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Practical Exponential Stability and Closeness of Solutions for Singularly Perturbed
Systems via Averaging‹

Mohammad Deghata, Saeed Ahmadizadehb, Dragan Nešićb, Chris Manzieb

aSchool of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
bDepartment of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia

Abstract

This paper studies the behavior of singularly perturbed nonlinear differential equations with boundary-layer solutions that do not
necessarily converge to an equilibrium. Using the average for the derivative of the slow state variables and assuming the boundary-
layer solutions converge exponentially fast to a bounded set, which is possibly parameterized by the slow variable, results on the
closeness of solutions of the singularly perturbed system to the solutions of the reduced average and boundary-layer systems over
a finite time interval are presented. The closeness of solution error is shown to be of order Op

?
εq where ε is the perturbation

parameter. Moreover, under the additional assumption of exponential stability of the reduced average system, practical exponential
stability of the solutions of the singularly perturbed system is provided.

Keywords: Singular perturbation, Averaging, Closeness of solutions.

1. Introduction

The singular perturbation method is a common technique
to analyze a two-time-scale system via the behavior of two
auxiliary systems, namely the reduced (slow) system and the
boundary-layer (fast) system. Two-time-scale systems arise in
a variety of engineering and applied science applications such
as electro-mechanical systems [1], power electronic systems
with DC-DC or PFC converters [2], combustion engines [3],
classical mechanical and quantum mechanical systems [4], fast
sensors and/or actuators [1] and complex systems, such as net-
works consisting of many agents [5].

The study of singular perturbation systems was started in the
mathematical literature by Tikhonov [6, 7] and was followed
by [8–11]. In general, the results using the singular perturba-
tion method either relate the stability properties of the original
system with the above-mentioned auxiliary systems or show the
closeness of solutions of the original system to the solutions of
the auxiliary systems; see e.g. [1], [12, Sec. 11] for results on
stability and closeness of solutions of the classical singular per-
turbation with applications to systems and control problems.
It is usually assumed in the classical singular perturbation re-
sults that the solutions of the boundary-layer system converge
to a unique equilibrium manifold. The case where the solutions
converge to a bounded set, e.g. a set of limit cycles, has been
studied using the averaging method [13, 14]. In these results,
the derivative of the slow state is averaged over a finite or in-
finite time interval and the behavior of the reduced averaged
slow system, together with the behavior of the boundary-layer

‹This work was supported by the ARC Discovery Scheme, grant number
DP170104102.

system, is used to describe the behavior of the full-order sys-
tem. This idea can be found in the work of Gaitsgory et al.
[15–17], Grammel [18–20], Artstein et al. [21–24], Teel et al.
[25], and others [26, 27].

The problem of exponential stability of this general class
of singular perturbation is not well studied in the literature.
Among the above-mentioned results, Grammel showed in [20],
using a trajectory-based proof, that under the exponential sta-
bility of the origin of the reduced average system and under
some other conditions on the system model, the slow state of
a delayed singularly perturbed system is exponentially stable.
However, the behavior of the fast state and also the closeness
of solutions of the singularly perturbed system to the solutions
of the reduced average and boundary-layer systems when the
reduced average system is not exponentially stable are not stud-
ied in [20]. Furthermore, some of the assumptions in [20] are
strong and not satisfied even by linear systems.

This paper studies non-delayed singularly perturbed systems
and presents results on both the stability and closeness of solu-
tions. In particular, it is shown that under the exponential stabil-
ity of the boundary-layer system and some other conditions on
the system model and over a finite time interval, the solutions to
the singularly perturbed system are approximated by the solu-
tions of the reduced average and boundary-layer systems when
the perturbation parameter, ε, is small. Although Grammel did
not study closeness of solutions in [20], Teel et. al presented
a closeness of solution result in [25] which can be applied to
a general class of singular perturbation systems. However, the
order of magnitude of error is not studied in [25]. Compared to
[25], we propose stronger conditions on the system model and
obtain stronger closeness of solution results; we show under our
conditions that the approximation error is of order Op

?
εq. If

the reduced average system is also exponentially stable, then it
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is shown that over the infinite time interval, the fast and slow
states of the singularly perturbed system are both practically
exponentially stable.

An abbreviated conference version of this paper has been
presented in [28]. This paper has the following key additions
over the conference version. It includes complete proofs which
were not included in [28]. It also studies a more general case
where the reduced average system is defined as a differential
inclusion, while [28] assumes the reduced average system is
defined as a differential equation. A new section has also been
added to the paper that studies the practical stability of the sin-
gularly perturbed system over an infinite time interval. More-
over, some of the assumptions in the conference version such
as the global Lipschitz assumption of the average system and
the forward invariance assumption of a closed set of initial con-
ditions with respect to an auxiliary slow system are relaxed in
this paper.

The structure of the paper is as follows. In Section 2, the gen-
eral singular perturbation problem is explained and some of the
main assumptions on the system model are presented. Section 3
contains the main results of the paper. A numerical example
is presented in Section 4 with concluding remarks provided in
Section 5.

Notation:

• BRp0q denotes a ball of radius R ą 0 centered at the origin.

• [12, Definition 10.1]: A function δ1pεq is of order
Opδ2pεqq, denoted by δ1pεq “ Opδ2pεqq, if there exist pos-
itive constants k and c such that

|δ1pεq| ď k|δ2pεq|, @|ε| ă c. (1)

If δ1pεq and δ2pεq are continuous at ε “ 0, then (1) implies
that

lim sup
εÑ0

|δ1pεq|

|δ2pεq|
ď k ă 8. (2)

• The standard Euclidean norm is denoted by } ¨ }. The dis-
tance between a point x and a non-empty set A is denoted
by dpx, Aq, i.e.

dpx, Aq “ inf
yPA
}x´ y}. (3)

• The Hausdorff distance of compact subsets A and B of a
compact metric space X is denoted by dHpA, Bq and is de-
fined as

dHpA, Bq :“ max

#

sup
xPA

inf
yPB
}x´ y}, sup

yPB
inf
xPA
}x´ y}

+

.

2. Preliminaries

Consider a singularly perturbed system

9x “ f px, z, εq, xp0q “ x0, (4a)
ε9z “ gpx, z, εq, zp0q “ z0, (4b)

where ε ą 0 is a small perturbation parameter, and x P Rn and
z P Rm are respectively the slow and fast variables. Define the
fast-time variable τ “ t{ε. Then in the τ-domain, (4) can be
written as

dx
dτ
“ ε f px, z, εq, (5a)

dz
dτ
“ gpx, z, εq. (5b)

Following the standard procedure for the analysis of the sin-
gularly perturbed systems, we decompose the system into two
auxiliary reduced-order systems (namely, the boundary-layer
system and the reduced system), each one associated with a dif-
ferent time scale, and then prove a certain stability property for
the singularly perturbed system, or a closeness of solution re-
sult, using the stability properties of the reduced-order systems.
These types of results are usually valid when the perturbation
parameter ε is sufficiently small.

