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Abstract

We consider the problem of computing the maximal invariant set of discrete-time linear systems subject to a class of non-
convex constraints that admit quadratic relaxations. These non-convex constraints include semialgebraic sets and other smooth
constraints with Lipschitz gradient. With these quadratic relaxations, a sufficient condition for set invariance is derived and it
can be formulated as a set of linear matrix inequalities. Based on the sufficient condition, a new algorithm is presented with
finite-time convergence to the actual maximal invariant set under mild assumptions. This algorithm can be also extended to
switched linear systems and some special nonlinear systems. The performance of this algorithm is demonstrated on several

numerical examples.
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1 Introduction

Invariant set theory is an important tool for stability
analysis and controller design of constrained dynamical
systems. This theory has been used to solve various
problems in systems and control; see, for instance,

J J ) I-l-&&g7 b
[2008; Belta et all; [2017) and the references therein. An
invariant set of a dynamical system refers to a region
where the trajectory will never leave once it enters. One
well-known application is in Model Predictive Control
(MPC) (Mayne et all; [2000), where invariant sets are

often used to ensure recursive feasibility and stability.

Given the extensive applications of invariant sets in
systems and control, significant attention has been
paid to their characterlzatlon and computation. In

(Gilbert and Tan; [1991; |Dorea and Hennet; 11999;
[Pluymers et all; IZDDE), recursive algorithms have been
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proposed to compute polyhedral invariant sets of lin-
ear systems. For linear systems with bounded dis-
turbances, robust invariant sets can be computed us-
ing dlfferent algorithms (Kolmanovsky and Gilbert;
[1998; [Rakovic et all; lZ_O_Oﬂ lOng and Gilbert; IZDD_G
Rak nggi;aj um in_an kovid; uﬂﬁ,
[Trodder); 2016). For linear systems with control,
the computation of (control) invariant sets is more
complicated and a few algorithms have been pro-
posed to compute inner or outer approximations
; [1987; [Darup and Cannon|; 2017;
Rungger and Ta b]]add IJLH ). Algorithms for comput-
ing invariant sets of different nonlinear systems are also
available in the literature, see, e.g., (Bravo et all; 2005
Alamo et all:2009;|Fiacchini et all;[2010:/Sassi and Girard;
[2012; [Henrion and Korda; 2014; Korda et all; 2014).
The concept of set invariance can be extended to hy-
brid systems. For instance, invariant sets can be de-
fined for switched systems, which constitute an impor-
tant family of hybrid systems, and the computation
of such sets have been extensively studied, see, e.g.,
(Dehghan and Ong; 20124d; |Herndndez-Mejias et all;

[2016;Athanasopoulos and Jungerd:2016;|Athanasopoulos et all;

2017; [Athanasopoulos and Jungers; [2018; [Legat et all;
2018).

Among various invariant sets, the maximal invari-
ant set is of particular interest. A standard algo-
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rithm for computing the maximal invariant set of lin-
ear systems with polytopic constraints is presented
in (Gilbert and Tan; [1991; [Kolmanovsky and Gilbert;
1998) with sufficient conditions for finite conver-
gence. Since recently, necessary and sufficient condi-
tions for finite convergence have been well understood
(Ahmadi and Gunluk; 12018). Even though the litera-
ture on set invariance of linear systems is large, com-
puting the exact maximal control invariant set is still
challenging, especially when the constraints are non-
convex, see, e.g., recent works (Darup and Cannon;
2017; Rungger and Tabuada; 2017) for inner or outer
approximations. For switched linear systems, algo-
rithms to compute the maximal invariant set are also
provided in the cases of polytopic/convex constraints
(Dehghan and Ong; [2012a,b; |Athanasopoulos et all;
2017; [Athanasopoulos and Jungers; 2018) and semi-
algebraic constraints (Athanasopoulos and Jungers;
2016). Although there are some algorithms for esti-
mating the maximal invariant sets of certain types
of nonlinear systems, see, e.g., (Alamo et all; [2009;
Henrion and Korda; 2014; [Korda et all; 2014), comput-
ing the exact maximal invariant set is still an open
problem for general nonlinear systems. When the con-
straints are non-convex, the computation will be even
more challenging. In fact, in the presence of non-convex
constraints, to the best of our knowledge, the exact com-
putation of the maximal invariant set is only addressed
in (Athanasopoulos and Jungers; 2016) for switched
linear systems with semialgebraic constraints by lifting
the original system into a higher dimension. For general
non-convex constraints, computing the exact maximal
invariant set is an unsolved problem even for linear
systems.

This paper is focused on the exact computation of the
maximal invariant set of discrete-time linear systems in
the presence of a broad class of non-convex constraints
that admit quadratic relaxations. We subsequently gen-
eralize our method to some classes of nonlinear systems.
We will give formal assumptions on such non-convex
constraints which include semialgebraic constraints
and smooth constraints with Lipschitz gradient. Using
quadratic relaxations, a sufficient condition for set in-
variance is derived from the S-procedure (Boyd et all;
1994) and can be expressed as a set of Linear Matrix
Inequalities (LMI). Based on this sufficient condition,
we present a new algorithm that solves a set of LMIs at
each iteration. The tightness of the sufficient condition
largely depends on the conservatism of the S-procedure
(Derinkuyu and Pinar; 2006). We emphasize that, even
though the S-procedure induces some conservatism in
the sufficient condition, our algorithm converges to the
true maximal invariant set in finite time, as we show
below. Moreover, as we show on several examples, the
algorithmic efficiency of our technique turns out to be
much better than the previously known techniques in
the literature. This proposed algorithm can be also ex-
tended to switched linear systems and some nonlinear

systems that can be linearized via state transforma-
tion. In the case of semialgebraic constraints, a similar
lifting method as (Athanasopoulos and Jungers; [2016)
is used. The dimension of the lifted space depends
on the order of the semialgebraic constraints. It will
be shown that we require a lower lifted system than
(Athanasopoulos and Jungers; [2016) for the same set-
ting.

A preliminary version of this paper appears as a confer-
ence paper in (Wang et all;[2019), which is only focused
on linear systems. In this paper, we provide complete de-
tailed proofs of all lemmas and theorems, the discussion
on the extensions to switched linear systems and some
special nonlinear systems, and additional numerical re-
sults.

The rest of the paper is organized as follows. This sec-
tion ends with the notation, followed by the next section
on the review of preliminary results on the invariant sets
of linear systems. Section 3 presents the proposed ap-
proach for computing the maximal invariant set of linear
systems with non-convex constraints. Section 4 discusses
semi-algebraic constraints and the extensions some spe-
cial nonlinear systems. Several numerical examples are
provided in Section 5. The last section concludes the
work.

The notation used in this paper is as follows. Non-
negative and positive integer sets are indicated respec-
tively by Zg and Z*. Similarly, Ry and R refer re-
spectively to the sets of non-negative and positive real
numbers. For any M € Z7T, let Zpy :== {1,2,---, M}.
For any given set S = {s1,S2,-+-,sm}, cone(S) de-
notes the positive linear span of S, i.e., cone(S) :=
{Zﬁl ;8 @ oy € Rar,i € Iy} S™ denotes the set of
symmetric matrices in R™*". T, (the subscription is
omitted when the dimension is clear from the context)
is the n x n identity matrix and 1,, denote the vector
of n ones. For a square matrix @, @ > (=) 0 means
Q is positive definite (semi-definite). The p-norm of
x € R" is ||lz||, while |2]3, = 2" Qz for Q = 0. Given
a set of vectors, x; € R™ ¢ € T, the collection of
vectors, (1,2, ,2) also refers to the stack vector

M
of [(x1)T (z2)T -+ (zm)T)T € R2-i=1™ for notational
simplicity. Additional notation is introduced as required
in the text.

