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Abstract

This paper studies the problem of enforcing safety of a stochastic dynamical system over a finite-time horizon. We use stochastic
control barrier functions as a means to quantify the probability that a system exits a given safe region of the state space
in finite time. A barrier certificate condition that bounds the expected value of the barrier function over the time horizon
is recast as a sum-of-squares optimization problem for efficient numerical computation. Unlike prior works, the proposed
certificate condition includes a state-dependent upper bound on the evolution of the expectation. We present formulations for
both continuous-time and discrete-time systems. Moreover, for systems for which the drift dynamics are affine-in-control, we
propose a method for synthesizing polynomial state feedback controllers that achieve a specified probability of safety. Several
case studies are presented which benchmark and illustrate the performance of our verification and control method in the
continuous-time and discrete-time domains.

1 Introduction

Reliance on complex, safety-critical systems is increas-
ing, which has made safety verification of such systems
of utmost importance. For example, environments pop-
ulated by both humans and autonomous systems (e.g.
fulfillment centers and autonomous vehicles) require rig-
orous safety verification to ensure desired behavior is
achieved. From a practical standpoint, safety verifica-
tion can translate directly to ensuring qualitative guide-
lines such as collision avoidance are maintained. Safety-
critical systems are often analyzed in a purely determin-
istic framework, however, many real-world applications
are subject to stochastic disturbances and are better
modeled as stochastic systems.

A common approach to safety verification in deter-
ministic systems is via barrier functions which provide
Lyapunov-like guarantees regarding system behavior.
The existence of a barrier function which satisfies a
barrier certificate can often be enough to certify the
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safe operation of a system [17]. Recent work has mod-
ified and improved the deterministic form of barrier
functions and expanded their application. In particu-
lar, control barrier functions have been introduced to
guarantee safety of affine-in-control systems [5, 24].
This is demonstrated in applications for cruise control
[4, 5], collision avoidance in robotic swarms [23], walking
robots [6], and has recently been extended to allow for
input-to-state safe control barrier functions [10] and to
guarantee finite-time convergence to a safe region [14].

In the stochastic setting, continuous-time (CT) safety
verification via barrier certificates for infinite time hori-
zons was introduced in [17] alongside the determinis-
tic counterpart. The work presented in [17] provides a
framework for bounding the probability a system will
ever exit a safe region based on a non-negative barrier
function defined on the system state space. To obtain
probabilistic guarantees over infinite time horizons, [18]
requires the infinitesimal generator, which dictates the
expected value evolution of a stochastic process, to be
non-positive; i.e., the barrier function is required to be
a supermartingale.

The paper [20] relaxes the supermartingale condition for
finite-time safety verification and instead provides a bar-
rier certificate which only requires the infinitesimal gen-
erator of the barrier process to be upper bounded by a
constant. Such processes are called c-martingales and al-
low the expected value of the barrier function to increase
over time. This approach results in a safety probability
bound for finite-time horizons.
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Recently, discrete-time (DT) control barrier functions
have been used to certify safety for bi-pedal robots [1],
safe policy synthesis for multi-agent systems [2] and for
temporal logic verification of discrete-time systems [8, 9].

The work presented in [1] mirrors, in discrete-time, the
formulation of deterministic continuous-time control
barrier functions initially presented in [4] whose overar-
ching theory and applications are summarized in [3]. In
[1], the formulation for discrete-time barrier functions
presents a significant distinction from the continuous-
time counterpart resulting in a nonlinear optimization
problem which is not necessarily convex. This poses
challenges in solving the stochastic discrete-time con-
troller synthesis problem in a similar manner to that
of stochastic continuous systems shown in [19]. There
exist few publications related to verification and control
of stochastic discrete-time systems.

The present paper studies the problem of verifying safety
of stochastic systems on finite time horizons for both
continuous-time and discrete-time domains, and the con-
tributions are as follows. We build on the approaches
proposed in [17, 20] and propose a barrier certificate con-
straint that imposes a state-dependent bound on the ex-
pected value for both continuous-time and discrete-time
systems. This bound was originally proposed and stud-
ied by Kushner in [11, 12, 13] in the context of stochas-
tic stability. The proposed barrier certificate allows the
expected value of the barrier to increase and covers the
c-martingale condition of [20] as a special case. However,
our formulation also accounts for the system dynamics
in the expectation constraint. This allows for probabil-
ity bounds that are no worse than the c-martingale con-
dition, and in many cases, especially with high values of
sigma, provides better probability bounds.