Letting ε “ 0, (5a) becomes dx{dτ “ 0 which implies that
the slow variable x is fixed, i.e. xpτq “ x0, @τ ě 0. Then the
boundary-layer system is obtained by setting ε “ 0 in (5b) as

dzb

dτ
“ gpx, zb, 0q, zbp0q “ z0, (6)

where zbpτq denotes the state of the boundary-layer system and
xpτq “ x0 is treated as a fixed parameter.

Unlike the classical singular perturbation problem, we as-
sume the solutions to the boundary-layer system, denoted by
φbpτ, x, z0q, or by φbpτq for the ease of notation, do not neces-
sarily converge to a unique equilibrium, but may converge to a
bounded set. For example, the solutions to the boundary-layer
system may converge to a set of limit cycles parameterized by
the slow variable x. We denote this set throughout the paper
by Hx where the sub-script x is used to highlight the fact that
Hx is, in general, parameterized by x. We formally state this
assumption and some other assumptions on the system model
below. But we first define an auxiliary signal ξεptq which will
be used later in the proof of Theorem 1 and the definition of
the signals ∆lptq and δlptq in (24) and (25), and has properties
which are given below in Assumption 1, item 2.

Denote the solution of (4) by
`

xεptq, zεptq
˘

where the sub-
script ε shows the dependence of the solution on ε. The signal
ξεptq is defined for t P rtl, tl`1s as

ξεptq :“ ξεptlq `
ż t

tl
f pξεptlq, yεpsq, 0qds, (7)

where ξεp0q “ x0 and yεptq : rtl, tl`1s Ñ Rm is the unique
solution to

ε 9yptq “ gpξεptlq, yptq, 0q, yptlq “ zεptlq. (8)

Note that ξεptq is a continuous-time signal, however yεptq is
piecewise continuous as its value at time instants tl changes to
zεptlq. More information on how the time instants tl are chosen
will be given in Section 3.1.

Assumption 1. There exist ε1 ą 0 and compact sets B
sRp0q Ă

Rn and sM Ă Rm such that
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1. f px, z, εq and gpx, z, εq are Lipschitz on B
sRp0qˆ sMˆr0, ε1s.

2. For any given T ą 0 and for all t P r0,T s, there exist
initial condition sets BRp0q Ă B

sRp0q Ă Rn and M Ă
sM Ă Rm such that the solutions to (4) and (7) satisfy
xεptq, ξεptq P B

sRp0q and zεptq P sM.

3. For any given x P BRp0q and any initial condition z0 P M,
a bounded set Hx to which the solutions of the boundary-
layer system (6) converge exists and satisfies Hx Ă sM.

4. For all x1, x2 P B
sRp0q, there exists a constant LH ą 0 such

that

dHpHx1 ,Hx2q ď LH}x1 ´ x2}. (9)

Assumption 2 (Boundary-layer solutions). The solutions of
(6), denoted by φbpτ, x, z0q, converge locally exponentially fast
to Hx stated in Assumption 1. More precisely, there exist con-
stants ry ą 0 and βy ą 0 and a forward invariant set M, stated
in Assumption 1, with respect to (6) such that for all x P Rn and
all initial values z0 P M,

d
`

φbpτ, x, z0q,Hx
˘

ď rye´βyτdpz0,Hxq. (10)

The above assumption will be used to guarantee the existence
of set-valued averages and also in the closeness of solutions and
stability analysis. We define the following set-valued averages
which depend on the forward invariant set M Ă Rm.

Definition 1 (Set-valued average [20]). For T ą 0 and x P Rn,
the finite-time average FT pxq is defined as

FT pxq “ conv

˜

ď

z0PM

"

1
T

ż T

0
f
`

x, φbps, x, z0q, 0
˘

ds
*

¸

, (11)

where x is treated as a parameter and convpS q denotes the
closed convex hull of a set S .

Proposition 1 ([20, Proposition 2.4.]). Under the Lipschitz
condition of f and g in Assumption 1 and the forward-
invariance property of M in Assumption 2, for any x P Rn,
there is a convex compact set Favpxq Ă Rn with

dH
`

FT pxq, Favpxq
˘

Ñ 0, as T Ñ8. (12)

Furthermore, the set-valued mapping Favp¨q takes nonvoid,
compact, convex values and is upper semi-continuous.

Remark 1. To define the reduced average system, it is not re-
quired to know the set Hx. The structure of the fast dynamics
is also not directly employed in the definition of FT and Fav,
namely, the set-valued maps FT and Fav are stated in terms of
the integrals of the fast dynamics mapped by the function f .

Remark 2. A condition for the existence of the set-valued map
Favpxq is given in Proposition 1. The set-valued map Fav is de-
fined via the convergence of the integrals in Definition 1; how-
ever, it can also be obtained via averaging the slow subsystem
over invariant measures from the limit occupational measures
set constructed for the boundary-layer system (6). The reader
is referred to [29–31] for more information.

The reduced average system (or what is called the reduced
system in the rest of the paper) is defined by the following dif-
ferential inclusion

9xav P Favpxavq, xavp0q “ x0. (13)

We make the following assumptions on the set valued mapping
Fav.

Assumption 3. There is a function γpT , x, zq with
limTÑ8 γpT , x, zq “ 0 such that

dH
`

FT pxq, Favpxq
˘

ď γpT , x, zq (14)

for all x P B
sRp0q, z P sM and T ą 0.

Remark 3. Since B
sRp0q and sM are bounded sets, there exists a

function sγpT q, with limTÑ8 sγpT q “ 0, such that γpT , x, zq ď
sγpT q @x P B

sRp0q, z P sM. Therefor, (14) can be written as

dH
`

FT pxq, Favpxq
˘

ď sγpT q. (15)

Assumption 4 (Lipschitz continuity of Fav). The set-valued
mapping Fav is Lipschitz on BR̂p0q for some R̂ ą R̄. 1

The assumptions in this paper are generally standard in sin-
gular perturbation literature. As stated earlier, the exponential
stability assumptions are used to establish the main result of the
paper. While Assumption 2 is stronger than asymptotic stability
assumptions considered in [25], we obtain stronger results than
asymptotic stability ones. Unlike the classical singular pertur-
bation results, the boundary-layer solutions are assumed here
to converge to a family of bounded sets. Hence, we consid-
ered Assumption 3 and 4 which are similar to the assumptions
in [20, 25].

Throughout the paper, we denote L ą 0 as the Lipschitz
constant of f px, z, εq and gpx, z, εq on B

sRp0q ˆ sM ˆ r0, ε1s and
denote Lav ą 0 as the Lipschitz constant of Favpxq on BR̂p0q.
We also define the bound P such that

} f px, z, εq} ď P, }gpx, z, εq} ď P, (16)

for all x P B
sRp0q, z P sM, ε P r0, ε1s and all t P r0,T s. The

existence of P can be concluded from Assumption 1.

