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Abstract

With the explosion of distributed energy resources (DERs), voltage regulation in distribution networks has been facing a great chal-
lenge. This paper derives an asynchronous distributed voltage control strategy based on the partial primal-dual gradient algorithm,
where both active and reactive controllable power of DERs are considered. Different types of asynchrony due to imperfect commu-
nication or practical limits, such as random time delays and non-identical sampling/control rates, are fitted into a unified analytic
framework. The asynchronous algorithm is then converted into a fixed-point problem by employing the operator splitting method,
which leads to a convergence proof with mild conditions. Moreover, an online implementation method is provided to make the
controller adjustable to time-varying environments. Finally, numerical experiments are carried out on a rudimentary 8-bus system
and the IEEE-123 distribution network to verify the effectiveness of the proposed method.

Keywords: Distributed control, distribution networks, (partial) primal-dual gradient algorithm, asynchronous algorithm, voltage
control

1. Introduction

With the proliferation of distributed energy resources
(DERs), such as small hydro plants, Photovoltaics (PVs) and
energy storage systems, voltage regulation in active distribu-
tion networks is greatly challenged, On the one hand, the volt-
age quality remarkably degrades, e.g., the voltage may fluctuate
rapidly due to the variation of renewable generations and over-
voltage exists at the buses DERs connected. On the other hand,
many DERs, such as some small hydro plants Han et al. (2014)
and inverter-integrated DERs Turitsyn et al. (2011), have great
potential of voltage regulation by appropriately managing their
active or reactive power outputs. Beyond the capability of tra-
ditional voltage regulation schemes, these challenges call for a
new voltage control paradigm.

The voltage control in a distribution network aims to min-
imize the voltage mismatch by regulating active or reactive
power outputs of controllable DERs. Generally speaking, it can
be viewed as a type of optimal power flow (OPF) problems,
where the branch power flow model is usually utilized Baran
and Wu (1989a,b). Similar topics have been studied extensively
in the literature. Related works can roughly be categorized into
three classes in terms of the communication requirements: cen-
tralized control, local control and distributed control. In the
centralized voltage control, a global optimization problem is
formulated and solved by a central controller to determine opti-
mal set-points for the overall system Farivar et al. (2011, 2012);
Kekatos et al. (2015a). In this case, the central controller col-
lects all the required information and communicates with all
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DERs. However, it suffers from the single-point-failure issue
and costs long computation time when the number of DERs is
large. As for the local voltage control, locally available infor-
mation such as bus voltage magnitude is utilized to design the
controller Turitsyn et al. (2011). In the problem formulation,
the linearized distribution power flow is usually utilized, and
the objective function is a specific form Zhu and Liu (2016); Liu
et al. (2017); Zhou et al. (2018). As it uses only local informa-
tion, the response is rapid. However, the control objective is re-
stricted to specific types, making it less flexible. The distributed
voltage control can avoid the disadvantages of centralized and
local controls to some extent Antoniadou-Plytaria et al. (2017).
Compared with the centralized control, there is no central con-
troller and communication is usually between immediate neigh-
bors Šulc et al. (2014); Bolognani et al. (2015); Zhang et al.
(2015); Liu et al. (2018a,b) or two-hop neighbors Tang et al.
(2019). Compared with the local voltage control, the objec-
tive function can be more general and practical. In existing lit-
erature, the distributed voltage control is usually synchronous.
However, asynchrony widely exists in power systems, such as
communication time delay caused by congestion or even failure
and different sampling or computation rates. In the synchronous
case, the slowest bus and communication channel may cripple
the system Peng et al. (2016); Yi and Pavel (2019a).

This paper designs an asynchronous distributed strategy for
voltage control in distribution networks. Various types of asyn-
chrony in power systems are considered, such as communica-
tion delay, and different sampling rates, which are fitted into
a unified framework. This is different from Bolognani et al.
(2015), which only considers asynchronous iterations and as-
sumes no communication delay. The proposed method is also
different from the asynchronous control in Zhu and Liu (2016),
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which is local but with restriction on the objective function. In
this paper, we consider the regulation of both active and reactive
controllable power of DERs. In the controller design, partial
primal-dual gradient algorithm is utilized, which is formulated
as the form of the Krasnosel’skiǐ-Mann iteration. In this way,
the objective function is only required to be convex and have a
Lipschitzian gradient, which relaxes the assumption commonly
used in most of existing literature (strong convexity is required).
Moreover, the operator splitting method is employed to convert
the control algorithm into a fixed-point problem, which greatly
simplifies the convergence proof. In terms of practical applica-
tion, a online implementation method is provided to make the
controller adjustable to time-varying environments.

The rest of this paper is organized as follows. In Section
2, we introduce some preliminaries and the model of distribu-
tion networks. Section 3 formulates the optimal voltage control
problem. The asynchronous controller is investigated in Section
4. In Section 5, convergence and optimality of the equilibrium
are proved. Section 6 introduces the implementation of the pro-
posed method. We confirm the performance of controllers via
simulations on an 8-bus system and IEEE 123-bus system in
Section 7. Section 8 concludes the paper.