2 Preliminaries

This section reviews some known results on the invari-
ant sets of constrained discrete-time linear systems. We
consider the linear system

o(t+1) = Ax(t), VteZi, (1)



where x(t) € R™ is the state vector. The system is sub-
ject to state constraints

x(t) e X =00, VteZ]. (2)

where 2 C R" is a quadratic set and © C R" is a set
of non-quadratic nonlinear constraints. The set € is de-
scribed as

Q={reR":27Qix +2¢]x <1,ie L}, (3)

where @; € S”, ¢; € R™ and p is the number of con-
straints. When Q; = 0, for all ¢ € Z,,, {2 becomes a poly-
tope. The set O is described as

O:={zreR": Hi(z) <1,i € T,} (4)

where H; : R™ — R is a continuous nonlinear function
and m € Z7 is the number of such nonlinear constraints.

For computational reasons, we treat quadratic con-
straints and general nonlinear constraints differently.
The following assumptions are made.

Assumption 1 The matriz A is Schur stable, i.e., for
any eigenvalue X of A, |\| is smaller than one.

Assumption 2 The set Q) is compact and contains the
ortgin in its interior.

Assumption 3 For anyi € Z,,, H; : R® - R is a
continuous nonlinear function with H;(0) = 0 and there
exist a vector Hiv € R™ and a scalar L; > 0 such that

[Hix) — Hi(0) — (HT o) < 2l (5)

for allz € Q.

Assumptions 1 and 2 are standard requirements that are
often made in the literature, see, e.g., (Gilbert and Tan;
1991). From the continuity of the nonlinear functions
{H;(x)}™,, © contains the origin in its interior, and thus
X is compact and contains the origin in its interior. As-
sumption 3 requires all the nonlinear functions to have
quadratic lower and upper bounds. However, these func-
tions are not necessarily Lipschitz continuous or differ-
entiable. Clearly, for functions with Lipschitz continuous
gradient, the condition in Assumption 3 will be satisfied.
Indeed, suppose that, for any ¢ € Z,,,, H; is a continu-
ously differentiable function with Lipschitz gradient:

IVHi(z) = VH;(y)|| < Lillz = yl|,Ve,y € Q,  (6)

then, Assumption 3 is satisfied with HY = V H;(0) (see,
e.g., Lemma 6.9.1 in (Bertsekas; [2009)). Inspired by a
recent work on different classes of quadratic approxima-
tions (Necoara et all; 2019), we will refer to a function

satisfying (5) as a quasi-smooth function. All the poly-
nomial functions satisfy (5). For notational simplicity, a
compact form of © is given below

O={zeR": Hxz) <1,} (7)
where H(z) := (H1(z), Ha(z), -+ , Hp(x)).
We now define some central concepts of this paper.

Definition 1 (Blanchini; (1999; |Mayne et all; 12000)
The nonempty set Z C X is a CA-invariant (Constraint
Admissible invariant) set for System (1) if for anyx € Z
one has that Ax € Z.

With Assumptions 1 and 2, there often exist mul-
tiple CA-invariant sets. In many applications, it is
desirable to compute the maximal CA-invariant set
(Gilbert. and Tan; [1991)), which is defined below.

Definition 2 A nonempty set S C X is the mazimal
CA-invariant set for the system (1) if S is a CA-invariant
set and contains all CA-invariant sets in X .

It is a standard result that the maximal CA-invariant
set exists (see (Gilbert and Taxl; [1991]) for general con-
ditions guaranteeing its existence), and that it can be
computed recursively by the following iteration:

OO = Xa (8)
Orsr:=Op[ {z €R": Az € Ox} k€ Zf.  (9)

With these iterates, it can be verified that
Or={zeX:A2ecX e}, keZ . (10)
Thus, the maximal CA-invariant set can be expressed as

kezt

From Assumptions 1 and 2, the set Oy defined in (11)
has the following properties (Gilbert and Taxl;[1991): (i)
if Z C R™is a CA-invariant set of system (1), Z C O;
(ii) there exists a finite k* such that Opx41 = Op+; (iil)
for any k* satisfying (ii), it can be shown that Oy = Oy~
for all k > k* and O = Op».

From the properties above, the problem of comput-
ing O becomes the search for an index k* such that
Op+41 = Opgx. The standard procedure is to increase k
from 0 until Oy = Oy, which is equivalent to

O C{z eR": Ay € X}, (12)
see (Gilbert and Tan; [1991) for details. This condition

can be treated as a stopping criterion for the algo-
rithm in (8)-(9). Observe that {z € R : A¥ly € X}



can be rewritten as {z € R" : (AF12)TQ;A* 1z +
2¢7 AFHly < 1,0 € T, H(A*12) < 1,,},Vk € ZF.
During the computational procedure, we aim to find the
minimal k that satisfies (12). Let

kmin 1= arg mig{k : (12) holds}. (13)

kL]

As shown in Property (iii), O = Oy,,,, = O« for any
k > kmin- By this property, given any upper bound on
Kmin, one is able to determine O,. When there are only
linear constraints, the standard algorithm for the veri-
fication of (12) is to solve a set of linear optimization
problems, see, e.g., (Blanchini; [1999). However, in the
presence of non-convex constraints, we need to solve a
set of nonlinear optimization problems, which are com-
putationally expensive. For this reason, we will aim to
derive a sufficient condition that can be efficiently veri-
fied.

3 The proposed approach

This section discusses the computation of the exact max-
imal CA-invariant set with nonlinear constraints. An al-
gorithm will be presented to compute an upper bound
on kmin which can be determined in a finite number of
iterations under mild assumptions.

For quadratic (or linear) constraints, the following non-
linear optimization problem is defined at the k itera-
tion of (9):

gi(k) :=max(A 1 2)T QA 1w 4+ 2¢T A* e (14a)
st. €Oy (14Db)

fori € T, and let gmax (k) := maxiez, i (k). If gmax(k) <
Lforsomek € Z§, 0 C {x € R" : (AFMH12)TQ Ak 1+
2¢Fz < 1,i € Z,}. Similarly, for non-quadratic non-
linear constraints, the following nonlinear optimization
problem is defined at the k" iteration of (9):

hi(k) :=max H;(A*1g) (15a)
s.t. x € Oy (15b)

for i € Z,,, and hpax(k) := max;ez,, hi(k). If Apax(k) <
1 for some k € Z§, O C {x € R* : H(A*1z) <
1,,}. Using (14) and (15), kmin can be determined via
minkezx{k : gmax(k) < 1, hmax(k) < 1}. To do so, we
need in principle to solve (14) and (15) and get their
global optimal solutions. However, for general nonlinear
constraints, both (14) and (15) are nonlinear non-convex
problems. Even if 2 and © are convex sets, (14) and
(15) may not be convex problems. Therefore, we only

require upper bounds on the optimal values of gmax (k)
and hmax (k).

