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Abstract

A stochastic model predictive control framework over unreliable Bernoulli communication channels, in the presence of unbounded process
noise and under bounded control inputs, is presented for tracking a reference signal. The data losses in the control channel are compensated
by a carefully designed transmission protocol, and that of the sensor channel by a dropout compensator. A class of saturated, disturbance
feedback policies is proposed for control in the presence of noisy dropout compensation. A reference governor is employed to generate
trackable reference trajectories and stability constraints are employed to ensure mean-square boundedness of the reference tracking error. The
overall approach yields a computationally tractable quadratic program, which can be iteratively solved online.
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1 Introduction

Regulation and tracking are two basic problems in control theory and have been studied rigorously in the framework of model
predictive control (MPC) [36]. A tracking problem can be considered as the generalization of a regulation problem with a
time-varying set point. However, with a varying set point, the stabilizing and recursively feasible design of a regulating MPC
may not remain valid [21]. Consequently, the tracking problem generally requires a separate treatment.

The stability and recursive feasibility issues for tracking MPC in linear, disturbance-free systems have been tackled in works
like [9, 22, 24] using constructions of appropriate control invariant sets around a reachable pseudo trajectory. Since networked
control systems are gaining prominence due to their flexibility, the reference tracking problem for networked systems without
additive process noise is considered in [32]. The above references [9, 22, 24, 32] give a good understanding of the underlying
challenges and techniques to solve tracking problems but do not consider process noise.

Tracking MPC under bounded process noise is considered in [2, 23, 33]. In many applications, a hard bound on the additive
process noise is not known a priori, but a distributionwith unbounded support can be safely prescribed. In such cases, a stochastic
MPC (SMPC) formulation is desired. [10, 37] are two examples of such SMPC formulations with input chance constraints.
However, for physical systems, with hard input constraints, providing only chance constraints guarantees for input bounding
may cause input saturation and instability in the physical system. A SMPC formulation for tracking with hard constraints on
control actions is as yet missing in the literature.
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It is well known for regulation problems in SMPC that a class of feedback policies is essential for control over the uncertainty
[12, 20, 26]. In order to satisfy hard constraints on control actions, [6] employed saturated disturbance feedback policies and
ensured stability by using stability constraints for a sufficiently large control authority. Another such class of policies with
evolving saturated disturbances is employed in [31] for covariance steering. The approach in [6] was extended for any positive
control authority in [29] and the controller was implemented on networks with the help of novel transmission protocols.

It is argued in [29] that a stabilizing SMPC formulation over networks requires three ingredients – a class of feedback policies,
appropriate transmission protocols and stability constraints. This framework is utilized in our previous contributions [28, 29]
assuming an unreliable control channel (uplink) and a perfect sensor channel (downlink). However, with an unreliable downlink,
the computation of disturbance feedback of the above works is made impossible and cannot be applied for such situations. We
fill this particular lacuna in this article.

Generally, in the case of incomplete and corrupt measurements, a Kalman filter is used for estimating the missing signals with
some degree of uncertainty. The saturated innovation term of the Kalman filter can then be used in the feedback policy as
in [17, 27]. This approach was used under the settings of an unreliable downlink in [30] by using a Kalman filter on the plant
side and computing feedback from the Kalman filter innovation terms, sent through the downlink. This, however, does not
fully address the problem of communication dropouts in the downlink and requires addition computational resources on the
plant side for the filtering. Furthermore, all the approaches above [6,17,27,29,30] present a constrained SMPC approach for a
regulation problem and their adaptation under the setting of a time varying reference signal is also missing in the literature.

In this article, we adapt and extend the results of [29] by considering an unreliable downlink and a time-varying set point,
reference tracking problem. A class of feedback policies in which the feedback term takes the additive uncertainties appearing
in the dynamics of the dropout compensator is considered. We show that the proposed class of feedback policies leads to a
tractable constrained optimal control problem and present modifications to the transmission protocols and stability constraints
presented in [29] under the settings of bounded-input reference tracking and unreliable communication in order to get a provably
stabilizing and tractable SMPC framework.

The contributions of this article are (a) SMPC formulation of tracking with hard constraints on control actions and (b) a
new class of feedback policies in the context of an unreliable downlink that ensures tractability of the underlying constrained
stochastic optimal control problem.

This article proceeds as follows:We present the problem formulation and system setup in §2. Themain ingredients of the tracking
problem under unreliable channels are explained in §3, §4 and §5, respectively. We present our main result on tractability and
stability in §6. We illustrate our results in §7 by numerical experiments and conclude in §8.

Notation

We use the symbol 0 to denote a matrix of appropriate dimensions with all elements 0 and Id for the d× d identity matrix.
We simply use I in place of Id when its dimensions are clear from the context. The notation Ez[·] is used for the conditional
expectation given z. Let σ1(M) denote the largest singular value of M, and M† its Moore-Penrose pseudo inverse. A block
diagonal matrixM with diagonal entriesM1, · · · ,Mn is represented asM = bdiag{M1, · · · ,Mn}. For a vectorV ∈Rd ,V (i) denotes

its ith entry for i = 1, . . . ,d. For any vector sequence (vn)n∈N0 , let vn:k denote the vector
[
v>n v>n+1 · · · v>n+k−1

]>
, k ∈Z+.

