t0 for which x(t) exists. Then, for all
t ≥ t0 for which x(t) exists,

|∆x(t)| ≤
∫ t

t0

ηf (|∆x(s)|)[hf2 (r, b) + ϕf (|u(s)|)]ds

+
∑

τ∈γ∩(t0,t]

ηg(|∆x(τ−)|)[hg2(r, b) + ϕg(|u(τ)|)]

+ hf1 (r, b)

∫ t

t0

ϕ̃f (|u(s)− ub(s)|)ds

+ hg1(r, b)
∑

τ∈γ∩(t0,t]

ϕ̃g(|u(τ) − ub(τ)|). (30)

For t ≥ t0, we have the following inequalities:

∫ t

t0

ϕ̃f (|u(s)− ub(s)|)ds ≤
∫

Ωu(b)

ϕ̃f (|u(s)|)ds,
∑

τ∈γ∩(t0,t]

ϕ̃g(|u(τ) − ub(τ)|) ≤
∑

τ∈γ∩Ωu(b)

ϕ̃g(|u(τ)|)

Applying the Schwarz inequality, then

∫

Ωu(b)

ϕ̃f (|u(s)|)ds ≤ |Ωu(b)|1/2
√

∫

Ωu(b)

ϕ̃2
f (|u(s)|)ds

≤ |Ωu(b)|1/2
√
E, and likewise

∑

τ∈γ∩Ωu(b)

ϕ̃g(|u(τ)|) ≤
√

#[γ ∩ Ωu(b)]
√
E,

where we have used the facts that χ1 ≥ ϕ̃2
f and χ2 ≥ ϕ̃2

g,
and where |Ωu(b)| denotes the Lebesgue measure of the set
Ωu(b). Also, we have

E ≥
∫

Ωu(b)

χ1(|u(s)|)ds ≥ |Ωu(b)|χ1(b), and

E ≥
∑

τ∈γ∩Ωu(b)

χ2(|u(τ)|) ≥ #[γ ∩ Ωu(b)]χ2(b),

and hence

|Ωu(b)| ≤
E

χ1(b)
, and #[γ ∩Ωu(b)] ≤

E

χ2(b)
if b > 0.

Combining the obtained inequalities, we reach, for b > 0,

∫ t

t0

ϕ̃f (|u(s)− ub(s)|)ds ≤
E

√

χ1(b)
≤ E

α(b)
, (31)

∑

τ∈γ∩Ωu(b)

ϕ̃g(|u(τ)− ub(τ)|) ≤
E

√

χ2(b)
≤ E

α(b)
, (32)

where we have used the facts that χ1 ≥ α2 and χ2 ≥ α2.
Let b = br. Define

ι := inf{t ≥ t0 : |∆x(t)| ≥Mr}.

We next show that ι − t0 + nγ
(t0,ι]

> Tr. Suppose on the

contrary that ι − t0 + nγ
(t0,ι]

≤ Tr. From the definition

of ι and the continuity of ∆x from the right, we have
∆x(ι) ≥Mr and

|∆x(t)| < Mr for all t0 ≤ t < ι, (33)

From (14), then ηf (|∆x(t)|) ≤ Lf
r |∆x(t)| for all t0 ≤ t < ι.

From (30) and (31)–(32), then for all t0 ≤ t ≤ ι, we have

|∆x(t)| ≤ p+

∫ t

t0

a(s)|∆x(s)|ds

+
∑

τ∈γ∩(t0,t]

c(τ)ηg(|∆x(τ−)|), (34)

with p =
h̄1(r)E

α(br)
=
h̄1(r)E

κ(r)
,

a(s) = [hf2(r, br) + ϕf (|u(s)|)]Lf
r ,

c(τ) = [hg2(r, br) + ϕg(|u(τ)|)].

Note that (34) holds also at t = ι even if only (33) is true
and it happens that |∆x(ι)| > Mr. Applying Lemma 3.2
with y(t) = ∆x(t), T = ι, σ = γ ∩ (t0, ι] = {sj}kj=1, with
k = nγ

(t0,ι]
, {cj}∞k=1, with cj = c(sj) for 1 ≤ j ≤ k and

cj = 0 for j > k and ω = ηg, it follows that ∆x must also
satisfy

|∆x(ι)| ≤ ht0k (p, ι) (35)

with the functions ht0j , j ∈ N0, as defined in Lemma 3.2.

