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Abstract—We revisit the computation of a probability of
collision in the context of automotive collision avoidance (also
referred to as conflict detection in other contexts). After reviewing
existing approaches to the definition and computation of a
collision probability we argue that the question “What is the
probability of collision within the next three seconds?” can be
answered on the basis of a collision probability rate.

Using results on level crossings for vector stochastic processes
we derive a general expression for the upper bound of the
distribution of the collision probability rate. This expression is
valid for arbitrary prediction models including process noise.

We demonstrate in several examples that distributions ob-
tained by large-scale Monte-Carlo simulations obey this bound
and in many cases approximately saturate the bound. We derive
an approximation for the distribution of the collision probability
rate that can be computed on an embedded platform. An
upper bound of the probability of collision is then obtained by
one-dimensional numerical integration over the time period of
interest.

A straightforward application of this method applies to the
collision of an extended object with a second point-like object.
Using an abstraction of the second object by salient points of
its boundary we propose an application of this method to two
extended objects with arbitrary orientation.

Finally, the distribution of the collision probability rate is
compared to approximations of time-to-collision distributions for
one-dimensional motions that have been obtained previously.

I. INTRODUCTION

The implementation of a collision mitigation or collision
avoidance system requires the computation of a measure of
criticality in order to assess the current traffic situation as
well as its evolution in the short-term future. There are many
criticality measures available, for example time-to-go (TTG)
or time-to-collision (TTC) [1],[2], or the brake threat number
[3]. All those measures are based on models of varying degrees
of complexity of touching or penetrating the boundary of
the potential colliding object, e. g. both the TTC = −x(0)

ẋ(0)
(for a constant velocity model) and the brake threat number
areq = − ẋ

2(0)
2x(0) are based on the one-dimensional collision

event x(t) = 0.
In this paper we focus on this underlying collision event –

the boundary penetration – in a fully probabilistic manner,
i. e. we propose a new approach to compute the collision
probability for automotive applications.

The use of this collision probability for decision making in
collision mitigation or avoidance systems is not subject of this
investigation.

There are two different approaches to computing a collision
probability for automotive applications that are known to the
authors:
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1) probability of the spatial overlap of the host vehicle with
the colliding vehicle’s probability distribution, see [4],
[5], and

2) probability of penetrating a boundary around the host
vehicle, see [6].

There is currently no satisfying way to compute an automotive
collision probability over a time period: there is a heuristic
proposal to pick the maximal collision probability over that
period as the collision probability for that time period [1],
and there are calculations relying on strong assumptions (e. g.
constant velocity models) that directly compute the collision
probability over a time period [6].

On the other hand in the field of collision risk modeling for
air traffic scenarios (for a recent overview see [7]) a special
case of the general mathematical result on crossings of multi-
dimensional stochastic processes [8] has been re-derived in [9]
and applied to air traffic specific setups [10],[11],[12]. This
allows for the computation of a collision probability over an
extended period of time for aircraft modeled as axis-aligned
cuboids or cylinders. Another approach based on a result for
a one-dimensional stochastic process with particular dynamics
has been suggested in [13].

In the following, based on the formalism in [8] we will
derive an expression for the upper bound of the probability
of penetrating a boundary around the host vehicle in a time
period ∆T = [t1, t2]. This will be the result of the temporal
integration of an upper bound of the probability rate for which
we derive a general expression valid for arbitrary prediction
models including process noise. Inclusion of process noise
is crucial for collision avoidance systems since it allows to
encode the uncertainty in the relative motion of the host
and the colliding vehicle. This uncertainty is particularly
relevant in safety-critical applications with typical prediction
times or TTCs of . 5s where it is unknown whether the
colliding vehicle keeps its motion, accelerates or slows down,
or whether the host vehicle driver perceives the risk and slows
down, for example.

The basis of our derivations are the time-dependent distri-
butions pt(x, y, ẋ, ẏ, . . . ), t ∈ ∆T . Those distributions charac-
terize a non-stationary vector stochastic process that represents
the predicted relative state ξ−(t) of the colliding vehicle. The
stochastic process can be the result of a dynamical system
whose flow f can depend upon the state ξ, a time-dependent
control input u(t), process noise ν(t), and time t:

f (ξ, u(t), ν(t), t) (1)

In the remainder of this paper the time dependence of ξ−(t)
and its elements will be suppressed, however the temporal
dependence of probability distributions will be indicated by
p→ pt where appropriate.
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The expressions derived in this article are designed to be
executed on embedded, automotive platforms; hence we do
not resort to methods that include Monte-Carlo simulations
as in [11] or [1]. Instead we use large-scale Monte-Carlo
simulations of potentially colliding trajectories as collision
probability ground truth in order to assess the accuracy of
our results. The Monte-Carlo outcome is represented by a
histogram of the number of collisions that occur within a time
interval with respect to time. Therefore simulating colliding
trajectories naturally leads to the concept of a collision prob-
ability rate which is central to this article.

The main contributions of this paper are as follows:
1) the incorporation of the mathematical theory of level

crossings of multi-dimensional stochastic processes de-
veloped in [8] for the definition and computation of
a general collision probability and derivation of upper
bounds of the collision probability rate as well as the
collision probability based on the entry intensity from
[8] (section IV-A)

2) derivation of approximate closed-form formulae for the
collision probability rate for automotive applications
(section IV-C and app. C)

3) a novel numerical study of the collision probability rate
with special emphasis on the accuracy of our approx-
imate formulae as well as on the upper bound and its
saturation (section V)

4) proposal of an adaptive method to efficiently sample the
collision probability rate (section V-D)

5) application of the computation of collision probability
to a probabilistic treatment of two extended objects with
arbitrary orientation by representative salient points of
an object’s geometry (sections IV-B and V-E)

6) comparison of the distribution of the collision proba-
bility rate to approximations of time-to-collision dis-
tributions for one-dimensional motions from existing
approaches (section VI)

Note that while some of the contributions are specific to a two-
dimensional setup and hence readily applicable to automo-
tive problems others are generally applicable to collisions of
higher-dimensional objects with piecewise smooth boundaries.

In the following two sections we will critically review
existing approaches to computing a collision probability, first
on the basis of spatial overlap and second with respect to
boundary penetration.

II. COLLISION PROBABILITY FROM 2D SPATIAL OVERLAP

This is the probability of the spatial overlap between the
host vehicle and the colliding vehicle that has been investigated
in [10], [4], [5]. First, an instantaneous overlap probability is
computed which involves integrals of the type

PIO(t) =

∫∫∫
(ψ,y,x)∈D

pt (x, y, ψ) dxdydψ (2)

where the state variables differ according to the model used
(2D or 3D, with or without orientation angle ψ). The collision
volume D can be restricted to the vehicle boundary or can
include a safe distance. Note that even in the simplest case

of only 2D position and Gaussian distribution the resulting
two-dimensional integral, i. e. the cumulative distribution
function of a bivariate Gaussian, cannot be solved in closed
form; however, numerical approximation schemes exist [14].
A problem of deriving an instantaneous collision probability
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Fig. 1. Example of an instantaneous collision probability over time derived
from a collision defined by spatial overlap as described in section II. This
is based on the first scenario described in sec. V-A with initial condition in
front of the host vehicle.

from 2D spatial overlap is that this approach directly yields
a collision probability for a specific time, see fig. 1. Hence it
does not allow to answer the question “What is the probability
of collision within the next three seconds?” because integration
of the collision probability over time does not yield a collision
probability over a certain time period as already pointed out
in [6]. In particular, time is not a random variable that can
be marginalized over and an integral over a time interval ∆T :∫

∆T
PIO(t)dt has dimension of time and does not constitute a

probability. A heuristic proposal to solve this problem has been
to pick the maximal collision probability over a time period as
the collision probability for that period [13],[1]. This proposal
has also been used in the definition of an overlap probability
in [10] where it was shown in a Monte-Carlo simulation that
the overlap probability and a collision probability based on
boundary crossings - discussed in the next section - are rather
unrelated since they differ by two to three orders of magnitude.