2 Problem setup and solution architecture

We consider a discrete-time dynamical system
xt+1 = Axt +Bua

t +wt , (1)
where xt ∈Rd , ua

t ∈Rm, wt ∈Rd , are the system state, input and process noise, respectively. The matrix pair (A,B) is assumed
to be controllable. The additive process noise (wt)t∈N0 is assumed to be a sequence of i.i.d. zero mean random vectors taking
values in Rd . Each component of wt is symmetrically distributed about the origin and wt has bounded fourth moments, i.e.,
E[‖wt‖4]< ∞.1

1 The bounded fourth moment assumption being much weaker than a Gaussian distribution assumption, allows for more general noise
distribution characteristics in this work.
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The control input ua
t is required to be bounded and without loss of generality is assumed to be uniformly bounded as

‖ua
t ‖∞

6 umax for all t ∈N0. (2)

We use the superscript notation ua
t in the system dynamics to denote the actual applied control action to the system which may

be different from the computed control input ut due to an unreliable communication channel (uplink); See Fig. 1.

2.1 Communication channels

The controller communicates with the dynamical system (plant) through unreliable Bernoulli channels. The parameters of
the control policy are transmitted through a control channel (uplink) from the controller to the plant. State information xt is
transmitted through a sensor channel (downlink) from the plant to the controller. Successful transmissions from an unreliable
channel follow a Bernoulli distribution. To model this distribution, we utilize two i.i.d. Bernoulli random variable sequences
(νt)t∈N0 with mean pc and (st)t∈N0 with mean ps for the control channel and the sensor channel, respectively. A transmission
across the control channel and the sensor channel is considered successful if νt = 1 and st = 1, respectively. Each successful
transmission from controller to the actuator is accompanied by an acknowledgment of success to the sender as done in TCP
like protocols.

2.2 Controller

The aim of a tracking controller in the presence of perfect channels is to design a control sequence (ut)t∈N0 such that the state
process (xt)t∈N0 converges to the given reference sequence (rt)t∈N0 . Since (rt)t∈N0 may not be trackable due to the dynamical
constraints, generally it is approximated by a trackable signal (xr

t )t∈N0 typically obtained by a reference governor. Section 3
details the design of the reference governor.

Even in the presence of perfect channels the tracking problem is not trivial when the process noise has unbounded support and
control inputs are uniformly bounded. Since the traditional form of asymptotic stability cannot be achieved in the presence of
additive stochastic uncertainties, we address the notion of mean-square boundedness. We recall the following definition:

Definition 1 [7, §III.A]AnRd-valued random process (xt)t∈N0 is said to be mean square bounded with respect to the available
information X0 at t = 0 at the controller if there exists γ < ∞ such that supt∈N0

EX0 [‖xt‖2]6 γ .

The above notion of mean-square boundedness implies that the probability of the norm of xt being greater than or equal to k,
decays faster than k−2, uniformly over time [7, III.A]. Moreover, this notion also implies that there does not exist any divergent
trajectory, with probability one [19, Lemma 4.1]. Therefore, for the purpose of tracking in a stochastic environment, we focus
on designing a controller such that the underlying error between the state of the system and the reference signal remains
mean-square bounded.

2.3 Solution architecture

Given a reference signal (rt)t∈N0 , the reference governor in §3, generates sequences (x
r
t )t∈N0 and (u

r
t )t∈N0 such that the deviation

of xr
t from rt , denoted as the governor error eG

t = xr
t − rt is bounded. The reference control input ur

t is made to satisfy a bound
‖ur

t ‖∞
6 δumax for some δ ∈ (0,1) to limit the control authority available for tracking and noise compensation respectively; see

§3 for details.

The reference governor signals xr
t ,u

r
t are utilized by the SMPC controller to generate an open-loop control sequence η t and

disturbance feedback gain matrix Θt ; such that the closed-loop reference tracking error, denoted et = xt − xr
t is guaranteed to

be mean square bounded. However, due to the unreliable sensor channel, the state vector xt is not always available for feedback
computation in the controller. Instead, a state estimator is used as a dropout compensator and a state estimate x̃t is made available
to the controller. The tracking error et , can thus be split into two errors, (i) the estimator error eD

t = xt− x̃t and (ii) the controller
error eC

t = x̃t − xr
t . The dropout compensator is designed in §4 such that the estimation error eD

t = xt − x̃t remains mean-square
bounded. Further, the SMPC controller is designed in §5 such that the controller error eC

t = x̃t − xr
t remains mean-square

bounded. Thus, the overall error between the state of the system xt and the reference signal rt written as,

eO
t = et + eG

t = eD
t + eC

t + eG
t (3)
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remains mean square bounded, due to each component error being mean-square bounded (Theorem 7).We conclude by showing
that the overall approach is computationally tractable and satisfies hard constraints on control actions in §6. The error signals
are summarized in Table 1.

Table 1: Error signals
error expression governing equations

tracking error et = xt − xr
t (10)

governor error eG
t = xr

t − rt (4) and (5)
estimator error eD

t = xt − x̃t (9)
controller error eC

t = x̃t − xr
t (21)

overall error eO
t = xt − rt (3)

The following sections proceed with further details of the control system architecture components, viz, the reference governor,
dropout compensator and SMPC controller.