Claim 3. For all p ≥ 0, t ≥ t0 and 0 ≤ j ≤ k,

ht0j (p, t) ≤ h̃j(p, t− t0, r, E). (36)

Proof of Claim 3: We prove the claim by induction on
j. For j = 0, we have that for all t ≥ t0

ht00 (p, t) = pe
∫

t

t0
a(s)ds

≤ pe[h
f
2 (r,br)(t−t0)+E]Lf

r = h̃0(p, t− t0, r, E)

since

∫ t

t0

a(s)ds =

[

hf2(r, br)(t− t0) +

∫ t

t0

ϕf (|u(s)|)ds
]

Lf
r

≤ [hf2 (r, br)(t− t0) + E]Lf
r (37)

because ϕf ≤ χ1 and ‖u‖χ1,χ2,γ = E.

Suppose now that for some 0 ≤ j < k, (36) holds for all
t ≥ t0. Then, from the definition of the function ht0j+1, it
follows that

ht0j+1(p, t) = ht0j (p, t) + cj+1 sup
t0≤s≤t

[

ηg(h
t0
j (p, s))e

∫
t

s
a(τ)dτ

]

.

Since cj+1 = c(sj+1) ≤ hg2(r, br)+E, because ϕg ≤ χ2 and
‖u‖χ1,χ2,γ = E, and using (37), the nonnegativity of a,
the inductive hypothesis, and the fact that the functions
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ηj and h̃j are nondecreasing in each of their arguments, it
follows that

ht0j+1(p, t) ≤ h̃j(p, t− t0, r, E) + [hg2(r, br) + E]·
e[h

f
2(r,br)(t−t0)+E]Lf

r ηg
(

h̃j(p, t− t0, r, E)
)

= h̃j+1(p, t− t0, r, E),

and the proof of the claim follows. ◦
From Claim 3 it then follows that

ht0k (p, ι) ≤ h̃k(p, ι− t0, r, E).

On the other hand, for all E ≤ r − 1, we have

p =
h̄1(r)E

κ(r)
≤ h̄1(r)(r − 1)

κ(r)
≤ h̄1(r)(r − 1)

κ(r)

p̃(r, r − 1)

p̃(r, r − 1)

≤ ℓ(r)

κ(r)
p̃(r, E) ≤ p̃(r, E).

Therefore, since ι − t0 + k ≤ Tr, it follows from the
definition of p̃ that h̃k(p, ι − t0, r, E) ≤ Mr/2 and then,
from (35) that

|∆x(ι)| ≤ ht0k (p, ι) ≤ h̃k(p, ι− t0, r, E) ≤Mr/2,

which is a contradiction. Thus ι− t0+nγ
(t0,ι]

> Tr. There-

fore, the solution x can be bounded as follows

|x(t)| ≤ |xbr (t)|+ |∆x(t)|
≤ β(r, t− t0 + nγ

(t0,t]
) + ρ(br) +Mr

≤ β(r, 0) + ρ(br) +Mr = α̃(r),

for all t ≥ t0 such that t − t0 + nγ
(t0,t]

≤ Tr. Consider the

sequence t1 < t2 < · · · , defined recursively as follows, for
j = 0, 1, 2, . . .

tj+1 = inf{t > tj : t− tj + nγ
(tj ,t]

≥ Tr − 1}

Note that Tr − 1 ≤ tj+1 − tj + nγ
(tj,tj+1]

≤ Tr, and that

tj → ∞ because γ has no finite limit points. It follows
that

|x(t1)| ≤ β(r, Tr − 1) + ρ(br) +Mr ≤ r.

Shifting the initial time to ti and applying recursively the
preceding reasoning, we obtain

|x(t)| ≤ α̃(r) ∀t ∈ [ti, ti+1]

|x(ti+1)| ≤ r.

