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Abstract

A common requirement in optimal control problems arising in autonomous navigation is that the decision variables are constrained to be
outside certain sets. Such set exclusion constraints represent obstacles that must be avoided by the motion system. This paper presents a
simple and efficient method for solving optimization problems with general set exclusion and implicit constraints. The method embeds
the set exclusion constraints in a quadratic penalty framework and solves the inner optimization problems using a proximal algorithm that
deals directly with the implicit constraints. We derive convergence results for this method by transforming the generated iterates to points
of a reformulated problem with complementarity constraints. Furthermore, the practical application of the solution method is validated
in numerical simulations of a model predictive control approach to path planning for a mobile robot. Finally, a runtime comparison with
state-of-the-art solvers applied to the problem with complementarity constraints illustrates the efficiency of the proposed method.
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1 Introduction

This paper focuses on problems where an objective is mini-
mized in the presence of set exclusion constraints. Such con-
straints exclude certain open sets from the feasible set. This
type of constraint arises often in path planning for example,
where the set exclusion constraints represent obstacles in
space, which is why set exclusion constraints and obstacle
constraints will be used as synonyms in this paper. Another
example of set exclusion constraints are the forbidden zones
in attitude control of satellites, arising due to light sensitive
equipment that may not be pointed towards the sun and pos-
sibly other bright celestial objects. In path planning popular
approaches to deal with such constraints is to discretize the
domain excluding obstacles and perform a graph search or
potential field methods that model an attractive force from
the destination and repulsive forces originated by obstacles.

In terms of numerical optimization, set exclusion constraints
are almost always nonconvex even if the sets themselves
are convex, hence complicating the resulting problems. Fur-
thermore, set exclusion constraints can only be incorporated
straightforwardly in special cases. For example, if the exclu-
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sion set is defined by one inequality, this constraint reduces
to a regular inequality constraint, as is the case for circular
obstacles [24]. In the case of convex obstacles and convex
motion systems, the separating hyperplane theorem also pro-
vides a way to transform these set exclusion constraints into
regular inequality constraints [13]. Another commonly used
approach is to impose via inequality constraints that the dis-
tance to the (convex) exclusion sets should be positive or
larger than a small positive margin [6]. The disadvantage of
such an approach is that calculating the distance to a general
convex set requires the solution of a minimization problem.
Moreover, the distance function is only differentiable if the
sets are strictly convex. A similar idea is to impose that the
gauge function of every set is bounded below by 1, since this
function evaluated at a point represents the smallest scaling
factor so that the point is included in the set. This approach
is especially useful when the polar set of each obstacle is
easily representable, such as for polytopic obstacles [14].

The approach presented in this paper is applicable to prob-
lems with general and possibly nonconvex set exclusion con-
straints. It is a generalization of an earlier work [8], in which
the approach presented here was shown to efficiently solve
optimal control problems (OCP) arising in path planning.
The approach involves incorporating the nonsmooth set ex-
clusion constraints in a quadratic penalty framework. In the
literature, convergence of the quadratic penalty method and
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the augmented Lagrangian method applied to smooth prob-
lems is covered in the monograph of Bertsekas [3]. In [4,
Chapter 6] convergence results are extended to problems
with implicit set constraints on the decision variables. In
particular, it is shown that every limit point is a stationary
point of an infeasibility measure but no conditions guaran-
teeing feasibility of limit points are provided. In this paper,
it is shown that the considered problem can be reformulated
through the introduction of slack variables to a mathematical
program with vertical complementarity constraints (MPCC),
first introduced in [21]. Consideration of the reformulated
problem is necessary in the derivations as the set exclusion
constraints are in general nonsmooth, which complicates the
formulation of optimality conditions. The nonsmooth formu-
lation using the normal cone of the constraint set from [16]
is furthermore not usable, as in general the normal cone, or
an outer approximation of this set, cannot be derived from
the functions defining the set exclusion constraints.

MPCCs are a special class of optimization problems that of-
ten arise in practice. The authors of [18] discuss different no-
tions of stationarity for such problems. The relevant station-
arity conditions are reproduced in this paper, with a minor
generalization to account for implicit set constraints, which
is obtained from [16]. Although such problems present the-
oretical difficulties, as no solution satisfies the Mangasarian-
Fromovitz constraint qualification, they can nevertheless be
solved fairly reliably by standard nonlinear optimization
solvers [11]. KNITRO [23] is an interior-point solver and
has some special features to exploit the structure of com-
plementarity constraints [12]. SQP methods with an elastic
mode for dealing with infeasible constraints, such as SNOPT
[7], have also been shown to converge locally for problems
with complementarity constraints [2]. Finally, the applica-
tion of augmented Lagrangian approaches to problems with
complementarity constraints was investigated in [9].

1.1 Contributions

The main contribution of this paper consists of theoretical
convergence results showing that the limit points of the se-
quence generated by the quadratic penalty method applied
to the original problem with set exclusion constraints, if they
exist, satisfy stationarity conditions of a reformulated prob-
lem with complementarity constraints. Depending on the as-
sumption the limit point might satisfy different stationarity
conditions. As far as the authors know, the theoretical re-
sults presented in this paper are not covered by the results in
literature, as discussed above. Furthermore, in simulations
the performance of the method is compared to state-of-the-
art solvers KNITRO, IPOPT [22] and SNOPT applied to the
equivalent problem with complementarity constraints. This
comparison shows that the method outperforms other solvers
applied to the problem with complementarity constraints,
and combined with an earlier comparison with state-of-the-
art methods applied to the original problem [8], establishes
the overall efficiency of the proposed approach in dealing
with problems with general set exclusion constraints.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the optimization problem considered in this
paper including the mathematical formulation introduced in
[17] and the solution approach of [8]. Furthermore, it intro-
duces the reformulated problem with complementarity con-
straints and the relevant stationarity conditions. Section 3
presents and proves the main convergence results of this pa-
per. Section 4 derives the path planning problem for a bicycle
from the proposed formulation and presents the numerical
simulation results. Finally, Section 5 concludes the paper.

