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Abstract

This paper deals with the problem of full state estimation for vehicles navigating in a three dimensional space. We assume
that the vehicle is equipped with an Inertial Measurement Unit (IMU) providing body-frame measurements of the angular
velocity, the specific force, and the Earth’s magnetic field. Moreover, we consider available sensors that provide partial or full
information about the position of the vehicle. Examples of such sensors are those which provide full position measurements
(e.g., GPS), range measurements (e.g., Ultra-Wide Band (UWB) sensors), inertial-frame bearing measurements (e.g., motion
capture cameras), or altitude measurements (altimeter). We propose a generic semi-globally exponentially stable nonlinear
observer that estimates the position, linear velocity, linear acceleration, and attitude of the vehicle, as well as the gyro bias.
We also provide a detailed observability analysis for different types of measurements. Simulation and experimental results are
provided to demonstrate the effectiveness of the proposed estimation scheme.

Key words: nonlinear observer, vehicle state estimation, inertial measurement units, position sensors.

1 Introduction

1.1 Motivation

Inertial navigation systems (INS) are of great impor-
tance in many autonomous vehicles and robot platforms
(Titterton et al., 2004). They combine measurements
from translational motion sensors (accelerometers) and
rotational motion sensors (gyroscopes), to track the po-
sition, velocity and orientation of a vehicle with respect
to a reference frame. Three orthogonal rate gyroscopes
and three orthogonal accelerometers, measuring angu-
lar velocity and linear acceleration respectively, are typ-
ically included in an Inertial Measurement Unit (IMU)
which is used, in addition to a processing unit, inside
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an INS. However, the use of an INS alone for navigation
usually leads to unreliable state estimates since measure-
ment errors and unknown initial conditions cause the
estimation error to drift over time (Woodman, 2007). In
this paper, we tackle the problem of the design of inertial
navigation systems aided with different types of position
information. The approach we take consists in using a
nonlinear observer that fuses IMU and position sensors
to provide reliable state estimation with semi-global ex-
ponential stability guarantees.

1.2 Prior Works

Inertial navigation systems are usually aided by position
sensors such as Global Positioning System (GPS) which
allows to correct the position estimates over time, thus,
keeping the estimation errors small and bounded; see,
e.g., (Vik and Fossen, 2001; Farrell, 2008; Grip et al.,
2013). Other type of sensors that can provide range (dis-
tance) measurements to known source points can also
be used to provide position information. For instance,
there are some GPS receivers that provide access to
the raw GPS observations (pseudo-range measurements)
which are used in tightly coupled GPS/INS integration
schemes. An advantage of the tightly coupled integration
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over the loosely coupled integration is the possibility to
use few raw GPS pseudo-ranges that would otherwise be
insufficient to provide full position estimates (Johansen
and Fossen, 2015; Johansen et al., 2017; Bryne et al.,
2017). Another type of range measurement sensors that
are getting popular in indoor applications is the Ultra
Wide-Band (UWB) radio technology (Gryte et al., 2017;
Hamer and D’Andrea, 2018). The idea consists in mount-
ing a network of radio modules (anchors) at known lo-
cations along with a receiver on the vehicle. By commu-
nicating signals between the anchors and the receiver,
the vehicle is able to calculate the distance (range) to
the transmitting anchor in the same way a GPS receiver
communicates with the satellites. The UWB-based lo-
calization technology has shown very promising accu-
racy in short-range applications. Utra-short/Long base-
line (USBL/LBL) sensors are other examples of range
sensors used in marine applications (Batista et al., 2011,
2016). Finally, raw data from motion capture systems
(e.g., OptiTrack, Vicon, Xsens) can also be used as a
source of position information providing inertial-frame
bearing measurements representing the projections of
the relative position vectors (with respect to the fixed
cameras) on the unit sphere (Batista et al., 2015, 2013;
Hamel and Samson, 2017).