2. Preliminaries and System Modeling

2.1. Preliminaries

In this paper, Rn (Rn
+) is the n-dimensional (nonnegative) Eu-

clidean space. For a column vector x ∈ Rn (matrix A ∈ Rm×n),
xT (AT ) denotes its transpose. For vectors x, y ∈ Rn, xT y = 〈x, y〉
denotes the inner product of x, y. ‖x‖ =

√
xT x denotes the

norm induced by the inner product. For a positive definite
matrix G, denote the inner product 〈x, y〉G = 〈Gx, y〉. Simi-
larly, the G-matrix induced norm ‖x‖G =

√
〈Gx, x〉. Use In to

denote the identity matrix with dimension n. Sometimes, we
also omit n and use I to denote the identity matrix with proper
dimension if there is no confusion. For a matrix A = [ai j],
ai j stands for the entry in the i-th row and j-th column of
A. Use

∏n
i=1 Ωi to denote the Cartesian product of the sets

Ωi, i = 1, · · · , n. Given a collection of yi for i in a certain set Y ,
define col(y j) := (y1, y2, · · · , yn)T and denote its vector form by
y := col(y j). Define the projection of x onto a set Ω as

PΩ(x) = arg min
y∈Ω
‖x − y‖ (1)

Use Id to denote the identity operator, i.e., Id(x) = x, ∀x. Define
the normal cone as NΩ(x) = {v| 〈v, y − x〉 ≤ 0,∀y ∈ Ω}. We have
PΩ(x) = (Id + NΩ)−1(x) Yi and Pavel (2019b), (Bauschke et al.,
2011, Chapter 23.1).

For a set-valued operator U : Rn → 2R
n
, its domain is

domU := {x ∈ Rn|Ux , ∅}. The graph of U is de-
fined as graU := {(x, u) ∈ Rn × Rn|u ∈ Ux}. An op-
erator U is monotone if ∀(x, u),∀(y, v) ∈ graU, we have
〈x − y, u − v〉 ≥ 0. It is called maximally monotone if graU
is not strictly contained in the graph of any other monotone
operator. For a single-valued operator T : Ω ⊂ Rn → Rn,
a point x ∈ Ω is a fixed point of T if T (x) ≡ x. The set

of fixed points of T is denoted by Fix(T ). T is nonexpan-
sive if ‖T (x) − T (y)‖ ≤ ‖x − y‖ ,∀x, y ∈ Ω. T is firmly non-
expansive if ‖T (x) − T (y)‖2 + ‖(Id − T )(x) − (Id − T )(y)‖2 ≤
‖x − y‖2 ,∀x, y ∈ Ω. For α ∈ (0, 1), T is called α-averaged
if there exists a nonexpansive operator T such that T = (1 −
α)Id + αT . We use A(α) to denote the α-averaged operators.
For β ∈ R1

+, T is called β-cocoercive if βT ∈ A( 1
2 ).

2.2. System Modeling

Consider a radial distribution network with (n + 1) buses col-
lected in the setN0 := {0}∪N , whereN := {1, · · · , n} and bus 0
is the substation bus (slack bus) and is assumed to have a fixed
voltage U0. Lines are denoted by the set E := {(i, j)} ⊂ N × N .
Due to the tree topology, the cardinality of |E| = n. Use N j

and N2
j to denote the neighbors and two-hop neighbors of bus j

respectively.
For bus j, use U j to denote its voltage magnitude. Use p j and

q j to denote the active and reactive power generations respec-
tively, which are controllable. pc

j and qc
j are active and reactive

power loads, which are uncontrollable. For line (i, j) ∈ E, use
ri j and xi j to denote its line resistance and reactance. The ac-
tive and reactive power from bus i to j is denoted by Pi j and
Qi j respectively. The linearized DistFlow equations are given
as Baran and Wu (1989a,b); Zhu and Liu (2016)

Pi j + p j − pc
j =

∑
k∈N j

P jk (2a)

Qi j + q j − qc
j =

∑
k∈N j

Q jk (2b)

U2
i − U2

j = ri jPi j + xi jQi j (2c)

The relative error of the linearization is very small, at the
order of 1% Zhu and Liu (2016). Denote the incidence matrix
of the network (N0,E) byM ∈ R(n+1)×n. Moreover, use mT

0 to
denote the first row ofM, while the rest of the matrix is denoted
by M. Define Vi := U2

i
2 , and then the compact form of (2) is

MP = p − pc (3a)
MQ = q − qc (3b)

[m0, MT ] · [V0, VT ]T = diag(r)P + diag(x)Q (3c)

where diag(r) is the diagonal matrix composed of ri j, and sim-
ilar is diag(x). As the network is connected, the rank of M is
n. Thus, M is of full rank and invertible Zhu and Liu (2016).
Finally, we have

V = Rp + Xq −M−T m0V0 − Rpc − Xqc (4)
where R = M−T diag(r)M−1 and X = M−T diag(x)M−1. R and
X are all symmetric positive definite matrices. By Kekatos et al.
(2015b, 2016), we know −M−T m0 = 1n. Denote the inverse of
X by B = Mdiag(x−1)MT , which is also positive definite. It is
proved in (Zhou et al., 2018, Theorem 2) that B = L+diag( 1

x0 j
),

where L is the weighted Laplacian matrix of the subtree (i.e.,
without bus 0) and x0 j is the reactance of the line connected to
bus 0. If bus j is not connected to the bus 0 directly, x0 j = ∞.

If the distribution network lines have unified resistance-
reactance ratio, i.e. there exists a constant K =

ri j

xi j
,∀(i, j) ∈ E,

the network is called homogeneous. For a homogeneous net-
work, we have R = KX and B · R = K. In the analysis of
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this paper, it is assumed that the distribution network is homo-
geneous, which is true in the most cases in practice Bolognani
et al. (2015); Tang et al. (2019). In the simulation, however, we
also use the heterogeneous network to verify the performance
of the controller.