1.2 Notation

For x ∈ IRnx , let xi denote the i-th component of x. We de-
fine also the operator [x]+ = max(x,0). Let {xν} denote a
sequence of vectors, and xν the ν-th entry in this sequence.
For a nonempty closed convex set X ⊆ IRnx , let NX (x) de-
note the normal cone to this set at x, NX (x) = {v ∈ IRnx :
〈v,y− x〉 ≤ 0 for all y ∈ X}, see Theorem 6.9 in [16].

2 Methodology

This section defines the class of optimization problems con-
sidered in this paper and describes the mathematical formu-
lation of obstacles first introduced by [17]. It also presents
the definition of the obstacle cost and extended obstacle cost
functions. Furthermore, two equivalent reformulations for
the problem are presented, the first of which is used in the
solution algorithm described in the second subsection. The
second reformulation is the one with complementarity con-
straints, used in the convergence results in Section 3 and for
which the relevant optimality conditions are presented here.

2.1 Optimization problem

This paper considers mathematical programs with set exclu-
sion constraints of the following form:

minimize
x∈X

`(x),

subject to x 6∈ Oi, i = 1, . . . ,n,
(1)

with x ∈ IRnx the decision variable that is constrained to
lie in some nonempty closed convex set X and outside of
some nonempty obstacle sets Oi. The objective function
` : IRnx → IR is assumed to be continuously differentiable.
Additional equality and inequality constraints are not con-
sidered here for the sake of brevity. However, the conditions
in Section 2 and the theoretical analysis in Section 3 could
be straightforwardly extended to take these into account. In
this work, Oi is given by a set of nonlinear inequalities:

Oi = {x ∈ IRnx : hi j(x)> 0, j = 1, ...,mi}.

Here, the functions hi j : IRnx → IR are continuously differen-
tiable functions describing obstacles boundaries. The obsta-
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cle boundary ∂Oi and the closure Oi are given as:

∂Oi = {x ∈ IRnx : hi j(x) = 0,hik(x)≥ 0,
for some j ∈ {1, ...,mi},k 6= j}.

Oi = Oi∪∂Oi. (2)

In general optimization problems, equality constraints and
inequality constraints that hold as equality at a feasible point
are called active, and inequality constraints that hold strictly
at this point are called inactive. We will reuse this terminol-
ogy and introduce the set of active obstacles IO(x) and the
set of active obstacle boundaries Ia(x):

IO(x) = {i : x ∈ Oi}.
Ia(x) = {(i, j) : i ∈ IO(x),hi j(x) = 0}. (3)

As shown in [17], we can encode each obstacle avoidance
constraint as the following equality constraint:

ψi(x) :=
mi

∏
j=1

[hi j(x)]+ = 0.

The obstacle cost function ψi(x) is by definition strictly pos-
itive for x ∈ Oi, and exactly zero outside Oi. Problem (1)
can then be reformulated using the obstacle cost functions:

minimize
x∈X

`(x),

subject to ψi(x) = 0, i = 1, . . . ,n.
(4)

Note that each obstacle cost function ψi is differentiable at
points strictly inside and strictly outside the obstacle, but
due to the presence of the [.]+ operators, it is not differen-
tiable at points on the obstacle boundary. We will use also
a smooth version of this function which can be constructed
by dropping the [.]+ operators, resulting in the extended ob-
stacle cost function ψ̃i(x) and its gradient:

ψ̃i(x) =
mi

∏
j=1

hi j(x), ∇ψ̃i(x) =
mi

∑
j=1

∇hi j(x)∏
k 6= j

hik(x). (5)

2.2 Penalty method

The obstacle avoidance constraints will be dealt with using a
quadratic penalty term that is added to the objective function
[8]. The reformulated optimization problem is therefore

minimize
x∈X

Lµ(x), (6)

with Lµ(x)= `(x)+ µ

2 ∑
n
i=1 ψ2

i (x). Here, µ is the penalty pa-
rameter corresponding to the obstacle avoidance constraints.
Using a vector of penalty factors will not be considered in
this paper for the sake of keeping the presentation simple.

Note that Lµ(x) is continuously differentiable, with gradient

∇Lµ(x) = ∇`(x)+µ

n

∑
i=1

mi

∑
j=1

∇hi j(x)[hi j(x)]+ ∏
k 6= j

[hik(x)]2+

= ∇`(x)+µ

n

∑
i=1

mi

∑
j=1

∇hi j(x)ψi(x)∏
k 6= j

hik(x)

= ∇`(x)+µ

n

∑
i=1

ψi(x)∇ψ̃i(x). (7)

In this derivation we used ∇([w]2+) = 2[w]+∇w and [w]2+ =
[w]+w. Solving each problem (6) for a fixed value µν is per-
formed approximately, yielding xν ∈X as an εν -approximate
KKT point, that is, a feasible point xν satisfying

∃eν : eν ∈ ∇Lµν (xν)+NX (xν), ‖eν‖ ≤ ε
ν . (8)

Here, {εν} is a sequence of positive tolerances tending to-
wards zero as ν → ∞. The steps are given in Algorithm 1.