Although Kalman-type filters, such as (Sabatini, 2006;
Farrell, 2008; Crassidis, 2006; Whittaker and Crassidis,
2017), are considered industry-standard solutions for in-
ertial navigation systems, these stochastic filters are of-
ten based on linearization assumptions and may fail
when the initial estimation errors are large. Recently,
nonlinear state observers, also called deterministic esti-
mators, have been developed for autonomous navigation
applications. Attitude observers have been proposed in
(Mahony et al., 2008; Batista et al., 2012; Zlotnik and
Forbes, 2016; Berkane et al., 2016; Berkane and Tayebi,
2017c) to name few. Velocity-aided attitude observers
can be found for instance in (Bonnabel et al., 2006; Hua,
2010; Roberts and Tayebi, 2011; Berkane and Tayebi,
2017a). Full state observers (attitude, position and lin-
ear velocity) are developed in (Johansen et al., 2017;
Hansen et al., 2018; Bryne et al., 2017). The advantage
of the nonlinear observers is their theoretically proven
stability guarantees, as well as their computational sim-
plicity compared to the stochastic filters.

1.3 Contributions and Paper Organization

In this work, we propose a nonlinear observer, relying
on inertial measurements and full or partial position in-
formation, for the simultaneous estimation of the posi-
tion, velocity, acceleration, attitude, and gyro bias of a
rigid body system. The proposed observer achieves semi-
global exponential stability, which is, to the best of the
authors knowledge, the strongest stability result avail-
able in the literature dealing with the problem at hand.
The attitude estimates are directly obtained on the Spe-

cial Orthogonal group of rotations SO(3), thus avoid-
ing any singularities or ambiguities related to the use
of other attitude parametrizations. The attitude estima-
tion part is based on the nonlinear complimentary filter
(Mahony et al., 2008) where the innovation term is gen-
erated using the IMU measurements and the estimates
of the unknown inertial linear acceleration as done, for
instance, in (Hua, 2010; Roberts and Tayebi, 2011; Grip
et al., 2013; Berkane and Tayebi, 2017a; Johansen et al.,
2017). The translational motion observer is designed to
handle, in a unified manner, different types of position
sensors; a feature that cannot be found in the existing
observers in the literature that are usually tailored to the
type of sensors used. The translational estimation part is
a high-gain observer with a similar structure to the non-
linear observers in (Grip et al., 2013; Bryne et al., 2017;
Johansen et al., 2017). Another important contribution
of this work consists in the detailed uniform observabil-
ity analysis carried out for the different types of sensors
used. Finally, we would like to point out that a prelim-
inary version of this work appeared in our conference
paper (Berkane and Tayebi, 2019). In this extended ver-
sion, we 1) provide complete proofs of the main results,
2) derive a generic observability condition on the out-
put matrix, and conduct a detailed observability anal-
ysis with different types of position measurements, and
3) experimentally validate the proposed observer on a
quadrotor UAV.

The paper is organized as follows. After some preliminar-
ies in Section 2, we formulate our estimation problem in
Section 3 where we give details about the considered ve-
hicle’s model, the possible available measurements and
the technical assumptions needed for our main result.
Then, in Section 4.1, the proposed nonlinear observer
is provided and the main result is announced in Sec-
tion 4.2. In Section 4.3 we study the observability of the
translational motion for different scenarios of position
measurements. Simulation and experimental results are
provided in Sections 5 and 6, respectively. Finally, Sec-
tion 7 wraps up the paper with concluding remarks. The
appendices are devoted for the technical proofs of our
theoretical results.