3 Reference governor

For a given constrained linear system only a class of signals may be trackable [11,22]. This class of trackable signals is generally
obtained by a reference governor [4, 38]. Although tracking of arbitrary reference signals is not possible with bounded control
inputs, a trackable pseudo reference trajectory is feasible with the help of a reference governor. The tracking performance can
then be monitored with respect to this generated reference. In subsequent analysis, we focus on a class of trackable signals as
defined below:

Definition 2 For a given control authority umax, weight δ ∈ (0,1) and error bound γG > 0, a signal (rt)t∈N0 is called trackable
if there exist sequences (xr

t )t∈N0 ,(u
r
t )t∈N0 such that

xr
t+1 = Axr

t +Bur
t ,

sup
t∈N0

(
‖xr

t − rt‖2
)
6 γ

G,

‖ur
t ‖∞

6 δumax for each t.

 (4)

The weight δ is used to distribute the control authority between the governor input ur
t and SMPC controller for additional

disturbance rejection.The difference between the trackable trajectory xr
t and reference signal rt is denoted as the governor error

eG
t = xr

t − rt . (5)

The sequences (xr
t )t∈N0 ,(u

r
t )t∈N0 can be obtained by solving an optimal control problem of the form

(xr
t )t6T ,(ur

t )t6T = argmin
(xt ),(ut )

T

∑
t=0
‖xt − rt‖2 +‖ut‖2

subject to xt+1 = Axt +But

‖ut‖∞
6 δumax; ∀ t 6 T

x0 = r0.

(6)

Given rt and δ , rt is considered admissible if it provides a feasible solution to (6) and a finite bound γG, to render xr
t trackable

according to Definition 2. The problem (6) can then be solved offline for a finite horizon problem or online using a moving
horizon, for infinite horizon reference signals as done in [1]. We refer the reader to [1, 3, 18] for other advances in reference
governor designs.

Given a trackable pair of sequences, (xr
t ,u

r
t ), our objective boils down to ensuring mean square boundedness of the tracking

error, et , by using the control authority (1−δ )umax and present a tractable formulation of the SMPC controller.
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Fig. 1. A dropout compensator feeds the estimated states to the controller and the controller generates the admissible control sequence by
taking reference governor into account. The computed control parameters are transmitted through the control channel by a suitably chosen
transmission protocol and the successfully received parameters are stored in a buffer.

4 Dropout compensator

At each time step, the state information xt is transmitted from the plant to the controller over an unreliable communication
channel as described in Section 2. A Bernoulli random variable st determines the successful transmission of data across the
channel. For the event, st = 1 (with probability ps), xt is successfully transmitted and for st = 0 (with probability 1− ps), the
transmission fails.

When a successful transmission is received, st = 1, the state estimate for the controller is set to the received value, i.e., x̃t = xt .
For failed transmission, st = 0, the previous state estimate is propagated forward using the system dynamics

x̃t = Ax̃t−1 +Bua
t−1 (7)

initialized with x̃−1 = 0 and ua
−1 = 0. For t > 0, ua

t is given by the disturbance feedback policy (16) discussed in §5. The
combined state estimate update can then be written as,

x̃t = stxt +(1− st)
(
Ax̃t−1 +Bua

t−1
)
. (8)

Dropout compensators of the form (8) are widely used in the literature [13] and a justification for (8) can be found in [30, Lemma
3]. Using (1) and (8), the estimator error dynamics can then be written as,

eD
t := xt − x̃t = (1− st)(AeD

t−1 +wt−1). (9)
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5 Controller

Let N,Nr ∈ Z+ be two positive integer constants such that Nr 6 N. The stochastic MPC controller solves a N-step stochastic
optimal control problem after every Nr steps. Recalling that the controller objective is to minimize the reference tracking error,

et := xt − xr
t , (10)

the objective function for the SMPC controller is set to

Vt := EXt

[
e>t+NQ f et+N +

N−1

∑
i=0

(
e>t+iQet+i +(ue

t+i)
>Rue

t+i

)]
, (11)

where ue
t+i := ua

t+i− ur
t+i and Xt is the information available at the controller up to and including time t. Matrices Q, Q f are

taken to be symmetric, positive semi-definite and R is taken to be positive definite. The controller transmits the parameters
of the policy (defined in §5.1) over the control channel with the help of a transmission protocol (defined in §5.2) such that
previously transmitted parameters can be used in the case of transmission failures. The backbone of SMPC is to iteratively solve
the following constrainted stochastic optimal control problem (CSOCP) in the presence of stability constraints (defined in §5.3)
over the class of policies:

minimize
policy

{Vt | (1), (2), (23)}. (12)

The above CSOCP (12) is re-solved after every Nr time steps with a new initial state estimate and the updated decision variables
are transmitted through the control channel to allow the computation of ua

t at the plant input by using the transmission protocol.
We discuss these mechanisms in the following subsections.