Algorithm 1 Penalty method for problem (4)

Input: x0 ∈ IRnx ,µ1 > 0,εν ,ε∗ ≥ 0,{εν}→ ε∗,ω > 1
1: for ν = 1,2, ... do
2: Use an inner optimization algorithm to minimize

Lµν (x) with starting point xν−1 until we find xν ∈ X
and associated eν satisfying (8).

3: µν+1← ωµν

4: end for

Remark 1 In Algorithm 1, no termination criteria are pro-
vided. In practice of course, the algorithm would either ter-
minate when εν = ε∗ and ∀i : ψi(xν)≤ η∗, with ε∗ and η∗

some small positive tolerances, or if it gets stuck in a point
of local infeasibility.

2.3 MPCC

A mathematical program with vertical complementarity con-
straints can be written in the following form [18].

minimize
z∈Z

f (z),

subject to G(z)≤ 0, (9)
min{Fi1(z), . . . ,Fil(z)}= 0, i = 1, . . . ,m,

where z ∈ IRnz , f : IRnz → IR,G : IRnz → IRp,F : IRnz → IRm×l .
The implicit constraints z∈ Z, with Z some nonempty closed
convex set, are here added and equality constraints are left
out from the formulation used in [18]. The vertical comple-
mentarity constraints min{Fi1(z), . . . ,Fil(z)}= 0 are a gener-
alization of regular complementarity constraints which only
allow for two vectors, that is min{Fi1(z),Fi2(z)}= 0. By in-
troducing slack variables ti j, problem (4) can be reformu-
lated as a problem of type (9).

minimize
z∈Z

`(x),

subject to ti j ≥ hi j(x), i = 1, . . . ,n, j = 1, . . . ,mi,

min(ti1, · · · , timi) = 0, i = 1, . . . ,n,

(10)
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with z = (x, t), Z = X× IRnt and nt = ∑
n
i=1 mi. This problem

is indeed of type (9), with smooth functions f (z) = `(x),
Gk(z) = hi j(x)− ti j, with k = j+∑

i−1
l=1 ml , and Fi j(z) = ti j.

We will next show that problems (4) and (10) are equivalent.
Firstly, they share the same cost function which is indepen-
dent of t. Next, assume (x, t) is feasible for (10). Then x is
obviously feasible for (4). On the other hand, assume that x
is feasible for (4) and let

ti j=


hi j(x), i ∈ IO(x),
0, i 6∈ IO(x), j=minargmink{hik(x)},
[hi j(x)]++ε, i 6∈ IO(x), j 6=minargmink{hik(x)},

(11)

with ε > 0. Then, Remarks 2 and 3 show that the resulting
point (x, t) is feasible for problem (10).

Remark 2 From (2) we have that for an obstacle i to be
inactive, at least one of the boundary functions has to be
strictly negative, that is ∃ j : hi j(x)< 0. For such j, the slack
variable can be set to zero to satisfy the constraints in (10).
In the third case of (11), the slack variables can be chosen
freely as long as they are strictly greater than hi j(x) and 0.
This is necessary to prevent obstacle boundaries (i, j) : i 6∈
IO,hi j(x) = 0 yielding active constraints in problem (10).

Remark 3 If ψi(x) = 0, and t is given by (11), then the cor-
responding complementarity condition for (x, t) in problem
(10) is also satisfied. This follows from the fact that either
i 6∈ IO(x) and the second case of (11) applies, or i ∈ IO(x)
and therefore there is at least one j for which hi j(x)= ti j = 0,
according to the first case of (11).

2.4 Optimality conditions

In this subsection, the definitions of the linear independence
constraint qualification (LICQ) for MPCCs (MPCC-LICQ),
the strong stationarity conditions and the Clarke stationarity
conditions are presented and applied to problem (10). Fur-
thermore, two assumptions that will be used in the conver-
gence results are shown to imply MPCC-LICQ.

2.4.1 Constraint qualifications

Applying the MPCC-LICQ from [18] to problem (9), we
obtain the condition that there exists no vector y=(yG,yF) 6=
0 that satisfies

− ∑
r:Gr(z)=0

yG
r ∇Gr(z)− ∑

(i, j):Fi j(z)=0
yF

i j∇Fi j(z) ∈ NZ(z). (12)

To translate this condition for problem (10), let the index
set Ih(z) and It(z) denote respectively the active inequality
constraints and the active complementarity components at z:

Ih(z) = {(i, j) : hi j(x)− ti j = 0}, (13)
It(z) = {(i, j) : ti j = 0}. (14)

Furthermore, from Proposition 6.41 in [16], we have that
NZ(z) = NX (x)×0. Note that we omit the dependence of the

index sets on z in the following definition for the sake of
brevity in the mathematical expressions.

Definition 4 A feasible point z = (x, t) of problem (10) sat-
isfies MPCC-LICQ iff there exists no vector (yh,yt) 6= 0 sat-
isfying the following conditions

yh
i j = 0 for (i, j) ∈ Ih \ It ,

yt
i j = 0 for (i, j) ∈ It \ Ih,

− ∑
(i, j)∈Ih∩It

yh
i j∇hi j(x) ∈ NX (x).