3.1 Quadratic constraints

Consider the case where only quadratic constraints exist,
i.e., ® =R" and X = Q. Let

_ A0
A_<01> and (16)

~ Qi G ,
Qi:= Vie T, 17
P ) a7)
Following the iteration in (8)-(9), we define:
QO = {QZ,’L S Ip} (18)
Quy1 = Q| JAT QA k € Zf (19)

where ATQ A .= {ATQA : Q € Q}. From the con-
struction of Qy, it can be shown that

Qk g {le"' anvATél‘Aa"' 7ATQ;DA7"' )
(AT QA% ... (AMTQ, AR, keZf, (20)

with |Qk| < (k + 1)p. It can be also shown that
Qi1 \ Qu C{(A*HT QA i e T} (21)

for all k € Zar . Using the notation above, Oy defined in
(8)-(9) can be rewritten as

T

ormtees: () o(%) oo, @

for all k € Z . Since Problem (14) is non-convex, we use
the S-procedure (see Section 2.6.3 in (Boyd et al!;[1994)
for details) to verify set invariance. More precisely, we
check the redundancy of the new quadratic constraints
generated in (9) by solving a set of LMIs, which is for-
mally stated in the following lemma.

Lemma 1 Suppose ©® = R" and X = Q. Let O be
defined by the procedure in (8)-(9), and Qy, be defined in
(18)-(19) for all k € Zg . If, for some k € Zg and every
Q' € Qpt1 \ Qk, there exists Q € cone(Qy) such that
Q' 2 Q , then, Ogy1 = Oy.

Proof of Lemma 1: This is a direct application of the S-
procedure (Boyd et all; [1994). Suppose, for every Q' €
Q41 \ Qk, there exists Q € cone(Qy) such that Q' < Q,
the following inequality holds

T T

() e()=(0) o) @



for any € R™. From (22), the right hand side of the
inequality above is smaller or equal to 0 for any =z €

Oy. Hence, Oy is a subset of the set AOy = {x :
T

(T) Q <117> <0,Q" € Qry1 \ 9}, which implies

Ok-i—l =0, NAO,=0;.0

As we have seen, under Assumptions 1 and 2, the formal
algorithm described in (8)-(9) always terminates in finite
time. This algorithm is easily implementable when X is
a polytope, see (Gilbert et all;|1995;Blanchini;|1999). In
many cases, it is not directly implementable in the pres-
ence of nonlinear constraints. Even if X is convex, the
optimization problem (14) is still non-convex. However,
the same algorithm with the S-procedure in Lemma 1 is
practically implementable, since these LMIs can be effi-
ciently solved using interior point methods (Boyd et all;
1994). To recover the nice finite termination property of
the formal algorithm, the following fact is needed.

Fact 1 There exists D, > 0 such that ||z]|*> < D, for all
x € €.

This fact always holds under Assumption 2. Indeed,
without loss of generality, we can always add a redun-
dant ball constraint of the form ||z||? < D, to Q. With
this fact, we can let Q1 = il and ¢ = 0 in (3). We
now show that the finiteness property of the former al-
gorithm in (8)-(9) still holds for the LMI version.

Lemma 2 Suppose Assumptions 1 and 2 hold, © = R"™,
and X = Q with Q1 = DLII and g1 = 0 in (3). Let Oy
be defined by the procedure in (8)-(9) for all k € Zg .
Then, for any i € I,, there exists some k; € Z§ such
that (AK+)TQ, Akt < Q (A and Q; are given in (16)
and (17) respectively) for some Q) € cone(Qy,).

Proof of Lemma 2: From (16), (17) and (21), we have

(AF1TQ, AR+ = (AFTQ,AR+L (AR+1)T g,
' ql Ak+1 -1

for all i € T, and k € ZJ. From Assumption 1, A*
goes to 0 as k increases. With the additional redundant
constraint ||z||? < D,, there always exists Q; = 0 for
some j € Z,, (one obvious choice is j = 1), which means
that there exists a constant ¢ > 0 such that

<Q; qj) = 0.
q; ¢

Hence, for any S € (0, #C]a

<§TJ %qi )t(jﬁf)»o. (24)

From the inequality above and the fact that A¥ goes to
0 as k increases, given any 3 € (0 , for any 7 € 7,,,
there always exists a k; such that

1
7@]

- — Qj 4
(Alirl)TQiAlirl _ ﬂ < ; _J )
q; 1

(Akri-l)TQiAkH-l (Aki-i-l)Tqi
g AR 0

_5<Q; 1qj )50 (25)

4 35—

Therefore, ([lkiH)TQi[lkHrl < 5<Q; qa‘) c
q; -1

cone(Qy,). This completes the proof. O

Remark 1 As shown in the proof of Lemma 2, the pur-
pose of adding the redundant constraint ||z||* < D, is to
provide a guaranteed bound on (AFTH)T QAL for all
i € I, for sufficiently large k € Zar . If there already ex-
ists Q; > 0 for some j € I,, it is not necessary to add
this constraint.

Based on Lemma 2, the following LMI optimization
problem is defined for all @ € Qr41 \ Q and k € ZS‘:

R(Q, Qk) ::mi_nr (26a)
st Q= Y TQ+rI,  (26b)

QeQk
T >0, (26¢)

where 7 := {75, Q € Q). Some properties of the LMI
problem above are stated in the following lemma.

Lemma 3 Suppose Assumptions 1 and 2 hold, ©® = R™,
and X = Q. Let Qy, be defined in (18)-(19) for allk € Z .
The optimum of Problem (26) is denoted by R(Q, Qk)

for all Q € Qi1 \ Qk and k € ZJ . Then, for any Q €

Qi1 \ Ok, R(Q, Qk) < 0 implies R(ATQA, Qx41) <0,
where A is given in (16).

Proof of Lemma 3: Suppose R(Q, Qx) < 0 and the opti-
mal solutionis (R(Q, Qk),T), wehave @ =X > 5.0, ToQ:
which implies that

ATQA = Y 7o ATQA. (27)
QcQy



As shown below, we can obtain a feasible solution for
Problem (26) with the pair (ATQA, Qy41). Let 7/ :=
{Té,, Q' € Qk+1} be given as follows:

/ {TQ Q/ S ATQ/CA7 (28)

TQ, - 0 Q/ € QOv

where Q € Qy is corresponding matrix that satisfies
Q' = ATQA for Q' € AT Q) A. Consider that Qx1 =
AT QLA U Qo for all k € Z7 from (18)-(19), (27) impies
that (0,7') is a feasible solution to Problem (26) with
the pair QATQA, Q1) for any Q € Qi1 \ Qk and thus
R(ATQA, Q1) <0.0

In the following theorem, we show that the LMI problem
(26) can be used to establish a stopping criterion for the
algorithm summarized in (8)-(9).

Theorem 1 Suppose Assumptions 1 and 2 hold, © =
R™, and X = Q with Q1 = DLII and g1 = 0 in (8). Let
Qy, be defined in (18)-(19) for allk € Zg . For allk € Z§
and Q € Qpt1 \ Qk, define R(Q, Qx) as in (26) and
let Rmax(k) = maxgeo, ,,\Qy R(Q, Q). Then, there
exists some finite k* such that Ryax(k*) <0 and O =
Op.

Proof of Theorem 1: From Lemmas 2 and 3, there always
exists some k; such that R((A*1)TQ,A*+1 Q;) < 0 for
all k > k; and ¢ € Z,. Let k* := max;ez, k;. We can see
that R((A* *1)TQ; A *+1 Q) < Oforalli € T, which
implies Rpax(k*) < 0. Following Lemma 1, we can get
Op+ 41 = Opg«. Finally, it holds that Oy = Og~. O

From Theorem 1, the maximal CA-invariant set O, can
be exactly characterized by {Rmax(k)},cz+ with guar-
0

anteed finite determination. The determination condi-
tion (Rumax (k) < 0 for some k € Z7') is computationally
tractable and leads to the true O.