2 Preliminaries

We denote by R the set of reals and by N the set of
natural numbers. We denote by Rn the n-dimensional
Euclidean space, by Sn the unit n-sphere embedded in
Rn+1 and by Bε = {x ∈ R3 : ‖x‖ ≤ ε} the closed ball in
R3 with radius ε. We use ‖x‖ to denote the Euclidean
norm of a vector x ∈ Rn and ‖A‖F to denote the Frobe-
nius norm of a matrix A ∈ Rn×n. Let In be the n-by-n
identity matrix and let ei denote the i−th column of
In. The Special Orthogonal group of order three is de-
noted by SO(3) := {A ∈ R3×3 : det(A) = 1, AA> =
A>A = I3}. The set so(3) :=

{
Ω ∈ R3×3 | Ω> = −Ω

}
denotes the Lie algebra of SO(3). For x, y ∈ R3,
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the map [·]× : R3 → so(3) is defined such that
[x]×y = x × y where × is the vector cross-product on
R3. The inverse isomorphism of the map [·]× is defined
by vex : so(3) → R3, such that vex([ω]×) = ω, for all
ω ∈ R3 and [vex(Ω)]× = Ω, for all Ω ∈ so(3). The
composition map ψ := vex ◦ Pso(3) extends the def-

inition of vex to R3×3, where Pso(3) : R3×3 → so(3)
is the projection map on the Lie algebra so(3) such
that Pso(3)(A) := (A − A>)/2. Accordingly, for
a given 3-by-3 matrix A = [aij ]i,j=1,2,3, one has
ψ(A) = 1

2 [a32 − a23, a13 − a31, a21 − a12]. We define

|R| := 1
4tr(I3 −R) = 1

8‖I3 −R‖
2
F ∈ [0, 1] as the nor-

malized Euclidean distance on SO(3). Given a scalar
c > 0, we define the saturation function satc : Rn → Rn
such that satc(x) := min(1, c/‖x‖)x. Given two scalars
c, ε > 0, we also define the smooth projection function
Pεc : R3 × R3 → R3, found for instance in (Krstic et al.,
1995), as follows:

Pεc(φ̂, µ) :=

{
µ, if ‖φ̂‖ < c or φ̂>µ ≤ 0,(
I−θ(φ̂) φ̂φ̂

>

‖φ̂‖2

)
µ, otherwise,

(1)

where we let θ(φ̂) := min(1, (‖φ̂‖ − c)/ε). The projec-

tion operator Pεc(φ̂, µ) is locally Lipschitz in its argu-
ments. Moreover, provided that ‖φ‖ ≤ c, the projec-

tion map Pεc(φ̂, µ) satisfies, along the trajectories of
˙̂
φ =

Pεc(φ̂, µ), ‖φ̂(0)‖ ≤ c+ ε, the following properties:

‖φ̂(t)‖ ≤ c+ ε, ∀t ≥ 0, (2)

(φ̂− φ)>Pεc(φ̂, µ) ≤ (φ̂− φ)>µ, (3)

‖Pεc(φ̂, µ)‖ ≤ ‖µ‖. (4)

Finally, the pair (A(·), C(·)) is uniformly observable if
there exist δ, µ > 0 such that, for all t ≥ 0, the observ-
ability Gramian matrix satisfies:

W (t, t+ δ) :=

∫ t+δ

t

Φ>(s, t)C>(s)C(s)Φ(s, t)ds ≥ µIn,

(5)
where Φ(t, s) is the state transition matrix associated to

A(t) ∈ Rn×n, which is defined by Φ̇(t, s) = A(t)Φ(t, s)
and Φ(t, t) = In. Different (explicit) sufficient conditions
for uniform observability have been developed in the lit-
erature; see, for instance, (Bristeau et al., 2010; Hamel
and Samson, 2017; Batista et al., 2017; Morin et al.,
2017).

3 Problem Formulation

In this paper, we consider the following 3D kinematics
of a rigid body:

ṗ = v, (6)

v̇ = ge3 +RaB , (7)

Ṙ = R[ω]×, (8)

where p ∈ R3 is the inertial position of the vehicle’s
center of gravity, v ∈ R3 represents the inertial linear
velocity, R ∈ SO(3) is the attitude matrix describing
the orientation of a body-attached frame with respect
to the inertial frame, ω is the angular velocity of the
body-attached frame with respect to the inertial frame
expressed in the body-attached frame, g is the norm of
the acceleration due to gravity, and aB is the specific
force, capturing all non-gravitational forces applied to
the vehicle, expressed in the body-attached frame. We
may also use the term apparent acceleration interchange-
ably with specific force.