(15)

Remark 5 It is well known that LICQ implies the regular
and strict Mangasarian-Fromovitz constraint qualifications
(MCFQ and SMFCQ), [10, Chapter 2]. This also holds for
the constraint qualifications defined for MPCCs. Therefore,
only MPCC-LICQ will be used in this paper. However, as
shown in [19], this is not a stringent assumption for MPCCs.

In proofs of the convergence results (cf. Theorems 13
and 14), assumptions will be used to prove that limit points
of the generated sequences, if they exist, satisfy certain
stationarity conditions. These assumptions can be thought
of as mirroring linear independence of the active constraint
gradients for the obstacle formulations. Before we introduce
these assumptions, we need the following result:

Lemma 6 Assume that (x, t) is feasible for (10) and t is
given by (11). Then

Ia(x) = Ih(x, t)∩ It(x, t).

PROOF. This lemma can be proven by showing the set
inclusion in both directions. In this proof the dependence of
the index sets on the variables will be omitted. From (3) and
the first case of (11) it follows that for (i, j) ∈ Ia : hi j(x) =
ti j = 0. Therefore, we immediately have Ia ⊂ Ih∩ It .

The other way around, suppose that (i, j) ∈ (Ih ∩ It) \ Ia.
From (i, j) ∈ Ih ∩ It we have that hi j(x) = ti j = 0. Then,
from (i, j) 6∈ Ia and (3), it follows that i 6∈ IO. However, this
implies that (i, j) does not belong to the first case of (11).
Neither does it belong to the second case as hi j(x) = 0, cf.
Remark 2. Therefore (i, j) belongs to the third case of (11),
and thus ti j = ε > 0. This disproves the assumption that
(i, j) ∈ (Ih∩ It), and therefore proves that (Ih∩ It)⊂ Ia. 2

The following lemmas prove that certain assumption imply
the conditions (15).

Lemma 7 Assume that at a point x, there is no vector y
satisfying

− ∑
i∈IO(x)

yi∇ψ̃i(x) 6∈ NX (x) unless y = 0. (16)

If, furthermore, (x, t) is feasible for problem (10), with t
given by (11), then (15) is satisfied at this point.
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PROOF. Note that because 0∈NX (x), (16) implies that the
active obstacle cost gradients are linearly independent and
thus not equal to zero. Given (5), this excludes the case where
there is more than one active obstacle boundary. Moreover,
because x is feasible, x 6∈ Oi, and thus for i ∈ IO(x) : x ∈
Oi \Oi = ∂Oi, which implies that for each active obstacle,
there is at least one active obstacle boundary. In conclusion,
for each active obstacle, there is exactly one active obstacle
boundary. Let ji denote the index of this active boundary,
such that hi ji(x) = 0. From (5) it then follows that

∇ψ̃i(x) = ∇hi ji(x) ∏
k 6= ji

hik(x), (i, ji) ∈ Ia(x). (17)

From (17) and Lemma 6, (16) is now equivalent to (15). 2

As mentioned in the proof of Lemma 7, equation (16) can
only be satisfied if for every active obstacle, there is only one
active obstacle boundary and the gradient of this boundary
function is nonzero at its boundary. Boundary functions with
this latter property must therefore be chosen in order for the
algorithm to work provably. We provide also an assumption
that covers the case of multiple active boundaries.

Lemma 8 If at a feasible point (x, t), with t given by (11),
there is no vector y satisfying

− ∑
(i, j)∈Ia(x)

yi j∇hi j(x) 6∈ NX (x) unless y = 0, (18)

then (15) is satisfied at this point.

PROOF. The proof for this lemma is immediate as accord-
ing to Lemma 6, (18) and (15) are equivalent. 2

Remark 9 The conditions (18) and (15) are only equivalent
because of our choice of the slack variables (11). In case
we had chosen ε = 0 in (11), (15) would be a set of stricter
conditions than (18). However, as we neglect these points,
(18) and (15) can be considered as equivalent. Note also
that if (16) holds at a feasible point then (18) holds at this
point because of (17).

2.4.2 Stationarity conditions

For mathematical programs with vertical complementarity
constraints, different notions of stationarity exist, such as
the strong and Clarke stationarity conditions. In order to
introduce these conditions for problem (9), we first introduce
the Lagrangian L associated with this problem [18], with
α = 1.

L(z,Γ,λ ) = f (z)−
m

∑
i=1

l

∑
j=1

Fi j(z)Γi j +
p

∑
i=1

Gi(z)λi.

The first set of stationarity conditions we derive are the
strong stationarity condtions. By applying Corollary 6.15 of
[16] to a relaxed NLP (RNLP) formulation of the MPCC
[18], the strong stationarity conditions are given as follows.