3. Main result

3.1. Closeness of solutions over a finite time interval
In this subsection, we analyze the closeness of solutions of

the singularly perturbed system and the reduced and boundary-
layer systems over a finite time interval. This result is indepen-
dent of any stability properties of the reduced system (13).

1[32, Definition 4, Chapter 1]: A set-valued map Fav from a metric space
X to a metric space Y is locally Lipschitz if for any x0 P X, there exist a
neighborhood Npx0qĂX and a Lipschitz constant Lav ě 0 such that

@x, x1 P Npx0q, Favpxq Ă BpFavpx1q, Lav}x´ x1}q

where BpK, αq :“ tx P X | dpx,Kq ď αu . Fav is Lipshitz with Lipschiz
constant Lav if

@x, x1 P X, Favpxq Ă BpFavpx1q, Lav}x´ x1}q.
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We aim to investigate the system on a finite time horizon t P
rkT, pk`1qT s where k P Z, T ą 0 and t0 :“ kT . We divide this
time interval into sub intervals of the form rtl, tl`1s which all
have the same length εS ε, except possibly the last interval with
length smaller than or equal to the length εS ε, and the index l
is an element of the index set Iε “ t0, 1, ¨ ¨ ¨ , tT{εS εuu, where
t¨u denotes the floor function. The last time in the sequence is
equal to pk ` 1qT .

In order to state the main result of this subsection, we first
highlight that the set Hx, which is parameterized by x, is the
set to which the solutions of the boundary-layer system con-
verge (note that x is fixed for the boundary-layer system). Given
a solution of the singularly perturbed system pxεptq, zεptqq for
t ě 0, we use Hxεptq to refer to time-varying sets where, at
each time instant t “ t˚, the set Hxεpt˚q is the set to which
the solution of the boundary-layer system with the fixed value
of x “ xεpt˚q converges.

Theorem 1 (closeness of solutions over a finite time). For any
given finite T ą 0, consider a K8 function qpS q given by

qpS q :“ S eT Lp1`S LeS Lq (17)

and define the map εÑ S ε as 2

S ε “ q´1pε´1{4q. (18)

Let Assumptions 1-4 hold. Then there exists a sufficiently small
ε̂ ą 0 such that for for every px0, z0, εq P BRp0q ˆ M ˆ p0, ε̂s,

(i) given the solution pxεptq, zεptqq of (4), there exists a solu-
tion xavptq of the differential inclusion (13), such that for
t P r0,T s

}xεptq ´ xavptq} ď Kpεq, (19)

where Kpεq : Rą0 Ñ Rą0 satisfies limεÑ0 Kpεq “ 0.
Furthermore,

dpzεptq,Hxεptqq ď rye´pβy´δyqt{εdpz0,Hx0q ` Fpεq (20)

where Fpεq : Rą0 Ñ Rą0 satisfies limεÑ0 Fpεq “ 0.

(ii) if there exist ε˚ P p0, ε̂s, r1 ą 0 and α1 : α1 ą 2 such that
for S ε ě S ε˚ , the function sγpS εq satisfies

sγpS εq ď r1e´α1T L
`

1`S εLeS εL
˘

, (21)

then

}xεptq ´ xavptq} “ Op
?
εq (22)

holds for ε P p0, ε˚s, uniformly on t P r0,T s. Moreover,
given any ta : ta P p0,T q, there exists ε˚˚ ď ε˚ such that

ˇ

ˇ

ˇ
dpzεptq,Hxεptqq ´ dpφbpt{εq,Hx0q

ˇ

ˇ

ˇ
“ Op

?
εq (23)

holds uniformly on t P rta,T s when ε P p0, ε˚˚s.

2Note that qpS q is invertible as it is a K8 function. Combining (17) and
(18), we obtain that ε´1{4 “ S εeT Lp1`S εLeS εLq. This definition is inspired
from [19] and is slightly different. The map εÑ S ε cannot be defined similarly
to [19] as the definition in [19] does not guarantee the order of magnitude of
error is Op

?
εq.

To prove Theorem 1, we need to define some auxiliary sig-
nals ∆lptq, dlptq and Dlptq. We define these signals for t P
rtl, tl`1s as

∆lptq :“ max
tlďsďt

}xεpsq ´ ξεpsq}, (24)

dlptq :“ max
tlďsďt

}xεpsq ´ ξεptlq}, (25)

Dlptq :“ max
tlďsďt

}zεpsq ´ yεpsq}. (26)

We state the following lemmas which gives the limit value of
S ε and the upper bounds for ∆lptq and Dlptq over a finite time
interval. The idea for the lemma is taken from [19].

Lemma 1. For any given L ą 0 and T ą 0, the map ε Ñ S ε

defined in (18) has the following properties

lim
εÑ0

S ε “ 8, (27a)

lim
εÑ0

ε1{4S ε “ 0. (27b)

Proof. See the Appendix.

Lemma 2. Consider S ε defined in (18) and suppose Assump-
tion 1 holds for px0, z0, εq P BRp0q ˆ M ˆ p0, ε1s. Then for
t P rkT, pk ` 1qT s where k P Z, the signals ∆lptq and Dlptq,
l P Iε, defined respectively in (24) and (26) are upper bounded
by ∆̄pεq and D̄pεq defined as

∆̄pεq :“
´

2εS εP` T LpεS εP` εq
`

1` S εLeS εL˘
¯

ˆ eT L
`

1`S εLeS εL
˘

, (28)

D̄pεq :“ S εL
`

∆̄pεq ` εS εP` ε
˘

eS εL. (29)

Furthermore, ∆̄pεq and D̄pεq are of order Op
?
εq and therefore

converge to zero as εÑ 0.

Proof. See the Appendix.

We are now ready to state the proof of Theorem 1.

Proof of Theorem 1. (i) By Assumption 3, we obtain for all l P
Iε and for any given initial conditions x0 P BRp0q and z0 P M
that

d

˜

1
S ε

ż τ“tl`1{ε

τ“tl{ε
f
`

ξεptlq, yεpετq, 0
˘

dτ , Favpξεptlqq

¸

ď sγpS εq.

(30)

Note that φbpτq is a solution in the fast-time domain while yεptq
is the solution in the slow-time domain. So by a change of
variable s “ ετ, the inequality (30) can be written as

d
ˆ

1
εS ε

ż s“tl`1

s“tl
f
`

ξεptlq, yεpsq, 0
˘

ds , Favpξεptlqq
˙

ď sγpS εq.