As in [17, 20], we compute barrier functions using sum-
of-squares (SOS) optimization. Like in [17], but unlike
[20], we utilize polynomial barrier functions. This pro-
vides a simpler formulation of the probability of failure
on a finite time horizon when compared to the approach
in [20] which uses exponential barrier functions and, em-
pirically, provides tighter probability bounds.

Third, we extend our formulation to allow for control
inputs and provide a method for synthesizing a safe con-
troller. In particular, we consider affine-in-control sys-
tems and the proposed approach searches for a polyno-
mial state feedback controller which ensures a system’s
failure probability achieves a predetermined criterion via
a stochastic control barrier function.

Our preliminary work on continuous-time verification
and control synthesis is published in [19] with two case
studies. The paper [19] only focused on continuous-time.
In this paper, we consider stochastic system verification
and control law synthesis in the discrete-time setting.

This paper is organized as follows: Section 2 covers the
background information of stochastic differential and
difference equations, barrier functions and SOS opti-
mization. Section 3 presents the problem formulation.
Section 4 highlights the methodology we utilize to solve
the SOS optimization and stochastic control problem.
Section 5 and Section 6 present numerical case studies
which illustrate our results and conclusions, respectively.

2 Preliminaries

In this section, we first introduce background informa-
tion regarding stochastic systems, stochastic processes,
and SOS polynomials.

2.1 Stochastic Differential Equations

Consider a complete probability space (Ω,F , P ) and a
standard Wiener process w(t) taking values in Rm. We
consider continuous-time stochastic processes x(t) sat-
isfying a stochastic differential equation of the form

dx = F (x)dt+ σ(x)dw (1)

where the compact setX ⊂ Rn is the system state space,
F : X → Rn is the drift rate and σ : X → Rn×m is
the diffusion term. We assume the functions F (x) and
σ(x) are Lipschitz continuous. We now introduce the in-
finitesimal generator, which extends the usual definition
of a time derivative to instead consider the expectation
of a function of a random process [15].

Definition 1 Let x(t) be a stochastic process in Rn. The
infinitesimal generator A of x(t) acts on functions of the
state space and is defined as

AB(x) = lim
t↓0

E[B(x)|x0]−B(x0)

t

where B : X → R such that the limit exists for all x0 =
x(0).

In particular, the infinitesimal generator for any process
as in (1) is of the form shown in Fact 1.

Fact 1 (Ch. 7, Theorem 7.3.3 of [15]) Let x(t) be a
stochastic process satisfying (1), then the infinitesimal
generator A of some twice differentiable function B(x)
is given by

AB(x) =

n∑
i=1

Fi(x)
∂B

∂xi
+

1

2

n∑
i=1

n∑
j=1

(
σ(x)σT (x)

)
i,j

∂2B

∂xi∂xj
.

The stochastic process x(t) is not guaranteed to lie in X
at all times which leads us to define the stopped process
x̃.
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Definition 2 ([17], Definition 12) Suppose that τ is
the first time of exit of x(t) from the open set Int(X ).
Then the stopped process x̃(t) is defined by

x̃(t) =

{
x(t) for t < τ

x(τ) for t ≥ τ.

The stopped process x̃(t) inherits the same strong
Markovian property of x(t) and shares the same in-
finitesimal generator [13].

2.2 Stochastic Difference Equations

Consider now a discrete-time stochastic process of the
form [12]

x[k + 1] = F (x[k]) + σ(x[k])ξ[k] (2)

where X ⊂ Rn, ξ[k] ∈ Rp, F : Rn → Rn, and σ : Rn →
Rn×p. Here, ξ[k] is a random disturbance whose value is
governed by some distribution at each time step k. For
the discrete-time setting, a stopped process is defined
analogously to Definition 2 and denoted by x̃[k].

2.3 Sum-of-Squares

Definition 3 Define R[x] as the set of all polynomials
in x ∈ Rn. Then

Σ[x] ,

{
s(x) ∈ R[x] : s(x) =

m∑
i=1

gi(x)2, gi(x) ∈ R[x]

}

is the set of sum-of-squares polynomials.

Note that if s(x) ∈ Σ[x] then s(x) ≥ 0 ∀ x.

Definition 4 Given pi(x) ∈ R[x] for i = 0, . . . ,m, the
problem of finding qi(x) ∈ Σ[x] for i = 1, . . . , m̂ and
qi(x) ∈ R[x] for i = m̂+ 1, . . . ,m such that

p0(x) +

m∑
i=1

pi(x)qi(x) ∈ Σ[x]

is a sum-of-squares program (SOSP).

SOSPs can be efficiently converted to semidefinite pro-
grams using tools such as SOSTOOLS [16].