Definition 10 For a feasible point z of problem (9) the
strong stationarity conditions are the following conditions
on the point z and the multipliers Γ and λ

0 ∈ ∇zL(z,Γ,λ )+NZ(z), (19a)
Fi j(z)Γi j = 0, i = 1, . . . ,m, j = 1, . . . , l, (19b)

λi ≥ 0, i = 1, . . . , p, (19c)
Gi(z)λi = 0, i = 1, . . . , p, (19d)

Γi j ≥ 0, if ∃k 6= j : ti j = tik = 0. (19e)

The strong stationarity conditions are only necessary in the
general case when strict complementarity holds [18], stating
that for a point z of problem (9), there is for every i only
one ji such that Fi ji(z) = 0. From Defintion 10, with (19a)
split according to x and t, we can now to derive the strong
stationarity conditions for problem (10) as the following
conditions on (x, t) and the unique multipliers (Γ,λ )

0 ∈ ∇`(x)+
n

∑
i=1

mi

∑
j=1

λi j∇hi j(x)+NX (x), (20a)

λi j +Γi j = 0, i = 1, . . . ,n, j = 1, . . . ,mi, (20b)
ti jΓi j = 0, i = 1, . . . ,n, j = 1, . . . ,mi, (20c)

λi j ≥ 0, i = 1, . . . ,n, j = 1, . . . ,mi, (20d)
(hi j(x)− ti j)λi j = 0, i = 1, . . . ,n, j = 1, . . . ,mi, (20e)

Γi j ≥ 0, if ∃k 6= j : ti j = tik = 0, (20f)

Another set of stationarity conditions used in this paper are
the Clarke stationarity conditions.

Theorem 11 If for a local minimizer z of problem (9) there
is no vector (yG,yF) 6= 0 for which (12) holds, i.e MPCC-
LICQ holds, then there exist multipliers Γ and λ such that

0 ∈ ∇zL(z,Γ,λ )+NZ(z), (21a)
Fi j(z)Γi j = 0, i = 1, . . . ,m, j = 1, . . . , l, (21b)

λi ≥ 0, i = 1, . . . , p, (21c)
Gi(z)λi = 0, i = 1, . . . , p, (21d)

Γi jΓik ≥ 0, ( j,k) : Fi j(z) = Fik(z) = 0. (21e)

PROOF. The proof here is completely analogous to the
proof of Theorem 2 in [18], but without neglecting the nor-
mal cone contribution in Theorem 1 of [5].

2

The conditions (21a) - (21e) are the Clarke stationarity con-
ditions. Clearly, they do not differ from the strong stationar-
ity conditions (19a) - (19e), aside from (19e) which is now
replaced by (21e). Hence, the Clarke conditions for problem
(10) are the conditions (20a) - (20e), together with

Γi jΓik ≥ 0, ( j,k) : ti j = tik = 0. (20g)

Example 3 in [18] illustrates a point satisfying the Clarke
but not the strong stationarity conditions.
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3 Convergence results

This section proves that if the sequence of iterates found by
Algorithm 1 for increasing values of the penalty parameter
has limit points, then these satisfy either the strong or the
Clarke stationarity conditions of problem (10), depending
on the assumptions made. The first part of each proof is
similar to the proof of Proposition 2.3 in [3]. The second
part derives the remaining conditions from the definitions of
the slack and multiplier variables.

Remark 12 If the set X is compact, then the sequence has
limit points. This condition is satisfied for instance in the
simulation example of Section 4. However, we do not wish
to restrict the theoretical results here to this special case.

Theorem 13 Let {xν} be a sequence of iterates generated
by Algorithm 1, with ε∗ = 0. Assume that a subsequence
{xν}ν∈K converges to a vector x∗ such that (16) holds at
x∗, with the set of slack variables t∗ defined as in (11).
Then, point (x∗, t∗) is feasible for (10) and unique multipliers
can be derived so that (x∗, t∗,λ ∗,Γ∗) satisfies the strong
stationarity conditions (20a)-(20f) of problem (10).

PROOF. Most of the constraints of problem (10) are
straightforwardly satisfied in point (x∗, t∗). Line 2 in Algo-
rithm 1 gives us xν ∈ X , and thus because X is closed also
x∗ ∈ X . Moreover, by construction, t∗i j ≥ hi j(x∗) is satisfied.
The only constraints remaining to be shown are the com-
plementarity conditions min(ti1, . . . , timi) = 0, i = 1, . . . ,n.
This corresponds to showing that for each i, ψi(xν)→ 0,
cf. Remark 3. Define for all ν

λ
ν
i = µ

ν
ψi(xν). (22)

We have from (7) that

∇Lµν (xν) = ∇`(xν)+
n

∑
i=1

µ
ν
ψi(xν)∇ψ̃i(xν)

= ∇`(xν)+
n

∑
i=1

λ
ν
i ∇ψ̃i(xν)

= ∇`(xν)+ ∑
i∈IO(x

ν )

λ
ν
i ∇ψ̃i(xν). (23)

For the last equality, note that for i 6∈ IO(x
ν), ψi(xν) = 0

and thus λ ν
i = 0. Furthermore, there exists some ν1 ∈ K,

such that for K 3 ν ≥ ν1, xν will be close enough to x∗ and
therefore inactive obstacles at x∗ will also be inactive at xν .
Thus, for K 3 ν ≥ ν1, Ic

O
(x∗)⊂ Ic

O
(xν), and by applying the

complement we obtain IO(x
ν) ⊂ IO(x

∗). Equation (23) for
K 3 ν ≥ ν1 then becomes

∇Lµν (xν) = ∇`(xν)+ ∑
i∈IO(x

∗)

λ
ν
i ∇ψ̃i(xν). (24)

Substituting (24) in (8) then yields for K 3 ν ≥ ν1:

eν ∈ ∇`(xν)+ ∑
i∈IO(x

∗)

λ
ν
i ∇ψ̃i(xν)+NX (xν). (25)