5.1 Class of feedback policies

The presence of buffer and unreliable control channel is generally ignored at the time of controller design. In this article, we
follow the approach of [29] to incorporate both effects at the design stage itself. For this purpose, we have different notations
and equations for the control policy and the applied control to the system, ut and ua

t , respectively. The dynamics of the dropout
compensator (8) is rewritten as

x̃t+1 = Ax̃t +Bua
t + w̃t , (13)

with w̃t := st+1
(
AeD

t +wt
)
. The class of causal policies is then parametrized in terms of the compensator disturbances w̃t as:

ut+i = ur
t+i +ηt+i +

i

∑
j=0

θi, jψ(w̃t+ j−1) (14)

where ur
t+i is the reference control input computed in §3; (ηt+i)i=0,...,N−1 and (θi, j) j6i:i=0,...,N−1 are the nominal input and

feedback gain respectively, to be computed by solving CSOCP (12). The estimator disturbance w̃t+ j−1 is computed from (13)
as

w̃t+ j−1 = x̃t+ j− (Ax̃t+ j−1 +Bua
t+ j−1). (15)

The computation is initialized with x̃−1 = 0, ua
−1 = 0 (as per §4). The saturation function ψ : R→ R, can be any anti-

symmetric function; such that, ψ(0) = 0, ψ(−x) =−ψ(x) and supx∈Rψ(x)6 ψmax. For vector inputs, like w̃t+ j−1, ψ is applied
element-wise. The class of policies (14) can be written in a compact matrix form as:

ut:N = ur
t:N +η t +Θtψ(w̃t−1:N), (16)

where η t := ηt:N , η t ∈RmN and Θt is a lower block triangular matrix

Θt =


θ0,t 0 · · · 0 0

θ1,t θ1,t+1 · · · 0 0
...

...
...

...
...

θN−1,t θN−1,t+1 · · · θN−1,t+N−2 θN−1,t+N−1

 , (17)

with each θk,` ∈Rm×d and ‖ψ(w̃t:N−1)‖∞
6 ϕmax.

6



5.2 Transmission protocol

Recalling that ur
t:N is obtained from the reference governor, and that (η t ,Θt) is the solution of the CSOCP (12) solved at

time t, ur
t:N ,η t and Θt are available at time t. These can be used to compute control inputs ut:N with the help of the causally

available information of w̃t . The absence of the future feedback terms at the optimization instant, motivates the selection of the
transmission rule of the policy parameters as in [29]. The idea of transmission protocols is inspired by the so-called packetized
predictive control techniques [35], where a buffer stores a finite sequence of future control actions to be applied in case of
control channel failures. We initialize a buffer to hold Nr number of control inputs and adapt a transmission protocol of [29]
below:

(TP1) At each time t > 0, do:
(a) If t = kNr, for some k ∈N0,

(i) Compute ur
t:N , η t and Θt using the optimization based controller from Section 5

(ii) Compute ut:Nr using (16)
(iii) Set `= 0
(iv) Transmit

{
ut ,(ur

t+1:Nr−1 +ηt+1:Nr−1)
}
to the buffer

(b) else,
(i) Update `= `+1
(ii) If buffer is empty, transmit{

ut+`,(ur
t+`+1:Nr−`−1 +ηt+`+1:Nr−`−1)

}
Otherwise, transmit ut+`.

As mentioned in (TP1), Nr− ` blocks of control are transmitted at each time t + `, when buffer is empty. Otherwise only one
block of the control is transmitted. If the transmitted block is received at the buffer, then it is stored there starting from the
beginning. At each time instant the first block of the buffer is applied to the plant and then the buffer is rotated by using a left
shift register. This operation of shift register makes the buffer automatically empty before each optimization instant.

Let gt = νt , gt+` = gt+`−1 +(1−gt+`−1)νt+`. The term gt+` then gives state of consecutive dropouts in the unreliable control
channel and the transmission protocol (TP1), thus, effectively applies an input to the actuator given by

ua
t+` = gt+`(ur

t+`+ηt+`)+νt+`

`

∑
i=0

θ`,t+iψ(w̃t+i−1) (18)

at time t+`. Let us define a block diagonal matrixS := bdiag{νt Im, . . . ,νt+κ−1Im, Im(N−κ)} and the matrix G , which has N×N

blocks in total, each of dimension m×m and for i, j = 1, · · · ,N, the matrix G is given in terms of the blocks G
(i, j)
b each of

dimension m×m as

G
(i, j)
b :=


gt+i−1Im if i = j 6 Nr,

Im if i = j > Nr,

0m otherwise.
(19)

The stacked control vector in one optimization horizon can then be rewritten as:

ua
t:N := H ur

t:N +G η t +S Θtψ(w̃t−1:N), (20)

where Θt and ψ(wt:N+1) are as defined in (16) and H = G .

Remark 3 In any application where the future reference control signals ur
t , which are generated by the reference governor, are

known a priori, we can transmit the future values of ur
t a priori and store in a buffer on the plant side. In such situations we can

assume that ur
t is available at the actuator at time t. Therefore, we can set H = I. In the present article, we do not consider this

apriori storage, which sets H = G .

5.3 Stability constraints

Similar to [16], stability of the proposed approach is independent of the cost function. We employ stability constraints, which
are derived from [8] under the following assumptions:

7



(A1) The zero mean noise sequence (wt)t∈N0 is fourth moment bounded, i.e., E[‖wt‖4]6C4, for some C4 < ∞.
(A2) The system matrix A has all eigenvalues in the unit disk and those on unit circle are semi-simple2.
(A3) System matrix pair (A,B) is controllable.