Another issue is that an instantaneous collision probability
based on the overlap of a spatial probability distribution with
the area of the host vehicle is determined by those sample
trajectories whose current end points, i. e. the position at the
current time, lie within the area of the host vehicle. But this
is independent of when the trajectory has crossed the host
vehicle boundary hence all end points except those exactly
on the boundary (whose contribution to the two-dimensional
integral is zero) correspond to a collision event in the past and
therefore too late for collision avoidance, see also fig. 1 for an
example where the maximum of the instantaneous collision
probability from spatial overlap occurs after the TTC in x-
direction. Also, by only considering trajectories with current
end points within the area of the host vehicle other colliding
trajectories with current end points outside the host vehicle



area that have already entered and exited the boundary are
unaccounted for. What we are actually interested in is the
probability of the colliding object touching and/or penetrating
the boundary of the host vehicle. This requires a different
approach than integration over state space as in eq. (2) since
the integral over a lower-dimensional subspace would always
be zero. Some existing approaches that consider a boundary
instead of a state space volume for the computation of a
collision probability are reviewed in the next section.

III. COLLISION PROBABILITY AT BOUNDARY

A probabilistic approach to computing the probability of
penetrating a boundary - instead of the probability of a spatial
overlap - has been proposed in [6]. Their method is based on
the probability density of the time to cross a straight, axis-
aligned boundary assuming a constant velocity model. The
derived collision probability refers to a time period and not
just a time instant. It is only applicable to straight paths or
combinations of piecewise straight paths and does not take
into account more complex geometries such as a rectangle.
It relies on a separation of longitudinal and lateral motion.
Another limitation is that the stochastic nature of their conflict
detection approach only comes from the distribution of the
initial condition of their state – process noise is not considered.

A somewhat complementary approach is taken in [13] for
aircraft conflict detection in the sense that process noise is
incorporated whereas the uncertainty of the initial condition
is not. They propose two different algorithms, one for mid-
range and one for short-range conflict detection. For mid-range
conflict detection their measure of criticality is an instanta-
neous probability of conflict and similar to the 2D spacial
overlap discussed in the previous section. It is computed
by a specific Monte-Carlo scheme. On the other hand their
short-range conflict detection is based on the penetration of a
spherical boundary around the aircraft as criticality measure.
The dynamics is a constant velocity model perturbed by
Brownian motion. The many strong assumptions, in particular
constant velocity motion, specific Brownian noise model, and
decoupling into one-dimensional motions make this approach
hard to generalize.

The approaches discussed above are limited to constant ve-
locity models with assumptions on the coupling of longitudinal
and lateral motion, they either incorporate specific process
noise or no process noise at all or exclude the uncertainty
of the initial condition. Additionally, they all rely on a time-
to-go or TTC as a prerequisite quantity - either probabilistic
or non-probabilistic.

As we will show in the next section, such a temporal
collision measure is not necessary for the computation of
a collision probability. Instead, we show that a fundamental
quantity to compute the collision probability for stochastic
processes is the collision probability rate. The mathematical
foundation for this approach was provided in [8] in terms of a
stochastic intensity for piecewise smooth boundaries. Collision
probability rates have already been used in the context of air
traffic collision risk modeling: In [9] an intensity specific to
a hyperrectangular boundary has been re-derived although [8]

was known to the authors. A subsequent publication ([11]) also
includes definitions and theorems independent of established
definitions and theorems from [8] for those hyperrectangles.
Further applications to air traffic collision risk modeling are
presented in [10] and [12]. In the following section we define a
collision probability and derive upper bounds of the collision
probability and collision probability rate based on standard
concepts from the theory of level crossings and the intensity
for more general boundaries from [8].

IV. COLLISION PROBABILITY RATE AT BOUNDARY

A. Derivation of an upper bound for the collision probability
rate

We have seen that simulating colliding trajectories naturally
gives us a probability rate and that a collision probability
rate allows us to perform temporal integration to arrive at
a collision probability for an extended period of time. An
expression for the upper bound of the collision probability
rate will be derived on the basis of a theorem on boundary
crossings of stochastic vector processes. For sake of lucidity
of arguments we restrict ourselves to one of the four straight
boundaries of the host vehicle, see fig. 2; extension to the other
boundaries is straightforward.

We start with the prediction of the pdf of a state vector
that at least contains relative position and its derivative, i. e.
ξ = (x y ẋ ẏ · · · )> for a two-dimensional geometry, of a
colliding object from an initial condition at t = 0 to a future
time t where process noise ν(t) is explicitly incorporated:

prediction : p0(x, y, ẋ, ẏ, . . . )
t,ν(t)7−→ pt(x, y, ẋ, ẏ, . . . )

Note that we do not make any assumptions on the used
prediction model as well as noise model or explicit temporal
dependencies, hence the stochastic dynamical system that
gives rise to this pdf could also explicitly depend upon time
or a time-dependent control input u(t). In order to cast the
following expressions into a more readable format we define
a probability distribution that only depends upon relative
position and its derivative by marginalization (see app. A
for marginalization of Gaussian densities, for example) of the
predicted pdf over the other variables:1

pt(x, y, ẋ, ẏ) :=

∫
other var.

pt(x, y, ẋ, ẏ, other var.)d(other var.)

Given the pdf pt(x, y, ẋ, ẏ) what we are looking for is an
expression for

dP+
C

dt
(Γfront, t)

i. e. the collision probability rate dP+
C

dt with dimension [s−1]
at time t for the front boundary Γfront. The superscript + is
used to denote that this probability rate is referring to boundary
crossings from outside to inside.

1The state vector ξ = (x y ẋ ẏ ẍ ÿ)> specified in app. B is an obvious
extension of the minimal state vector above with corresponding white noise
jerk model described in eq. (26) and is used as an example to illustrate the
computation of collision probability rate. It is however by no means specific
to the results stated in this paper.



1) An Intuitive Motivation: We start with the probability of
the colliding object being inside an infinitesimally thin strip
at the boundary Γfront (see fig. 2)

dP+
C (Γfront, t) =

∫
ẏ∈R

∫
ẋ≤0

∫
y∈Iy

pt(x0, y, ẋ, ẏ) dxdydẋdẏ

Here, since we are only interested in colliding trajectories, i.
e. trajectories that cross the boundary from outside to inside,
we do not fully marginalize over ẋ but restrict the x−velocity
to negative values at the boundary.

A collision probability rate can now be obtained by dividing
the unintegrated differential dx by dt; in that way the “flow”
of the target vehicle through the host vehicle boundary is
described at x0 with velocity ẋ ≤ 0:

dP+
C

dt
(Γfront, t) ' −

∫
ẏ∈R

∫
ẋ≤0

∫
y∈Iy

pt(x0, y, ẋ, ẏ) ẋ dydẋdẏ (3)

Here, since the velocity is restricted to negative values a minus
sign is required to obtain a positive rate. This expression
constitutes the expected value of the velocity component
perpendicular to the boundary evaluated at the boundary.

2) Derivation based upon the theory of level crossings:
This intuitive derivation can be amended as well as generalized
in a mathematically rigorous way by invoking a result on
crossings of a surface element by a stochastic vector process
stated in [8] and generalized in [15] and [16]. First we need to
set up the notations and definitions for entries and exits (level
crossings) across the boundary of a region.

Let ζ(t) be a continuously differentiable n−dimensional
vector stochastic process with values x ∈ Rn. The probability
densities pt(x) and pt(ẋ,x) exist where ẋ ∈ Rn are the
values of ζ̇(t).2 Let the region S ∈ Rn be bounded by
the smooth surface ∂S defined by the smooth function g as
∂S = {x : g(x) = 0} and let Γ ⊆ ∂S be a subset of that
surface. Let nΓ(x) be the surface normal at x directed towards
the interior of the region.