(31)

Then we choose a vl P Favpξεptlqq for l P Iε and obtain that
›

›

›

›

1
εS ε

ż tl`1

tl
f
`

ξεptlq, yεpsq, 0
˘

ds´ vl

›

›

›

›

ď sγpS εq. (32)

4



Define a new family pηlqlPIε Ă Rn by

ηl`1 :“ ηl ` εS εvl, η0 “ x0, (33)

and define a piecewise interpolating curve by

ηεptq :“ ηl ` vlpt ´ tlq (34)

for t P rtl, tl`1s and l P Iε. Using (7) and (33) we have

}ξεptl`1q ´ ηl`1} ď }ξεptlq ´ ηl}

`

›

›

›

›

ż tl`1

tl
f
`

ξεptlq, yεpsq, 0
˘

ds´ εS εvl

›

›

›

›

(32)
ùùñ ď }ξεptlq ´ ηl} ` εS εsγpS εq, (35)

and we obtain by induction that

}ξεptlq ´ ηl} ď TsγpS εq, (36)

for all l P Iε.
Inequality (36) implies that, for a sufficiently small ε̂,

the signal ηεptq remains in BR̂p0q and therefore we can
use the Lipschitz property of Fav in Assumption 1. Given
ηεptq defined in (34), we can calculate an upper bound for
d
`

9ηεptq, Favpηεptqq
˘

as follows

d
`

9ηεptq, Favpηεptqq
˘

ď d
`

vl, Favpξεptlqq
˘

` dH
`

Favpξεptlqq, Favpηlq
˘

` dH
`

Favpηlq, Favpηεptqq
˘

ď LavTsγpS εq ` LavεS εP, (37)

where we use the fact that dpvl, Fav
`

ξεptlqq
˘

“ 0 for vl P

Favpξεptlqq. Then according to Filippov theorem [33, Theorem
11.3.9], there exists a solution xavptq : r0,T s Ñ Rn to the dif-
ferential inclusion (13) such that

}xavptq ´ ηεptq} ď eLavT
´

}x0 ´ η0}

`

ż T

0
d
`

9ηεpsq, Favpηεpsqq
˘

e´Lav sds
¯

(33),(37)
ùùùùñ ď eLavT p1´ e´LavT q

Lav

`

LavTsγpS εq ` LavεS εP
˘

ď TeLavT
´

LavTsγpS εq ` LavεS εP
¯

, (38)

where we used the fact that 1 ´ e´aT ď aT for all a ě 0 and
T ě 0. We now estimate an upper bound for }xεptq ´ xavptq}.

}xεptq ´ xavptq} ď }xεptq ´ ξεptq} ` }ξεptq ´ ξεptlq}

` }ξεptlq ´ ηl} ` }ηl ´ ηεptq}

` }ηεptq ´ xavptq}. (39)

From (24) and Lemma 2, for any l in the index set Iε, the first
term on the right hand side of (39) is less than or equal to ∆̄pεq.
The rest of the terms can also be upper bounded, respectively
using (7), (36), (34) and (38) as

}xεptq ´ xavptq} ď Kpεq, (40)

where Kpεq is

Kpεq :“ ∆̄pεq ` εS εP` TsγpS εq ` εS εvl

` TeLavT
´

LavTsγpS εq ` LavεS εP
¯

. (41)

Finally, we conclude from Lemma 1 and Lemma 2 that
limεÑ0 Kpεq “ 0.

We now study the behavior of the solution of the fast state,
zεptq, and calculate its distance to the set Hxεptq.

Define ȳεptq as the solution to the following system for t P
rtl, tl`1s,

ε 9̄yptq “ g
`

xεptlq, ȳptq, 0
˘

; ȳptlq “ zεptlq. (42)

Using the triangle inequality, we obtain for t P rtl, tl`1s that

dpzεptq,Hxεptqq ď dpyεptq,Hxεptqq ` }zεptq ´ yεptq}

ď }yεptq ´ ȳεptq} ` dpȳεptq,Hxεptqq

` }zεptq ´ yεptq}

ď }yεptq ´ ȳεptq} ` dpȳεptq,Hxεptlqq

` dHpHxεptlq,Hxεptqq ` }zεptq ´ yεptq}. (43)

We now find an upper-bound for the terms on the right-hand-
side of the last inequality in (43).

}yεptq ´ ȳεptq}

(8),(42)
ùùùùñ ď

1
ε

›

›

›

›

ż t

tl

´

gpξεptlq, yεpsq, 0q
¯

´ gpxεptlq, ȳεpsq, 0q
¯

ds
›

›

›

›

ď
L
ε

ż t

tl

´

}ξεptlq ´ xεptlq} ` }yεpsq ´ ȳεpsq}
¯

ds

(25)
ùùñ ď S εL dlptlq `

L
ε

ż t

tl
}yεpsq ´ ȳεpsq}ds

ď S εL dlptlq eS εL, (44)

where the last inequality is obtained by applying the Gronwall-
Bellman inequality. To upper-bound the second term on the
right-hand-side of (43), we use Assumption 2. Note that ȳεptq
is the solution to (42) and is different from φbpt{εq which is the
solution to the boundary-layer system (6). Indeed, the signal
ȳεptq is defined such that its value at the time instant tl, l P Iε is
equal to zεptlq and changes according to (42) over the interval
rtl, tl`1s. However, over this time interval, (42) can be repre-
sented as a boundary-layer model of the form (6) with xεptlq as
the frozen parameter and possibly with a different initial con-
dition. Hence, from Assumption 2 3, the second term on the
right-hand-side of (43) can be bounded as

dpȳεptq,Hxεptlqq ď rye´βyt{εdpȳεptlq,Hxεptlqq

(42)
“ rye´βyt{εdpzεptlq,Hxεptlqq, (45)

for t P rtl, tl`1s. The third term can also be bounded using (9)
in Assumption 1 as

dHpHxεptlq,Hxεptqq ď LH}xεptlq ´ xεptq}

3Note that τ “ t{ε as we are writing the equations in slow-time domain.
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ď LH

ż t

tl
} f pxεpsq, zεpsq, ε

˘

}ds

ď εS εLH P. (46)

where we assumed a bound P for the norm of f as explained in
(16). Finally, the last term is bounded using (26) and Lemma 2,

}zεptq ´ yεptq} ď D̄pεq. (47)

So (43) can be written as

dpzεptq,Hxεptqq ď S εL dlptlq eS εL ` rye´βyt{εdpzεptlq,Hxεptlqq

` εS εLH P` D̄pεq. (48)

Define D̂pεq as

D̂pεq :“ S εL dlptlq eS εL ` εS εLH P` D̄pεq. (49)

Then for t “ tl`1, (48) can be written as that

dpzεptl`1q,Hxεptl`1qq ď rye´βyS εdpzεptlq,Hxεptlqq ` D̂pεq. (50)

Choose δy P p0, βyq and sε ą 0 such that4

e´δyS
sε ď

1
ry
. (51)