We assume available an IMU that provides measure-
ments of the angular velocity, the body-attached frame
non-gravitational acceleration and the body-attached
frame magnetic field. These sensors are modelled as:

ωy = ω + bω, (9)

aB = R>aI , (10)

mB = R>mI , (11)

where bω is a constant unknown gyro bias,mI is the con-
stant and known earth’s magnetic field and aI(t) is the
unknown time-varying apparent acceleration. Note that,
in practice, the above sensor measurements are usually
corrupted by random noise as well. However, since in
this paper we are interested to develop a nonlinear de-
terministic observer, we have assumed that there is no
stochastic noise in the measurements although determin-
istic observers are shown to have a good level of noise
filtering in practice. For the rotational motion subsys-
tem, the following is a general observability assumption
used in the field of attitude estimation.

Assumption 1 (Rotational Motion Observability)
There exists c0 > 0 such that ‖mI × aI(t)‖ ≥ c0,∀t ≥ 0.

Assumption 1 is guaranteed if the time-varying apparent
acceleration aI(t) is non-vanishing and is always non-
collinear with the constant magnetic field vector mI .
Note that aI(t) = 0 corresponds to the rigid body being
in a free-fall case (v̇ = ge3) which is not likely under
normal flight conditions.

We also assume in this work that we have measurements
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of the following position output vector:

y = Cp(t)p, (12)

where Cp(t) ∈ Rm×3,m ∈ N, is a time-varying bounded
output matrix. The measurement y can be obtained from
different possible sensors, depending on the application
at hand, that provide some information about the posi-
tion. In Section 4.3 we will discuss some particular ex-
amples of measurements that can be written as in (12).
Considering the extended state x := [p>, v>, a>I ]> ∈ R9

for the translational motion, in view of (6)-(7) and (12),
the dynamics of x are given by

ẋ = Ax+B1ge3 +B2ȧI , (13)

y = C(t)x, (14)

where A,B1, B2 and C(t) are defined as follows:

A =


03×3 I3 03×3

03×3 03×3 I3

03×3 03×3 03×3

 , C(t) =


Cp(t)

>

03×m

03×m


>

, (15)

B1 :=


03×3

I3

03×3

 , B2 :=


03×3

03×3

I3

 . (16)

The translational system (13)-(14) is a linear time-
varying system with an unknown input ȧI (the jerk).
The latter corresponds to the derivative of the appar-
ent acceleration aI which is known only in body-frame,
i.e., aB = R>aI . Therefore, there is a coupling between
the translational dynamics (13)-(14) and the rotational
dynamics (8) through the measurement equation (10)
of the accelerometer. Most adhoc methods in practice
assume that aI ≈ −ge3 to remove this coupling between
the translational and rotational dynamics. However,
this assumption holds only for non-accelerated vehicles,
i.e., when v̇ ≈ 0. In this work, we instead design our
estimation algorithm without this latter assumption.
Therefore, our proposed approach will be most suitable
for accelerated vehicles where the performance of adhoc
approaches is compromised.

The objective is to design a full navigation observer
that takes the measurements (9)-(12) and outputs re-
liable estimates for the position p, velocity v, orienta-
tion R, apparent acceleration aI , and gyro bias bω. More
specifically, we want to design an exponentially conver-
gent nonlinear observer that estimates the state vari-
ables (p, v, aI , R, bω) under the above observability con-
ditions and the following mild constraints on the trajec-
tory of the vehicle:

Assumption 2 There exist constants c1, c2, c3 > 0 such
that c1 ≤ ‖aI(t)‖ ≤ c2 and ‖ȧI(t)‖ ≤ c3 for all t ≥ 0.

Assumption 3 There exists constants c4, c5 > 0 such
that ‖ω(t)‖ ≤ c4 and ‖bω‖ ≤ c5 for all t ≥ 0.