A sample function x(t) of ζ(t) has an entry (exit) across
the boundary Γ at t0 if g(x) > 0 (g(x) < 0)∀t ∈ (t0 − ε, t0)
and g(x) < 0 (g(x) > 0)∀t ∈ (t0, t0 + ε) for some ε > 0. For
a temporal interval ∆T = [t1, t2] the number of entries/exits
across Γ in this interval is denoted by N±(Γ, t1, t2).

The importance of this mathematical setup is that using
the number of entries a collision probability over ∆T can
be defined3 as

P+
C (Γ, t1, t2) := P

(
g (x(t1)) ≥ 0, N+(Γ, t1, t2) ≥ 1

)
+ P (g (x(t1)) < 0)︸ ︷︷ ︸

=0

= P
(
N+(Γ, t1, t2) ≥ 1

)
(4)

i. e. the probability that the stochastic process enters the
boundary in ∆T at least once with initial value outside
the boundary. The probability that the process is outside

2Further assumptions on the stochastic process and its probability densities
apply [8].

3This definition is motivated by the probability distribution of the maximum
of a continuous process, see e. g. [17].

the boundary at initial time t1 should be one in automotive
applications where a collision probability is to be computed
for a time interval that begins at a time when the collision has
not happened yet.

The first moment of N+(Γ, t1, t2) can be used to obtain an
upper bound for P (N+(Γ, t1, t2) ≥ 1):4

P (N+(Γ, t1, t2) ≥ 1) ≤ E
{
N+(Γ, t1, t2)

}
(5)

This becomes obvious by writing out the expressions above:

P (N+≥ 1) =

∞∑
k=1

P (N+= k) ≤
∞∑
k=0

kP (N+= k) = E
{
N+
}

(6)
It also shows that if the probabilities for two or more entries
are much smaller than for one entry then E {N+(Γ, t1, t2)}
is not just an upper bound but a good approximation to
P (N+(Γ, t1, t2) ≥ 1).

It remains to compute the first moments for entry and
exit which can be obtained via temporal integration of the
entry/exit intensities µ± as defined (see e. g. [17]) below:

t2∫
t1

µ±(Γ, t)dt := E
{
N±(Γ, t1, t2)

}
(7)

By combining eqs. (4) and (5) and evaluating the temporal
derivative with respect to t2 at t1 we obtain

dP+
C

dt
(Γ, t1) ≤ µ+(Γ, t1) (8)

i. e. we have derived an upper bound for the collision proba-
bility rate.

This upper bound can be further evaluated using the explicit
expression for the entry/exit intensities µ± from [8]:

µ± (Γ, t) =

∫
x∈Γ

E
{
〈nΓ(x), ζ̇(t)〉±

∣∣∣ ζ(t) = x
}
pt(x)dsΓ(x)

(9)
where 〈·, ·〉 is the scalar product, dsΓ(x) is an infinitesimal
surface element of Γ at x and (·)+ := max(·, 0) and (·)− :=
−min(·, 0). Equation (9) holds for general non-Gaussian as
well as non-stationary stochastic processes.

In order to apply eq. (9) to the front boundary Γfront as in
fig. 2 we need to perform the following identifications:5

ζ(t) = (x, y)
>

Γfront = {(x, y) : x− x0 = 0 ∧ y ∈ Iy}
gΓfront

(x) = x− x0

nΓfront
(x) = (−1, 0)

>

dsΓfront
(x) = dy (10)

Hence we obtain for the intermediate expectation operator

4Using Markov’s generalized inequality also a lower bound can be derived
in terms of the first and second factorial moments [8].

5From now on we now do not distinguish anymore between a stochastic
process and its sample values.



Host vehicle

Front
boundary:

front

rightleft

rear

0x

yI

Ly
Ry

x

y
dx

Infinitesimally
thin strip

Fig. 2. Horizontal view of the host vehicle rectangle with local Cartesian
coordinate system and coordinate origin at the middle of the front boundary
characterized by x = 0 and y ∈ [yL, yR] = Iy .

E
{
〈nΓfront

(x), ζ̇(t)〉+
∣∣∣ ζ(t) = x

}
=

−
∫
ẏ∈R

∫
ẋ≤0

ẋ pt(ẋ, ẏ|x, y) dẋdẏ (11)

and the entry intensity becomes

µ+(Γfront, t)=−
∫

y∈Iy

 ∫
ẏ∈R

∫
ẋ≤0

ẋ pt(ẋ, ẏ|x0, y)dẋdẏ

pt(x0, y)dy

=−
∫
ẏ∈R

∫
ẋ≤0

∫
y∈Iy

ẋ pt(x0, y, ẋ, ẏ) dydẋdẏ (12)

This shows that the intuitive derivation of the collision prob-
ability rate (eq. (3)) results in the correct expression for the
upper bound. It should be noted, however, that the application
of the formalism above to a rectangular boundary of the host
vehicle is just an example. By the theorem stated above the
formula can be applied to any subsets of smooth surfaces, in-
cluding higher dimensional ones for three-dimensional objects,
for example.

The computation above applies to the front boundary of
the host vehicle. Since the results in [8] are also valid for
piecewise smooth boundaries6 the entry intensities of the four
boundaries can be added. Hence the total entry intensity is
given by

µ+(Γhost vehicle, t) = µ+(Γfront, t) + µ+(Γright, t)

+ µ+(Γleft, t) + µ+(Γrear, t) (13)

With these expressions the collision probability rate and colli-
sion probability for the surface subset Γ within a time interval
∆T = [t1, t2] are bounded by

dP+
C

dt
(Γhost vehicle, t1) ≤ µ+(Γhost vehicle, t1) (14)

P+
C (Γhost vehicle, t1, t2) ≤

t2∫
t1

µ+ (Γhost vehicle, t) dt (15)

6This corrects a contrary statement in [7]. The results of [8] have been
applied to polyhedral [18] and other regions S with a piecewise smooth
surface ∂S, for an overview see [19].

In summary the upper bounds are due to the approximation
of the probability of one or more boundary entries by the
expected number of boundary entries (inequality (5)).

Note that the stochastic process ξ representing the state
of the colliding object needs to contain 2D relative position
(x y)> and 2D relative velocity (ẋ ẏ)>. In many ADAS
applications the target vehicle dynamics for moving as well as
stationary vehicles is modeled directly in relative coordinates.
For state vectors that do not contain the 2D relative velocity
but other quantities such as the velocity over ground (see e. g.
[20]), a probabilistic transformation to relative velocities must
be performed first.

B. Entry intensity for two extended vehicles

In previous sections the colliding vehicle was modeled as a
point distribution corresponding to a single reference point (for
example the middle of the vehicle’s rear bumper). This allowed
the direct application of the theory of boundary crossings
of a point process. Using strong assumptions about the two
colliding objects’ shape and orientation this can also be applied
to two extended objects: the collision models in [12] assume
either a partially isotropic shape (cylinder) or use axis-aligned
cuboids and can hence be reduced to the collision of an
extended object and a point distribution as described in [12].
Note that the collision of a rectangular host vehicle with a
circular object (this could serve as the approximate horizontal
shape of a pedestrian) can also be reduced to the collision of
the circle midpoint with an enlarged “rectangle” with rounded
edges as shown in fig. 3.

Host
vehicle

Host 
vehicle

enlarged, 
rounded

֞

Point
object

Circular
object

Fig. 3. Equivalent representations of objects regarding collision modeling.