Then

dpzεptl`1q,Hxεptl`1qq ď e´pβy´δyqS sεdpzεptlq,Hxεptlqq ` D̂pεq,
(52)

and we obtain by induction for all l P Iε and all ε P

p0,mintε̂,sεus that

dpzεptl`1q,Hxεptl`1qq ď e´pl`1qpβy´δyqS εdpz0,Hx0q

` D̂pεq
l
ÿ

k“0

e´kpβy´δyqS ε

“ e´pl`1qpβy´δyqS εdpz0,Hx0q

` D̂pεq
1´ e´pβy´δyqpl`1qS ε

1´ e´pβy´δyqS ε
, (53)

and also obtain for t P rtl, tl`1s that

dpzεptq,Hxεptqq ď rye´βyS εdpzεptlq,Hxεptlqq ` D̂pεq
(53)
ùùñ ď rye´βyS εe´lpβy´δyqS εdpz0,Hx0q

` D̂pεqrye´βyS ε
1´ e´pβy´δyqlS ε

1´ e´pβy´δyqS ε
` D̂pεq

ď rye´pβy´δyqt{εdpz0,Hx0q

` D̂pεqrye´βyS ε
1´ e´pβy´δyqlS ε

1´ e´pβy´δyqS ε
` D̂pεq,

(54)

4Note that there always exist some δy and sε that satisfy (51) as according to
(27a), lim

sεÑ0S
sε “ 0 and thus for any ry, one could choose sε sufficiently small

such that e´δyS
sε is less than or equal to 1{ry.

where we used l “ tl{pεS εq and tl ď t ď tl`1. Define Fpεq as

Fpεq :“ D̂pεq
ˆ

1`
rye´βyS ε

1´ e´pβy´δyqS ε

˙

. (55)

Then we obtain that

dpzεptq,Hxεptqq ď rye´pβy´δyqt{εdpz0,Hx0q ` Fpεq, (56)

where limεÑ0 Fpεq “ 0. The proof of the first part of the theo-
rem is complete.

(ii) In order to prove the equality (22), we show that each
term of Kpεq, defined by (41), is of order Op

?
εq. Since P,

vl, Lav and T are bounded, it suffices to show ∆̄pεq and sγpS εq

are of order Op
?
εq. From Lemma 2, ∆̄pεq is of order Op

?
εq.

Furthermore, we obtain using Lemma 1 that

lim
εÑ0

sγpS εq
?
ε

(18)
“ lim

εÑ0
sγpS εqS 2

εe
2T L

`

1`S εLeS εL
˘

(21)
ùùñ ď lim

εÑ0
S 2
εe
´pα1´2qT L

`

1`S εLeS εL
˘

“ 0, (57)

which means sγpS εq is of order Op
?
εq. Hence, equality (22)

holds uniformly for t P r0,T s and for all ε P p0, ε˚s.
In order to show the equality (23), we have from (10) and

(56) that
ˇ

ˇ

ˇ
dpzεptq,Hxεptqq ´ dpφbpt{εq,Hx0q

ˇ

ˇ

ˇ

ď rye´pβy´δyqt{εdpz0,Hx0q ` Fpεq ` rye´βyt{εdpz0,Hx0q

ď 2rye´pβy´δyqt{εdpz0,Hx0q ` Fpεq. (58)

For any given ta P p0,T q, choose ε˚˚ such that5

pβy ´ δyqta ě ε˚˚ lnp
1

?
ε˚˚

q. (59)

Then for all ε P r0, ε˚˚s, we have

e´pβy´δyqt{ε ď e´pβy´δyqta{ε ď
?
ε, (60)

which means the first term of (58) is of order Op
?
εq. Fur-

thermore, the term Fpεq, defined in (55), is of order Op
?
εq as

D̂pεq “ Op
?
εq (the proof is similar to the proof of Lemma 2)

and

lim
εÑ0

ˆ

1`
rye´βyS ε

1´ e´pβy´δyqS ε

˙

“ 1 ă 8. (61)

This completes the proof.

3.2. Practical exponential stability
In this subsection, we study the stability of (4) over the infi-

nite time interval. To this end, we require an additional stability
condition on the reduced system which is stated below.

5It is always possible to choose an ε˚˚ for any given ta ą 0 as
limε˚˚Ñ0 ε

˚˚ lnp 1?
ε˚˚

q “ 0.
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Assumption 5. The reduced system (13) has a unique equilib-
rium point at the origin which is uniformly exponentially stable
with a domain of attraction containing BRp0q. In other words,
there are constants rx ą 0 and βx ą 0 such that for all initial
conditions x0 P BRp0q, the trajectories of (13) satisfy

}xavptq} ď rxe´βxt}x0}. (62)

We are interested in conditions under which the exponential
stability properties of the boundary-layer system (6) and the
reduced system (13), stated respectively in Assumption 2 and
Assumption 5, guarantee practical exponential stability of (4).
We propose the following theorem.

Theorem 2 (Practical exponential stability). Adopt the hypoth-
esis of Theorem 1 along with Assumption 5. Then, for each
δ ą 0, there exists an ε˚ : 0 ă ε˚ ď ε̂ such that for ε P p0, ε˚s
and for all initial conditions px0, z0q in BRp0q ˆ M,

}xεptq} ď r1e´β1t}x0} ` δ,

dpzεptq,Hxεptqq ď r2e´β2t{εdpz0,Hx0q ` δ, (63)

for all t ě 0, where
`

xεptq, zεptq
˘

denotes the solution of (4).

Proof. By virtue of Assumption 5, there exist positive constants
rx and βx such that }xavptq} ď rxe´βxt}x0}. Let δx be δx P p0, βxq

and choose T such that 6

e´δxT ď
1
rx
. (64)

By applying Theorem 1, we have }xεptq ´ xavptq} ď Kpεq for
all t P r0,T s. Hence, we can upper bound }xεptq} as

}xεptq} ď }xεptq ´ xavptq} ` }xavptq}

ď rxe´βxt}x0} ` Kpεq, @t P r0,T s. (65)

Using (64) and (65), we have

}xpT q} ď e´pβx´δxqT }x0} ` Kpεq. (66)

Since x0 is assumed to be in BRp0q (i.e. }x0} ď R), we obtain
from (66) that xpT q is also in BRp0q if

e´pβx´δxqT R` Kpεq ď R. (67)

We can choose εx as the maximum value that satisfies

Kpεxq ď R
´

1´ e´pβx´δxqT
¯

. (68)

Then for all ε P r0, εxs, (67) holds and therefore xpT q is in
BRp0q. We can now consider xεpkT q, k P N, as a new initial
condition for the system for t P rkT, pk ` 1qT s and obtain from
(66) that

}xε
`

pk ` 1qT
˘

} ď e´pβx´δxqT }xεpkT q} ` Kpεq. (69)

6Note there always exists T that satisfies (64) which might be large if rx is
large or if δx is too small.