Assuming {xν} is a bounded sequence, then {∇`(xν)} is
also bounded. Given that eν is also bounded explicitly by (8),
this results in boundedness of ∑

i∈IO(x
∗)

λ
ν
i ∇ψ̃i(xν) for large

enough ν ∈ K. Indeed, if this sequence were not bounded,
then the terms eν and ∇`(xν) would become negligible in
(25), which would then in the limit contradict (16). Further-
more, (16) also implies that for large enough ν ∈ K, the
gradients ∇ψ̃i(xν), i ∈ IO(x

∗) are linearly independent, thus
we can solve (25) for the active multipliers

λ
ν = [∇ψ̃(xν)>∇ψ̃(xν)]−1

∇ψ̃(xν)>(eν −∇`(xν)−wν)),

with wν ∈NX (xν) satisfying (25). As eν → 0, it follows that

{λ ν}K→λ=−[∇ψ̃(x∗)>∇ψ̃(x∗)]−1
∇ψ̃(x∗)>(∇`(x∗)+w∗).

Hence, all λ i have to be bounded and consequently, recalling
(22) and because µν → ∞, all ψi(x∗) must be equal to 0.
Therefore, the point (x∗, t∗) is feasible for problem (10).
Moreover, (25) can be written in the limit as

0 ∈ ∇`(x∗)+ ∑
i∈IO(x

∗)

λ i∇ψ̃i(x∗)+NX (x∗). (26)

As (16) holds in x∗, it follows from Lemma 7 that the point
(x∗, t∗) satisfies MPCC-LICQ. Furthermore, from (17) and
(11), strict complementarity holds at this point. Next, we
show that the strong stationarity conditions are satisfied in
this point. The multipliers for the reformulated problem can
be retrieved as follows:

λ
∗
i j = λ i ∏

k 6= j
[hik(x∗)]+, (27)

Γ
∗
i j =−λ

∗
i j =−λ i ∏

k 6= j
[hik(x∗)]+. (28)

Consider from the discussion above that for the inactive
obstacles i 6∈ IO(x

∗), the multipliers λ i = 0. Thus, from the
definition of the multipliers (27) and (28) it follows that

λ
∗
i j = Γ

∗
i j = 0, i 6∈ IO(x

∗). (29)

Furthermore, as shown in the proof of Lemma 7, for each
active obstacle there is exactly one active obstacle bound-
ary. Let ji denote the index for which for each i ∈ IO(x

∗),
hi ji(x

∗) = 0. Then, from (27), for k 6= ji,

λ
∗
ik = λ

∗
i ji
[hi ji(x

∗)]+
[hik(x∗)]+

= 0, (i,k) 6∈ Ia(x∗). (30)

Equations (17), (26), (27), (29) and (30) combined show
that (20a) is satisfied at x∗. The remaining strong stationar-
ity conditions follow from the definition of the multipliers
(27), (28) and the slack variables (11). By choice of the mul-
tipliers Γ∗i j in (28), (20b) is trivially satisfied. Considering
(29), condition (20c) is trivially satisfied for i 6∈ IO(x

∗). For
i∈ IO(x

∗), as t∗i j = hi j(x∗) and using (28) and (27), condition
(20c) is transformed to

t∗i jΓ
∗
i j =−λ iψi(x∗), i ∈ IO(x

∗).

As shown above, ψi(x∗) = 0 for all i, thus condition (20c)
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is satisfied. By construction of the multipliers λ ∗i j in (27)
and given λ i is positive due to (22), condition (20d) is also
satisfied. Condition (20e) is trivially satisfied for i 6∈ IO(x

∗)
because of (29). For i∈ IO(x

∗), t∗i j = hi j(x∗) and (20e) is thus
also trivially satisfied for this case. Finally, condition (20f)
does not apply in this case as strict complementarity holds
because of (17) and definition (11).

2

Limit points where more than one boundary of the same
obstacle is active are excluded by the assumption used in
Theorem 13. The measure of this set relative to the entire
boundary ∂O is zero however, as its dimension is lower.
Moreover, in case of a limit point where more than one ob-
stacle boundary of the same obstacle is active, it can still be
shown that this point satisfies the Clarke conditions (20a)-
(20e) and (20g) under the assumption that this point is fea-
sible and (18) holds. Note that in this case strict comple-
mentarity does not (necessarily) hold, as multiple active ob-
stacle boundaries translate into multiple indices j for which
ti j = 0, according to the first case of (11).

Theorem 14 Let {xν} be a sequence of iterates generated
by Algorithm 1, with ε∗ = 0. Assume that a subsequence
{xν}ν∈K converges to a vector x∗ feasible for problem (4),
such that (18) holds at x∗. Define the set of slack variables t∗
as in (11). Then, point (x∗, t∗) satisfies the Clarke stationarity
conditions, (20a)-(20e) and (20g) of problem (10).

PROOF. Given the point x∗ is feasible for problem (4),
it follows that ∀i : ψi(x∗) = 0, which implies feasibility of
(x∗, t∗) for problem (10), cf. Remark 3, and also that for
every i, there is at least one index j for which [hi j(x∗)]+ = 0.
Define for all ν :

λ
ν
i = µ

ν
ψi(xν),

λ
ν
i j = λ

ν
i ∏

l 6= j
[hil(xν)]+.