Assumptions 2 and 3 impose some realistic constraints
on the systems trajectory which are needed to carry out
the stability analysis.

4 Main Results

4.1 Observer Design

In this section, we design our navigation observer that
estimates the vehicle’s state (p, v,R) as well as the con-
stant gyro bias bω and the unknown apparent accelera-
tion aI . We propose the following nonlinear navigation
observer:

x̂ = ẑ +B2R̂aB , (17)

˙̂z = Ax̂+B1ge3 +K(t)(y − C(t)x̂) + σ1, (18)

˙̂
R = R̂[ωy − b̂ω + k1σ2]×, (19)

˙̂
bω = Pεbc5(b̂ω,−k2σ2), (20)

with initial conditions x̂(0) ∈ R6, R̂(0) ∈ SO(3) and

b̂ω(0) ∈ Bc5+εb . The innovation terms σ1 ∈ R9 and σ2 ∈
R3 are defined as follows:

σ1 = −k1B2R̂[σ2]×aB , (21)

σ2 = ρ1(mB × R̂>mI) + ρ2(aB × R̂>satĉ2(B>2 x̂)).
(22)

The scalars k1, k2, ρ1, ρ2, εb, ĉ2 are positive tuning pa-
rameters with ĉ2 > c2, the parameters c2, c5 are de-
fined in Assumptions 2-3, K(t) is a time-varying gain
matrix chosen as K(t) = LγP (t)C(t)>Q(t), with Lγ :=

blockdiag(γI3, γ
2I3, γ

3I3) and P (t) is solution to the fol-
lowing time-scaled continuous differential Riccati equa-
tion (CDRE):

1

γ
Ṗ = AP + PA> − PC(t)>Q(t)C(t)P + V (t), (23)

where P (0) ∈ R9×9 is positive definite, Q(t) ∈ Rm×m
and V (t) ∈ R9×9 are continuous, bounded and uniformly
positive definite matrices. Furthermore, in the particu-
lar case where the output matrix C(t) is constant (e.g.,
range measurements as described in Section 4.3.2), it is
possible to take P as solution to the following continu-
ous algebraic Riccati equation (CARE):

AP + PA> − PC>QCP + V = 0. (24)

Selecting the gain K offline might be very helpful to
avoid the considerable computational burden associated
with the real-time update of the CDRE. The overall
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Attitude
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b̂ω
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Preprocessing
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âI

y = Cp(t)p

σ1

Figure 1. Overall structure of the proposed nonlinear ob-
server. The observer uses an IMU and generic position sen-
sors. The position information is first prepossessed to yield
a linear output vector y = Cp(t)x.

strucutre of the proposed estimation algorithm is de-
picted in Fig. 1. Before we state the stability result of
the proposed observer, some remarks are in order.

The proposed nonlinear observer consists of an inter-
connection of the complementary filter-like attitude
estimator (19)-(20), which is inspired from (Mahony
et al., 2008; Grip et al., 2013), with a high-gain ob-
server (17)-(18) for the translational state estimation.
Recall that the attitude complementary filter requires
body-frame measurements of at least two non-collinear
vectors known in the inertial frame. In applications
involving low linear accelerations, one can directly use
the accelerometer and magnetometer measurements in
the filter. However, in the case of accelerated rigid body
systems, this is not feasible as the acceleration in the
inertial frame aI is unknown and cannot be approxi-
mated by the gravity vector. In this situation, we use
an estimate of the inertial acceleration âI = B>2 x̂ ob-
tained from the high-gain translational observer. The
extra term σ1, which vanishes as R̂ tends to R, is used
to yield a nice bounded coupling term between the
tranlational and rotational error dynamics. Further-
more, note that if we assume R̂ ≡ R in (17)-(18), then

x̂ satisfies ˙̂x = Ax̂ + B1ge3 + B2ȧI + K(t)(y − C(t)x̂)
which is the Luenberger observer for the translational
dynamics (13)-(14) in the case where ȧI is known. The
introduction of the auxiliary state ẑ allows to deal with
the unknown input B2ȧI of the translational dynamics
(13) through the addition, after the integration of (18),

of the term B2R̂aB = B2R̃
TaI which coincides with

B2aI when R̃ = I.