This concludes the proof of the claim. ◦
If |x(t0)| ≥ 1 +E, by applying Claim 2 with r = |x(t0)|

it follows that |x(t)| ≤ α̃(|x(t0)|) for all t ≥ t0.
If |x(t0)| < 1 + E, let t1 = inf{t ≥ t0 : |x(t)| ≥ 1 + E}.

If t1 = ∞, then |x(t)| < 1 + E for all t ≥ t0. If t1 is
finite, then |x(t)| < 1 + E for all t ∈ [t0, t1). If t1 /∈ γ,
then |x(t1)| = 1 + E. If t1 ∈ γ, then |x(t1)| ≤ |x(t−1 )| +

|gλ(t1, x(t−1 ), u(t1))|. From B1) in Assumption 3 and the
fact that χ2 ≥ ϕ̃g, it follows that |gλ(t1, x(t−1 ), u(t1)) −
gλ(t1, x(t

−
1 ), 0)| ≤ E[Ng(1 + E) + Og(0)] and from B2),

also |gλ(t1, x(t−1 ), 0)−gλ(t1, 0, 0)| ≤ ηg(1+E)Pg(0). Since
in addition gλ(t1, 0, 0) = 0, then |x(t1)| ≤ (1 + E)[1 +
Ng(1 + E) + Og(0)] + ηg(1 + E)Pg(0) =: Ψ(E), where
Ψ : R≥0 → R≥0 is continuous and nondecreasing. By
applying Claim 2 with t1 instead of t0 and r := Ψ(E) ≥
1+E we obtain |x(t)| ≤ α̃ ◦Ψ(E) for all t ≥ t1. Therefore
|x(t)| ≤ α̃ ◦Ψ(E) for all t ≥ t0. Since Ψ is continuous
and nondecreasing, there exists Ψ̃ ∈ K∞ such that Ψ(r) ≤
Ψ(0) + Ψ̃(r) for all r ≥ 0. For all t ≥ t0 we have

|x(t)| ≤ max{α̃(|x(t0)|), α̃ ◦Ψ(E)}
≤ α̃(|x(t0)|) + α̃ ◦Ψ(E)

≤ α̃(|x(t0)|) + α̃(2Ψ̃(E)) + α̃(2Ψ(0)),

where ψ(·) := α̃(2Ψ̃(·)) ∈ K∞. It thus follows that
the family of impulsive systems is strongly UBEBS with
UBEBS gain (χ1, χ2). �

5. Complementary proofs

5.1. Proof of Lemma 3.2

For the sake of simplicity we write hj instead of ht0j .
First, we prove that for all t0 ≤ r ≤ t, it happens that

hk(p, r)e
∫

t

r
a(s)ds ≤ hk(p, t) for all k ∈ N0. For k = 0, we

have

h0(p, r)e
∫

t

r
a(s)ds = pe

∫
t

t0
a(s)ds

= h0(p, t),

so that the inequality holds with equality for k = 0. Next,
suppose that the inequality holds for some k ∈ N0. We
have

hk+1(p, r)e
∫

t

r
a(s)ds = e

∫
t

r
a(s)ds

(

hk(p, r)+

ck+1e
∫

r

t0
a(s)ds

sup
t0≤s≤r

[

ω(hk(p, s))e
−

∫
s

t0
a(τ)dτ

] )

= hk(p, r)e
∫

t

r
a(s)ds+

ck+1e
∫

t

t0
a(s)ds

sup
t0≤s≤r

[

ω(hk(p, s))e
−

∫
s

t0
a(τ)dτ

]

≤ hk(p, t) + ck+1e
∫

t

t0
a(s)ds

sup
t0≤s≤t

[

ω(hk(p, s))e
−

∫
s

t0
a(τ)dτ

]

= hk+1(p, t),

so that the inequality holds for k + 1.
Define s0 := t0 and recall that {sk}Nk=1, with s1 > s0,

is the sequence of points where y is discontinuous. Let
z : [t0, T ] → R≥0 be defined by

z(t) = p+

∫ t

t0

a(s)y(s)ds+
∑

s∈σ∩(t0,t]

c(s)ω(y(s−)). (38)

By assumption, y(t) ≤ z(t) for all t ∈ [t0, T ]. We will
prove by induction the following.
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Claim: for all 0 ≤ k ≤ N − 1, z(t) ≤ hk(p, t) for all
sk ≤ t < sk+1.
Case k = 0. We have that for all t ∈ [s0, s1), σ∩(t0, t] =

∅. Therefore, for all t ∈ [s0, s1),

z(t) = p+

∫ t

t0

a(s)y(s)ds ≤ p+

∫ t

t0

a(s)z(s)ds.