Then we obtain by induction that

}xε
`

pk ` 1qT
˘

} ď e´pβx´δxqpk`1qT }x0}

` Kpεq
k
ÿ

`“0

e´pβx´δxq`T

“ e´pβx´δxqpk`1qT }x0}

` Kpεq
1´ e´pβx´δxqpk`1qT

1´ e´pβx´δxqT
, (70)

and for any t P rkT, pk ` 1qT s, k P Z, we have

}xεptq} ď rxe´βxpt´kTq}xεpkT q} ` Kpεq

ď rxe´βxpt´kTqe´pβx´δxqkT }x0}

` rxe´βxpt´kTqKpεq
1´ e´pβx´δxqkT

1´ e´pβx´δxqT
` Kpεq

ď rxe´pβxt´δxkTq}x0}

` Kpεq
ˆ

1` rxe´βxpt´kTq 1´ e´pβx´δxqkT

1´ e´pβx´δxqT

˙

. (71)

Since kT ď t ď pk`1qT we have e´pβxt´δxkTq ď e´pβx´δxqt and
therefore (71) can be written as

}xεptq} ď rxe´pβx´δxqt}x0}

` Kpεq
ˆ

1` rxe´βxpt´kTq 1´ e´pβx´δxqkT

1´ e´pβx´δxqT

˙

. (72)

Define K̄pεq as

K̄pεq :“ Kpεq
ˆ

1`
rx

1´ e´pβx´δxqT

˙

. (73)

Then we obtain for all t ě 0 that

}xεptq} ď rxe´pβx´δxqt}x0} ` K̄pεq, (74)

where limεÑ0 K̄pεq “ 0.
We now study the behavior of the fast state, zεptq. Using (53)

in the proof of Theorem 1, we obtain for t “ T (or l ` 1 “
T{εS ε) that

dpzεpT q,HxεpTqq ď e´pβy´δyqT{εdpz0,Hx0q

` D̂pεq
1´ e´pβy´δyqT{ε

1´ e´pβy´δyqS ε
. (75)

Similarly to the calculations for the slow state, we first choose
εz such that for all ε P r0, εzs, the signal zεpT q does not leave
the set M. To this end, we use (75) and the fact 7 that there
exists Rz ą 0 such that dpz0,Hx0q ď Rz, and choose εz as the
largest value that satisfies

D̂pεzq
1´ e´pβy´δyqT{εz

1´ e´pβy´δyqS εz
ď Rz

´

1´ e´pβy´δyqT{εz

¯

. (76)

7It is assumed that the initial condition z0 and the set Hx0 are in the compact
sets M and M̄, respectively. Since M Ă M̄, the distance dpz0,Hx0 q is bounded.
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Then dpzεpT q,HxεpTqq ď Rz and we can consider z
`

pk ´ 1qT
˘

as an initial condition for the system on the time interval t P
rpk ´ 1qT, kT s, k P N, and obtain by induction that

dpzεpkT q,HxεpkTqq ď e´pβy´δyqkT{εdpz0,Hx0q

` D̂pεq
1´ e´pβy´δyqkT{ε

1´ e´pβy´δyqS ε
. (77)

Repeating the derivation that led to (54), it can be shown for
t P rkT ` tl, kT ` tl`1s, k P Z, that

dpzεptq,Hxεptqq ď rye´βyS εdpzεpkT ` tlq,HxεpkT`tlqq ` D̂pεq

ď rye´βyS εe´lpβy´δyqS εdpzεpkT q,HxεpkTqq

` D̂pεqrye´βyS ε
1´ e´pβy´δyqlS ε

1´ e´pβy´δyqS ε
` D̂pεq

(77)
ùùñ ď rye´βyS εe´pβy´δyqplεS ε`kTq{εdpz0,Hx0q

` D̂pεqrye´βyS εe´lpβy´δyqS ε
1´ e´pβy´δyqkT{ε

1´ e´pβy´δyqS ε

` D̂pεqrye´βyS ε
1´ e´pβy´δyqlS ε

1´ e´pβy´δyqS ε
` D̂pεq.

(78)

Define F̄pεq as

F̄pεq :“ D̂pεq
"

1`
2rye´βyS ε

1´ e´pβy´δyqS ε

*

, (79)

and note that for kT ` tl ď t ď kT ` tl`1 (i.e. kT ` lεS ε ď

t ď kT ` pl ` 1qεS ε), we have eδypkT`lεS εq{ε ď eδyt{ε and
e´βypkT`pl`1qεS εq{ε ď e´βyt{ε. So we obtain for t ě 0 that

dpzεptq,Hxεptqq ď rye´pβy´δyqt{εdpz0,Hx0q ` F̄pεq, (80)

where limεÑ0 F̄pεq “ 0. Given δ, choose ε˚ P

p0,mintε1, ε̂,sε, εx, εzus, where sε is defined in (51), such that
K̄pε˚q ď δ and F̄pε˚q ď δ. Note that according to Theo-
rem 1 and the definition of D̂pεq given in (49), it is possible
to find such an ε˚ as D̂pεq and ∆̄pεq converge to zero as εÑ 0.
Hence, the proof is complete and the singularly perturbed sys-
tem (4) is practically exponentially stable with r1 “ rx, r2 “ ry,
β1 “ βx ´ δx and β2 “ βy ´ δy.

Remark 4. Grammel has proposed an exponential stability re-
sult for delayed singularly perturbed systems in [20]. Com-
pared to [20], we have relaxed the assumption which required
that the origin is a uniform equilibrium point of the slow system
(i.e. f p0, z, εq “ 0 for all z P M) [20, Assumption 2.5]. We
further studied the behavior of the fast variable z and showed
that the closeness of solution error is of order Op

?
εq.

4. Simulations

In this section, we present a numerical example in which the
solutions of the boundary-layer system converge to a limit cy-
cle. Consider the following system

9x “ ´x´
´

`

z1 ` sinpxq
˘2
` z2

2

¯

px` εq

ε9z1 “ z2 ` εx (81)
ε9z2 “ ´z1 ´ sinpxq.

By writing (81) in τ-domain and letting ε “ 0, the boundary-
layer system can be written as

dx
dτ
“ 0 (82a)

dz1

dτ
“ z2 (82b)

dz2

dτ
“ ´z1 ´ sinpxq. (82c)

The solution to (82) from initial conditions z1p0q and z2p0q is
ϕbpτq “ rz1pτq, z2pτqs

T where

z1pτq “ c1 cospτq ` c2 sinpτq ´ sinpxq
z2pτq “ ´c1 sinpτq ` c2 cospτq,

(83)

in which x is constant according to (82a) and c1 and c2 are de-
fined as

c1 “ z1p0q ` sinpxq
c2 “ z2p0q.

(84)

Using (83) and (84), the set Hx to which the solutions of the
boundary-layer system converge is

Hx “

!

z1, z2 :
`

z1 ` sinpxq
˘2
` z2

2 “ c2
1 ` c2

2

“
`

z1p0q ` sinpxq
˘2
` z2

2p0q
)

. (85)

Note that Hx is parameterized by both x and the initial condi-
tions of the system. Indeed, Hx is a circle in the z-plane whose
radius and center depend on x, z1p0q and z2p0q.