The gain K(t), inspired from (Johansen et al., 2017),
relies on the high gain matrix Lγ commonly used in
high-gain observers (see, for instance, (Esfandiari and
Khalil, 1992; Saberi and Sannuti, 1990)). The high-gain
observer for the translational dynamics allows to deal ef-
ficiently with the interconnection between the rotational
and translational dynamics. In fact, as it is going to be
shown later, this design will help to force the transla-
tional estimation errors to converge arbitrarily fast to a

certain ball (which can be made arbitrary small) via a
high gain parameter γ, preventing the attitude estima-
tion error from converging to the undesired equilibria.
Consequently, asymptotic stability of the overall inter-
connected translational and rotational dynamics is guar-
anteed semi-globally. Finally, note that choosing γ = 1
in (23) yields the traditional continuous differential Ric-
cati equation (CDRE) used in the Kalman filter where
Q−1(t) and V (t) are interpreted as the covariance ma-
trices for the output y and the process, respectively.

4.2 Error Dynamics and Stability Analysis

Let us define the following estimation error variables:

x̃ := x− x̂, (25)

R̃ := RR̂>, (26)

b̃ω := bω − b̂ω. (27)

The geometric attitude estimation error R̃ defined above
has been widely used in the literature of attitude ob-
server design on SO(3); see, for instance, (Mahony et al.,
2008; Berkane and Tayebi, 2017c) among others. In view
of (13)-(14), (17)-(19), and using the fact that AB2 =
B1, the closed-loop system can be written as follows:

˙̃x = (A−K(t)C(t))x̃+B2g(t, R̃, b̃ω), (28)

˙̃R = R̃[−R̂(b̃ω + k1σ2)]×, (29)

˙̃
bω = Pεbc5(b̂ω, k2σ2), (30)

where we have defined g(t, R̃, b̃ω) := (I − R̃)>ȧI(t) +

R̃>[aI(t)]×R(t)b̃ω. Let us now introduce the time-scaled
estimation error ζ := L−1γ x̃; see, for instance (Johansen
et al., 2017; Esfandiari and Khalil, 1992). In view of
(28), the new error variable ζ satisfies the following time-
scaled dynamics

1

γ
ζ̇ = (A− P (t)C(t)>Q(t)C(t))ζ +

1

γ4
B2g(t, R̃, b̃ω),

(31)
where we have used the following easy-to-check facts:

L−1γ ALγ = γA, L−1γ B2 = γ−3B2, C(t)Lγ = γC(t).

The first term of (31) corresponds to the nominal
time-scaled dynamics of ζ. It corresponds exactly to
the closed-loop dynamics of a Bucy-Kalman estimator
where P (t) is designed via a differential Riccati equa-
tion. This motivates the time-scaling involved in the
Riccati equation in (23) to match the dynamics of ζ
as done in (Johansen et al., 2017). To state the stabil-
ity result of the observer, we further define the global
estimation error variable ς := [|R̃|, ‖b̃ω‖, ‖ζ‖]>.

5



Theorem 1 Consider the interconnection of the dynam-
ics (6)-(8) with the observer (17)-(22) where Assump-
tions 1-3 are satisfied. Assume, moreover, that the pair
(A,C(·)) is uniformly observable. Then, for each ε ∈
(
1

2
, 1) and T > 0 and for all initial conditions such

that ζ(0) ∈ R6, R̃(0) ∈ f(ε) = {R̃ : |R̃(0)| ≤ ε} and

b̂ω(0) ∈ Bc5+εb , there exist k∗1 > 0 and γ∗ ≥ 1 such that,
for all k1 ≥ k∗1 and γ ≥ γ∗, the estimation error ς(t) is
globally uniformly bounded and

‖ς(t)‖ ≤ k exp(−λ(t− T ))‖ς(T )‖ ∀t ≥ T, (32)

for some positive scalars k and λ.