While in many ADAS applications the object state is modeled
by a single reference point and possibly additional attributes,
for many collision avoidance applications the object exten-
sion/geometry is crucial, e. g. for scenarios with fractional
overlap. In [21] a method to compute the collision probability
between a rectangular host and rectangular object vehicle was
derived using our method described above. By assuming both
the host trajectory and the object orientation to be deterministic
the collision between two oriented rectangles was reduced to
the collision of a point and an octagon.
However, for example in EuroNCAP-relevant junction scenar-
ios where an oncoming object turns into the host vehicle’s
path the latter assumption might not be valid. Instead, in
order to represent the extended geometry of the colliding
object, we model the object’s dynamical state (see app. B)
relative to a specific reference point, for example the middle
of the rear bumper or the rear axle, and then transform the
state probability distribution to its boundary (see app. D).
The entry intensity can be obtained for every point on the
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Fig. 4. Horizontal view of the host vehicle and colliding object vehicle with
reference point and salient points at the four corners.

colliding object’s boundary which results in a family of entry
intensities. We approximate this family by the entry intensities
of a small number of representative salient points of the
colliding vehicle’s two-dimensional geometry as in fig. 4. The
collision probability for the extended colliding object can then
be approximately determined by the collision probability of the
“riskiest” salient point which we define to be the one where the
collision probability exceeds a certain threshold the earliest.
A fully worked example of this approach is given in sec. V-E.

C. Implementation for Gaussian distributions

For further computations - especially in the Gaussian case
- it will be convenient to marginalize over ẏ and rewrite eq.
(12) in terms of a conditional probability:

µ+(Γfront, t) = −pt(x0)

∫
y∈Iy

∫
ẋ≤0

ẋ pt(ẋ, y|x0) dẋdy (16)

For general distribution functions the integral in eq. (16)
cannot be computed in closed form and numerical integration
methods must be used. Even in the bivariate Gaussian case
there is no explicit solution known to the authors. However,
by a Taylor-expansion with respect to the off-diagonal element
of the inverse covariance matrix of p(y, ẋ|x0) as detailed in
app. C, the integral can be factorized into one-dimensional
Gaussians and solved in terms of the standard normal one-
dimensional cumulative distribution function Φ. To zeroth
order the integration yields:

µ+(Γfront, t) =−N (x0;µx, σx)

·

((
µẋ|x0

Φ

(−µẋ|x0

σ̃ẋ|x0

)
− σ̃2

ẋ|x0
N (0;µẋ|x0

, σ̃ẋ|x0
)

)
·

·
(

Φ

(
yR − µy|x0

σ̃y|x0

)
− Φ

(
yL − µy|x0

σ̃y|x0

))
+O

(
Σ−1

12

))
(17)

Here, if Σ ∈ R2×2 is the covariance matrix of p(ẋ, y|x0),

then σ̃ẋ|x0
=
√
|Σ|
Σyy

and σ̃y|x0
=
√
|Σ|
Σẋẋ

, see app. C where
the integration has also been carried out to first order in Σ−1

12 .
Expression (17) can be computed on an embedded platform
using the complementary error function available in the C math
library.7

In the next section an extensive numerical study using the
above formulae and Monte-Carlo simulations is presented.

V. NUMERICAL STUDY

A. The collision probability ground truth: large-scale Monte-
Carlo simulations

Here, we want to investigate two examples of possible
collision scenarios, one where the target vehicle is currently
in front of the host vehicle and one where it is on the front
right side. In order to obtain ground truth data for the future
collision probability Monte-Carlo simulations are performed.
The target vehicle on a possibly colliding path with the host
vehicle is modeled by the state vector ξ = (x y ẋ ẏ ẍ ÿ)>

and the dynamical system as specified in appendix B. The
target vehicle is chosen to be detected by a radar sensor
mounted at the middle of the front bumper of the host vehicle.
Note however that this state vector as well as the dynamical
system specified in appendix B constitute just an example
– the central results in section IV-A hold for general non-
stationary as well as non-Gaussian stochastic processes. In
particular, the absence of assumptions on the stationarity of
the stochastic process means that processes derived from more
general dynamical system – including systems with explicit
time dependence or time-dependent control inputs u(t) – are
covered.

The starting point for an individual simulation is a sample
point in state space ξ−i where the target vehicle is some
distance away from the host vehicle - either directly in front
or coming from the right side, see fig. 5. This sample point
is drawn from a multivariate distribution characterized by its
mean vector and covariance matrix which is usually the output
of a probabilistic filter that takes into account the history of
all previous sensor measurements that have been associated
with this object. Instead of arbitrarily picking specific values
for this initial covariance matrix we take its values from
steady state at this mean vector using the discrete algebraic
Riccati equation for typical radar detection measurements.8 An
instance ξ−i of an initial state of the target vehicle is drawn as
a sample of N (ξ−;µ−ξ , P

−
∞). This state is predicted using the

stochastic differential equation (26) until it crosses the host
vehicle boundary or a certain time limit is exceeded. Hence:
collision event = crossing of the target vehicle path with the
host vehicle boundary. The time until the crossing is recorded
and a new simulation with a new sample of initial conditions
is started. Examples of colliding trajectories starting from an

7Φ is related to the error function erf and complementary error function
erfc by Φ(x) = 1

2
erfc

(
−x√

2

)
= 1

2
− 1

2
erf
(
−x√

2

)
.

8Strictly speaking there is no steady state at those points since the system
is non-linear and the relative speed is not zero. Nevertheless the solution of
the Riccati equation is still representative if the filter settles within a smaller
time period than the time period in which the state changes significantly.



initial position in front of the host vehicle are depicted in
fig. 5. We have performed simulations of Ntraj = 3 · 106

trajectories for the two starting points. The result is represented
by a histogram of the number of collisions that occur within
a histogram bin, i. e. time interval, with respect to time.

Hence simulating colliding trajectories naturally leads to
a collision probability rate which is by construction the
distribution of the TTC.

An example is given in fig. 6 where the bins are normalized
by the total number of trajectories Ntraj and the chosen bin
width of dt = 0.05s to obtain a collision probability rate.
In addition, the collision probability rate integrated by simple
midpoint quadrature from 0 to time t is shown. In this example
the probability of collision with the target vehicle exceeds
60% within the first 6s. The asymptotic value of the collision
probability as t → ∞ indicates the overall probability of
collision over all times. With the setup explained above the
following questions can be addressed:
• Is the expression for calculating the entry intensity from

eq. (9) consistent with the results from large scale Monte-
Carlo simulations?

• How does the approximation (17) perform in comparison
with the numerical integration of the derived expression
(16) for the entry intensity?

• Can the computational effort be reduced by increasing
∆t and still accurately calculating the entry intensity?

• Does the entry intensity still reproduce results from
Monte-Carlo simulations after non-linear transformation
from a reference point to representative salient points of
the colliding vehicle’s geometry?

B. Is the upper bound of the collision probability rate corrob-
orated by Monte-Carlo simulation?

In order to address the first question, large scale Monte-
Carlo simulations as described in sec. V-A have been per-
formed. Entry intensities were calculated based on 3 · 106

sample trajectories for each of the two initial conditions
Ni(ξ−;µ−ξ i, P

−
∞), where µ−ξ i is shown in table I, and P−∞

is calculated using the discrete Riccati equation with matrices
defined in appendix B. The two initial conditions (i ∈ {f, fr})
describe a starting point directly in front of the host vehicle,
and in front to the right at an angle of 45 degrees with respect
to the host vehicle. The inclusion of process noise as well as
the inclusion of acceleration in the state vector as specified
in appendix B allows for multiple entries and enables us to
assess the influence of multiple entries on the accuracy of the
upper bounds derived above.9 Table II shows the number of
collisions divided into the respective boundaries of the host
vehicle where the impact or boundary crossing occurred for
the two different simulations. The resulting histograms of the
collision probability rates are shown in fig. 7 together with
the entry intensity obtained by numerical integration of the
bivariate Gaussian in (16) as well as the difference between

9This is in contrast to the aviation-specific numerical study in [11] where
during the part of a trajectory where a collision could occur a constant
velocity model without process noise was used and hence multiple entries
were excluded.