The distance between the boundary-layer solutions and the
circles comprising the set Hx, centered at p´ sinpxq, 0q with ra-
dius c2

1 ` c2
2 “

`

z1p0q ` sinpxq
˘2
` z2

2p0q, can be obtained as

dpϕbpτq,Hxq “

b

`

z1pτq ` sinpxq
˘2
` z2

2pτq ´
b

c2
1 ` c2

2

(83),(84)
“ 0. (86)

So Assumption 2 holds for any compact set M.
We now define the reduced system and check the validity of

the assumptions on this system. From Definition 1, FT pxq can
be written as

FT pxq “ conv

˜

ď

z0PM

"

1
T

ż T

0
f
`

x, φbps, x, z0q, 0
˘

ds
*

¸

“ ´x

˜

1` conv

˜

ď

z0PM

"

1
T

ż T

0
pc2

1 ` c2
2qds

*

¸¸

“ ´x

˜

1` conv

˜

ď

z0PM

 

c2
1 ` c2

2

(

¸¸

. (87)

Choose Favpxq as

Favpxq “ FT pxq. (88)
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Then Assumption 3 holds with γ “ 0. Also Assumptions 4 and
5 hold as Favpxq is Lipschitz and the reduced average system
(13) with Favpxq defined in (88) is exponentially stable.

It is straightforward to choose compact sets BRp0q, B
sRp0q,

M, sM and a positive constant ε1 such that Assumption 1 holds.
For example, let ε1 “ 0.1, R “ 1 and M “ tz P R2 : 0.5 ď
}z} ď 1u. Then for any given T ą 0 and for all t P r0,T s,
|xεptq| and |ξεptq| are in B

sRp0q with sR “ 1, and zεptq is in
sM :“ tz P R2 : 0.5 ď }z} ď 3u. Therefore the second con-

dition of Assumption 1 is satisfied. The rest of conditions in
Assumption 1 also hold for these sets.

So all conditions of Theorem 2 hold and we conclude
that }xεptq} and d

`

zεptq,Hxεptq
˘

converge exponentially fast to
neighborhoods of zero, and the size of these neighborhoods
shrinks to zero as ε Ñ 0. This is shown in Figure 1 and Fig-
ure 2 where the trajectories of (81) are depicted for ε “ 0.1 and
ε “ 0.01. The set Hxεptq in Figure 2 is

Hxεptq “

!

z1, z2 :
`

z1 ` sinpxεptqq
˘2
` z2

2

“
`

z1p0q ` sinpx0q
˘2
` z2

2p0q
)

. (89)

0 1 2 3 4 5

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1: The slow part of the solution of the full-order system (4) for different
values of ε.

0 1 2 3 4 5

-0.05

0

0.05

0.1

Figure 2: The distance between the the fast part of the solution of the full-order
system and the set Hxε ptq for different values of ε.

5. Conclusion

In this paper, we have studied the behavior of a general sin-
gularly perturbed system with solutions of the boundary-layer
system converging exponentially fast to a bounded set. We used
averaging to eliminate the fast oscillations of the fast state, and
presented results on the behavior of the singularly perturbed
system based on the behavior of the average and the boundary-
layer system.

6. Appendix

Proof of Lemma 1
Consider the definition of S ε in (18) and note that as ε goes

to zero, S εe
T L
`

1`S εLeS εL
˘

goes to infinity which implies that S ε

goes to infinity. Therefore limεÑ0 S ε “ 8.
To show that limεÑ0 ε

1{4S ε “ 0, observe that

lim
εÑ0

ε1{4S ε
(18)
“ lim

εÑ0
e´T L

`

1`S εLeS εL
˘

. (90)

Since limεÑ0 S ε “ 8, we obtain that limεÑ0 e´T L
`

1`S εLeS εL
˘

“ 0.

Proof of Lemma 2.
Consider ∆lptq and dlptq defined in (24) and (25) and note

there is a bound P on the norm of f (see (16)). Then for t P
rtl, tl`1s, we have

dlptq “ max
tlďsďt

}xεpsq ´ ξεptlq}

“ max
tlďsďt

}xεpsq ´ ξεpsq ` ξεpsq ´ ξεptlq}

ď max
tlďsďt

}xεpsq ´ ξεpsq} ` max
tlďsďt

}ξεpsq ´ ξεptlq}

ď ∆lptq ` max
tlďsďt

ż t

tl
} f pξεptlq, yεpsq, 0q}ds

ď ∆lptq ` εS εP. (91)

From (4b) and (8) we have

}zεptq ´ yεptq} “

1
ε

›

›

›

›

ż t

tl

´

gpxεpsq, zεpsq, εq ´ gpξεptlq, yεpsq, 0q
¯

ds
›

›

›

›

.

Then using the Lipschitz property of g in Assumption 1, we
obtain

Dlptq “ max
tlďsďt

1
ε

›

›

›

›

ż s

tl

´

gpxεpsq, zεpsq, εq ´ gpξεptlq, yεpsq, 0q
¯

ds
›

›

›

›

ď max
tlďsďt

L
ε

ż s

tl

´

}xεpsq ´ ξεptlq} ` }zεpsq ´ yεpsq} ` ε
¯

ds

(25),(26)
ùùùùñ ď S εL

`

dlptq ` ε
˘

`
L
ε

ż t

tl
Dlpsqds, (92)

and by applying the Gronwall-Bellman inequality [12,
Lemma A.1] we have

Dlptq ď S εL
`

dlptq ` ε
˘

eS εL. (93)

9



Also from (4a) and (7) we have

max
tlďsďt

}xεpsq ´ ξεpsq} ď }xεptlq ´ ξεptlq}

` max
tlďsďt

›

›

›

›

›

ż s

tl

´

f
`

xεpsq, zεpsq, ε
˘

´ f
`

ξεptlq, yεpsq, 0
˘

¯

ds

›

›

›

›

›

(94)

and thus we obtain using the Lipschitz property of f in As-
sumption 1 and the Gronwall-Bellman inequality that

∆lptq ď ∆lptlq ` L
ż t

tl

`

dlpsq ` Dlpsq ` ε
˘

ds

(93)
ùùñ ď ∆lptlq ` L

ż t

tl

`

dlpsq ` ε
˘ `

1` S εLeS εL˘ ds

(91)
ùùñ ď ∆lptlq ` εS εL

`

εS εP` ε
˘`

1` S εLeS εL˘

` L
`

1` S εLeS εL˘
ż t

tl
∆lpsqds

Gronwall-Bellman
ùùùùùùùùùñ ď

´

∆lptlq ` εS εL
`

εS εP` ε
˘`

1` S εLeS εL˘
¯

eεS εLp1`S εLeS εLq. (95)

Specifically, for t “ tl`1 we have

∆lptl`1q ď

´

∆lptlq ` εS εLpεS εP` εq
`

1` S εLeS εL˘
¯

eεS εL
`

1`S εLeS εL
˘

. (96)