Based on the discussion above, the algorithm to com-
pute the maximal CA-invariant set with quadratic con-
straints is summarized in Algorithm 1.

Since |Qx| < (k + 1)p and [Qri1 \ Qi| < p, k € Z{,
at the k' iteration in Algorithm 1, we solve at most
p LMI problems with at most (k + 1)p + 1 variables
and one LMI constraint. As k increases, Qp may have
some redundant elements, which can be removed using
a similar formulation as (26):

R(Q. Qi \ Q) =minr (202)
st. Q= Z 76Q + 71, (29b)

Qe \Q
T >0, (29¢)

Algorithm 1 Computation of the maximal CA-
invariant set with quadratic constraints

Input: A and {Q;,¢;}7_; asin (3)
Output: O+
1 Initialization: let X := {z € R" : 27Q;z + 2¢] x <
1,4 €Iy}, set k=0 and Oy = X, and construct Qg
as in (18);
2: Let Qr4+1 be updated according to (19);
Obtain R(Q, Q) from (26) for all Q € Qky1 \ Qi
4: Let Rmax(k) = MAXQeQ,41\ Ok R(Q, Qk) If
Rmax(k) <0, let k* = k and terminate; otherwise,
let Opy1 = O ({z € R": Az € O}, set k < k+1
and go to Step 2.

w

where T = {75 : Q € Q1 \ Q} for any Q € Q. If, for
some QQ € Qy at the k' iteration, R(Q, Qr \ Q) < 0,
then, @ is redundant and can be removed from Qy. After
all the redundant elements are removed, a reduced set of
QO can be obtained. Since removing redundant elements
from Qj does not change the sign of the optimum of
Problem (26), the results in Theorem 1 are still valid.

As (14) is not directly solved, the k* obtained from Al-
gorithm 1 is an upper bound on k. For a loose up-
per bound k*, the description of Og+ may not be tight
enough though it is still true that O+« = O . However,
in some cases, k* is not necessarily a loose upper bound.
It can be close or equal to kni,. One example is the case
with only linear constraints, i.e., © = R™ and @; = 0 for
all ¢ € Z,,. The proposition below shows that the k* ob-
tained from Algorithm 1 is exactly equal to ki, in the
case of linear constraints.

Proposition 1 Suppose Assumptions 1 and 2 hold, © =
R™ and Q; = 0 for all i € Z,. The constraint set X
can be expressed as {x € R" : 2¢Tx < 1,}, where q :=
[q1 g2 -+ gp|. Forany k € Zg‘, let Rimax(k) and Oy be
generated by Algorithm 1. Then, it holds that Rumax (k) <
0 if and only if Oy+1 = Oy, fork € Zg .

The proof of Proposition 1 is given in the appendix.
From Proposition 1, we can see that Algorithm 1 is even-
tually equivalent to the standard algorithm (Blanchini;
1999) for linear systems with linear constraints. Gen-
erally speaking, the conservatism of £* obtained from
Algorithm 1 depends on the conservatism of the S-
procedure in Lemma 1. If the LMI in Lemma 1 is a
necessary and sufficient condition of the set inclusion in
(12), the S-procedure is lossless and k* is exactly equal
to kmin. However, for general quadratic constraints, this
is not true. A detailed discussion on the conservatism
of S-procedure can be found in (Derinkuyu and Pinai;
2006). More precisely, k* can be larger than ki, in
most of the cases. However, the size of the resulting O
is not affected although there are redundant constraints
in the description of the set. With Fact 1, another pos-
sibility to determine a k that satisfies (12) is to find



a k such that A*+t1z enters an open ball inside X for
any z € {z : ||z||* < D, }. However, this is usually very
conservative and such a k can be much larger than the
k* obtained from Algorithm 1.

3.2 Quasi-smooth nonlinear constraints

In the rest of this section, the proposed approach will
be generalized to handle non-quadratic nonlinear con-
straints that satisfy Assumption 3. This is possible by
making use of the quadratic upper and lower bounds in
(5). With these quadratic bounds, we are able to estab-
lish quadratic relaxations of (14) and (15). More pre-
cisely, the constraints in (14) and (15) are replaced by
their quadratic lower bounds and the objectives in (15)
are replaced by their quadratic upper bounds. For nota-
tional simplicity, let

K3

) ()
1 s(HY)T Hi(0) ) \ 1

x —Li igy x
- 1 2,VIT 2%11 » (31)
1 s (H;)" Hi(0) ) \ 1

for all i € Z,,. Similar to (18)-(19), we define:

u L;
Hi(z) : = Hi(0) + (HY )"z + EHUCH2
T

HYy = {H!i€ Ty},
H,={H. ieT,},
Hipq = {ATQA :Q € Hil,
My = Hi (HATQA: Q € H},

where

The sets {H{} and {H! } are updated differently because
{H} is used in the cost function while {#H!} is used in
the constraints as shown later. With additional defini-

tions above, a relaxed quadratic constraint set of O, can
be obtained for all k € Zar :

T

Oy = {x(f) Q <T> <0,Qe QL UHLY. (38)

Based on this relaxed constraint set, a modification of
(14) is given by

Gi(k) :=max(A" )T QA 1y 4 2¢7 A¥ e (39a)
st. z e Oy, (39h)

for any i € Z, and k € Z$. As Oy C Oy, gi(k) > gi(k)
for all i € Z, and k € Zg . Similarly, we can also modify
(15) using the relaxed set. Since the cost function of (15)
is also nonlinear, we will replace it by its quadratic upper
bound (30). With the relaxed set and the quadratic up-
per bound of the cost function, the corresponding mod-
ification of (15) is given by

hi(k) :=max H* (A" ) (40a)

x

st. z €0y (40b)

for all i € Z,,. Again, we can see that h;(k) > h;(k)
for all i € Z,,, and k € ZJ. Using the S-procedure, the
following lemma can be obtained immediately.

Lemma 4 Suppose Assumption 3 holds. Let the set Oy
be defined by the procedure in (8)-(9) and the relazed
quadratic set Oy, be defined in (38) using the quadratic
lower bounds (31) for all k € Z§. Consider the sets
{Q, HY, HL ) defined in (18)-(19) and (32)-(35), the fol-
lowing results hold.

(i) For any i € T, if (AM1)TQ;A*1 < Q (A and Q;
are gien in (16) and (17) respectively) is satisfied for
some Q € cone(Qr UHL) and some k € Z , then,

T

(f) (AT, AN <T> <0,Vo e Oy (41)

(i) For any i € T,,, if (AkJrl)THf_flkJrl = Q (HY is
given in (36)) is satisfied for some Q € cone(Qy U H})
and some k € Zg, then, H;(A¥*12) <1 for all x € Oy.

Proof of Lemma 4: (i) An immediate consequence of the
T

S-procedure is that (:1:) Q (:c) < 0for any z € Oy.
1 1

Taking into account that Oy C Oy, property (i) holds
true.

(ii) Similarly, from the S-procedure, H*(A**1z) <1 for
any x € Oy. Since H;(A*1z) < H¥(A¥lz) for any
z € Q and Oy, C Oy, property (ii) is proved. O

From the lemma above, we can see that it is also possible
to implement the formal algorithm in (8)-(9) using the
quadratic relaxations in (30)-(31) for general nonlinear
constraints that satisfy Assumption 3. The finite termi-
nation of the algorithm is discussed in the next lemma.



Lemma 5 Suppose Assumptions 1-8 hold with Q1 =
DLmI and q1 = 0 in (3). Consider the relaxed quadratic
set Oy, defined in (38) using the quadratic lower bounds
(81), and the sets { Qx, Hi, HL ) defined in (18)-(19) and
(82)-(35) for all k € Zg , the following results hold.