TABLE I
MEAN OF INITIAL CONDITIONS FOR MONTE-CARLO SIMULATIONS

µ−ξ Scenario
front (f) front right (fr)

µ−x [m] 10 10

µ−y [m] 0 10

µ−ẋ
[
m
s

]
−2 −2

µ−ẏ
[
m
s

]
0.4 −1.6

µ−ẍ

[
m
s2

]
−0.2 −0.001

µ−ÿ

[
m
s2

]
0.0 −0.01

TABLE II
NUMBER OF COLLISIONS AT HOST VEHICLE BOUNDARIES FOR 3 · 106

SIMULATED TRAJECTORIES WITH DIFFERENT INITIAL CONDITIONS.

Γ Scenario
front (f) front right (fr)

Γfront 1.50 · 106 8.31 · 105

Γright 4.25 · 105 1.39 · 106

Γleft 0 0
Γrear 0 0
Γhost vehicle 1.93 · 106 2.22 · 106

the simulation and the calculation. The difference is calculated
by evaluating the entry intensity at the same time as the
mid points of the histogram bins. As can be seen in fig. 7,
the entry intensity obtained by numerical integration of the
exact expression (eq. (16)) accurately reproduces the collision
probability rate from Monte-Carlo simulations.

In order to illustrate the increase in accuracy as a function
of the number of simulated trajectories, fig. 8 shows the
differences between simulation and numerical integration with
increasing amount of simulated trajectories for collisions at the
right side of the host vehicle in the front scenario. The reason
why the entry intensity approximates the observed collision
probability rates so well is the very low occurrence of higher
order entries, i. e. entries where the trajectory enters the bound-
ary more than once (see statistics of a Monte-Carlo simulation
in table III). In the absence of higher order entries the expected
number of entries becomes equal to the probability of entering
the boundary at least once, see eq. (6). Since the corresponding
time interval is arbitrary this equality propagates to an equality
of the rates (compare to eq. (8)). In this context, we want to
point out a subtlety concerning the number of entries regarding
the entire vehicle boundary Γhost vehicle versus entries through
one of the boundary segments such as Γright. In Monte-Carlo
simulations we have observed trajectories as shown in fig.
9a where the trajectory first enters the front boundary, exits
the right boundary and then enters the right boundary again.
With respect to the entire vehicle boundary Γhost vehicle this
is a second entry – however with respect to the individual
right boundary segment Γright this is a first entry. This is
illustrated in fig. 9b where the entry intensity and Monte-
Carlo histogram for Γright are plotted. Only by taking into
account all entries for Γright, i. e. entries of Γright that are
first crossings of Γright, as well as entries of Γright that are
second or higher crossings does the entry intensity for Γright
match the histogram from Monte-Carlo simulation.
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(a) The target is coming from the front (µx, µy) = (10, 0)m. The
parameters for the time-dependent input as specified in app. B are
b1 = −0.2ms−3, b2 = −0.3ms−3, ω = 0.5s−1.
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(b) The target is coming from the front right (µx, µy) = (10, 10)m.
The parameters for the time-dependent input as specified in app. B
are b1 = −0.4ms−3, b2 = −0.5ms−3, ω = 0.5s−1.

Fig. 5. Samples of simulated colliding trajectories for vehicles initially coming from the front (a) and from the front right (b) side.
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Fig. 6. Collision probability rate as a function of time for (µx, µy) =
(10, 0)m based upon Ntraj = 3·106 trajectories. Also shown is the collision
probability obtained by integrating over time. This should be contrasted with
the shape of the instantaneous collision probability in fig. 1.

TABLE III
ABSOLUTE FREQUENCY H AND RELATIVE FREQUENCY P OF THE

NUMBER OF ENTRIES N+ OF COLLIDING TRAJECTORIES FOR
Γhost vehicle BASED ON 1 · 107 SIMULATED TRAJECTORIES FOR

∆T = [0, 8s].

X H(X) P (X) P (X)

P (N+≥1)

N+= 1 4, 493, 419 0.4493 0.9981
N+= 2 8, 772 0.0009 0.0019
N+ ≥ 1 4, 502, 191 0.4502 1

C. Does the approximation by Taylor-expansion accurately
reproduce the exact result?

In order to be able to compute the entry intensity efficiently
on an embedded platform, an approximation of the exact
expression (eq. (12)) was derived in eq. (17). Fig. 10a,b

shows the differences between this approximation as well as a
higher-order approximation where the pdf is Taylor-expanded
to linear order with respect to the off-diagonal element of
the inverse covariance matrix around 0 (see app. C) and the
numerical integration of (16). As can be seen, the higher-order
approximation reduces the error to a large extent while it can
be still calculated efficiently on an embedded platform using
the complementary error function. In Fig. 10c,d the differences
between the numerical integration of (16) and the method
described in [10] is shown in addition where it can be seen that
the deviation is much bigger compared to the approximations
derived in (17).

D. An adaptive method to sample the entry intensity over ∆T

The approximations above of the exact expression of the
entry intensity were evaluated at small time increments of
∆t = 0.05s. Thus, the calculation over the entire time period
of interest (e.g 8s as used above) and for every relevant
object could induce a substantial computational burden. In
order to reduce this effort, we propose an adaptive method
to sample the entry intensity function with variable – i. e. in
general larger – time increments ∆t over the time period of
interest while still capturing the characteristics of this function,
in particular its shape around the maximum. The sampling
starting point is based upon the non-probabilistic TTCs for
single, straight boundaries using a one-dimensional constant
acceleration model. Those TTCs for penetrating the front, left,
and right boundaries can then be used as initial condition for
the start of the sampling iteration of the entry intensity.10

To reproduce the entry intensity without substantial loss of
information but with lower computational effort, the following
algorithm is proposed:

10Due to the low probability of penetration the non-probabilistic TTC for
the rear boundary is not considered for the determination of the sampling
starting point.
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(a) Front scenario total collision probability rate and
entry intensity
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(b) Front-Right scenario total collision probability rate
and entry intensity
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(c) Front scenario: difference between total collision
probability rate and entry intensity
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(d) Front-Right scenario: difference between total col-
lision probability rate and entry intensity

Fig. 7. The histogram resulting from Monte-Carlo simulation is shown together with the entry intensity obtained by numerical integration of the bivariate
Gaussian for front (a) and front-right (b) scenario. The differences between simulation and numerical integration are calculated by evaluating the numerical
integration at the same time as the mid points of the histogram bins and shown in (c) and (d). The process noise PSD for both coordinates is q̃x = q̃y =
0.0101m2s−5.
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(a) Simulation based on 1 · 105 trajectories.

1 2 3 4 5 6 7 8

t [s]

0

0.002

0.004

0.006

0.008

0.01

0.012

c
o

lli
s
io

n
 p

ro
b

a
b

ili
ty

 r
a

te
 [

s
-1

]

Monte-Carlo histogram (ground truth)

numerical integration of exact expression

(b) Simulation based on 1 · 106 trajectories.
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(c) Simulation based on 1 · 107 trajectories.

Fig. 8. The collision probability rate for the right side of the host vehicle for the front scenario is shown comparing the results from Monte-Carlo simulation
with increasing amount of simulated trajectories (a)-(c) with the entry intensity obtained by numerical integration of the bivariate Gaussian distribution (eq.
(16)). The process noise PSD for both coordinates is q̃x = q̃y = 1.0125m2s−5.

• Calculate the times of penetrating the front, left and
right boundaries based upon the non-probabilistic TTCs
described above.

• Calculate the entry intensity for each time. Pick the time
with the maximum entry intensity as a starting point.

• Move left and right from this starting point with equally
spaced ∆t1 > ∆t and calculate the entry intensity at
these time points. Stop on each side if the entry intensity

has reached a lower threshold of (dP+
C /dt)low.

• While moving left and right, check if the slope of the
entry intensity has changed its sign.

• On every slope sign change, calculate the entry intensity
around this time interval with decreased ∆t2 < ∆t1.