From the definition of ∆lptlq in (24), we have ∆lptlq ď ∆l´1ptlq
and therefore (96) can be written as

∆lptl`1q ď

´

∆l´1ptlq ` εS εLpεS εP` εq
`

1` S εLeS εL˘
¯

eεS εL
`

1`S εLeS εL
˘

. (97)

We can now find an expression for ∆lptl`1q using the initial
value ∆0pt1q which can be upper bounded as follows:

∆0pt1q “ max
0ďsďt1

}xεpsq ´ ξεpsq}

“ max
0ďsďt1

›

›

›

›

ż s

0

´

f
`

xεpsq, zεpsq, εq ´ f pξεptlq, yεpsq, 0
˘

¯

ds
›

›

›

›

ď 2εS εP, (98)

where we assumed a bound P for the norm of f as explained in
(16). So using (96) and (98), we obtain by induction that

∆lptq ď ∆lptl`1q ď ∆̄pεq, @l P Iε, (99)

where ∆̄pεq is defined as (28). Also from (91), (93) and (99),
we obtain that

Dlptq ď Dlptl`1q ď D̄pεq, @l P Iε (100)

with D̄pεq defined in (29).
To show that ∆̄pεq “ Op

?
εq, we split the right hand side of

(28) into the following three terms and show that they are all

Op
?
εq. We use (2) to check the order of magnitude of each of

these terms.

piq : lim
εÑ0

2εS εPeT L
`

1`S εLeS εL
˘

?
ε

(18)
“ lim

εÑ0
2ε1{4P “ 0, (101)

piiq : lim
εÑ0

1
?
ε

T LεS εP
`

1` S εLeS εL˘ eT L
`

1`S εLeS εL
˘

(18)
“ P lim

εÑ0

1
?
ε
εS ε ln

ˆ

1
ε1{4S ε

˙

1
ε1{4S ε

“ P lim
εÑ0

1
S ε
ε1{4S ε ln

ˆ

1
ε1{4S ε

˙

(27)
“ 0, (102)

where we used the fact that limxÑ0 x ln 1
x “ 0.

piiiq : lim
εÑ0

1
?
ε

T Lε
`

1` S εLeS εL˘ eT L
`

1`S εLeS εL
˘

(18)
“ lim

εÑ0

1
?
ε
ε ln

ˆ

1
ε1{4S ε

˙

1
ε1{4S ε

“ lim
εÑ0

1
pS εq

2 ε
1{4S ε ln

ˆ

1
ε1{4S ε

˙

(27)
“ 0. (103)

We now show that D̄pεq “ Op
?
εq. We obtain from (18) that

S εLeS εL “
1

T L
ln
ˆ

1
ε1{4S ε

˙

´ 1. (104)

Similarly to the above calculations for ∆̄pεq, it can be shown
using (104) that the term pεS εP` εqS εLeS εL in (29) is Op

?
εq.

We show below that S εLeS εL∆̄pεq “ Op
?
εq. Equation (104)

implies that S εLeS εL∆̄pεq “ 1
T L ln

´

1
ε1{4S ε

¯

∆̄pεq ´ ∆̄pεq. Given

(28), we split ln
´

1
ε1{4S ε

¯

∆̄pεq into the following three terms and

show they are Op
?
εq

piq : lim
εÑ0

1
?
ε

2 ln
ˆ

1
ε1{4S ε

˙

εS εPeT L
`

1`S εLeS εL
˘

(18)
“ 2P lim

εÑ0
ε1{4 ln

ˆ

1
ε1{4S ε

˙

“ 2P lim
εÑ0

1
S ε
ε1{4S ε ln

ˆ

1
ε1{4S ε

˙

(27)
“ 0. (105)

piiq : lim
εÑ0

1
?
ε

ln
ˆ

1
ε1{4S ε

˙

T LεS εP
`

1` S εLeS εL˘

eT L
`

1`S εLeS εL
˘

(18)
“ P lim

εÑ0

?
εS ε

ˆ

ln
ˆ

1
ε1{4S ε

˙˙2 1
ε1{4S ε

“ P lim
εÑ0

1
S ε
ε1{4S ε

ˆ

ln
ˆ

1
ε1{4S ε

˙˙2
(27)
“ 0, (106)

where we used limxÑ0 xpln 1
x q

2 “ 0.

piiiq : lim
εÑ0

1
?
ε

ln
ˆ

1
ε1{4S ε

˙

T Lε
`

1` S εLeS εL˘

10



eT L
`

1`S εLeS εL
˘

(18)
“ lim

εÑ0

?
ε

ˆ

ln
ˆ

1
ε1{4S ε

˙˙2 1
ε1{4S ε

“ lim
εÑ0

1
pS εq

2 ε
1{4S ε

ˆ

ln
ˆ

1
ε1{4S ε

˙˙2
(27)
“ 0. (107)

The proof of Lemma 2 is now complete. l

References

[1] P. Kokotovic, H. K. Khalil, and J. O’reilly, Singular perturbation methods
in control: analysis and design. Siam, 1999.

[2] J. W. Kimball and P. T. Krein, “Singular perturbation theory for dc–
dc converters and application to pfc converters,” IEEE Transactions on
Power Electronics, vol. 23, no. 6, pp. 2970–2981, 2008.
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[26] W. Wang, A. R. Teel, and D. Nešić, “Analysis for a class of singularly
perturbed hybrid systems via averaging,” Automatica, vol. 48, no. 6, pp.
1057–1068, 2012.

[27] Y. Yang, Y. Lin, and Y. Wang, “Stability analysis via averaging for sin-
gularly perturbed nonlinear systems with delays,” in 12th IEEE Interna-
tional Conference on Control and Automation (ICCA), 2016, pp. 92–97.

[28] M. Deghat, S. Ahmadizadeh, D. Nesic, and C. Manzie, “Closeness of
solutions for singularly perturbed systems via averaging,” in 2018 57th
IEEE Conference on Decision and Control (CDC). IEEE, 2018.

[29] V. Gaitsgory and A. Leizarowitz, “Limit occupational measures set for
a control system and averaging of singularly perturbed control systems,”
Journal of mathematical analysis and applications, vol. 233, no. 2, pp.
461–475, 1999.

[30] V. Gaitsgory, “On a representation of the limit occupational measures set
of a control system with applications to singularly perturbed control sys-
tems,” SIAM journal on control and optimization, vol. 43, no. 1, pp. 325–
340, 2004.

[31] V. Gaitsgory and M.-T. Nguyen, “Multiscale singularly perturbed control
systems: Limit occupational measures sets and averaging,” SIAM Journal
on Control and Optimization, vol. 41, no. 3, pp. 954–974, 2002.

[32] J.-P. Aubin and A. Cellina, Differential inclusions: set-valued maps and
viability theory. Springer Science & Business Media, 1984, vol. 264.

[33] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre, Viability theory: new di-
rections. Springer Science & Business Media, 2011.

11