3 Problem Formulation

We address the problem of creating a bound on the
probability a stochastic system of form (1) or (2) exits
a safe region during a finite-time horizon. Additionally,
we present an algorithmic approach for control synthe-
sis based on a system’s probability of becoming unsafe.

With this, we achieve the following objectives for both
continuous-time and discrete-time systems.

Objectives (CT & DT): (Verification) First, given
a continuous-time or discrete-time stochastic system of
the form (1) or (2) and a fixed time horizon, upper
bound the probability of failure, i.e., the probability
that the system’s state reaches a set of unsafe condi-
tions within the finite time horizon. (Synthesis) Second,
given a continuous-time or discrete-time stochastic sys-
tem with input, synthesize a feedback control law to
achieve a desired maximum probability of failure.

3.1 Continuous Time Systems

Consider the stochastic process x(t) which satisfies the
stochastic differential equation

dx = (f(x) + g(x)u(x))dt+ σ(x)dw (3)

where f : X → Rn, g : X → Rn×p, σ : X → Rn×m
and w is a m-dimensional Wiener process. Additionally,
u : X → Rp where u is a state feedback control law.
We define F (x) = f(x) + g(x)u(x). In the derivation
below, we consider u(x) given and fixed and hence F is
a function only of x. In Section 4.2, when we address the
problem of synthesizing a feedback control law u(x), it is
then implicit that F depends on this choice of feedback.
The following theorem is an immediate corollary of [13,
Chapter 3, Theorem 1] and recovers the supermartingale
condition [17, Theorem 15] and c-martingale condition
[20, Theorem 2.4] as special cases.

Theorem 1 Given the stochastic differential equation
(3) and the sets X ⊂ Rn, Xu ⊆ X ,X0 ⊆ X \ Xu with
F (x) = f(x) + g(x)u(x) and σ(x) locally Lipschitz con-
tinuous, where u(x) is some feedback control law. Con-
sider the stopped process x̃(t). Suppose there exists a twice
differentiable function B such that

B(x) ≤ γ ∀x ∈ X0 (4)

B(x) ≥ 1 ∀x ∈ Xu (5)

B(x) ≥ 0 ∀x ∈ X (6)

∂B

∂x
F (x) +

1

2
Trace

(
σT (x)

∂2B

∂x2
σ(x)

)
≤ −αB(x) + β ∀x ∈ X \ Xu (7)

for some α ≥ 0, β ≥ 0 and γ ∈ [0, 1). Define

ρu := P{x̃(t) ∈ Xu for 0 ≤ t ≤ T | x̃(0) ∈ X0} (8)

ρB := P

{
sup

0≤t≤T
B
(
x̃
)
≥ 1 | x̃(0) ∈ X0

}
. (9)

Then

• If α > 0 and β
α ≤ 1,
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ρu ≤ ρB ≤ 1−
(

1− γ
)
e−βT . (10)

• If α > 0 and β
α ≥ 1,

ρu ≤ ρB ≤
γ + (eβT − 1)βα

eβT
. (11)

• If α = 0,
ρu ≤ ρB ≤ γ + βT. (12)

The bound (12) is characterized in [8] and [20] as the
upper bound on the probability of being unsafe for a c-
martingale.

If B(x) satisfies the conditions of Theorem 1, then B(x)
is called a stochastic control barrier function for a given
control policy u(x). Relaxing the supermartingale con-
dition on the infinitesimal generator in the fashion of
Theorem 1 gives three case-dependent finite time prob-
ability bounds on a system’s likelihood of entering an
unsafe region in the form of (10), (11), and (12).

Remark 1 If the initial state x0 is known exactly,then
B(x0) can be substituted for γ in the probability bounds of
Theorem 1. This provides an upper bound on the proba-
bility of failure over a particular initial point rather than
on an initial set, X0.

3.2 Discrete Time Systems

Consider the stochastic discrete-time system

x[k + 1] = f(x[k]) + g(x[k])u(x[k]) + σ(x[k])ξ[k] (13)

where f : X → Rn, g : X → Rn×p, σ : X → Rn×m
and ξ is a stochastic process whose value is governed by
some probabilistic distribution. Additionally, u : X →
Rp where u(x) is a polynomial control law. We define
F (x, ξ) = f(x) + g(x)u(x) + σ(x)ξ. The following theo-
rem is an immediate corollary of [13, Chapter 3, Theo-
rem 3].