Along the same reasoning as in the proof of Theorem 13,
there exists some ν1 ∈K, such that for K 3 ν ≥ ν1, IO(x

ν)⊂
IO(x

∗). The multipliers belonging to inactive obstacles will
then be equal to zero for K 3 ν ≥ ν1. Furthermore, in the
limit, the multipliers for the inactive obstacle boundaries
will become negligible against the multipliers for the active
ones. Let j denote an index for which [hi j(x∗)]+ = 0, and l
an index for which [hil(x∗)]+ > 0. Then

lim
ν→

K
∞

λ ν
il

λ ν
i j
= lim

ν→
K

∞

[hi j(xν)]+
[hil(xν)]+

= 0. (31)

Assumption (18) implies that the gradients ∇hi j(x∗),(i, j) ∈
Ia(x∗) are linearly independent and thus different from the
zero vector. Then, as a result of (31), terms in (25) with
(i, j) 6∈ Ia(x∗) will become negligible for large ν ∈ K. Thus,
(25) reduces in this case to

eν ∈ ∇`(xν)+ ∑
(i, j)∈Ia(x∗)

λ
ν
i j∇hi j(xν)+NX (xν).

Since eν → 0, it follows that we can solve for the active
multipliers and take the limit

{λ ν}K→ λ =−[∇h(x∗)>∇h(x∗)]−1
∇h(x∗)>(∇`(x∗)+w∗).

Thus the active multipliers are bounded. As a result, (31)
shows that the inactive multipliers will be zero. By defining
the optimal multipliers using (27)-(28), the remainder of the
proof is analogous to the proof of Theorem 13, with Ia(x∗)
replacing IO(x

∗) and of course with the exception of showing
condition (20g). This condition is however readily shown by
recognizing that all multipliers Γ∗i j are nonpositive, so the
product of two of them will always be nonnegative. 2

Remark 15 The result here mirrors the second special case
of Theorem 3.2 in [9]. The authors consider an augmented
Lagrangian method applied to the problem with comple-
mentarity constraints, and find that the assumption of the
accumulation point being feasible and MPCC-LICQ hold-
ing, for unbounded penalty parameters, results in this point
satisfying the Clarke stationarity conditions.

4 Application: Model Predictive Control

This section describes a Model Predictive Control (MPC)
approach to autonomous navigation in an obstructed envi-
ronment. The first subsection shows how the OCPs arising
in MPC for trajectory control can be formulated according
to problem (4). The second subsection presents simulation
results showing the general applicability and efficiency of
the proposed approach.

4.1 Optimal control problem

The MPC controller steers a mobile robot, also called the
vehicle, from a starting point ξ0 to a destination point ξref,
while avoiding NO obstacles in the environment. At ev-
ery sampling time, this controller calculates the optimal se-
quence of N control inputs, with N denoting the length of
the prediction horizon, by solving the following OCP

minimize
u∈IRNnu ,ξ∈IR

Nn
ξ

`N(ξN)+
N−1

∑
k=0

`k(ξk,uk),

subject to ξk+1 = ϕk(ξk,uk), k = 0, ...,N−1,
ψ j(ξk) = 0, j = 1, ...,NO, k = 1, ...,N,

uk ∈Uk, k = 0, ...,N−1.

(32)

The input constraints can be grouped together in one set
U =UO× . . .×UN−1. Typically, these constraints represent
actuator limits, which constrain the input to be between a
minimum and a maximum value, umin ≤ uk ≤ umax. The
stage costs and the terminal cost express the distance of the
state and input variables to the reference state and input. In
MPC, they are typically quadratic functions of the form:

`k(ξk,uk)=(ξk−ξref)
ᵀQk(ξk−ξref)+(uk−uref)

ᵀRk(uk−uref),

`N(ξN)=(ξN−ξref)
ᵀQN(ξN−ξref).
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Here, Qk, Rk and QN are positive definite matrices. The
system dynamics ϕk represent the state evolution starting
from the state at time k under the application of control input
uk. Obstacles in this formulation are considered static, but
dynamic obstacles may be incorporated as well, making the
obstacle cost function additionally dependent on k.

To retrieve the formulation analyzed in this paper three steps
are necessary. First, the multiple-shooting (MS) formulation
of (32) with states and inputs as decision variables can be
transformed to a single-shooting (SS) formulation with only
the inputs as decision variables. For this, the states are writ-
ten as functions of the input sequence u = (u0, . . . ,uN−1)
using the system dynamics, with ξ0 = Φ0(u) as a parameter,

ξk+1 = Φk+1(u) = ϕk(Φk(u),uk).

Second, the objective function can be defined as `(u) =

`N(ΦN(u)) +
N−1

∑
k=0

`k(Φk(u),uk). Finally, the obstacle cost

functions ψ j(Φk(u)) now apply to the dynamics instead of
directly to the decision variables. These functions can still
be considered obstacles by including the dynamics in the
obstacle boundary functions as follows

Φk(u) ∈ O j⇐⇒ u ∈ O jk,

with O jk = {u ∈ IRNnu : h jl(Φk(u)) > 0, l = 1, ...,m j}. As
Φk(u) are smooth functions, the chain rule can be applied
for calculating the derivatives of the obstacle boundary func-
tions. Hence problem (32) can readily be written as a prob-
lem of type (4), and Theorems 13 and 14 apply, given we
use a suitable solver for the inner subproblems. In this work,
we employ the proximal averaged Newton-type method for
optimal control, PANOC [20] as the inner solver, as it can
provide a point satisfying (8) and exhibits fast convergence
properties while being light-weight and limited in memory
usage. The method here is therefore fairly scalable, although
our main focus is relatively small OCP.