3. Problem Formulation

The optimal voltage control for a homogeneous network is
formulated as

min
V,p,q

f =
1
2
‖V − Vo‖2 +

∑
j∈N

g j(p j, q j) (5a)

s.t. BV = Kp + q +$s (5b)
p

j
≤ p j ≤ p j, ∀ j (5c)

q
j
≤ q j ≤ q j, ∀ j (5d)

0 ≤ p2
j + q2

j ≤ s2
j , ∀ j (5e)

where$s = B(−M−T m0V0−Rpc−Xqc). Vo is the desired volt-
age profile and set as Vo = 0.5 × 1n. p

j
, p j are lower and upper

bounds of p j. q
j
, q j are lower and upper bounds of q j. s j is the

apparent power capability of the inverter. The objective func-
tion is composed of two parts: voltage difference square, active
and reactive power cost, for which we make an assumption.

Assumption 1. The function gi(x) is convex, and ∇gi(x) is ϑ-
Lipschitzian, i.e., for some ϑ > 0, ‖∇gi(x1)−∇gi(x2)‖ ≤ ϑ‖x1 −

x2‖,∀x1, x2.

For each bus j, the feasible region is defined as

Ω j = { (p j, q j) | p j, q j satisfy (5c), (5d), (5e) }

The Lagrangian of (5) is

L(V,p,q, λ)
(p,q)∈Ω

=
1
2
‖V − V∗‖2 +

∑
j∈N

g j(p j, q j)

+λT (BV − Kp − q −$s)
(6)

where Ω =
∏

j∈N Ω j.

Remark 1 (Objective function). The item g j(p j, q j) in the ob-
jective function is more general compared with existing litera-
ture, which is only required to be convex and has a Lipschitzian
gradient instead of strongly convex. If the objective function is
formulated by a B-induced norm, i.e., f = 1

2‖V −Vo‖2B, we can
design a local controller, as done in Zhu and Liu (2016); Liu
et al. (2017); Bolognani et al. (2015).

In the problem (5), we consider the regulation of both active
and reactive power of DERs. The main motivations are two-
folds: first, some DERs such as many small hydro plants have
no capability of reactive power regulation; second, the distribu-
tion networks have comparable resistance and reactance. Thus,
regulating both active and reactive power turns to be necessary
in the voltage control of active distribution networks.

4. Asynchronous Voltage Control

In the asynchronous controller design, we adopt the partial
primal-dual algorithm. Similar methods have been explored in

Li et al. (2016); Wang et al. (2019) for a continuous-time setting
and Liu et al. (2018b) for the discrete setting. However, Liu
et al. (2018b) does not design an asynchronous algorithm. In
a partial primal-dual algorithm, V is obtained by solving the
following problem.

Vt = arg min
V
L(V,pt,qt, λt) = −BTλt + Vo (7)

Define $a = $s − BVo. Each bus has its own iteration number
t j, implying that a local clock is used. Then, various types of
asynchrony can be considered as time intervals between two
iterations. At t j, bus j computes in the following way, which
has the form of the Krasnosel’skiǐ-Mann iteration.[

p̃ j,t j

q̃ j,t j

]
= PΩ j


 p

j,t j−τ
t j
j

q
j,t j−τ

t j
j


−αpq


∂g j

∂p j
(p

j,t j−τ
t j
j
, q

j,t j−τ
t j
j
) − Kλ

j,t j−τ
t j
j

∂g j

∂q j
(p

j,t j−τ
t j
j
, q

j,t j−τ
t j
j
) − λ

j,t j−τ
t j
j


 (8a)

λ̃ j,t j = λ
j,t j−τ

t j
j

+ αλ

(
−

∑
k∈N j∪N2

j

B̃ jkλk,tk−τ
tk
k

−2K p̃ j,t j − 2q̃ j,t j + K p
j,t j−τ

t j
j

+ q
j,t j−τ

t j
j
−$a

j

)
(8b)

λ j,t j+1 = λ
j,t j−τ

t j
j

+ η(λ̃ j,t j − λ j,t j−τ
t j
j
) (8c)

p j,t j+1 = p
j,t j−τ

t j
j

+ η( p̃ j,t j − p
j,t j−τ

t j
j
) (8d)

q j,t j+1 = q
j,t j−τ

t j
j

+ η(q̃ j,t j − q
j,t j−τ

t j
j
) (8e)

V j,t j+1 = −
∑

k∈N j
B jkλ j,t j+1 + V j

o (8f)

where$a
j is the j-th component of$a and stepsizes η, αpq, αλ >

0. B̃ jk is the jth row and kth column element of matrix B̃ = B2.
As B has the same sparse structure with Laplacian of the sub-
tree, the matrix B2 has nonzero entries matching the neighbors
and two-hop neighbors of each bus. This implies that each bus
only needs the information of its neighbors and two-hop neigh-
bors to compute the variable λ̃ j,t j . The asynchronous distributed
voltage control (ASDVC) algorithm based on (8) is given in Al-
gorithm 1.

Algorithm 1 ASDVC
Input: For bus j, the input is (p j,0, q j,0) ∈ Ω j, λ j,0 ∈ R.
Iteration at t j: Suppose bus j’s clock ticks at time t j, then bus
j is activated and updates its local variables as follows:
Step 1: Reading phase

Get λk,tk−τ
tk
k
, k ∈ N j ∪ N2

j from its neighbors’ and two-hop
neighbors’ output cache.
Step 2: Computing phase

Calculate p̃ j,t j , q̃ j,t j and λ̃ j,t j according to (8a) and (8b)
respectively.