Theorem 2 Given the stochastic difference equation
(13) and the sets X ⊂ Rn, Xu ⊆ X ,X0 ⊆ X \ Xu with
F (x, ξ) = f(x) + g(x)u(x) + σ(x)ξ where u(x) is some
feedback control law. Consider the stopped process x̃[k].
Suppose there exists a twice differentiable function B
such that

B(x) ≤ γ ∀x ∈ X0 (14)

B(x) ≥ 1 ∀x ∈ Xu (15)

B(x) ≥ 0 ∀x ∈ X (16)

E[B(F (x, ξ)) | x] ≤ B(x)

α̃
+ β̃ ∀x ∈ X \ Xu (17)

for some α̃ ≥ 1, 0 ≤ β̃ < 1 and γ ∈ [0, 1). Define

ρu := P{x̃[k] ∈ Xu for 0 ≤ k ≤ N | x̃[0] ∈ X0} (18)

ρB := P

{
sup

0≤k≤N
B(x̃) ≥ 1 | x̃[0] ∈ X0

}
. (19)

Then

• If α̃ > 1 and β̃α̃
α̃−1 ≤ 1,

ρu ≤ ρB ≤ 1−
(

1− γ
)N−1∏

0

(
1− β̃

)
. (20)

• If α̃ > 1 and β̃α̃
α̃−1 > 1,

ρu ≤ ρB ≤ γα̃−N +
(1− α̃−N )α̃β̃

(α̃− 1)
. (21)

• If α̃ = 1,

ρu ≤ ρB ≤ γ + β̃N. (22)

Like in continuous time, if B(x) satisfies the conditions
of Theorem 2, then B(x) is called a stochastic control
barrier function for a given control policy u(x). Addi-
tionally, like in continuous-time, Remark 1 also applies.

4 SOS Formulations & Numerical Procedures

In this section we present our approach to construct
both continuous-time and discrete-time stochastic con-
trol barrier functions based on the problem formulations
of Section 2. First, we adapt the inequality constraints
given in Theorem 1 & 2 to be formulated as an SOSP
when α and u(x) are known. Second, we present the al-
gorithms which construct barrier functions and present
our method for computing a control policy.

4.1 SOS Formulation for Safety Verification

For continuous-time system verification, the conditions
in Theorem 1 can be recast as SOS constraints.

Theorem 3 Consider a system of the form of (3) and
the sets X , X0, and Xu and assume these sets are de-
scribed as X = {x ∈ Rn : sX (x) ≥ 0}, X0 = {x ∈ Rn :
sXo

(x) ≥ 0}, and Xu = {x ∈ Rn : sXu
(x) ≥ 0} for

some polynomials sX , sXo
, and sXu

. Suppose there exists
a polynomialB(x), and SOS polynomials λX (x), λXo

(x),
and λXu

(x) that satisfy

B(x)− λX (x)sX (x) ∈ Σ[x] (23)

B(x)− λXu
(x)sXu

(x)− 1 ∈ Σ[x] (24)

−B(x)− λXo(x)sXo(x) + γ ∈ Σ[x] (25)

−∂B(x)

∂x
F (x)− 1

2
Trace

(
σT (x)

∂2B

∂x2
σ(x)

)
− αB(x) + β

−λXu
(x)sXu

(x)− λX (x)sX (x) ∈ Σ[x] (26)
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where F (x) = f(x) + g(x)u(x). Then, the probability of
failure, depending on the values of α and β, satisfies (10),
(11) or (12).

Theorem 2 for discrete-time verification for systems of
the form of (13) can also be recast as SOS constraints.

Theorem 4 Consider a system of the form of (13) and
the sets X , X0, and Xu and assume these sets can be
described as X = {x ∈ Rn : sX (x) ≥ 0}, X0 = {x ∈
Rn : sXo(x) ≥ 0}, and Xu = {x ∈ Rn : sXu(x) ≥ 0}
for some polynomials sX , sXo , and sXu . Suppose there
exists a polynomial B(x), and SOS polynomials λX (x),
λXo(x), and λXu(x) that satisfy the following

B(x)− λX (x)sX (x) ∈ Σ[x] (27)

B(x)− λXu
(x)sXu

(x)− 1 ∈ Σ[x] (28)

−B(x)− λXo(x)sXo(x) + γ ∈ Σ[x] (29)

−E[B(F (x, ξ)) | x] +
B(x)

α̃
+ β̃−

λXu
(x)sXu

(x)− λX (x)sX (x) ∈ Σ[x] (30)

where F (x, ξ) = f(x) + g(x)u(x) + σ(x)ξ . Then, the
probability of failure, depending on the values of α̃ and
β̃, is defined by (20), (21) or (22).