The above assumptions (A1) - (A2) are also used in [16] along with stabilizability of the matrix pair (A,B) for the case of perfect
channels 3. We need (A3) because mere stabilizability is not sufficient for reference tracking problems. We quickly recall some
steps so that the stability constraints along the lines of [30] can be employed under the settings of the present article. Let us first
define the controller error eC

t := x̃t − xr
t , then from (13) and (4) we get

eC
t := x̃t − xr

t = AeC
t−1 +Bue

t−1 + w̃t−1, (21)

where ue
t = ua

t −ur
t . Without loss of generality due to the Assumption (A2), we can assume that the error dynamics (21) is of

the form [
(eC

t+1)
o

(eC
t+1)

s

]
=

[
Ao 0

0 As

][
(eC

t )
o

(eC
t )

s

]
+

[
Bo

Bs

]
ue

t +

[
w̃o

t

w̃s
t

]
, (22)

where Ao ∈ Rdo×do is orthogonal and As ∈ Rds×ds is Schur stable, with d = do + ds. By the controllability assumption (A3),
there exists a positive integer κ such that the reachability matrix

Rκ(Ao,Bo) :=
[
Aκ−1

o Bo · · · AoBo Bo

]
has full row rank; i.e., rank(Rκ(Ao,Bo)) = do. We present our tracking problem in such a way that [30, Lemma 7] is applicable
in the context of this article and provides the following result:

Lemma 4 Given a system of the form (22) and assumptions (A1)-(A2), if for t = 0,κ,2κ, . . ., the following conditions hold:

(
(At+κ

o )>Rκ(Ao,Bo)EXt [u
e
t:κ ]
)( j)

6−ζ

whenever
(
(At

o)
>(eC

t )
o
)( j)

> c, (23a)(
(At+κ

o )>Rκ(Ao,Bo)EXt [u
e
t:κ ]
)( j)

> ζ

whenever
(
(At

o)
>(eC

t )
o
)( j)

<−c, (23b)

for each j = 1, · · · ,do, for some ζ ,c > 0; then under the transmission protocol (TP1) there exists γC > 0 such that

EX0

[∥∥eC
t
∥∥2
]
6 γ

C for all t. (24)

Moreover, when ζ ∈
]

0, (1−δ )umax√
doσ1(Rκ (Ao,Bo)†)

]
, there exists a κ-history dependent class of inputs ue

κt:κ such that (23) and (2) are

satisfied.

PROOF. Applying [30, Lemma 7] on (22), we get (23) and the bound (24) when ‖ue
t ‖∞

6 (1−δ )umax by the choice of ζ . The
reference governor is designed in (4) such that ‖ur

t ‖∞
6 δumax. Therefore, noting ‖ua

t ‖∞
6 ‖ut‖∞

6 ‖ur
t ‖∞

+‖ue
t ‖∞

6 umax, ua
t

satisfies (2).

2 The algebraic and geometric multiplicities are same for the eigenvalues that are on the unit circle.
3 (A2) refers to the largest class of linear time invariant systems known to be stabilizable by bounded control actions under perfect
communication channels. Please refer to [40, Abstract] and [8, Theorem 1.7] for more details.
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6 Tractability and Stability

In this section we present how the CSOCP (12) can be written as a computationally tractable quadratic program. Recalling
ue

t = ua
t −ur

t , we get
ue

t:N := (H − I)ur
t:N +G η t +S Θtψ(w̃t−1:N). (25)

The compact form representation of error in (11) over one optimization horizon can be written as:

et:N+1 = A et +Bue
t:N +Dwt:N , (26)

whereA ,B,D are standardmatrices derived by recursing the dynamics over one horizon and given byA =
[
I A> · · · (AN)>

]>
,

B =


0 0 · · · 0

B 0 · · · 0
...

...
. . .

...
AN−1B AN−2B . . . B

 ,D =


0 0 · · · 0

I 0 · · · 0
...

...
. . .

...
AN−1 AN−2 . . . I

 .

Let Q := bdiag
( N times︷ ︸︸ ︷
Q, · · · ,Q,Q f

)
,R := bdiag(

N times︷ ︸︸ ︷
R, · · · ,R), the cost function (11) can also be written in a compact form as follows:

Vt := EXt

[
‖et:N+1‖2

Q +‖ue
t:N‖

2
R

]
. (27)

Let us defineα :=B>QB+R and the covariancematricesΣG :=E
[
G>αG

]
,ΣS :=E

[
S >αS

]
,ΣH G :=E

[
(H − I)>αG

]
and ΣH S := E

[
(H − I)>αS

]
, where H and S are defined in §5.2. We define two mean matrices µG := E[G ] and

µS :=E[S ]. The above matrices are needed to write a tractable surrogate of the cost function Vt . For a given distribution of st
and νt , we can compute them offline by using Monte-Carlo simulations. We need to compute three more covariance matrices
Σψ := EXt

[
ψ(w̃t:N−1)ψ(w̃t:N−1)

>
]
, Σψw := EXt

[
ψ(w̃t:N−1)w>t:N

]
and Σeψ = EXt

[
ψ(w̃t:N−1)(eD

t )
>
]
.