(i) For any i € I,, there exists some finite k; such that
(AFINTQ, AR+l < Q (A and Q; are given in (16) and
(17) respectively) for some Q € cone(Qx, UHj, ).

(i) For any i € T, there exists some finite k; such that
(AFANT [fu Akl < Q (HY is given in (36)) for some
Q € cone(Qy, UH],).

Proof of Lemma 5: The proof follows the same arguments
in Lemma 2 and thus is omitted. O

Based on Lemma 5, Problem (26) is modified as

R(Q, Qx UHL) :=minr (42a)
T
st. Q= Y 1gQ+rl,  (42b)
QGQ;CUHL
T >0, (42¢)

for any Q € (Qis1 \ Qk) UHY,, and k € ZJ. The
following lemma can be derived.

Lemma 6 Suppose Assumptions 1-8 hold. Let the sets
{Qk, HY, HEY be defined in (18)-(19) and (32)-(35) for
all k € Z§. Let R(Q, Qx U HL) be defined in (42) for
any Q € (Qp41 \ Qr) UH},, and k € Z§ . The following
properties hold.

(i) For anyi € T, there exists a finite k; € Zg such that
R((AMH)TQ;(AM1 Qp UHL) <0 (A and Q; are given
in (16) and (17) respectively) for all k > k;.

(i3) For alli € T,,, there exists a finite k; € Zg such that
R((AMHTHY AR QL UHL) <0 (A and HY are given
in (16) and (36) respectively) for all k > k;.

Proof of Lemma 6: The proof follows the same arguments
in Lemma 3 and hence is omitted. O

Based on Lemmas 4 - 6, the algorithm for computing the
maximal CA-invariant set with nonlinear constraints is
summarized in Algorithm 2. At each iteration k of Algo-
rithm 1 for k € Z(T , we solve at most p+m LMI problems
with at most (k + 1)(p + m) + 1 variables and one LMI
constraint. Similar to Algorithm 1, Algorithm 2 will also
terminate after a finite time as stated in Theorem 2.

Theorem 2 Suppose Assumptions 1-8 hold with Q1 =
DLmI and g1 = 0 in (3), let Rmax(k) and Oy, be generated

from Algorithm 2 for k € Z§ . Then, there exists some
finite k* such that Rmax(k*) <0 and On = O+ .

Proof of Theorem 2: The proof follows similar arguments
in the proof of Theorem 1. O

Algorithm 2 Computation of the maximal constraint

admissible invariant set with nonlinear constraints
Input: A, {Qi,q; ?:17 and {Hi(‘r)vHivai}?;l
Output: Oy«

1: Initialization: let X = {x € R" : ()T Qiz+2q¢ = <
1,4 € I,,H(z) < 0}, set k = 0 and Oy = X, con-
struct Qp, HY and H} as in (18), (32) and (33) re-
spectively;

2: Update Qpy1, Hj,, and ’H,fcﬂ according to (19),
(34) and (35) respectively;

3: Obtain R(Q, Qr UH}) for any Q € (Qpi1 \ Q) U

k+15

4: Let Rmax(k) = maxQe(QHl\Qk)UH:H R(Q, Qk U
HL). If Riax(k) < 0, let k* = k and terminate;
otherwise, let Og41 := O [\{z € R™ : Az € Oy},
set k <— k + 1 and go to Step 2.

3.8  Semi-algebraic constraints

We now consider one special case in which © is a
semi-algebraic constraint set and {H;(x)}™, are poly-
nomial functions of degree smaller or equal to d. Since
quadratic constraints are handled separately, we as-
sume that d > 3. Clearly, semi-algebraic constraints
satisfy Assumption 3 with HY = VH;(0) and L; being
the Lipschitz constant in €2 for all ¢ € Z,,. Although
semi-algebraic constraints can be handled by Algorithm
2, the Lipschtiz constants {L;}"™, can be conservative
for high-order polynomial functions. For this reason,
we present an alternative method for handling semi-
algebraic constraints. In (Athanasopoulos and Jungers;
2016), a lifting method is used to convert semi-algebraic
constraints into linear constraints. In this paper, we use
a similar lifting method that converts semi-algebraic
constraints into quadratic constraints. For the same
degree d, the dimension of the lifted space in our
method can be shown to be lower than the one used in
(Athanasopoulos and Jungers; 2016).

The lifting method is described as follows. For any x €
n+i—1

R™ and i € Z*, let 1! € R(") denote the vec-
tor of all the monomials of degree i and Al : z[1 —
(Az)l! denote the lifted linear map of the system (1).
In (Athanasopoulos and Jungers; [2016), semi-algebraic
constraints are converted into linear constraints by using
this lifted linear map. Thanks to Algorithm 1, we only
need to convert semi-algebraic constraints into quadratic
constraints. This reduces the dimension of the lifted
space significantly. With a vector of monomials, the poly-
nomial functions {H;(z)}; can be always rewritten



into quadratic forms, i.e.,

T
211 211
212l 212l
Hi(z) =] P; +2FF 'z (43)
2l 2ldl

where d = ceil(d/2), P, € R¥*Y and F; € R" with
N =30, ("*71). The lifted system becomes
2(t+1) = Az(t), teZg (44)

where z € RY and A = diag{Alt), AR ... Aldy ¢

[ [
RY*N From (Blondel and Nesterov; 2005; Athanasopoulos and Juligers’

2016), A is also Schur stable if A is Schur stable.

The expression in (43) may not be unique and we may
only need a subset of {z[U 2% ... 2} depending
on the polynomial functions. The dimension of the
lift(id system is ("+g_1)7 in the best case (when only
{zl} is used) and Zzlzl ("+£_1) in the worst case
(when the whole set {z!Y, 2z ... zl4} is used). In
(Athanasopoulos and Jungers; [2016), the lower and up-

per bounds are ("+3_1) and 23:1 ("+f_l) respectively.
As d = ceil(d/2), the quadratic expression in (43) al-
lows us to significantly reduce the dimension of the

lifted space. In fact, it can be verified that our upper

bound E?;l ("+f_l) is even much smaller than the

lower bound ("Jrj*l) in (Athanasopoulos and Jungers;

2016) when n > 2.

In the rest of this section, for ease of discussion and
notational simplicity, we consider the whole vector
(M, 2B ... z[d). As a result, the original quadratic
constraints in (3) can be expressed as

2T L, 017 Qi[I, 0]z + 2¢] [I, 0]z <1, i €T,, (45)
and the semi-algebraic constraints in (4) become

2Pz +2FF 1,012 <1, i€T,. (46)
Since € is bounded under Assumption 2, without loss of
generality, we can always add the redundant constraint
of the form ||z||? < D, for some sufficiently large D, > 0
such that ||(z, 22 ... 202 < D, for all 2 € Q.
Hence, the overall constraint set of the lifted system can
be expressed as

1
X, :={z € RY : (45), (46), and D—Hz||2 <1}. (47)

From the definition of X, it can be verified that X =
{z e R : (2l 2P ... zld) € X_}. Now, all the con-
straints in X, for the lifted system are quadratic (or lin-
ear) and we can use Algorithm 1 to compute the max-
imal CA-invariant set of the lifted system, denoted by
O?%,. Since A in (44) is Schur stable, the results in Theo-
rem 1 are also valid for the lifted system. The following
proposition shows that the maximal CA-invariant set of
the original system can be exactly characterized by OZ,.