We omit the proofs for Theorems 3 and 4, which follow
the general approach for relaxing set constraints to SOS
programs using the Positivstellensatz condition; see the
documentation of [16] for details.

For Theorem 4, the expectation, E
[
F (x, ξ) | x

]
in (30)

is encoded using the n-th moment of a random variable.
In the case studies in Section 5, we model the system
noise as a random variable with a zero mean normal
distribution. The expected value of the n-th moment of
a normally distributed random variable, z, is

E[zn] =

{
0 if n is odd

1 · 3 · · · (n− 1)σn if n is even.
(31)

Using (31) allows for a closed-form expression for
E[B(F (x, ξ)) | x].

4.2 Verification & Control Law Synthesis Algorithms

Theorem 3 and 4 are not SOSPs—in fact, they are
nonconvex—when all of the relevant parameters are
considered variables, i.e., α, β, and u(x). As a result,
we present algorithms to numerically compute barrier
functions to circumvent the nonconvex problem. Since
the algorithms we present are valid for discrete-time
and continuous-time systems we use x to represent the
continuous-time and discrete-time state instead of x(t)
or x[k], respectively.

First, we assume that u(x) is fixed, and thus we solve the
verification problem via Algorithm 1 which computes a
barrier function B(x) satisfying the conditions in Theo-
rem 3. These conditions are nonconvex in α, so we will
perform a line search on α. The barrier function is eval-
uated over the set X0 and utilized to compute the prob-
ability, P , using (10), (11), or (12) for continuous-time
systems. The polynomial degree nB of B(x) is a design
parameter; however, higher-order polynomials tend to
produce tighter bounds. Well refined bounds (i.e. higher-
order polynomials) present themselves with the trade-
off of longer computational times versus probability of
failure refinement.

The objective of the SOSP in Algorithm 1 is set to mini-
mize the value γ+β. This objective was chosen to avoid
creating bi-linear programs where initialization of the
variables can become complex. In other words, minimiz-
ing γ + β is a heuristic which may not be the best but
empirically provides reliable performance.

Remark 2 As in Remark 1, if x0 is known exactly,
B(x0) can be substituted for γ to provide a bound for all
initial conditions x0 ∈ X0.

The discrete-time procedure follows the general idea of
the continuous-time approach and is also presented in
Algorithm 1 but the optimization program is instead
constrained by (27)–(30). Additionally, even though α̃

and β̃ appear in Theorem 2, for clarity, the notation α
and β is used in Algorithm 1. Like in continuous-time
systems, the discrete-time probability bound of becom-
ing unsafe is a function of α̃ and β̃ and is computed using
(20), (21) or (22).

4.3 Controller Synthesis Procedure

So far, we have assumed a given feedback control policy
u(x). In this section, we will consider the case of solving
for u(x) to achieve a desired probability of safety. In
general, we synthesize a polynomial feedback control law
of the same or lower order of B(x) such that the upper
bound on the probability of failure reduces to a designer
specified value. First, the polynomial u(x) is written in
quadratic form as

u(x) = zTQz (32)

where z is a vector of monomials in x of a specified order
and Q is a coefficient matrix of appropriate dimensions.
Because there likely exist many feasible controllers en-
suring the desired probability of failure, we introduce a
cost criterion to choose among them. We approximate
the energy of a particular control policy via a proxy mea-
sure. In this case, the proxy is the non-negative scalar, c,
such that the following vector element-wise constraints

5



Algorithm 1 Compute B(x)

1: procedure Compute-B(lα, uα, d, σ, u(x), nB)
2: . α̃ & β̃ used for discrete-time
3: α← Range(lα, uα, d) . Assign α values d apart
4: P ∗ ← 1
5: P ← ∅
6: for αi ∈ α do
7:
8: Continuous-time:
9: min γ + β

10: subject to (23) - (26)
11:
12: Compute P , using (10), (11) or (12)
13:
14: Discrete-time:
15: min γ + β
16: subject to (27) - (30)
17:
18: Compute P , using (20), (21) or (22).
19:
20: if P < P ∗ then
21: α∗ := αi
22: β∗ := β
23: P ∗ := P
24: end if
25: end for
26: return α∗, β∗, P ∗

27: end procedure

Algorithm 2 Initialize u(x)

1: procedure Compute-u(B(x), α, β, nu)
2: . α̃ & β̃ used for discrete-time
3: u(x) = zTQz . u(x) is an nu power polynomial
4: . z is a vector of state monomials
5: min c
6: subject to c1− vec(Q) ≥ 0
7: vec(Q) + c1 ≥ 0
8: Continuous-time: (26)
9: Discrete-time: (30)

10: return u(x), c, Q
11: end procedure

c1− vec(Q) ≥ 0

vec(Q) + c1 ≥ 0

hold where vec(Q) is the vector form of matrix Q and
1 is the vector of ones of appropriate dimension. Con-
straining the individual values of the polynomial coef-
ficients provides a means of upper-bounding and lower-
bounding the control effort applied at each particular
state. We choose the cost min c to minimize the coeffi-
cients appearing in the polynomial controller to encour-
age lower control effort. This objective and procedure
are highlighted in Algorithm 2.