PROOF. See Appendix A.

Theorem 1 shows that the proposed nonlinear navigation
observer guarantees exponential stability of the zero es-
timation error provided that the initial conditions of the
estimation errors lie inside a compact set which can be
arbitrary enlarged by an adequate tuning of the gains.
Note that the gains conditions, provided in the proof, are
rather conservative and simulation/experimental results
have shown that the proposed navigation estimator has
a large region of attraction regardless of the choice of the
positive gains. It should be mentioned, that due to topo-
logical considerations, it is impossible to achieve global
asymptotic (exponential) stability results with any con-
tinuous time-invariant attitude observer on SO(3). Fi-
nally, the important condition on the uniform observ-
ability of the pair (A,C(·)) will be discussed in the next
section for different application scenarios.

4.3 Observability Analysis

A necessary condition for the result of Theorem 1 to hold
is the uniform observability of the pair (A,C(·)). This
condition intuitively means that the measurement of y
in (12) is enough to construct a converging translational
observer (assuming perfect knowledge of the jerk ȧI) for
(13)-(14). Now we derive the following important lemma.

Lemma 1 (A,C(·)) is uniformly observable if and only
if there exist δ, µ > 0 such that for all t ≥ 0 one has

1

δ

∫ t+δ

t

C>p (s)Cp(s)ds ≥ µI3. (33)

PROOF. See Appendix B

Lemma 1 provides a persistency of excitation (PE)
condition on the position output matrix Cp(t) which is

equivalent to the required uniform observability of the
pair (A,C(·)). In the case of constant Cp the condition
is equivalent to rank(Cp) = 3. This result has an in-
tuitive meaning: uniform observability of the position
subsystem (single integrator) is equivalent to uniform
observability of the whole translational subsystem (mul-
tiple integrators). In the following subsections we will
discuss this observability condition for different sets of
positions sensors (range, bearing,...etc).

4.3.1 Full Position Measurements

Most GPS receivers provide position estimation when an
unobstructed line of sight to four or more GPS satellites
exists (e.g., outdoor scenarios). In this case, the full po-
sition is assumed available and the output equation (12)
is taken with Cp(t) = I3. In this case, the pair (A,C) is
uniformly observable since rank(Cp) = 3. Different al-
gorithms such as (Grip et al., 2013; Bryne et al., 2017)
have developed nonlinear observers relying on full posi-
tion measurements (loosely coupled integration). Note
that altitude determined using low-cost GPS is not gen-
erally reliable enough which can motivate the use of a
pressure altimeter to determine the altitude.

4.3.2 Range Measurements

Different sensors can be used to provide range measure-
ments. For instance, in a tightly coupled GPS/INS in-
tegration, raw GPS observations (range measurements)
are used directly in the estimation scheme to allow the
use of fewer observations than actually needed to recon-
struct the position. Another instance of range sensors is
the UWB technology which has proved successful espe-
cially in indoor applications.

Assume that we have available n source points (an-
chors) with known possibly time-varying 1 locations
(positions), denoted as pi. The corresponding range
measurements are given by

di = ‖p− pi‖, i = 1, · · · , n. (34)

To obtain an output equation of type (12) we proceed
as follows, see (Hamel and Samson, 2017). Let ȳi :=
0.5(d2i − ‖pi‖2) and define the weighted output

ȳ0 :=

n∑
i=1

αiȳi, (35)

where α = [α1, · · · , αn] ∈ Rn is a vector of constant
real numbers such that

∑n
i=1 αi = 1. Now, we define our

1 Though in most practical applications the anchors for
range measurements are at constant locations.
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output vector as follows:

y :=


ȳ1 − ȳ0

...