Examples of this implementation can be found in fig. 11 for
the front and front-right scenarios. It can be seen that the
entry intensity as well as the entry intensity integrated over
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(b) Single and multiple entry histograms

Fig. 9. Illustration of multiple entries into Γhost vehicle. In (a), observed simulated a trajectory entering the entire vehicle boundary Γhost vehicle once
and a trajectory entering twice are shown. The entry intensity of the right side Γright of the host vehicle for the front scenario is shown in (b) together with
the Monte-Carlo histogram where entries by trajectories that have previously exited Γright from inside Γhost vehicle are marked in dark gray. Trajectories
with no previous exit from inside are marked in light gray.

a certain time period can be determined with considerably
fewer sampling points while still capturing the shape of the
functions to be approximated.

E. Salient points of colliding vehicle’s geometry

In this section, we investigate a family of entry intensities
by a parsimonious sampling in terms of several representative
salient points of the colliding vehicle’s two-dimensional ge-
ometry, i.e. the four corner points of a vehicle’s rectangular
shape incorporating width and length information, see IV-B.
This enables the approximate estimation of the collision proba-
bility between two vehicles modeled as extended objects with
arbitrary orientation in the horizontal plane by the collision
probability of the “riskiest” salient point. The first step of the
computation is the prediction of the reference point’s state
distribution to a certain time as before. But then it needs to
be transformed to representative salient points as described
in app. D. In order to apply the approximate formulae for
Gaussian distributions as in sec. IV-C the transformation is
performed by the usual second order linearization, i. e. using
the full nonlinear transformation for the mean and its Jacobian
for the covariance matrix propagation. For this investigation,
three approaches are compared in fig. 12: first the numerical
integration of the resulting 2d Gaussian distribution as well as
two closed-form approximations derived in app. C by Taylor-
expansion. Contrary to the investigations in sec. V-B and V-C
even the numerical integration of the 2d Gaussian distribu-
tion cannot fully match the Monte-Carlo simulations due to
the Gaussian approximation of the non-Gaussian transformed
predicted distributions. Also both closed-form approximations
to the 2d Gaussian integral show deviations to the Monte-Carlo
simulation which describes the front scenario with process
noise PSD for both coordinates of q̃x = q̃y = 0.0101m2s−5

and input gain B set to zero. The closed-form approximations
by Taylor-expansion with respect to the off-diagonal element

of the covariance matrix and the inverse covariance matrix
show similar accuracy with respect to the Monte-Carlo sim-
ulations except for the salient point in fig. 12d where the
former expansion is favored. Nevertheless in these cases both
Taylor-expansions approximately capture both the shape and
the location of the maximum of the intensity distributions.

The collision probability for the extended colliding object
can then be approximated by the collision probability of the
riskiest salient point which is the one where the collision
probability exceeds a certain threshold the earliest. In the
example above the riskiest salient point would be the rear
left corner, see fig. 13. Clearly, using additional salient points
such as the mid points of the vehicle’s faces would improve
the accuracy of this approximation at the expense of increased
computational effort. Also, salient points can be used for more
complicated, non-rectangular object boundaries. In the next
section we turn our attention to time-to-collision which is an
often used characteristic of collision scenarios.

VI. WHAT IS THE TTC?

The time-to-collision (TTC) is a stochastic process de-
scribing the first time of contact or collision and is hence
characterized by a distribution. There have been various ap-
proaches to approximating the TTC-distribution. In [2], the
TTC is computed as the mean of the time distribution of
reaching the x0 boundary of the car as a function of the
initial conditions assuming a constant speed model; process
noise is not considered. This is also presented in [1]; in
addition the time distribution for reaching the x0 boundary
as a function of the initial conditions assuming a constant
acceleration model is calculated by Monte-Carlo-simulation
and its mean values depending upon the initial condition setup
is given - again, process noise for this motion model is not
considered. As a notable exception, in [3] the covariance of
the distribution of TTC (or the related time-to-go in [6]) has
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(b) Front-Right scenario
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Fig. 10. Differences between numerical integration of the bivariate Gaussian in the expression of the entry intensity in eq. (16) and two approximations (a,b)
as well as the method described in [10] (c,d).

been augmented by standard error propagation and clever
use of the implicit function theorem to include the effect
of process noise. Nevertheless their TTC is still based on a
reduction to a one-dimensional, longitudinal motion. As will
be shown below these restricted temporal quantities do not
fully capture the characteristics of horizontal plane collision
scenarios. What is required is a distribution of the TTC that
takes into account process noise as well as two- or higher-
dimensional geometries.

In the following figures entry intensities are plotted together
with initial condition TTC-distributions from Monte-Carlo
simulations similar to [1]. These Monte-Carlo simulations
are based on TTC values for the front boundary Γfront
(x-direction) and the right boundary Γright (y-direction) as
solutions of the constant acceleration equations

x0 = x(TTCfront)

= x(0) + ẋ(0)TTCfront +
ẍ(0)

2
TTC2

front

yR = y(TTCright)

= y(0) + ẏ(0)TTCright +
ÿ(0)

2
TTC2

right (18)

As an extension of the one-dimensional Monte-Carlo setup
in [1] the following conditions and constraints need to be
considered for consistent TTC-histograms for one-dimensional
boundaries embedded in two-dimensional space

- for arbitrary initial conditions and values of x0, yR all
real, positive solutions of the quadratic equations above
need to be considered

- a real, positive solution for TTCfront is only
valid if (x(TTCfront), y(TTCfront)) ∈ Γfront,
and a real solution for TTCright is only valid if
(x(TTCright), y(TTCright)) ∈ Γright

- the trajectory must enter the boundary from outside, e. g.
for TTCright it is checked that y(TTCright − ε) > yR
for a small ε > 0

Since time-dependent input cannot be handled in Monte-Carlo
simulations only based on stochastic initial conditions we
restrict the dynamical model in this section for comparison
to a constant acceleration model, i. e. the input gain B in app.
B is set to zero.

As one central result of this section, we show in fig. 14 that
initial condition TTC-histograms from Monte-Carlo simula-
tions described above (referred to as ‘TTC initial condition
MC-histograms’) match the corresponding entry intensities
when process noise is zero. If contributions of higher order en-
tries are negligible as discussed in sec. V-B the entry intensity
accurately approximates the collision probability rate which is
the probability density of the TTC. It is also noteworthy that
in this case the entry intensity in its approximate version from
sec. IV-C affords a closed-form expression for a distribution
that hitherto had to be obtained by Monte-Carlo simulation.

Also shown are the approximate Gaussian distributions ac-
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(a) Front scenario entry intensity
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(b) Front-Right scenario entry intensity
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(c) Front scenario integrated entry intensity
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(d) Front-Right scenario integrated entry intensity

Fig. 11. Examples for reducing the number of calculations to determine the entry intensity and the integrated entry intensity. (a) and (c) show the results for
the front scenario and (b) and (d) for the front-right scenario. The parameters in these examples are ∆t1 = 0.5s, ∆t2 = 0.2s and (dP+

C /dt)low = 0.01.
In doing so the number of calculations for the entry intensity could be reduced from 120 (using a fixed sampling increment of ∆t = 0.05s) to 13 for the
front scenario and to 12 for the front-right scenario, respectively.

cording to the method using the implicit function theorem from
[3] extended to a constant acceleration model to maintain com-
parability (referred to as ‘TTC implicit function Gaussians’).
Their mean values coincide with the deterministic expressions
of eq. (18) due to the usual first-order approximation of non-
Gaussian densities.11 Next, we turn on process noise and
show how the ‘TTC initial condition MC-histograms’ now
deviate from the entry intensity. In fig. 15 the entry intensity
is plotted with ‘TTC initial condition MC-histograms’ and
‘TTC implicit function Gaussians’ for x- and y-directions
for an initial position at the front, right side. The maxima
and in particular the shapes of the ‘TTC implicit function
Gaussians’ in x- and y-direction are significantly different
from the shapes and maxima of the entry intensity. Likewise,
the ‘TTC initial condition MC-histograms’ do not resemble
the entry intensity and reach their maxima at later times. Since
the bulk of the colliding trajectories go through two sides -
front and right (see also fig. 5b) - only a collision model that
takes into account process noise and the full geometry of the
host vehicle can yield accurate results. In fig. 16 an entry
intensity restricted to the x-direction is plotted together with
a ‘TTC initial condition MC-histogram’ and ‘TTC implicit
function Gaussian.’ The initial position is straight in front