Control synthesis is performed using Algorithm 3 which
utilizes the verification approach from Algorithm 1 and
interleaves it with the controller search in Algorithm 2.
Similar to the verification procedure, Algorithm 3 ini-
tially computes a polynomial barrier given a fixed con-
trol policy (i.e. u(x) = 0). Following this, Algorithm 3

Algorithm 3 Search for control polynomial u(x)

1: procedure Compute-ugoal(Pgoal, σ, α, nB , nu, ε)

2: . α̃ & β̃ used for discrete-time
3: icount = 1 . Initialize counting variable
4: while |P ∗ − Pgoal | > ε do
5: if icount = 1 then
6: β, P ← COMPUTE- B(lα, uα, d, σ, u(x), nB)
7: . Since α fixed, lα = uα
8: . u(x) = 0
9: icount := icount + 1

10: else
11: u(x), c, Q← COMPUTE-u(B(x), α, β, nu)
12: β, P ← COMPUTE-B(lα, uα, d, σ, u(x), nB)
13: end if
14:
15: if P < Pgoal and c < c∗ then
16: β∗ := β
17: P ∗ := P
18: c∗ := c
19: end if
20: . c∗ is initialized as a large number
21: if P > Pgoal then
22: β := adecβ
23: else
24: β := aincβ
25: end if
26: . ainc > 1 and adec < 1 are scaling factors
27:
28: end while
29: return u∗(x), c∗, Q
30: end procedure

iteratively synthesizes a feedback control law by adjust-
ing the parameter, β. Generally speaking, as in our case
studies, we are interested in systems where the proba-
bility of failure with no control action is above the goal
probability and thus control action is required to achieve
the desired probability of safety.

The discrete-time procedure for controller synthesis is
also demonstrated in Algorithm 2 and 3 where α̃ and β̃
are utilized instead of α and β. The objective of the ap-
proach we present is to find a control polynomial based
on a system’s probability of failure. In continuous-time,
the condition (7) is affine-in-control; however, the same
is not always true for condition (17) of discrete-time sys-
tems. In continuous-time systems, the evolution of the
expected value is governed by the infinitesimal genera-
tor presented in Fact 1. In discrete-time, the evolution is
governed by the difference between the expected value
of the barrier function at x[k + 1] and x[k]. Since we
are considering polynomial barrier functions the search
for control polynomials becomes complex due to the
E[B(F (x, ξ)) | x] term in (30). Because of this, the sum-
of-squares program becomes non-linear and is not nec-
essarily convex; however, if the chosen barrier function
is linear then the optimization problem remains convex.

6



5 Case Studies

In this section, we first present a simple continuous-
time example to illustrate the advantages and limita-
tions of our technique. Second, a nonlinear continuous-
time example is presented to demonstrate the versa-
tility of our approach. Lastly, a discrete-time popula-
tion growth model is considered. For all case studies,
we conduct Monte Carlo simulations to establish ground
truth probability bounds. We utilize SOSTOOLS [16]
which converts the SOSP into semidefinite programs.
Our choice of solver is the semidefinite program solver
SDPT3 [21, 22]. The noise term in both the continuous-
time and discrete-time systems are modeled to be val-
ues from a standard normal distribution, N (0, 1). These
case studies were conducted on a 2.3 GHz Intel Core i5
computer with 8GB of memory. 4

5.1 1-D Stochastic System

Consider a 1-D stochastic affine-in-control system of the
form

dx =
(
− x+ u(x)

)
dt+ σdw. (33)

This is of the same form as (3) where f(x) = −x, g(x) =
1, and constant σ(x) ≡ σ. We define the state space
as X = {x : −2 ≤ x ≤ 2}, Xu = {x : x2 ≥ 1}, and
X0 = {x : x2 ≤ 0.22}. First, we benchmark the proba-
bility of failure without a control input (i.e. u(x) = 0)
for a finite time horizon of T = 1 s. Thus, to do so, the
procedure outlined in Algorithm 1 is utilized. We grid
search over a defined range of values for the constant
α. In this particular example, α ∈ [0, 5] with d = 0.05
in Algorithm 1. We search for a 16th degree B(x). Ad-
ditionally, the c-martingale bound presented in [20, Al-
gorithm 3] is reproduced. Lastly, the results are bench-
marked against the true probability of failure created
via a 5000 draw Monte Carlo simulation. The results are
presented in Fig. 1.