Please notice that Σψ ,Σψw and Σeψ depend on the number of consecutive dropouts of the sensor channel. If we know that there
are at most h number of consecutive packet dropouts in the sensor channel, we can compute h number of values of Σψ ,Σψw
and Σeψ offline and use the required one at the time of optimization. Since the sensor channel is assumed to be Bernoulli, the
number of consecutive packet dropouts of the sensor channel is unbounded. However, for practical purposes, when data is not
received for a long time from a particular channel, we can either give high priority to that channel so that precomputed values
of Σψ ,Σψw can be utilized or we compute new values online in advance. The assumption of an uniform bound on the number
of consecutive packet dropouts is standard in literature [34, Assumption 4]. However, we do not need such assumption for any
theoretical result in this article.

LetΘ(:,t)
t :=

[
θ>0,t θ>1,t . . . θ>N−1,t

]>
be the firstd columns ofΘt andΘ

′
t be such thatΘt =

[
Θ

(:,t)
t Θ

′
t

]
. LetΠw =ψ(w̃t−1)ψ(w̃t−1)

>,
We have the following Lemma:

Lemma 5 The objective function (11) can be written as the following convex quadratic function:

V ′t = η
>
t ΣG η t +2η

>
t ΣG S Θ

(:,t)
t ψ(w̃t−1)+ trΣS Θ

(:,t)
t Πw(Θ

(:,t)
t )>

+ tr(ΣS Θ
′
tΣψ(Θ

′
t)
>)+2tr

(
D>QBµS Θ

′
tΣψw

)
+2tr

(
A >QBµS Θ

′
tΣeψ

)
+2(eC

t )
>A >QBµG η t

+2(ur
t:N)
>

ΣH S Θ
(:,t)
t ψ(w̃t−1)+2(ur

t:N)
>

ΣH G η t . (28)

A proof of the Lemma 5 is given in the appendix. Please notice in the proof of Lemma 5 that V ′t is obtained by removing some
constant terms ofVt in (11). Therefore, they are not equal but they serve the same purpose for the optimization purpose. Further,
the hard constraint on control actions can be written as affine function of the decision variables. We have the following Lemma:

9
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Fig. 2. States of the reference signal rt and the averaged states of the system xt

Lemma 6 For the class of control policies (16), the input constraint (2) is equivalent to:

∣∣∣(ur
t:N)

(i)+η
(i)
t

∣∣∣+∥∥∥Θ
(i,:)
t

∥∥∥
1

ϕmax 6 umax, (29)

for i = 1, . . . ,Nm.

PROOF. Since the saturation function is component-wise symmetric about the origin, the claim follows from [15, Proposition
3] by observing that ‖ua

t:N‖∞
6 umax ⇐⇒ ‖ut:N‖∞

6 umax.

The CSOCP (12) can be written as the following convex quadratic program:

minimize {(28) | (29), (23)}. (30)

The above optimization program (30) can be solved, for example, using the MATLAB based software package YALMIP [25]
and the solver GUROBI [14] or SDPT3 [39]. The above optimization program is solved iteratively online after each Nr time
steps. The covariance matrices ΣG ,ΣG S ,ΣS ,Σψ ,ΣH S ,Σψw,Σeψ and mean matrices µG ,µS are considered as constants in
the optimization program (30). At each optimization instant the estimator computes x̃t by (8) and w̃t−1 by (15). The reference
signals xr

t given by the reference governor is used to compute eC
t by using (21). The reference control signal ur

t:N is also obtained
from the reference governor. In this way, at each optimization instant w̃t−1,Πw,eC

t and ur
t:N are given to the solver to obtain η t

and Θt . We have the following result on mean-square boundedness of the overall error. Its proof is given in the appendix.

Theorem 7 Consider a discrete-time dynamical system (1) and overall error (3) and the control sequence is generated by
repeatedly solving the optimization program (30). Let assumptions (A1) - (A3) hold, then overall error eO

t is mean-square
bounded.

10
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7 Numerical Experiments

In this section, we present a numerical experiment to validate our theoretical results. We consider a four dimensional stochastic
LTI system with system matrices

A =


0.9 0 0 0

0 0 −0.8 −0.6

0 0.8 −0.36 0.48

0 0.6 0.48 −0.64

 ,B =


0.5

0.5

0

0.5

 , |ua
t |6 5.

The additive process noise is mean zero Gaussian with variance Σw = 0.5I. The successful transmission probabilities for uplink

and downlink are pc = ps = 0.9, and simulation data is Q = Q f = I4,R = 1,N = 5,x0 =
[
1 1 1 1

]>
. The reachability index

κ of the matrix pair (Ao,Bo) is 3. The saturation function ψ(ξ ) = 1−e−ξ

1+e−ξ
in our policy is a scalar sigmoidal function which is

applied element-wise. We have chosen the recalculation interval Nr same as the reachability index κ of the matrix pair (Ao,Bo).
For simplicity in the reference governor design, we consider a trackable reference signal, which admits the following recursion:

rt+1 = Art +B
(

5
2

sin(0.083t)
)

; r0 = x0. (31)
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We choose δ = 0.5, xr
0 = r0, ur

t =
5
2 sin(0.083t), so xr

t = rt . For more general reference signals an optimization problem of the
form (6) can be solved to compute xr

t ,u
r
t or some other methods of reference governor design as in [1, 3, 18] can be adopted.