Update λ j,t j+1, p j,t j+1, q j,t j+1 and V j,t j+1 according to (8c) −
(8f) respectively.
Step 3: Writing phase

Write λ j,t j+1 to its output cache and p j,t j+1, q j,t j+1, V j,t j+1 to
its local storage. Increase t j to t j + 1.
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Remark 2 (Asynchronous update). The main difference be-
tween this paper and Liu et al. (2018b) is that we design the
asynchronous pattern for the partial primal-dual algorithm. It
should be noted that this is not trivial. As proved in Hale
et al. (2017), the asynchronous distributed primal-dual algo-
rithm cannot guarantee the convergence if dual variables are not
updated simultaneously. In ASDVC, there is no need to update
λ simultaneously. To this end, we use neighbors’ and two-hop
neighbors’ information.

5. Optimality and Convergence

In this section, we formulate the algorithm (8) into a fixed-
point iteration problem using operator-splitting method. Then,
its convergence and optimality of the equilibrium are proved.

5.1. Algorithm Reformulation
Define z j = col(p j, q j), z̃ j = col(p̃ j, q̃ j). If the time delay is

not considered, the compact form of (8) can be obtained, de-
noted by SDVC. As V is not in the iteration process, we omit it
here.

z̃t = PΩ

(
zt − αpq(∇zt g(zt) − col(Kλt, λt)

)
(9a)

λ̃t = λt + αλ
(
−B2λt − 2(K · In, In)z̃t + (K · In, In)zt −$

a
)
(9b)

zt+1 = zt + η(z̃t − zt) (9c)

λt+1 = λt + η(λ̃t − λt) (9d)

In the rest of the paper, denote F(z) = ∇zg(z). Equations (9a)-
(9b) are equivalent to 1

− F(zt) = NΩ(z̃t) − col(Kλ̃t, λ̃t)

+ α−1
pq(z̃t − zt) + (K · In, In)T (λ̃t − λt) (10a)

−$a − B2λt = (K · In, In)z̃t + (K · In, In)(z̃t − zt)

+ α−1
λ (λ̃t − λt) (10b)

Define following two operators

C :
[

z
λ

]
7→

[
F(z)

$a + B2λ

]
(11a)

D :
[

z
λ

]
7→

[
NΩ(z) − col(Kλ, λ)

(K · In, In)z

]
(11b)

and denote wt = col(zt, λt) and w̃t = col(z̃t, λ̃t).
Then, (10) can be rewritten as

−C(wt) = D(w̃t) + Γ · (w̃t − wt) (12)

where

Γ :=
[

α−1
pq I2n (K · In, In)T

(K · In, In) α−1
λ In

]
(13)

Here, αpq, αλ are chosen to make Γ is positive definite.
Denote the maximal and minimal eigenvalues of B by σmax

and σmin respectively. We have the following result.

Lemma 1. In terms of C andD, we have following properties.

1The “=” in (10a) is substituted by “∈” in some literature. Here, we still use
“=” for the notation consistence if there is no confusion.

1) Operator C is β-cocoercive under the 2-norm with 0 < β ≤
min{ 1

σ2
max
, 1
ϑ
};

2) OperatorD is maximally monotone;
3) Γ−1D is maximally monotone under the Γ-induced norm
‖ · ‖Γ;

4) (Id + Γ−1D)−1 exists and is firmly nonexpansive.

Proof. 1): According to the definition of C and the
definition of β-cocoercive, it suffice to prove that
〈C(w1) − C(w2),w1 − w2〉 ≥ β ‖C(w1) − C(w2)‖2, or equiva-
lently

(F(z1) − F(z2))T (z1 − z2) + (λ1 − λ2)T B2(λ1 − λ2) ≥

β(
∥∥∥B2λ1 − B2λ2

∥∥∥2
+ ‖F(z1) − F(z2)‖2)

(14)

Notice that $a + B2λ is the gradient of function f̂ (λ) =
1
2λ

T B2λ + λT$a. As ∇2 f̂ (λ) = B2 > 0, f̂ (λ) is a convex func-
tion. For its gradient, we have∥∥∥B2(λ1 − λ2)

∥∥∥ ≤ ∥∥∥B2
∥∥∥ ‖λ1 − λ2‖ = σ2

max ‖λ1 − λ2‖ (15)

Thus, ∇ f̂ (λ) is σ2
max-Lipschitzian. Then, ∇ f̂ (λ) = $a + B2λ is

1
σ2

max
-cocoercive (Bauschke et al., 2011, Corollary 18.16), i.e.,

(λ1 − λ2)T B2(λ1 − λ2) ≥
1

σ2
max

∥∥∥B2λ1 − B2λ2
∥∥∥2

(16)

Moreover, since F is 1
ϑ

-cocoercive, i.e.,

(F(z1) − F(z2))T (z1 − z2) ≥
1
ϑ
‖F(z1) − F(z2)‖2 (17)

Combining (16), (17) and taking 0 < β ≤ min{ 1
σ2

max
, 1
ϑ
}, we can

get the first assertion.
2): The operatorD can be rewritten as

D =

[
0 −(KIn, In)T

(KIn, In) 0

] [
z
λ

]
+

[
NΩ(z)

0

]
= D1 +D2

(18)

AsD1 is a skew-symmetric matrix,D1 is maximally monotone
(Bauschke et al., 2011, Example 20.30). Moreover, NΩ(z) and
0 are all maximally monotone (Bauschke et al., 2011, Example
20.41), soD2 is also maximally monotone. Thus,D = D1 +D2
is maximally monotone.