11Note that the augmented TTC-computation in [3] does not alter the mean
but only the covariance.

of the vehicle hence almost all trajectories pass through the
front boundary. Nevertheless the entry intensity is lower and
shifted to the left of the ‘TTC initial condition MC-histogram.’
Also the maximum of the entry intensity occurs before the
maxima of the ‘TTC initial condition MC-histogram’ and
the ‘TTC implicit function Gaussian.’ In general the shapes
and maxima of the ‘TTC initial condition MC-histogram’ and
‘TTC implicit function Gaussian’ do not match the shapes and
maxima of the entry intensity. These differences increase as
the process noise increases as can be seen in fig. 17. This
is due to the fact that the time of the maximum is strongly
influenced by the factor pt(x0) in eq. (16); an increased level
of process noise leads to a faster spreading of pt(x0) and
hence the maximum is reached earlier. We have checked
that the entry intensities in this section accurately match the
ground truth histograms as in sec. V-B. The above discussion
shows that temporal collision characteristics are encoded by
the distribution of the entry intensity which incorporates the
full geometry of the host vehicle as well as process noise
during prediction.

A scalar quantity called TTC could then be obtained as one
of the characteristic properties of this distribution such as the
mode or the mean or the median, or as a property of the
integrated collision probability rate, for example the time when
the collision probability exceeds a certain threshold.
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(a) Front left corner of colliding vehicle
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(b) Front right corner of colliding vehicle
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(c) Rear left corner of colliding vehicle
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(d) Rear right corner of colliding vehicle

Fig. 12. Collision probability rate and entry intensity of four corner points in the front scenario with process noise PSD for both coordinates of q̃x = q̃y =
0.0101m2s−5 and input gain B set to zero. Results for the entry intensity are given for numerical integration of the approximate 2d Gaussian distribution
as well as two approximations to this integration as detailed in app. C. It can be observed that the non-Gaussian nature of the probability distributions
transformed to salient points entail deviations with respect to Monte-Carlo simulations. This is due to the second order linearization with respect to the
non-linear transformations derived in app. D for Gaussian densities.
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Fig. 13. Collision probability for the colliding vehicle’s salient points. In this
example the rear left corner is considered the “riskiest” salient point, as it
reaches a certain threshold the earliest.

VII. CONCLUSIONS

As detailed in our literature review a common approach
to compute a collision probability for automotive applications
is via temporal collision measures such as time-to-collision or
time-to-go. In this paper, however, we have pursued a different
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Fig. 14. Entry intensities, ‘TTC initial condition MC-histograms,’ and ‘TTC
implicit function Gaussians’ for an initial condition at the front, right side of
the vehicle: (x, y) = (10, 10)m. For comparability, process noise had to be
set to zero in the computation of the entry intensities.

approach, namely the investigation of a collision probability
rate without temporal collision measures as an intermediate or
prerequisite quantity. A collision probability rate then affords
the provision of a collision probability over an extended period
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Fig. 15. Entry intensity, ‘TTC initial condition MC-histogram,’ and ‘TTC
implicit function Gaussian’ for an initial condition at the front, right side of
the vehicle: (x, y) = (10, 10)m. The process noise PSD for both coordinates
is q̃x = q̃y = 0.0405m2s−5.
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Fig. 16. Entry intensity, ‘TTC initial condition MC-histogram,’ and ‘TTC
implicit function Gaussian’ for an initial condition in front of the vehicle:
(x, y) = (10, 0)m. The process noise PSD for both coordinates is q̃x =
q̃y = 0.0101m2s−5.

of time by temporal integration. An expression for an upper
bound of the collision probability rate has been derived based
on the theory of level crossings for vector stochastic processes.
The condition under which the upper bound is saturated, i.
e. is a good approximation of the collision probability rate
has been discussed. While the expression was exemplified by
an application of Gaussian distributions on a two-dimensional
rectangular surface, the formalism holds for general non-
stationary as well as non-Gaussian stochastic processes and
can be applied to any subsets of multidimensional piecewise-
smooth surfaces.

The ground truth collision probability rate distribution has
been obtained by Monte-Carlo simulations and approximated
by our derived bound for the collision probability rate. We
have also implemented an approximation of the collision
probability rate bound that can be computed in closed form
on an embedded platform. This approximate formula provided

2 3 4 5 6 7 8

t [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

c
o

lli
s
io

n
 p

ro
b

a
b

ili
ty

 r
a

te
 [

s
-1

],
 T

T
C

 p
ro

b
. 

d
e

n
s
it
y
 [

s
-1

]

TTC initial condition MC-histogram front

TTC implicit function Gaussian front

entry intensity front

Fig. 17. Entry intensity, ‘TTC initial condition MC-histogram,’ and ‘TTC
implicit function Gaussian’ for an initial condition in front of the vehicle:
(x, y) = (10, 0)m. The process noise PSD for both coordinates has been
increased to q̃x = q̃y = 1.0125m2s−5.

bounds of the collision probability rate distributions that are
almost indistinguishable from distributions obtained by nu-
merical integration for the scenarios considered in this paper.
A straightforward application of this method characterizes the
collision of an extended object with a second point-like object.
The case of two extended objects with circular boundaries
or rectangular boundaries with identical, fixed, axis-aligned
orientation can also be reduced to the collision of an extended
object with a second point-like object as illustrated in [12].
In vehicle-to-vehicle collision scenarios these are unrealistic
assumptions. Using an abstraction of the second object by
salient points of its boundary we have shown how to augment
the method to cover the case of two extended objects with
arbitrary shape and orientation.

In our discussion of approaches to computing a TTC
we illustrated the correspondence between classical TTC-
distributions derived by Monte-Carlo simulations based on
stochastic initial conditions and the entry intensity. We also
showed that those classical one-dimensional TTC-distributions
do not properly represent collision statistics in case of two-
dimensional geometries and presence of process noise. The
distribution of the collision probability rate is by construction
the distribution of the TTC.

Point estimators derived from this distribution (e. g. the
mode, mean, or median) or its temporal integral – the collision
probability – could be investigated as input signals to collision
avoidance decision making in the context of a complete
collision avoidance system.
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APPENDIX

A. Partitioned Gaussian densities

In many calculations in stochastic estimation there is a need
to marginalize over certain elements of a state vector or to



obtain lower dimensional distributions by conditioning with
respect to certain elements. For these calculations the original
state vector ξ can be rearranged or partitioned such that xr
denotes the remaining state vector and xm denotes the states
to be marginalized over or which are used for conditioning.

ξ =

(
xr
xm

)
(19)

Hence the mean vector µ and covariance matrix Σ can be
partitioned into

µ =

(
µr
µm

)
, Σ =

(
Σrr Σrm
Σ>rm Σmm

)
(20)

The following two well-known results on multivariate Gaus-
sians are used in this paper:

a) Marginalization: The probability density of ξ
marginalized with respect to xm is

p (xr) =

∫
xm

p (ξ) dxm = N (xr;µr,Σrr) (21)

b) Conditioning: The probability density of ξ condi-
tioned on xm is

p (ξ|xm) = p (xr|xm)

= N
(
xr;µr|m,Σr|m

)
(22)

with

µr|m = µr + ΣrmΣ−1
mm (xm − µm) (23)

Σr|m = Σrr − ΣrmΣ−1
mmΣ>rm (24)

B. Dynamical system

The example kinematics is characterized by a six-
dimensional state vector containing target vehicle coordinates
relative to the host vehicle

ξ =
(
x y ẋ ẏ ẍ ÿ

)>
(25)

The continuous dynamics is given by a continuous white noise
jerk model with additional time-dependent control input u(t):

ξ̇ = Fξ + Lν +Bu (26)

where

F =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 , L = B =


0 0
0 0
0 0
0 0
1 0
0 1


and

u(t) =

(
b1 sin(ωt)
b2 sin(ωt)

)
Process noise ν is characterized by the jerk power spectral
density (PSD) Q̃ = diag(q̃x, q̃y).