A simulation for 50 sample paths of 120 time steps is performed and the average over all sample paths is demonstrated in Fig.
2 and Fig. 3. We observe in Fig. 2 that the averaged states follow very closely to the states of the reference signal. Fig. 3 shows
that ‖rt‖ and the averaged ‖xt‖ are very close while successfully maintaining |ua

t |6 5 in each sample path.

Figures 4 and 5 show the data associated with a typical sample path. We observe in Fig. 4 that ‖xt‖ and ‖rt‖ closely follow
one another in the presence of the additive process noise and packet dropouts in the sensor and control channels, shown in
Fig. 5. The applied control ua

t follows the reference control ur
t generated by the reference governor with some deviations to

compensate for the noise and dropouts. The norm of the overall error
∥∥eO

t
∥∥ is affected by the additive process noise (see Fig.

5), and increases when there are consecutive dropouts in one of the channels and is observed to be the highest at t = 61 when
consecutive dropouts of control channel are followed by a dropout at the sensor channel. A sudden decrease in

∥∥eO
t
∥∥ is observed

at t = 46 due to the decrease in ‖wt‖, and perfect transmission through sensor channel at t = 45 and through control channel at
t = 46. Two consecutive dropouts in the sensor channel at t = 46,47 result in slight increase in

∥∥eO
t
∥∥ at t = 48.

Additionally, a parametric study of the tracking performance over wide range of dropout probabilities ps and pc is performed.
The empirical mean square bound (MSB) of the overall error (the error between the states of the controlled plant and the
reference signal eO

t = xt− rt ) is shown in Fig. 6 for varying values of ps and pc. We first fix pc = 0.9 and record empirical MSB
over 200 sample paths when ps varies in the set {0.5,0.6,0.7,0.8,0.9,1}. In the second experiment, we fix ps = 0.9 and record
the empirical MSB over 200 sample paths when pc varies in the set {0.5,0.6,0.7,0.8,0.9,1}. The empirical MSB is larger for
fixed ps when there are more packet dropouts in the control channel. For a fixed pc also empirical MSB decreases with the
increase in ps but its slope is smaller than that with varying pc and fixed ps.

8 Epilogue

The stochastic MPC formulation under unreliable sensor and control channels is considered in this article and the proposed
approach is presented for general tracking problems. A class of trackable signals is restrictedwith the help of a reference governor
and available control authority. The work can further be extended in the setting of incomplete and corrupt measurements, and
output feedback settings with the help of a Kalman filter along the lines of [30].
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A Proofs

PROOF. [Lemma 5] Since et:N+1 and ue
t:N are affine functions of decision variables and the expectation of a convex function

is convex [5], Vt in (27) is convex. We substitute the stacked error vector (26) in the objective function (27).

Vt = EXt

[
‖A et +Bue

t:N +Dwt:N‖2
Q +‖ue

t:N‖
2
R

]
= EXt

[
‖A et‖2

Q +‖Dwt:N‖2
Q +‖ue

t:N‖
2
α
+2(e>t A >QB+w>t:ND>QB)ue

t:N +2e>t A >QDwt:N

]
.

Let βt :=EXt

[
‖A et‖2

Q +‖Dwt:N‖2
Q +2e>t A >QDwt:N

]
. Then Vt =EXt

[
‖ue

t:N‖
2
α
+2(e>t A >QB+w>t:ND>QB)ue

t:N

]
+βt .

We now substitute the stacked control vector (25) in Vt to get

Vt =EXt

[
‖(H − I)ur

t:N +G η t +S Θtψ(w̃t−1:N)‖2
α
+2
(
e>t A >QB+w>t:ND>QB

)(
(H − I)ur

t:N +G η t +S Θtψ(w̃t−1:N)
)]

+βt .
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Let β ′t := βt +2EXt

[
e>t A >QB(H − I)ur

t:N ]. SinceEXt [et ] = x̃t−xr
t = eC

t , by removing mean zero terms we get the following
equation:

Vt = EXt

[
‖(H − I)ur

t:N +G η t +S Θtψ(w̃t−1:N)‖2
α
+2
(
e>t A >QB+w>t:ND>QB

)
S Θtψ(w̃t−1:N)

]
+2(eC

t )
>A >QBµG η t +β

′
t

(A.1)

Since w̃t−1 is known at t, we simplify the term

EXt

[
w>t:ND>QBS Θtψ(w̃t−1:N)

]
= EXt

[
w>t:ND>QBS

[
Θ

(:,t)
t Θ

′
t

][ ψ(w̃t−1)

ψ(w̃t:N−1)

]]
= tr

(
D>QBµS Θ

′
tΣψw

)
. (A.2)

We consider the term EXt

[
e>t A >QBS Θtψ(w̃t−1:N)

]
in (A.1) as follows:

EXt

[
e>t A >QBS Θtψ(w̃t−1:N)

]
= EXt

[
(xt − x̃t)

>A >QBS Θtψ(w̃t−1:N)
]
+(x̃− xr

t )
>EXt

[
A >QBS Θtψ(w̃t−1:N)