Proposition 2 Suppose Assumptions 1 and 2 hold and
{H;(z)}™, are polynomial functions of degree smaller or
equal to d. Let O be the mazimal CA-invariant set of
the system (1) with the constraint set X in (2) and OZ,
be the mazimal CA-invariant set of the lifted system (45)
with the constraint set X, in (47). Then, O = {x €
Ro—Cell2l L. gldy e 02 ).

Proof of Proposition 2: First, we show that O, C
{z € R" (2l 2B ... 2l € Oz}, For any
r € Oo, we know that A¥z € X for all k € Z.
From the definition of the lifted system in (44)

and Xz in (47)5 ((Akx)[l]v(AkI)[z]a o 7(Akx)[(i]) =

AF (el B gy e X, forall k € Z§, which im-
plies that (M 2P ... 2l ¢ 0%.- Then, we show
that {z € R" : (21,20 ... 2ld) € 02} C O.

For any x € {z € R : (2l 2Bl ... zldy ¢ Oz},
(AFz) (AR)RL .. (AR)ld)) € X, for all k € Z].
Hence, Az € X for all k € Z{, which implies that
T € Og. This completes the proof. O

It is worth mentioning that the lifting method for
semi-algebraic constraints is closely related to sum
of squares (SOS) optimization techniques (see, e.g.,
(Powers and Wormann; [1998; [Parrilo; 2003) for details
of SOS optimization). More precisely, for the verifica-
tion of the set inclusion condition (12), from the dis-
cussion above, the constraints of affine combinations of
quadratic forms that are nonnegative (or nonpositive)
for the lifted system are equivalent to the constraints of
affine combinations of polynomials that are SOS for the
original system.

4 Particular nonlinear systems

In this section, we show that the proposed approach is
also applicable to special types of nonlinear systems.

4.1 Switched linear systems

We consider switched linear systems, which are a well-
known family of hybrid systems in the form of:

I(t + 1) = Aa(t)iE(t) (48)



where o(t) : ZT — ZIp is a time-dependent switch-
ing signal that indicates the current active mode
of the system among M possible modes in A :=
{A1,As, -+, Ap}. For arbitrarily switching systems,
the joint spectral radius (JSR) is defined by (Jungers;
2009)

p(A) = A IV* < Ay € A} (49)

lim max {HA“-
k—00 11, ,1

As shown in (Jungers; [2009), System (48) is asymp-
totically stable at origin under arbitrary switching if
and only if p(A) < 1. The set invariance of arbitrarily
switched linear systems is defined as follows.

Definition 3 Given the constraint set X in (2), the
nonempty set Z C X is a CA-invariant set for System
(48) if x € Z implies that A;x € Z for any i € Ty.

the assumption that p(A) < 1, A;,---A;, — 0 as k
increases, for any i; € Zpr,5 = 0,1, -+ , k. Following the
arguments in Section 3.1 & 3.2, this implies that, there
exists k* € Z§ such that, for any Q € (Qp-41 \ Qk*)
Hj- 11, there ex1sts Q€ cone(Qk* U HL.) that satisfies
@ = Q. This implies that finite determination also holds
for switched linear systems.

Due to the multiple modes in a switched system, at each
iteration k € Z(J{, we need to solve at most M*+1p LMI

problems with at most E];:o M*p + 1 variables at Algo-
rithm 1 and at most M**!(p + m) LMI problems with

at most Z’Lo M*(p+m) + 1 variables at Algorithm 2.
In this case, as k increases, it may becomes necessary to
remove redundancy using the formulation in (29).

4.2 Nonlinear systems with linear equivalents

As shownin (Dehghan and Ong;2012a;/Athanasopoulos and Jithgepgpposed approach can be also extended to other

2016), the maximal CA-invariant set of System (48)
exists if p(A) < 1 and Assumptions 2 and 3 hold. For its
computation, we need to adjust the procedure in (8)-(9)
as follows:

OQ =X (50)
Op1:=O[ {o: Av € Op, Ac A} k€ Zi.  (51)
Let ./Zl = {Al, AQ, te ,AM} with
- A; 0
A; = < ) Vi€ Iy (52)
01
The update in (18)-(19) becomes
Qo :={Qi,i € Ip} (53)
Q1= U HATQA: Qe Qr, Ac A}, (54)
with | Qx| < S5y Mp,
Qk+l \ Qk g {(Am zk)TQz i0 " zka
A;; € A Vi€ T,}, (55)

M*1p for k € Z§. Similarly, the
also adjusted as follows

and [Qpi1 \ Qx| <
update in (32)-(3 )
My = {H}',i € In}, (56)
Hy = {H/,i €T}, (57)
Hi, = {ATQA: Qe H}, Ac Ay ke ZT  (58)
iy =M | {ATQA: Q e M}, Ac A}, (59)

where H* and H! are given in (36) and (37) respectively,
[Hy| < MFm and |HL| < S25_, M'm for k € Z§. With
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special nonlinear systems. Consider the following non-
linear system
2t +1) = f(a(t), ¥t € 2§ (60)

where z(t) € R™ and f : R® — R" is continuous with
f(0) = 0. The state is subject to

z(t) € X :={x: Hi(x) <1,i € L, },Vt € ZS. (61)
In the case of nonlinear systems, quadratic constraints
are also included in (61). Similar to the linear case, the
following assumptions are made.

Assumption 4 System (60) is asymptotically stable at
the origin in X, i.e., it converges to the origin for any
initial state in X, and f : R™ — R"™ is continuous with

£(0) = 0.

Assumption 5 Foralli € Z,,,, H; : R® — R is a con-
tinuous function with H;(0) = 0. In addition, X is com-
pact.

The maximal CA-invariant set of nonlinear systems can
be defined in a similar way as shown in Section 2, al-
though the computation is more complicated and diffi-
cult. Let the maximal CA-invariant set of system (60)
be denoted by O™, the same iterates can be used to
compute O™

opt =X (62)
Opt, =0p (z eR™: f(z) € O}, k € Z .

Similar to the linear case, the maximal CA-invariant set
can be expressed as

o= () Opf ={x: f*

kezt

(z) € X,keZf} (64)



where f¥(z) = fo---of(x) and f%(x) = x. With

k times

Assumptions 4 and 5, the existence of O™ can be guar-
anteed and the algorithm above terminates in a finite
time following similar arguments in Theorem 4.1 in
(Gilbert and Tan; [1991) for the linear case. We believe
such a result is already known or can be easily derived
from some textbooks, see, e.g., (Aubin; 2009). However,
we cannot find the exact reference in the literature. For
completeness, we give the proof below.

Proposition 3 Consider System (60) with the con-
straint set X as defined in (61), let OY be defined in
(62)-(63) for any k € Z*. With Assumptions 4 and 5,
the following properties hold: (i) For any k € Zg, O
is compact and contains the origin in its interior. (i)
There exists a finite k* such that O}gl = ng for all
k> k* and O = Opt.