3) As Γ is symmetric positive definite and D is maximally
monotone, we can prove that Γ−1D is maximally monotone by
the similar analysis in Lemma 5.6 of Yi and Pavel (2019b).

4) As Γ−1D is maximally monotone, (Id+Γ−1D)−1 exists and
is firmly nonexpansive by (Bauschke et al., 2011, Proposition
23.7).

By the last assertion of Lemma 1, (9) is equivalent to

w̃t = (Id + Γ−1D)−1(Id − Γ−1C)wt (19a)
wt+1 = wt + η(w̃t − wt) (19b)

Denote S1 = (Id+Γ−1D)−1, S2 = (Id−Γ−1C) and S = S1S2,
and then we have following results.

Lemma 2. Take 0 < β ≤ min{ 1
σ2

max
, 1
ϑ
}, κ > 1

2β , and the step
sizes αpq, αλ such that Γ−κI is positive semi-definite. Following
results are true under the Γ-induced norm ‖ · ‖Γ.
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1) S1 is a 1
2 -averaged operator, i.e., S1 ∈ A

(
1
2

)
;

2) S2 is a 1
2βκ -averaged operator, i.e., S2 ∈ A

(
1

2βκ

)
;

3) S is a 2κβ
4κβ−1 -averaged operator, i.e., S ∈ A

(
2κβ

4κβ−1

)
.

Proof. 1): From the assertion 4) of Lemma 1, S1 = (Id +

Γ−1D)−1 is firmly nonexpansive, implying S1 ∈ A( 1
2 ).

2): First, we prove that Γ−1C is βκ-cocoercive, i.e.,〈
Γ−1C(w1) − Γ−1C(w2),w1 − w2

〉
Γ
≥

βκ
∥∥∥Γ−1C(w1) − Γ−1C(w2)

∥∥∥2
Γ

(20)

Denote the maximal and minimal eigenvalues of Γ by δmax and
δmin respectively, and we have δmax ≥ δmin ≥ κ > 0. Moreover,
the Euclidean norms of Γ and Γ−1 are ‖Γ‖2 = δmax and

∥∥∥Γ−1
∥∥∥

2 =
1
δmin

(Meyer, 2000, Proposition 5.2.7, 5.2.8).
For the right hand side of (20), we have

βκ
∥∥∥Γ−1C(w1) − Γ−1C(w2)

∥∥∥2
Γ

= βκ ‖C(w1) − C(w2)‖2
Γ−1

= βκ(C(w1) − C(w2))T Γ−1(C(w1) − C(w2))

≤ βκ
∥∥∥Γ−1

∥∥∥
2 ‖C(w1) − C(w2)‖22

≤ βκ ·
1
κ
‖C(w1) − C(w2)‖22 (21)

where the first ”≤” is due to the Cauchy-Schwarz inequality and
the second is due to δmin ≥ κ.

For the left part of (20), we have〈
Γ−1C(w1) − Γ−1C(w2),w1 − w2

〉
Γ

= 〈C(w1) − C(w2),w1 − w2〉

≥ β ‖C(w1) − C(w2)‖22 (22)

where the inequality is from assertion 1) of Lemma 1. From
(21) and (22), we have (20).

As Γ−1C is βκ-cocoercive, we have βκΓ−1C ∈ A( 1
2 ). That is

to say, there is a nonexpansive operator S̃ such that βκΓ−1C =
1
2 Id + 1

2 S̃, i.e., Γ−1C = 1
2βκ Id + 1

2βκ S̃. Then,

S2 = Id − Γ−1C =

(
1 −

1
2βκ

)
Id −

1
2βκ
S̃ (23)

As 0 < 1
2βκ < 1 and −S̃ is also nonexpansive, we have S2 ∈

A( 1
2βκ ).

3): From (Combettes and Yamada, 2015, Propsition 2.4),
S = S1S2 is a a-averaged operator with a = a1+a2−2a1a2

1−a1a2
, if

S1 is a1-averaged and S2 is a2-averaged. As S1 ∈ A
(

1
2βκ

)
and

S2 ∈ A
(

1
2

)
, we have S ∈ A

(
2κβ

4κβ−1

)
.

By the definition of the averaged operator and assertion 3) of
Lemma 2, there exists a nonexpansive operator T such that

S =

(
1 −

2κβ
4κβ − 1

)
Id +

2κβ
4κβ − 1

T (24)

Apparently, operators S and T have the same fixed points, i.e.,
Fix(S) = Fix(T ).

We convert the asynchronous algorithm into a fixed-point it-
eration problem with an averaged operator. Moreover, we also
construct a nonexpansive operator T , which enables us to prove
the convergence of the asynchronous algorithm ASDVC.

5.2. Optimality of the equilibrium point

The definition of the equilibrium point of ASDVC is intro-
duced as follows.

Definition 1. A point w∗ = col(w∗j) = col(x∗j , λ
∗
j) is an equilib-

rium point of system (8) if limt j→∞ wt j = w∗j , ∀ j holds.

Now, we give the KKT condition of the optimization problem
(5) (Ruszczyński and Ruszczynski, 2006, Theorem 3.25).