In Fig. 1, the polynomial bound on the probability
of failure performs better than the bound from [20]
generated using the c-martingale condition that is not
state-dependent. The difference is particularly notable
at higher values of σ where the exponential bound from
[20] becomes trivial, i.e., greater than or equal to one.

Next, the control problem of achieving a particular
bound on the probability of failure of this system is
addressed. We consider a desired failure probability
of Pgoal = 0.30. We restrict our attention to a linear
controller of the form u(x) = −kx. The search for a low-
energy controller which successfully fulfills the design
requirement follows a modified binary search version

4 The MATLAB source code for the four case stud-
ies is contained at https://github.com/gtfactslab/
stochasticbarrierfunctions

Fig. 1. The probability of failure bounds for (33) are pre-
sented here. A 16th degree polynomial barrier function is
considered. The Monte Carlo simulation results illustrate the
true probability of failure for this system.

Fig. 2. An illustration of (33) demonstrating the trade-off
between required control gain and the degree of the bar-
rier function, B(x), needed to successfully attain the desired
probability of failure threshold. Using higher-order polyno-
mials allows us to guarantee that the desired probability
bound is satisfied for a smaller control gain up until some
point. Eventually, the order of the polynomial will not im-
prove the bound as is happening from the 12th to 14th order
polynomial.

of Algorithm 3. This enables a simple search for the k
necessary to achieve the desired criterion.

Fig. 2 plots k∗ achieving the desired failure probabil-
ity bound for σ ∈ [1, 2]. Here, note that the degree of
the barrier function for which we search greatly affects
the control gain needed to achieve the control objective.
In some sense, searching for a higher-order polynomial
refines the probability of failure bound requiring lower
control effort; however, these high order polynomials re-
quire more computation time. Eventually, the degree of
the polynomial reaches a saturation point where it does
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Fig. 3. Given the initial conditions x0 = [−2, 0], the sin-
gle trajectory dynamics of (34)–(35) for a time horizon of
T = 2 and a σ = 1.0 are illustrated. The unsafe region is
Xu = {x2 | x2 ≥ 2.25}. Additionally, the level sets of B(x)
and their respective values are labeled and given as dashed
blue lines.

not further decrease the k∗ required.

5.2 Nonlinear Dynamics

Consider the stochastic nonlinear dynamics

dx1 = x2dt (34)

dx2 =

(
− x1 − x2 − x31 + u(x)

)
dt+ σdw. (35)

This system is studied in [18] without the input term
u(x) and constant σ(x) ≡ σ.

We define the state space as X = {(x1, x2) | − 3 ≤ x1 ≤
2,−2 ≤ x2 ≤ 3}, Xu = {x2 | x2 ≥ 2.25}, and X0 =
{(x1, x2)|(x1 + 2)2 + x22 ≤ 0.12}. A sample trajectory
of (34)–(35) is illustrated in Fig. 3. Additionally, level
sets of B(x) are projected onto the state space. In this
illustration,B(x) is computed with u(x) = 0 solely using
Algorithm 1.

In this particular trajectory illustration, the evolution of
system noise is enough for the system to enter the pre-
defined unsafe set; however, this is not always the case.
To illustrate this, we compute a Monte Carlo simulation
of the system dynamics shown. Additionally, an upper
bound is computed on the probability of becoming un-
safe given our initial condition and illustrated in Fig.
4. While a set of initial conditions is encoded into the
SOSP, the probability bound is evaluated at the same
initial point, x0 ∈ X0, as the Monte Carlo simulation.

The feedback control law design specification for this
system is to reduce the probability of failure bound to

Fig. 4. Computing a 14th order polynomial barrier function
for the nonlinear dynamics (34)–(35), we are able to bound
the probability of failure of the 5000 draw Monte Carlo dy-
namics for constant σ ∈ [0.5, 1.5].

σ Pu(x)=0 α min c

0.6 0.860 1.4 2.1821

0.9 0.919 1.3 0.5251

1.0 0.912 1.3 0.6396

1.3 0.949 1.5 1.1488

Table 1
The results from the search for a control polynomial u(x)
which reduces the probability of failure to Pgoal = 0.10 for
(34)–(35). The upper-bound on the probability of failure
without a given control input is presented here for compari-
son.