4.2 Simulation results

An implementation of the proposed method in C is versatile
in modeling complex obstacle shapes and efficiently calcu-
lating trajectories for a kinematic bicycle model. The bicy-
cle [15, p. 26] is a system with four states, ξ = (q1,q2,v,θ),
a horizontal position, a vertical position, a velocity and a
heading angle. It is controlled via two inputs, u = (a,δ ), the
acceleration and the steering angle of the front wheel. The
continuous kinematics relating u to ξ̇ are given by

q̇1 = v · cos(θ +β ), q̇2 = v · sin(θ +β ),

θ̇ =
v
lr

sin(β ), v̇ = a,

where the slip angle β = tan−1( lr
lr+l f

tan(δ )), and lr = 1.17m
and l f = 1.77m are the distances from the center to the
rear and front wheel respectively. The kinematics were dis-
cretized using an explicit fourth order Runge Kutta method.

Figure 1 illustrates how two nonconvex obstacles forming an
S-shaped lane, given by O1 = {(q1,q2) : 0 < q1 < 5,−2 <
q2 < 2+ 3

2 sin( 2π

5 q1)} and O2 = {(q1,q2) : 0 < q1 < 5,4+
3
2 sin( 2π

5 q1)< q2 < 8}, are successfully avoided by the MPC-
controlled bicycle. Here, the sampling time ts = 50ms, and a
horizon length N = 30. The input acceleration and steering
angle were constrained by box constraints −10m/s2 ≤ a≤
10m/s2 and −π

4 rad ≤ δ ≤ π

4 rad at every time instant. The
parameters used in Algorithm 1 are: x0 = u0 = 0, µ1 = 100,
ω = 10, ε0 = 1, εν+1 = 10−1εν , ε∗ = 10−3 and η∗ = 10−2.

x (m)

-4 -2 0 2 4 6 8

y
 (

m
)

-2

0

2

4

6
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Fig. 1. The MPC-controller steers the vehicle from different start-
ing points (green squares) to the destination (green cross) in the
presence of two obstacles (red) forming an S-shaped lane.

Table 1 shows a comparison in terms of runtime and objec-
tive value of the proposed quadratic penalty method (QPM)
with solvers that solve the equivalent problem with com-
plementarity constraints (10), for 50 instances of the OCP,
each with a random initial state. In the case of SNOPT and
IPOPT, the complementarity constraints were replaced by
their NLP version ti j ≥ 0,∀i, j and ∑

n
i=1 ∏

m j
j=1 ti j ≤ 0. Aside

from our method relying on PANOC, which has no inherent
capability to deal with equality constraints, the solvers were
tested for both an SS and an MS formulation. All simula-
tions were performed on a notebook with Intel(R) Core(TM)
i7- 7600U CPU @ 2.80GHz x 2 processor and 16 GB of
memory. For all simulations, the automatic differentiation
package CasADi [1] was used to efficiently evaluate the ob-
jective and constraint functions and gradients.

Fail percentage indicates the frequency of converging to
something other than an approximate local minimum. No
time was measured during problem construction, and only
the reported runtimes by the solvers are presented. The per-
formance in terms of objective values for each solver si
is reported as the relative difference between the objective
value of the optimal input sequence for that solver u∗,si ,
and the best solution found by all solvers for each instance,
i.e. f (u∗,si )− f ∗

f ∗ , with f ∗ = mins∈S{u∗,s}, with S the set of
all solvers. This measure indicates the quality of the so-
lution, which is interesting as problems with set exclusion
constraints are highly nonconvex and therefore many local
minima exist. Typically, because of the large terminal cost,
trajectories where the vehicle remains in place behind an
obstacle are local minima with a higher objective value than
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trajectories that find their way to the destination. Hence,
the proposed method, which exhibits the lowest average and
maximum differences, is shown to be effective at finding
meaningful local minima for these types of path planning
problems. Furthermore, in terms of runtime and success per-
centage, the proposed method is also shown to outperform
all other methods.
Table 1
Performance comparison for an MPC controlled bicycle.

Solver
Runtime (s) f (u∗,si )− f ∗

f ∗ Fail (%)
Avg Max Avg Max

QPM (SS) 0.017 0.115 0.19 1.12 8

IPOPT (SS) 1.731 7.776 0.25 1.24 14

IPOPT (MS) 1.604 4.448 0.38 8.55 16

SNOPT (SS) 9.320 4.335 0.29 2.02 16

SNOPT (MS) 1.153 3.054 0.42 1.43 78

KNITRO (SS) 4.391 13.73 0.64 10.9 38

KNITRO (MS) 14.13 19.78 0.60 1.42 74

5 Conclusion

This paper presented theoretical convergence results for op-
timization problems with general nonsmooth set exclusion
constraints. These problems were solved by embedding the
exclusion constraints into a quadratic penalty framework,
and solving the inner subproblems using PANOC. The limit
points of the generated sequences were shown to satisfy ei-
ther the strong stationarity conditions or the Clarke station-
arity conditions of a reformulated problem with complemen-
tarity constraints, depending on the assumptions made. Fur-
thermore, numerical simulations of MPC applied to a kine-
matic bicycle illustrate that the proposed solution method is
versatile and outperforms other solvers applied to the equiv-
alent problem with complementarity constraints.
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