0 = (V − Vo) + BTλ (25a)
0 = ∇zg(z) − col(Kλ, λ) + NΩ(z) (25b)
0 = $s − BV + (K · I, I)z (25c)

Denote V∗ = −BTλ∗ + Vo, and we have the following result.

Theorem 3. The point (V∗, z∗, λ∗) satisfies the KKT condition
(25), i.e., it is the primal-dual optimal solution to the optimiza-
tion problem (5).

Proof. By Definition 1, we know w∗j = lim
t j→∞

w j,t j−1 =

lim
t j→∞

w j,t j = lim
t j→∞

w j,t j+1 = lim
t j→∞

w̃ j,t j . From (10), we have

− (V∗ − Vo) = BTλ∗ (26a)
− ∇z∗g(z∗) = NΩ(z∗) − col(Kλ∗, λ∗) (26b)
−$s = −BV∗ + (K · I, I)z∗ (26c)

Comparing (25) and (26), we know (V∗, z∗, λ∗) satisfies the
KKT condition. This completes the proof.

5.3. Convergence analysis

In this subsection, we investigate the convergence of AS-
DVC. We first treat ASDVC as a randomized block-coordinate
fixed-point iteration problem with delayed information. Then,
the results in Peng et al. (2016) can be applied.

To prove the convergence of ASDVC, we need introduce a
global clock to substitute the local clocks of individual buses in
ASDVC. The main idea is to queue t j of all buses in the order
of real time, and use a new number t to denote the t-th iteration
in the queue. Take two local clocks as an example. Suppose the
local clocks to be t1 = {1, 3, 5, · · · } and t2 = {2, 4, 6, · · · }, and
then the global clock is t = {1, 2, 3, 4, 5, 6, · · · }. In the global
clock, it is assumed that the probability bus j is activated to
update its local variables follows a uniform distribution. Hence,
each bus is activated with the same probability. Note that the
global clock is only used for convergence analysis, but it does
not exist in the application.

Define vectors ψ j ∈ R3n, j ∈ N . The ith entry of ψ j is de-
noted by [ψ j]i. Define [ψ j]i = 1 if the ith coordinate of w is
also a coordinate of w j, and [ψ j]i = 0, otherwise. Denote by
ξ a random variable (vector) taking values in ψ j, j ∈ N . Then
Prob(ξ = ψ j) = 1/n also follows a uniform distribution. Let
ξt be the value of ξ at the tth iteration. Then, a randomized
block-coordinate fixed-point iteration for (19) is given by

wt+1 = wt + ηξt ◦ (S(wt) − wt) (27)

where ◦ denotes the Hadamard product. In (27), only one bus j
is activated at each iteration.
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Since (27) is delay-free, we further modify it for considering
delayed information, which is

wt+1 = wt + ηξt ◦ (S(ŵt) − wt) (28)

where ŵt is the information with delay at iteration t. We will
show that Algorithm 1 can be written as (28) if ŵt is properly
defined. Suppose bus j is activated at the iteration t, then ŵt

is defined as follows. For bus j, replace p j,t j , q j,t j and λ j,t j

with p
j,t j−τ

t j
j
, q

j,t j−τ
t j
j

and λ
j,t j−τ

t j
j
. Similarly, replace λk,tk with

λk,tk−τ
tk
k

from its neighbors and two-hop neighbors. For inacti-
vated buses, their state values keep unchanged.

Before proving the convergence, we make an assumption.

Assumption 2. The maximal time delay between two consecu-
tive iterations is bounded by χ, i.e., {max{τt

j}} ≤ χ,∀t,∀ j.

With the assumption, we have the convergence result.

Theorem 4. Suppose Assumptions 1, 2 holds. Take 0 < β ≤
min{ 1

σ2
max
, 1
ϑ
}, κ > 1

2β , and the step sizes αpq, αλ such that Γ − κI

is positive semi-definite. Choose 0 < η < 1
1+2χ/

√
n

4κβ−1
2κβ . Then,

with ASDVC, wt converges to the point w∗ defined in Definition
1 with probability 1.

Proof. Combining (24) and (28), we have

wt+1 = wt + ηξt ◦

((
1 −

2κβ
4κβ − 1

)
ŵt − wt +

2κβ
4κβ − 1

T (ŵt)
)

= wt + ηξt ◦

(
ŵt − wt +

2κβ
4κβ − 1

(T (ŵt) − ŵt)
)

(29)

With w j,t−τt
j
= w j,t−τt

j+1 =, · · · ,= w j,t, we have ξk◦(ŵt − wt) = 0.
Thus, (29) is equivalent to

wt+1 = wt +
2ηκβ

4κβ − 1
ξt ◦ (T (ŵt) − ŵt) (30)

In fact, (30) has the form of the ARock algorithms proposed
in Peng et al. (2016). In Lemma 13 and Theorem 14 of Peng
et al. (2016), it is proved that wt generated by (30) is bounded.
Moreover, if η satisfies 0 < η < 1

1+2χ/
√

n
4κβ−1

2κβ , wt converges to
a random variable that takes value in the fixed points of T with
probability 1, denoted by w∗. Recall Fix(S) = Fix(T ) and
Theorem 3, and we know that w∗ satisfies the KKT condition
(25), i.e., the equilibrium in Definition 1. This completes the
proof.