Proof of Proposition 3: The proof is adapted from the
proof of Theorem 4.1 in (Gilbert and Tanl; 1991)). (i)
From Assumption 5, we have H;(0) = 0 < 1 for all
i € Zp,. Thus, from the definition of X in (61), the origin
is in the interior of X. For any k € Zar , from the defini-
tion in (62)-(63), O can be expressed as O = {x €
R": f(z) € X,0 € T, U{0}} = {x € R" : H;(f*(2)) <
1,1 € Ty, ¢ € T U{0}}. Under Assumption 4, we have
that f(z) is continuous with f(0) = 0, which, together
with the continuity of the functions H;(x), implies that
H;(f*(z)) is continuous with H;(f*(0)) = 0 < 1 for any
i € I, and £ € Z), U {0}. This implies that the origin is
in the interior of Ogl for any k € Zg . The compactness
of X and the continuity of f(z) and H;(z) also imply
that O2! is closed and bounded for any finite k € Z*.
According to the Heine-Borel theorem, they are also
compact. (ii) Now, we show that O% = O for some fi-
nite k*. From Assumption 4, there exists a k* such that
f¥(z) € X for any x € X. We claim that O is an
1nvar1ant set of System (60). We have to show that for
any 2’ € OpL, f(2') € O. From the expression of O}!
in (i), we can see that € O implies f*(z) € X for
all k € Ty~ U {0}. As the system is time-invariant, we
know that f*(f(2')) € X for k € Zy~_1 U {0}. From the
fact that f* (z) € X for any x € X, we can see that
¥ (f(z')) € X, which implies that f(z') € Ot. This
means that O is an invariant set. As defined in (63),
from the invariance of O, we get that O} 41 = ont.
Thus, it holds that O = O}! for all k > k*, which im-
plies that O};{ = O". This completes the proof. O

Even though the existence of O™ is guaranteed, com-
puting the exact O™ can be very challenging for gen-
eral nonlinear systems, even when the nonlinear con-
straints satisfy Assumption 3. For this reason, we only
consider a class of nonlinear systems that can be lin-
earized by state transformation, see, e.g., (Su; [1982;
Levine and Marind; [1986; [Menini and Tornambe; 2012;
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Jungers and Tabuada; 2019), for conditions for lineariz-
ability. While the state transformations in these papers
are not necessarily diffeomorphisms, we make the fol-
lowing assumption for ease of discussion.

Assumption 6 There exists a diffeomorphism T

R™ — R™ such that System (60) can be transformed into

a linear system
y(t+1)

= Ay(t),Vt € Z¢ (65)

for some A € R™™ y(t) =

J((t)) = T~ (AT (x(1))).

An example of nonlinear systems that satisfy Assump-
tion 6 will be given in the next section. The linearized
system (65) is subject to the following constraints

T(x(t)), with T(0) = 0 and

y(t) €Y =T (X),Vt € Zg (66)
with T(X) = {y e R* : H;(T"'(y)) <0,i € Z,,,}. With
the state transformation, it is possible to compute the
maximal CA-invariant of System (60) by computing the
maximal CA-invariant set of the linearized system (65).
Let O, denote the maximal CA-invariant set of the lin-
earized system (65). Suppose Y satisfies Assumption 3,
OY, can be computed using Algorithm 2. The equiva-
lence between the invariant sets of System (60) and Sys-
tem (65) can be easily established. In many real applica-
tions, we will need to deal with systems with nonlinear
dynamics and linear (or box) constraints. In this case, ¥
will often satisfy Assumption 3 (when T~1(y) is contin-
uously differentiable with Lipschitz gradient), although
it is not guaranteed.

Remark 2 From the discussion above, we can see that
it is possible to compute the maximal CA-invariant set of
nonlinear systems using their linear equivalents in some
cases. However, the problem of computing linear equiva-
lents for nonlinear systems is nontrivial and it is out of
the scope of this paper. For a detailed discussion, we re-
fer readers to a recent paper (Wang et all;|12020) and the
references therein.

5 Illustrative examples

Example 1 We consider the linear system studied in
(Athanasopoulos and Jungers; 12016, Example 1) with
A =[1.0216 0.3234; —0.6597 0.5226]. The constraint set
is the unit circle given by Oy == {z € R? : 272 < 1}
and © = R™. Algorithm 1 is used to obtain the mazximal
CA-invariant set and the result is given in Figure 1. It
can been seen from Figure 1 that Algorithm 1 termi-
nates at t* = 3. For the same setting, the algorithm in
(Athanasopoulos and Jungers; |2016) takes 6 iterations.

We consider the same dynamical system in Example 1
with additional quadratic constraints. Let the quadratic



Fig. 1. The maximal CA-invariant set Oso(Og) of Example
1 with @ = Q; and © = R".

constraint set be Qg == {z € R? : 2T < 1,227 — x% +
0.4z122 < 1, (21+0.5)% 423 > %, (r1—0.5)% 423 > i}
Note that there are 4 quadratic constraints and that this
set is nonconvex. Again, we use Algorithm 1 to compute
the mazximal CA-invariant set and it terminates at t* =
8. The set is shown in Figure 2. Trajectories are also
shown to verify set invariance of the disconnected regions.

s

(b)

Fig. 2. The maximal CA-invariant set of Example 1 with
Q = Q3 and © = R™: (a) shows the set €, and (b) shows the
maximal CA-invariant set Oss(O3).

Additionaly, we also consider a nonlinear constraint,
which is beyond the class of constraints that the approach
in 112016) is able to han-
dle. Let © = 01 :={z € R? : Hy(z) := /22 + 22 + 1 +
2x1 4 229 — 2 < 0}. It is easy to verify that Assumption
3 is satisfied with HY = [2 2] and L1 = 1. Using Algo-
rithm 2, the marimal CA-invariant set can be obtained
with t* = 8 as shown in Figure 3.

-

0.5

-0.5

o

(b)

Fig. 3. The maximal CA-invariant set of Example 1 with
Q= Qs and © = O1: (a) shows the set ()0, and (b) shows
the maximal CA-invariant set Ooo(Osg).
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Example 2 We consider an autonomous Wiener sys-
tem, which consists of a linear dynamical system and a
nonlinear static system (see (Markousky; |12019) for de-
tails on autonomous Wiener systems), as shown in Fig-
ure 4, with A = (0.5 0.7,—-0.7 0.5], C = [1 — 1] and
g(v) = v+ v? +v3 — vt The constraints are given by:
Q={zeR?:23+23 <25} andO® ={z €R?: -2<
9(Cz) <2}

v(t) = Ca(t) y()

—

2t +1) = Aa(t) 9(v(t))

Fig. 4. A discrete-time autonomous Wiener model

The output g(Cx) can be rewritten as

T
1 1
T o
9(Cx) = | wzo | P| arao [ +2F 2 (67)
af af
a3 a3
with
1 -1 —-1505 1.5
-1 1 0O 0 —-0.5
P=]-15 0 -6 2 2 and
0.5 0 2 -1 0
1.5 =05 2 0 -1

F =1[0.5 —0.5]T. The lifted system A in (44) becomes

0.5 0.7 0 0 0
-0.705 0 0 0

A= 0 0 —0.24 —0.350.35
0 0 0.7 025 049
0 0 —0.7 049 0.25

With the inequality 23 +x3 < 2.5, it can be easily verified
that

T
X1 I
X9 X9
L1 T1T2 <8.75
i i
x5 x5

Then, the constraint set for the lifted system is X, =
{z € R : 2T[I, 0171, 0]z < 25,27 Pz + 2FT[I5 0]z <
2,—2TPz — 2FT[I, 0]z < 2,272 < 8.75}. Finally, the



lifted mazimal CA-invariant set OZ, can be obtained us-
ing Algorithm 1, which terminates at k = 5. Accord-
ing to Proposition 2, the mazimal CA-invariant set of
the original system can be given by On = {x € R? :
(21,22, 2129, 22, 23) € OZ}, which is shown in Figure
5. Again, a trajectory is given to verify set invariance of
the disconnected regions.