The discrete dynamics, i. e. the solution of this differ-
ential equation, can be obtained by standard linear system

techniques. The covariance matrix of discrete-time equivalent
process noise is given by (see e. g. [22])

Q(tk+1, tk) =

tk+1∫
tk

Φ(tk+1, τ)LQ̃L>Φ>(tk+1, τ)dτ

where Φ is the transition matrix of the homogeneous differen-
tial equation. The closed-form expression for this covariance
matrix reads

Q(∆tk) =


∆t5k
20

∆t4k
8

∆t3k
6

∆t4k
8

∆t3k
3

∆t2k
2

∆t3k
6

∆t2k
2 ∆tk

⊗ (q̃x 0
0 q̃y

)

with ∆tk = tk+1 − tk.
Note that the dynamical system above is an example to

illustrate the application of the results in sec. IV-A to compute
the collision probability between two vehicles that can both
be moving; other in general non-linear dynamical systems and
state vectors can be used as long as they contain relative
position and its first derivative.

C. Evaluation of the 2D integral for the entry intensity

In this article integrals of the form∫
ẋ≤0

∫
y∈Iy

ẋ pt(y, ẋ|x0) dydẋ (27)

as in eq. (16) for the entry intensity appear. We are not
aware of a closed-form solution if the covariance matrix of
pt(y, ẋ|x0) is not diagonal. In [10] the 1D integral with respect
to ẋ was computed in closed form for a Gaussian pdf and the
remaining spatial integral was replaced by the integrand at
mid-point times the integration interval. As can be seen in
figures 10(c,d) this approximation does not accurately repro-
duce the Monte-Carlo ground truth due to the considerable
variation of the spatial distribution across the host vehicle
rectangle. As an alternative approximation, we Taylor-expand
the 2D pdf with respect to the off-diagonal element of the
covariance matrix around 0 to a certain order and then integrate
the factorized 1D distributions. For a general 2D Gaussian pdf
p(x1, x2) = N (ξ;µ,Σ) with ξ = (x1, x2)> and mean µ and
covariance matrix Σ the Taylor-expansion to linear order with
respect to Σ12 reads

N (ξ;µ,Σ) = N
(
x1;µ1,

√
Σ11

)
N
(
x2;µ2,

√
Σ22

)
+ Σ12

(
x1 − µ1

Σ11
N
(
x1;µ1,

√
Σ11

))
·

·
(
x2 − µ2

Σ22
N
(
x2;µ2,

√
Σ22

))
+O

(
(Σ12)2

)



which leads to the following integral
x2u∫
x2l

x1u∫
x1l

x1p(x1, x2)dx1dx2 =

[
µ1Φ

(
x1 − µ1√

Σ11

)
− Σ11N (x1;µ1,

√
Σ11)

]x1u

x1l

·

·
[
Φ

(
x2 − µ2√

Σ22

)]x2u

x2l

+ Σ12

[
Φ

(
x1 − µ1√

Σ11

)
− x1N (x1;µ1,

√
Σ11)

]x1u

x1l

·

·
[
−N (x2;µ2,

√
Σ22)

]x2u

x2l

+O
(
(Σ12)2

)
The quality of the approximation depends asymptotically upon
the size of Σ12. An alternative Taylor-expansion would be
an expansion with respect to the off-diagonal element of the
inverse covariance matrix. Its off-diagonal element Σ−1

12 :=(
Σ−1

)
12

= −Σ12

|Σ| has the determinant of Σ in the denom-
inator, hence for large determinants (i. e. large uncertainties
as expected for long prediction times) this approximation is
expected to be more accurate. For a general 2D Gaussian pdf
p(x1, x2) = N (ξ;µ,Σ) with ξ = (x1, x2)> and mean µ and
covariance matrix Σ the Taylor-expansion to linear order with
respect to Σ−1

12 reads

N (ξ;µ,Σ) = N
(
x1;µ1,

√
Σ̃11

)
N
(
x2;µ2,

√
Σ̃22

)
− Σ−1

12

(
(x1 − µ1)N

(
x1;µ1,

√
Σ̃11

))
·

·
(

(x2 − µ2)N
(
x2;µ2,

√
Σ̃22

))
+O

(
(Σ−1

12 )2
)

with Σ̃11 = |Σ|
Σ22

, Σ̃22 = |Σ|
Σ11

. This leads to the following
integral

x2u∫
x2l

x1u∫
x1l

x1p(x1, x2)dx1dx2 =

[
µ1

2
erf

(
x1 − µ1√

2Σ̃11

)
− Σ̃11N

(
x1;µ1,

√
Σ̃11

)]x1u

x1l

·

·

[
1

2
erf

(
x2 − µ2√

2Σ̃22

)]x2u

x2l

−Σ−1
12

[
x1Σ̃11N

(
x1;µ1,

√
Σ̃11

)
− Σ̃11

2
erf

(
x1 − µ1√

2Σ̃11

)]x1u

x1l

·

·
[
Σ̃22N

(
x2;µ2,

√
Σ̃22

)]x2u

x2l

+O
(
(Σ−1

12 )2
)

If the covariance matrix of pt(y, ẋ|x0) is diagonal, i. e. Σ12 =
0, the integrand factorizes into Gaussians and can be integrated
in a straightforward manner.

D. State vector transformation to salient points
In order to transform the state distribution describing the

object’s reference point (such as the middle of the rear bumper

or the middle of the rear axle) to other points such as the
four corners the deterministic state transformation is needed,
which can be used either by propagation of the mean and
covariance using linear system techniques or by Monte-Carlo
sampling. Transformation to other points of an extended object
requires knowledge of its orientation which can be derived in
the Ackermann limit from the angle of the velocity vector.
This is an appropriate setup if the vehicle’s reference point is
the middle of the rear axle and side-slip at the rear wheels
can be neglected as appropriate for normal driving conditions.
Taking into account the state vector as defined in eq. (25) and

∆𝑥
∆ 𝑦 Salient point: e. g. rear left corner

Fig. 18. Horizontal view of the object rectangle with local Cartesian
coordinate system and coordinate origin at the middle of the rear axle. The
translation to the rear left corner as a salient point of the object’s geometry
is also drawn.

translating the state along (∆x̃ ∆ỹ)> in the object’s local
coordinate system (see fig. 18) the position transformation
reads (

x
y

)
sal

=

(
x
y

)
ref

+ R

(
∆x̃
∆ỹ

)
with

R =

(
cosα − sinα
sinα cosα

)
and α = arctan ẏ

ẋ the orientation angle as explained above.
Then we have(

ẋ
ẏ

)
sal

=

(
ẋ
ẏ

)
ref

+ α̇R′
(

∆x̃
∆ỹ

)
(
ẍ
ÿ

)
sal

=

(
ẍ
ÿ

)
ref

− α̇2R

(
∆x̃
∆ỹ

)
+ α̈R′

(
∆x̃
∆ỹ

)
with R′ = d

dαR and

α̇ =
ẋÿ − ẏẍ
ẋ2 + ẏ2

α̈ = 2
ẋẏ(ẍ2 − ÿ2)− ẍÿ(ẋ2 − ẏ2)

(ẋ2 + ẏ2)2
+
ẋ

...
y − ẏ...

x

ẋ2 + ẏ2

Note that this transformation is non-linear, hence propagation
of a multivariate Gaussian distribution by this transformation
will result in a non-Gaussian distribution. In frameworks for
Gaussian densities this can be handled by the usual second
order linearization, i. e. using the full nonlinear transformation
for the mean and its Jacobian for the covariance matrix
propagation.
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