Pgoal = 0.10 for specified σ values. For this example a
2nd order polynomial controller of the form of (32) is
synthesized. The constant, c, highlighted in Algorithm 2
is minimized. Algorithm 3 produces the results in Table
1 for select values of σ and specific α values. The α
values in Table 1 originate from the initial (i.e., u(x) = 0)
probability bound computation. Here, 10th order B(x)
are considered due to the computational limitations of
SOSTOOLS.

5.3 Discrete-Time Population Model

Consider the stochastic version of the discrete-time pop-
ulation growth model from [7]

x1[k + 1] = m3x2[k] + u(x[k]) (36)

x2[k + 1] = m1x1[k] +m2x2[k] + σξ[k] (37)

where m1 = 0.5, m2 = 0.95, and m3 = 0.5. For the
discrete time system in (36)–(37), we first perform ver-
ification via a polynomial barrier function followed by
control synthesis using 1st order barrier functions.

For verification via polynomial barrier functions, we take

8



Fig. 5. The population dynamics (36)–(37) for σ = 0.5. The
8th order barrier function, B(x), level sets are superimposed
on the state space.

σ Pu(x[k])=0
Monte
Carlo

γ

0.1 0.069 0.006 0.075

0.2 0.342 0.051 0.216

0.3 0.574 0.118 0.261

Table 2
Monte Carlo results for the system (36)–(37) and the com-
puted upper bound Pu(x[k])=0 on the probability of failure

using an 8th order polynomial. Additionally, the associated
γ value used to compute the set-wise probability of failure
is provided.

X = {x1, x2 | − 3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3}, Xu =
{x1, x2 | x21 +x22 ≥ 2} and X0 = {x1, x2 | x21 +x22 ≤ 1.5}.
An illustrative trajectory of the discrete time dynamics
(36)–(37) is displayed in Fig. 5 with the barrier function
level sets displayed on the state space. Table 2 presents
the verification results of Algorithm 1 when N = 2 and
compares Pu(x[k])=0 to the true probability of failure ob-
tained via Monte Carlo simulation for several values of
constant σ.

As highlighted in Section 4.3, in the discrete-time case,
evaluating E [B(F (x, ξ)) | B(x)] results in a nonconvex
constraint unless B(x) is affine. Thus, we consider the
case when B(x) is affine. We now consider the domain
X = {x1, x2 | 0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 4} such that 1st

order barrier functions are a viable approach.

In the 1st order barrier function case, we take N = 3,
Pgoal = 0.10 and Xu = {x1 | 2 ≤ x1 ≤ 4}. The level sets
of a linear barrier function for X are shown in Fig. 6.
Next, control synthesis for the system is performed using
the discrete-time version of Algorithm 3. The results of
control synthesis are presented in Table 3.

Fig. 6. The population dynamics (36)–(37) over a time hori-
zon of N = 3 and σ = 1.5. The 1st order barrier function,
B(x), level sets are super imposed on the state space. Here,
we see that the B(x) ≥ 1 from x1 = 2 to x1 = 4

σ Pu(x[k])=0 α̃ min c

1.0 0.499 2 1.44

1.5 0.512 2.05 2.074

2.0 0.523 2.10 2.488

2.5 0.544 2.20 2.986

Table 3
The c value derived from implementing Algorithm 3 for the
system presented in (36)–(37) using a 1st order barrier func-
tion for Pgoal = 0.10. The last column gives the value of c
which encourages a low-energy control effort for a 2nd order
u(x).

6 Conclusion

We consider both continuous-time and discrete-time
stochastic control barrier functions whose existence
provides a means of quantifying an upper bound on a
system’s probability of failure. Additionally, we present
a novel approach to the problem of finite-time verifica-
tion by constraining the evolution of the expectation by
a non-negative barrier function. This approach includes
the supermartingale and c-martingale conditions pro-
posed in prior literature as special cases. Lastly, we syn-
thesize a feedback control strategy u(x) such that a cer-
tain probability of failure criterion is met. We illustrate
the methods with three case studies which demonstrate
our ability to quantify system failure probabilities. For
discrete-time systems, we perform verification leverag-
ing polynomial barrier functions; however, controller
synthesis in discrete-time systems gives rise to noncon-
vexities. The discrete-time nonconvexities are mitigated
by only considering a region of the state-space such
that linear barrier functions are a viable approach using
the presented numerical methods. In these case stud-
ies, stochastic control barrier functions are synthesized
using SOS optimization which enable control synthesis
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based on the upper-bound on the probability a system
will enter an unsafe region of the state space.
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