Applying Gronwall inequality, we have that

z(t) ≤ pe
∫

t

t0
a(s)ds

= h0(p, t) ∀t ∈ [s0, s1).

Recursive step. Suppose that z(t) ≤ hk(p, t) for all

sk ≤ t < sk+1. Since z(t) = p +
∫ t

t0
a(s)y(s)ds +

∑

s∈σ∩(t0,sk]
c(s)ω(y(s−)) for all t ∈ [sk, sk+1), it follows

that

p+

∫ sk+1

t0

a(s)y(s)ds+
∑

s∈σ∩(t0,sk]

c(s)ω(y(s−))

= z(s−k+1) ≤ hk(p, sk+1).

Therefore

z(sk+1) = p+

∫ sk+1

t0

a(s)y(s)ds

+
∑

s∈σ∩(t0,sk]

c(s)ω(y(s−)) + ck+1ω(y(s
−
k+1))

= z(s−k+1) + ck+1ω(y(s
−
k+1))

≤ z(s−k+1) + ck+1ω(z(s
−
k+1))

≤ hk(p, sk+1) + ck+1ω(hk(p, sk+1)).

Then, for all sk+1 ≤ t < sk+2 we have that

z(t) = z(sk+1) +

∫ t

sk+1

a(s)y(s)ds

≤ z(sk+1) +

∫ t

sk+1

a(s)z(s)ds

≤ z(sk+1)e
∫

t

sk+1
a(s)ds

≤ hk(p, sk+1)e
∫

t

sk+1
a(s)ds

+ ck+1ω(hk(p, sk+1))e
∫

t

sk+1
a(s)ds

≤ hk(p, t) + ck+1e
∫

t

t0
a(s)ds

[

sup
t0≤s≤t

ω(hk(p, s))e
−

∫
s

t0
a(τ)dτ

]

= hk+1(p, t)

This establishes the recursive step and concludes the proof
of the claim.
From the fact that z(t) ≤ hN−1(p, t) for all sN−1 ≤ t <

sN and proceeding as in the recursive step it follows that
also z(t) ≤ hN (p, t) for all sN ≤ t ≤ T , which finishes the
proof.

5.2. Proof of Lemma 3.3

The proof requires the following Claim, whose proof fol-
lows from Appendix B of Haimovich and Mancilla-Aguilar
(2018b) and the fact that the functions fλ and gλ satisfy
items i) and ii) of Assumptions 1 and 2, respectively.

Claim 4. For every r∗ > 0 and η > 0 there exists κ =
κ(r∗, η) > 0 such that for all λ ∈ Λ, t ≥ 0, ξ ∈ Bn

r∗ and
µ ∈ R

m,

|fλ(t, ξ, µ)− fλ(t, ξ, 0)| ≤ η + κνf (|µ|) and

|gλ(t, ξ, µ)− gλ(t, ξ, 0)| ≤ η + κνg(|µ|)

Proof of Lemma 3.3: Fix r > 0 and η > 0, and
define r∗ := β(r, 0) ≥ r. Let L = L(r) > 0 be a Lipschitz
constant for fλ(t, ·, 0) on the compact set Bn

r∗ and valid for
every t ≥ 0 and every λ ∈ Λ (such a constant exists due
to iii) of Assumption 1). Let ω = ωr∗ ∈ K∞ be such that
|gλ(t, ξ1, 0)− gλ(t, ξ2, 0)| ≤ ω(|ξ1 − ξ2|) for all ξ1, ξ2 ∈ Bn

r∗ ,
all t ≥ 0 and all λ ∈ Λ [such a function exists due to iii) of
Assumption 2]. Let κ be the quantity given by Claim 4 in
correspondence with r∗ and η. Let x ∈ TΣλ