Remark 3 (Nonexpansive operator). As S is 2κβ
4κβ−1 -averaged, it

is also a nonexpansive operator (Bauschke et al., 2011, Remark
4.24). Then, in Theorem 4, we can also use S instead of T to
prove the convergence of ASDVC. In this situation, the bound
of η is 0 < η < 1

1+2χ/
√

n . Since κ > 1
2β , we have 4κβ−1

2κβ > 1. This
implies that the operator T can increase the upper bound of η
compared with S.

6. Implementation

6.1. Communication graph
Although two-hop neighbors’ information is utilized in the

algorithm (8), the communication graph still can be fully dis-
tributed, i.e., neighboring communication. In (8b), two-hop

i j k

, tk
k kk t 


, tt jk

k jkk t  




Figure 1: Two-step communications

neighbors’ information is needed to obtain B̃ jk and λk,tk−τ
tk
k
, k ∈

N2
j . For B̃ jk, it can be obtained from twice neighboring commu-

nications. In addition, as the topology of a distribution network
does not change frequently, B̃ jk can be obtained in advance. For
λk,tk−τ

tk
k
, k ∈ N2

j , it also can be obtained from neighboring com-
munications, which is illustrated in Fig.1.

Node i can get the information of node k by twice communi-
cations. In this situation, the time delay may be longer. As this
is the asynchronous algorithm, we treat τt j

j + τtk
k as one delay τtk

k
if there is no confusion. Then, one step and two-step communi-
cation delays can be formulated into a uniform framework. In
this way, only neighboring communications are needed in the
asynchronous algorithm.

6.2. Online Implementation

In the ASDVC,$a
j is assumed to be available for every bus j.

By its definition,$a
j is determined by almost all of the power in-

jection in the network, which implies that a centralized method
is needed to get their values. Thus, if the system states vary
rapidly with the variation of renewable generations and loads,
they are difficult to obtain. From (5b), $s can be obtained from
an equivalent way if we can measure the local voltage, active
and reactive power injections and get the neighbors’ voltages.
Similar is $a due to $a = $s − BVo. Denote the set of buses
connected directly to bus 0 by N0. If we set Vo = 0.5 × 1, we

have BVo =

{
0, j < N0

1
2x0 j

, j ∈ N0
. Then, $a

j in the ASDVC algo-

rithm can be obtained by

$a
j =

 −∑
k∈N j

B jkVm
k + K pm

j + qm
j , j < N0

− 1
2x0 j
−

∑
k∈N j

B jkVm
k + K pm

j + qm
j , j ∈ N0

(31)

where pm
j , q

m
j are measured active and reactive power locally

and Vm
k is the square of measured voltage of the neighbor.

In (31), only communications between neighbors are needed.
We can also use p j,t, q j,t instead of pm

j , q
m
j to avoid power mea-

surements. In the inverter integrated DERs, p j,t ≈ pm
j and

q j,t ≈ qm
j as the response is very fast. The voltage measure-

ments contain the latest system information, which makes the
implementation track the time-varying operating conditions.

7. Case Studies

In this section, simulation results are presented to demon-
strate the effectiveness of the proposed voltage control meth-
ods. To this end, an 8-bus feeder and the IEEE 123-bus feeder
are utilized as test systems. Each bus is equipped with a cer-
tain amount of PVs, which are able to offer flexible active and
reactive power supplies to the feeder. Some buses have other
controllable DERs like small hydro plants and energy storage
systems. The simulations are implemented in Matlab R2017b
simulator, and the OpenDSS is used for solving the ac power
flow.
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Figure 2: The graph of the 8-bus distribution network
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Figure 3: Comparison of algorithm convergence in terms of number of average
iterations for SDVC and ASDVC. In the ASDVC, the random delay between
0 ∼ 10 iterations is considered.

7.1. 8-bus feeder

An 8-bus distribution network is considered Tang et al.
(2019), whose diagram is shown in Fig.2. The impedance of
each line segment is identical, which is 0.9216 + j0.4608 Ω

with K = 2. All buses except bus 0 are equipped with
DERs with active power limit as p = −p = [90, 100, 0,
120, 170, 90, 70]kW, reactive power limit as q = −q = [100,
100, 110, 100, 130, 100, 120]kVar. The capacity limit of in-

verter at each bus is 0.9 ∗
√

p2
+ q2kVA.

We first use CPLEX to obtain the optimal solution, which is
V∗ = [0.9934, 1.0063, 1.0083, 1.0282, 0.9492, 1.0073, 0.9987],
p∗ = [63.08, 65.41, 0, 120, 170, 70.57, 70]kW, q∗ = [31.53,
32.71, 63, 73.24, 90.54, 35.28, 41.29]kVar. Then, SDVC and
ASDVC are utilized in the voltage control in 8-bus feeder. We
compare the controllers’ performance by showing how ‖w−w∗‖22

‖w∗‖22
is evolving with the number of average iterations of each MG,
which is given in Fig.3. The SDVC and ASDVC algorithms
have similar convergence speed, taking about 50 iterations. In
contrast, ASDVC is only a bit of inferior to SDVC in terms of
the number of average iterations.