]
= EXt

[
(eD

t )
>A >QBS Θtψ(w̃t−1:N)

]
= tr

(
A >QBS Θ

′
tΣeψ

)
. (A.3)

We substitute (A.2) and (A.3) in (A.1) to get

Vt = EXt

[
‖(H − I)ur

t:N +G η t +S Θtψ(w̃t−1:N)‖2
α

]
+2tr

(
D>QBµS Θ

′
tΣψw

)
+2tr

(
A >QBS Θ

′
tΣeψ

)
+2(eC

t )
>A >QBµG η t +β

′
t (A.4)

Let us define c := (ur
t:N)
>EXt

[
(H − I)>α(H − I)

]
ur

t:N . We simplify the first term in the right hand side of (A.4) as follows:

EXt

[
‖(H − I)ur

t:N +G η t +S Θtψ(w̃t−1:N)‖2
α

]
= η

>
t EXt

[
G>αG

]
η t +EXt

[
‖S Θtψ(w̃t−1:N)‖2

α
+2(η>t G>α)S Θtψ(w̃t−1:N)

]
+2EXt

[
(ur

t:N)
>(H − I)>αS Θtψ(w̃t−1:N)

]
+2(ur

t:N)
>EXt

[
(H − I)>αG

]
η t + β̃t

= η
>
t ΣG η t +EXt

[
‖S Θtψ(w̃t−1:N)‖2

α

]
+2EXt

[
η
>
t G>αS Θtψ(w̃t−1:N)

]
+2EXt

[
(ur

t:N)
>(H − I)>αS Θtψ(w̃t−1:N)

]
+2(ur

t:N)
>

ΣH G η t + c. (A.5)

Let us consider the term EXt

[
‖S Θtψ(w̃t−1:N)‖2

α

]
on the right hand side of (A.5). In order to simplify offline computations,

we perform the following manipulation:

EXt

[
‖S Θtψ(w̃t−1:N)‖2

α

]
= EXt

[∥∥∥∥∥S [
Θ

(:,t)
t Θ

′
t

][ ψ(w̃t−1)

ψ(w̃t:N−1)

]∥∥∥∥∥
2

α

]

= tr

(
ΣS Θ

(:,t)
t ψ(w̃t−1)ψ(w̃t−1)

>(Θ
(:,t)
t )>+ΣS Θ

′
tEXt

[
ψ(w̃t:N−1)ψ(w̃t:N−1)

>
]
(Θ′t)

>

)
= tr(ΣS Θ

(:,t)
t Πw(Θ

(:,t)
t )>)+ tr(ΣS Θ

′
tΣψ(Θ

′
t)
>). (A.6)
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Let us consider the term EXt

[
η>t G>αS Θtψ(w̃t−1:N)

]
on the right hand side of (A.5) . By observing EXt [ψ(w̃t+i−1)] = 0 for

each i = 1, . . . ,N−1, we get
EXt

[
η
>
t G>αS Θtψ(w̃t−1:N)

]
= η

>
t ΣG S Θ

(:,t)
t ψ(w̃t−1). (A.7)

Similar to (A.7), we get

EXt

[
(ur

t:N)
>(H − I)>αS Θtψ(w̃t−1:N)

]
= (ur

t:N)
>

ΣH S Θ
(:,t)
t ψ(w̃t−1). (A.8)

Expression (28) follows by substituting (A.5), (A.6), (A.7) and (A.8) in (A.4), and ignoring the term β ′t +c, which is independent
of the decision variables. Therefore, the objective function in (27) is equivalent to (28) for the sake of optimization.

Before the proof of Theorem 7, we need the following result related to mean square boundedness of eD
t :

Lemma 8 Suppose that the dropout compensator is driven by the recursion (8) and let assumptions (A1)-(A2) hold, then there
exists γD > 0 such that

EX0

[∥∥eD
t
∥∥2
]
6 γ

D for all t. (A.9)

The proof of the above Lemma is along the lines of the proof of [30, Lemma 9]. Therefore, we omit the details for brevity.

PROOF. [Theorem 7] Since eO
t = xt−rt = xt− x̃t + x̃t−xr

t +xr
t −rt = eD

t +eC
t +eG

t and
∥∥eO

t
∥∥2

6 3
(∥∥eD

t
∥∥2

+
∥∥eC

t
∥∥2

+
∥∥eG

t
∥∥2
)

by using Cauchy-Schwartz inequality. By taking conditional expectation on both sides we get

EX0

[∥∥eO
t
∥∥2
]
6 3

(
EX0

[∥∥eD
t
∥∥2
]
+EX0

[∥∥eC
t
∥∥2
]
+
∥∥eG

t
∥∥2
)
.

By (4) we have
EX0

[∥∥eO
t
∥∥2
]
6 3

(
EX0

[∥∥eD
t
∥∥2
]
+EX0

[∥∥eC
t
∥∥2
]
+ γ

G
)
.

Further, the Lemma 8 and the Lemma 4 give us EX0

[∥∥eO
t
∥∥2
]
6 3

(
γD +EX0

[∥∥eC
t
∥∥2
]
+ γG

)
6 3

(
γD + γC + γG

)
=: γ .
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