(t0, x0, u) with
λ ∈ Λ, t0 ≥ 0, x0 ∈ R

n and u ∈ U satisfy |x(t)| ≤ r for all
t ≥ t0. Let y ∈ TΣλ

(t0, x0,0). Then, x(t), y(t) ∈ Bn
r∗ for

all t ≥ t0. Let t ≥ t0. For all t0 ≤ τ ≤ t, we have, using
(3),

|x(τ) − y(τ)| ≤
∫ τ

t0

∣

∣

∣
fλ

(

s, x(s), u(s)
)

− fλ
(

s, y(s), 0
)

∣

∣

∣
ds

+
∑

s∈γλ∩(t0,τ ]

∣

∣

∣
gλ

(

s, x(s−), u(s)
)

− gλ
(

s, y(s−), 0
)

∣

∣

∣

Adding and subtracting fλ(s, x(s), 0) and gλ(s, x(s
−), 0)

within the respective norm signs, employing the bound on
fλ and gλ given by Claim 4 and recalling the definition of
L and κ, it follows that

|fλ(s, x(s), u(s))− fλ(s, y(s), 0)|
≤ η + κνf (|u(s)|) + L|x(s)− y(s)|,

|g(s, x(s−), u(s))− g(s, y(s−), 0)|
≤ η + κνg(|u(s)|) + ω(|x(s−)− y(s−)|).

Defining z(t) = |x(t) − y(t)|, then for all t0 ≤ τ ≤ t,

z(τ) ≤
∫ t

t0

[η + κχf (|u(s)|)]ds+
∑

s∈γλ∩(t0,t]

[η + κχg(|u(s)|)]

+

∫ τ

t0

Lz(s)ds+
∑

s∈γλ∩(t0,τ ]

ω(z(s−))

≤
[

t− t0 + nγλ

(t0,t]

]

η + κ‖u(t0,t]‖χf ,χg ,γλ
+ L

∫ τ

t0

z(s)ds

+
∑

s∈γλ∩(t0,τ ]

ω(z(s−))

The result then follows from application of Lemma 3.2
(recall Remark 4) and the fact that |x(t)| ≤ |y(t)|+ z(t) ≤
β(|x0|, t− t0 + nγλ

(t0,t]
) + z(t).
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5.3. Proof of Lemma 3.4

Let α, ρ1, ρ2 and c be as in the estimate (9). Let ρ̃1 :=
max{ρ1, νf} and ρ̃2 := max{ρ2, νg}. For r ≥ 0 define

ᾱ(r) := sup
{

|x(t)| : x ∈ TΣλ
(t0, x0, u),

λ ∈ Λ, t ≥ t0 ≥ 0, |x0| ≤ r, ‖u‖λ ≤ r
}

where ‖u‖λ := ‖u‖ρ̃1,ρ̃2,γλ
. From this definition, it follows

that ᾱ is nondecreasing and from (9) that it is finite for all
r ≥ 0. Next, we show that limr→0+ ᾱ(r) = 0. Let β ∈ KL
be the function which characterizes the strong 0-GUAS
property of the family of systems. Let r∗ = α−1(2 + c)
and let L = L(r∗) > 0 and ω = ωr∗ ∈ K∞ be given
by Lemma 3.3 and let h0j , j = 0, 1, . . ., be the functions
defined in Lemma 3.2 in correspondence with a(s) ≡ L
(recall Remark 4) and cj ≡ 1. Let ε > 0 be arbitrary.
Pick 0 < δ1 < 1 such that δ1 ≤ β(δ1, 0) < ε/2, and T > 0
such that β(δ1, T ) < δ1/2. Let k̃ = ⌈T ⌉ + 1, where ⌈s⌉
denotes the least integer not less than s ∈ R. Since h0

k̃

is continuous and h0
k̃
(0, t) = 0 for all t ≥ 0, then there

exists δ̃ > 0 such that h0
k̃
(δ̃, k̃) < δ1/2. Define η = δ̃

2k̃
and let κ = κ(r∗, η) > 0 be given by Lemma 3.3. Set

δ2 = min{ δ̃
2κ , 1}.