2
1
80
-1
-2
-2 0 2
T Ty
(a) (b)

Fig. 5. The maximal CA-invariant set Ooo of the Wiener
system: (a) shows the set Q[ O, and (b) shows the set Ouo.

Example 3 Now, we evaluate the proposed approach on
switched linear systems of different sizes. As we have al-
ready seen in FExample 1, compared with the lifting ap-
proach in ;12016), our ap-
proach takes fewer iterations for the same setting. In this
example, we will make more comparison experiments in
more difficult situations. Consider a switched linear sys-
tem (48) with A = {A;, As}, which are randomly gen-
erated. To make sure that p(A) < 1 is satisfied, we first
generate matrices 1211 and /12 whose elements are sam-
pled independently and identically from the uniform dis-
trz’bzftw?} between —1 and 1. Then, we compute the JSR
p({A1, As}) (or an upper bound) using the JSR toolbox
T ;12014). Finally, we let

A,
2 = %7
p({A1, Az}) + €

A,
Al = —_—
p({A1, A2}) + €

where € > 0. With this choice of {A1, A2}, the con-
dition that p(A) < 1 is satisfied for any ¢ > 0. In
the simulation, we set ¢ = 0.1. The constraint set is
given by X = {x € R" : 2Tz < 1,27Q.x + 2¢Tz <
L2TQpx + 2qu:1: < 1}, where the symmetric matrices
Qa, Qv € S™ and the vectors qq,q, € R™ are also ran-
domly generated. We then use Algorithm 1 with the mod-
ifications in (50)-(51) and (53)-(54) to compute O .
Let Nier denote the number of iterations and Neonst
denote the number of constraints in the expression of
O (o7 equivalently Opy,,...) after removing redundancy
by solving (29). Note that different approaches may re-
sult in different descriptions of O in the presence of
nonlinear constraints though the set O is fized, because
identifying redundant mnonlinear constraints requires
us to solve mon-convex problems, see Problems (14)
and (15). The comparison with the lifting approach in

;12016) is made in terms
of the number of iterations and the number of constraints
in the expression of O . Similarly, let N, and N7, o

iter
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denote the number of iterations and the number of con-
straints respectively in (Athanasopoulos and Jungers;

[2016). The approach in (Athanasopoulos and Jungers;
M) lifts the system into a @—dimensional SYs-
tem, where the quadratic constraints become linear con-
straints, while our approach does not have to lift the
system as the constraints are quadratic. For the lifted sys-
tem of (A r4;12016), all the sets
from (9) are polyhedra and we can remove redundancy
by solving linear optimization problems according to the
extended Farkas’ lemma dﬁghmjﬂﬂz}; (1986 |Blanchini;

). The computation of polyhedra is implemented
with the Multi- Parametric Toolbox (Herceg et all;12013),

which allows to remove redundancy efficiently.

We take 20 realizations of the dynamics and the con-
straints and compute the mean values of Niger, Neonst,
Lor and N . denoted by Niter, Neonst, Ny, and

iter iter?
N st Tespectively. The results are shown in Table 1.

Whenn > 5, the approach in (Athanasopoulos and Jungers;

[2016) is not conducted as it takes too much time. As
we can see in Table 1, the proposed approach converges
faster and produces a tighter expression of Oy with a
smaller number of constraints.

n | Niter Neonst Nior | Nlpnst
2 2.25 6.65 6.45 30.65
3 3.85 15.1 7.9 70.6
4 5.55 29.5 11.45 | 208.15
5 6.55 40.2 12.55 | 328.25
6 7.85 64.65 - -
10 9.6 130.65 - -
20 | 134 467.15 - -
30 | 14.35 | 1.23 x 10° - -

Table 1

Comparison with the lifting approach

; 12016) for Example 3 of
different sizes with 20 realizations.

Example 4 In the rest of this section, we consider the
following nonlinear system

Iy (t + 1) = 2({E1 (t))2 + xg(t),

za(t+1) = =2 (2(z1 (1) + :Eg(t))2 —0.821 (). (68)

The state constraint set is given by X := {x € R? : |x1] <
1,|z2| < 1}. There exists a diffeomorphism y = T (z),

Ty
T(x) = ( ] )
2x1 4+ x2

(69)



such that the nonlinear system can be linearized into

y@+n—< ]>ym. (70)

—-0.80

With the state transformation T(x), the state constraint
set of the linearized system can be given by Y := {y €
R? : |y1] < 1,92 — 2y3 < 1,2y — y2 < 1}. As a result,
we get a linear system with quadratic constraints and
the constraint set'Y is bounded. Using Algorithm 1, the
maximal CA-invariant set of the linearized system can
be computed and it takes 3 iterations. The set is shown
in Figure 6.

w

N

s1

o

“

(a) (b)

Fig. 6. The maximal CA-invariant set of the linearized sys-
tem of Example 4: (a) shows the set Y and (b) shows the
maximal CA-invariant set OL.

Using the inverse mapping x = T~ (y),

Tl@»—(mf;ﬁ>, (71)

the maximal CA-invariant set of the original nonlinear
system can be obtained and is shown in Figure 7.

Fig. 7. The maximal CA-invariant set of Example 4: (a)
shows the set X and (b) shows the maximal CA-invariant

1
set O%.

6 Conclusions

We have studied the computation of the maximal CA-
invariant set of discrete-time linear systems subject to
a class of non-convex constraints that admit quadratic
lower and upper bounds. By the use of these quadratic
bounds, we have derived a sufficient condition for set
invariance, which can be expressed as a set of LMIs.
Based on this sufficient condition, a new algorithm is
presented by solving a number of convex problems with
only one LMI constraint at every iteration. Under mild
assumptions, finite convergence to the exact maximal
CA-invariant set can be guaranteed. This algorithm can
be extended to switched linear systems and some spe-
cial nonlinear systems that admit linear equivalents. To
illustrate the performance of the proposed algorithm,
we have presented several numerical examples and made
comparison with an existing approach, which is capa-
ble of computing the exact maximal CA-invariant set of
switched linear systems subject to semi-algebraic con-
straints. For the same setting, we show that our approach
converges faster with a tighter expression of the maxi-
mal CA-invariant set.

Appendix
Proof of Proposition 1

In the case of linear constraints, Oy, is a polyhedral set for
any k € Zg . It is clear from Lemma 1 that Ryax(k) <0
implies Og4+1 = Op. We only need to show Oy1 = Oy
implies Rpax (k) < 0. From (10), Og41 = Oy, if and only
if Oy C {z € R* : A"z € X}. From the extended
Farkas’ lemma (Schrijver;[1986; Blanchini; 1999), for any
ke Z$,Or C{x € R": A¥*'lx € X} if and only if there
exists a non-negative matrix S € RP*(*+1P gych that,

qT
T
qg A
S| . | =4"AF (1)
qTAk
p(k+1)
> Sy <LVied, (.2)

j=1

Suppose there exists a non-negative matrix S €
RPX (1P gatisfying (.1) and (.2) for some k € Z],
by simple manipulations, we can see that ¢! A¥*! =

Z?:O Z?:l S(i,pf + j)quZ and Zlg:o Z?:l S(i,pf +



j) <1 for any i € Z,,, which implies that

0 (Ak-l—l)Tqi
q’iTAkJrl -1

k p .
—ZZS@,MH‘)( ’ (AZ)%)

=0 j=1 quAé -1

= 0.

_ (0 0 )
0 Z];:o Y Stpl+35)-1)

This means that R(Q, Qx) < 0 for any Q € Qi1 \ Qk.
Hence, Rax(k) < 0.0

(:3)
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