7.2. IEEE 123-bus feeder

In addition to the 8-bus feeder, we also test the proposed
method on the IEEE 123-bus system to show the scalability and
practicability, the diagram of which is shown in Fig.4. It should
be noted that the IEEE 123-bus system is not homogeneous,
where the ri j/xi j ranges from 0.42 ∼ 2.02. In the simulation,
we take K = 1, which also shows the robustness of our method.
In this case, the real data of residential load and solar generation
is utilized. The minute-sampled profiles of active and reactive
load are from an online data repository UCI (2012), and we use
the data of July 13th, 2010. The minute-sampled profile of solar
generation is from NREL (2018), which were collected in a city
in Utah, U.S. and we use the data of July 14th, 2010. The pro-
files of active, reactive loads and solar generation are given in
Fig.5, where the black curve is the active power (kW), red curve
is the reactive power (kVar) and dotted blue line is the solar
generation (kW). In the simulation, the tap positions of voltage
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Figure 4: IEEE 123-bus system
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Figure 5: Active, reactive loads and solar generation within 24 hours

regulators are held constant in order to better capture the per-
formance of proposed method. The voltage at the substation of
the feeder head is set as 1 p.u. and the value of Vo is 0.5×1 p.u..
Each residential home is equipped with a solar generation. The
capacity limit at each bus is 20kVA. The upper limit of active
power is the instantaneous generation of the PV and the reac-
tive power limit is determined correspondingly. Some buses are
equipped with small hydro plants (marked as red in Fig.4). The
active power limits are 300kW. When load and solar genera-
tion change, the method in Section 6.2 is utilized for the online
implementation. In each minute, a quasi-static operating con-
dition is adopted, and the proposed controller is implemented
with each iteration updated every 0.2 seconds (a total of 300
iterations per minute).

To validate the performance of the ASDVC in applications,
we compare the results with SDVC and ASDVC under random
time delays. The maximal time delay is 5s. The profiles of daily
network-wide voltage error with ASDVC and SDVC are given
in Fig.6. It is illustrated that the voltage deviation with SDVC
is bigger than that with ASDVC if there exist time delays. The
reason is that each bus under SDVC has to wait for the slowest
neighbor to carry out the algorithm. In this situation, it cannot
track system changes rapidly. It is different under ASDVC as
there is no idling time for each bus. This shows that the ASDVC
has better performance in time varying environments when time
delays exist.

8. Conclusion

In this paper, we have developed an asynchronous distributed
control method to regulate the voltage in distribution networks
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Figure 6: Daily voltage mismatch error with SDVC and ASDVC under ran-
dom time delays. If SDVC is adopted, every bus has to wait for the slowest
one to proceed the iteration. In contrast, every bus can update as long as new
information is obtained in the ASDVC.

by making use of both active and reactive controllable power
of DERs. The partial primal-dual gradient algorithm is uti-
lized to design the controller with proofs of convergence and
optimality of the equilibrium. Finally, numerical tests on an
8-bus system verify the similar convergence speed of SDVC
and ASDVC. The daily simulations in the IEEE 123-bus sys-
tem with real data show that the voltage deviation can be re-
duced using ASDVC. Simulations under random time delays
show that the asynchronous algorithm has better performance
in time-varying environments. In the theoretic analysis, the dis-
tribution network is assumed to be three-phase symmetric and
homogeneous. How to eliminating these restrictions is among
our ongoing works.
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Šulc, P., Backhaus, S., Chertkov, M., 2014. Optimal distributed control of
reactive power via the alternating direction method of multipliers. IEEE
Trans. Energy Convers. 29, 968–977.

Tang, Z., Hill, D.J., Liu, T., 2019. Fast distributed reactive power control for
voltage regulation in distribution networks. IEEE Trans. Power Syst. 34,
802–805.

Turitsyn, K., Sulc, P., Backhaus, S., Chertkov, M., 2011. Options for control
of reactive power by distributed photovoltaic generators. Proceedings of the
IEEE 99, 1063–1073.

UCI, 2012. Individual household electric power consumption data
set. https://archive.ics.uci.edu/ml/datasets/individual+

household+electric+power+consumption.
Wang, Z., Liu, F., Low, S.H., Zhao, C., Mei, S., 2019. Distributed frequency

control with operational constraints, part ii: Network power balance. IEEE
Trans. Smart Grid 10, 53–64.

Yi, P., Pavel, L., 2019a. Asynchronous distributed algorithms for seeking gen-
eralized nash equilibria under full and partial decision information. IEEE
Trans. Cybern., DOI, 10.1109/TCYB.2019.2908091 .

Yi, P., Pavel, L., 2019b. An operator splitting approach for distributed general-
ized nash equilibria computation. Automatica 102, 111–121.

Zhang, B., Lam, A.Y., Domı́nguez-Garcı́a, A.D., Tse, D., 2015. An optimal
and distributed method for voltage regulation in power distribution systems.
IEEE Trans. Power Syst. 30, 1714–1726.

Zhou, X., Chen, L., Farivar, M., Liu, Z., Low, S., 2018. Reverse and forward
engineering of local voltage control in distribution networks. arXiv preprint
arXiv:1801.02015 .

Zhu, H., Liu, H.J., 2016. Fast local voltage control under limited reactive
power: Optimality and stability analysis. IEEE Trans. Power Syst. 31, 3794–
3803.

8

https://midcdmz.nrel.gov/usep_cedar/
https://midcdmz.nrel.gov/usep_cedar/
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption

	1 Introduction
	2 Preliminaries and System Modeling
	2.1 Preliminaries
	2.2 System Modeling

	3 Problem Formulation
	4 Asynchronous Voltage Control
	5 Optimality and Convergence
	5.1 Algorithm Reformulation
	5.2 Optimality of the equilibrium point
	5.3 Convergence analysis

	6 Implementation
	6.1 Communication graph
	6.2 Online Implementation

	7 Case Studies
	7.1 8-bus feeder
	7.2 IEEE 123-bus feeder

	8 Conclusion