Then, for every x ∈ TΣλ
(t0, x0, u), with λ ∈ Λ, t0 ≥ 0,

|x0| ≤ δ1, ‖u‖λ ≤ δ2, we claim that |x(t)| < ε for all
t ≥ t0. First, note that under the given bounds for x0 and
u, from (9) it follows that α(|x(t)|) ≤ δ1 + δ2 + c ≤ 2 + c,
and hence |x(t)| ≤ r∗ for all t ≥ t0 ≥ 0. Consider the
sequence t0 < t1 < t2 < · · · , recursively defined as follows:

tj+1 = inf{t ≥ tj : t− tj + nγλ

(tj ,t]
≥ T }, j ≥ 0.

We note that T ≤ tj+1−tj+nγλ

(tj ,tj+1]
≤ k̃ and that tj →

∞ (see the proof of Haimovich et al., 2019, Lemma 3.3).
Let Ij = (tj , tj+1] for j ≥ 0. The application of Lemma 3.3
with χf = ρ̃1 and χg = ρ̃2 gives the estimate (12) for all

t ≥ t0. Then, by taking into account that nγλ

(t0,t]
≤ k̃ for all

t ∈ I0, that the functions h0j are separately increasing in

their arguments and h0j ≤ h0j+1 for all j ≥ 0, the definitions
of T , η, δ1 and δ2, and (12), it follows that for all t ∈ I0

|x(t)| ≤ β(|x0|, 0) + h0
k̃
(δ̃, k̃) <

ε

2
+
δ1
2

≤ ε and

|x(t1)| ≤ β(|x0|, T ) + h0
k̃
(δ̃, k̃) <

δ1
2

+
δ1
2

≤ δ1.

By using recursively the same argument on each interval
Ij we obtain than |x(t)| < ε for all t ∈ Ij and |x(tj+1)| <
δ1. In consequence, |x(t)| < ε for all t ≥ t0 as we claim.
Thus, if δ = min{δ1, δ2}, for all x ∈ TΣλ

(t0, x0, u), with
λ ∈ Λ, t0 ≥ 0, |x0| ≤ δ and ‖u‖λ ≤ δ, we have |x(t)| ≤ ε
for all t ≥ t0. Therefore, ᾱ(r) ≤ ᾱ(δ) < ε for all 0 < r < δ
and limr→0+ ᾱ(r) = 0.
Since ᾱ is nondecreasing and limr→0+ ᾱ(r) = 0 there

exists α̂ ∈ K∞ such that α̂(r) ≥ ᾱ(r) for all r ≥ 0. Let x ∈

TΣλ
(t0, x0, u) with λ ∈ Λ, t0 ≥ 0, x0 ∈ R

n and u ∈ U . Let
t ≥ t0 and let u(t0,t] be the input which coincides with u on
(t0, t] and is zero elsewhere. From well-known results on
differential equations, there exists x∗ ∈ TΣλ

(t0, x0, u(t0,t])
such that x∗(τ) = x(τ) for all τ ∈ [t0, t]. By using the
definition of ᾱ and the fact that α̂(r) ≥ ᾱ(r), we then have
|x(t)| = |x∗(t)| ≤ α̂(|x0|) + α̂(‖u(t0,t]‖λ). Define α̃ ∈ K∞

via α̃(s) = α̂−1(s)/2. Applying α̃ to both sides of the
preceding inequality and using the fact that α̃(a + b) ≤
α̃(2a)+ α̃(2b), we reach α̃(|x(t)|) ≤ |x0|+ ‖u(t0,t]‖λ, which
establishes the result.

6. Conclusions

We have considered a strong version of asymptotic sta-
bility for time-varying impulsive systems whereby the con-
vergence to zero of a state trajectory depends not only on
elapsed time but also on the number of jumps that occur.
In this setting, we have established that strong ISS im-
plies strong iISS. This implication is established without
resorting to any type of Lyapunov function because the
latter may not exist for the type of systems considered.
Future work may consider determining to what extent the
current results may apply when stability is understood in
the usual (weak) sense.
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