ȳn − ȳ0

 =


p̄>1
...

p̄>n

 p := Cp(t)p (36)

where we have defined the following known vectors

p̄j :=

n∑
i=1

αi(pi − pj), j = 1, · · · , n. (37)

Output equation (36) encodes the position information
provided by the range measurements. If we have an ad-
ditional altimeter sensor, the output of the altimeter can
be written as h = e>3 p. In this case, and to include this
measurement, we can add the row vector e>3 to the ma-
trix Cp(t) defined in (36).The following lemma then im-
mediately follows from Lemma 1 and (36).

Lemma 2 (A,C(·)) is uniformly observable if and only
if there exist δ, µ > 0 such that for all t ≥ 0 one has

1

δ

∫ t+δ

t

n∑
i=1

p̄i(s)p̄
>
i (s)ds+ αe3e

>
3 ≥ µI3. (38)

where α = 1 if the altimeter is used or α = 0 otherwise.

Different conclusions can be drawn from the observabil-
ity condition in Lemma 2. In the case where n = 1, one
has p̄1 = 0 and therefore the condition is not fulfilled.
When n = 2 and α = 0, condition (38) is equivalent to a
P.E. condition on the vector p1(t)−p2(t). Roughly speak-
ing, the latter condition prevents the vector p1(t)−p2(t)
from staying indefinitely in any plane. If we add an al-
timeter, i.e., n = 2 and α = 1, the condition prevents the
vector p1(t)−p2(t) from staying indefinitely in the plane
containing e3. When n = 3 and α = 0, condition (38) is
not satisfied if the three anchors p1, p2 and p3 are in the
same plane for all times. However, when adding an al-
timeter, the condition is satisfied when the three anchors
p1, p2 and p3 are not aligned and e3 does not belong to
the plane spanned by the three anchors. Finally, when
n ≥ 4 the condition holds if at least 4 anchors are non-
coplanar. The latter result is consistent with the mini-
mum number of anchors required to geometrically (mul-
tilateration) find the position with no ambiguity from
multiple range measurements (for stationary anchors).
Adding an altimeter sensor relaxes the requirement of
4 non-coplanar anchors to 3 non-aligned anchors. Note
that in the case of constant anchors positions, the only
two cases where the observability is guaranteed are: 1)
the case of n ≥ 4, and 2) the case of n = 3 and α = 1.

Besides, we would like to emphasize that the observ-
ability condition in Lemma 2 is independent from the

trajectory of the vehicle and depends only on the posi-
tion of the anchors. In (Hamel and Samson, 2017) the
variable ȳ0 was added, via state augmentation, to the
overall state of the system and the derived observabil-
ity condition was explicitly written as a PE condition on
the input. This allows to design the observer even when
n = 1 (single range measurement) under a PE condition
on the input. However the focus of (Hamel and Samson,
2017) was on position estimation only, whereas here we
consider the full navigation problem. Handling the case
of single range measurements, via state augmentation,
for the full navigation problem exceeds the scope of this
paper.

4.3.3 Bearing Measurements

A motion capture system consisting of a stationary array
of cameras capturing the vehicle from multiple angles
can be used to provide raw bearing measurements in the
inertial frame. Each camera can provide a unit vector
direction measurement as follows:

yi = R>i
p− pi
‖p− pi‖

, i = 1, · · · , n, (39)

where Ri ∈ SO(3) is the known orientation of the i-
th camera with respect to the inertial frame, pi is the
inertial position of the i-th camera and n is the num-
ber of working cameras. Note that here we consider
bearings measured in the inertial frame in contrast to
(Hamel and Samson, 2018) for examples where bearings
are measured in the body frame of reference. Inspired
from (Batista et al., 2015; Hamel and Samson, 2017),
we generate an artificial output, which is linear in the
position, by noticing that

Π(yi)R
>
i (p− pi) = 0, (40)

where Π : S2 → R3×3 is the orthogonal projection map
defined as

Π(z) := I3 − zz>. (41)

Consequently, it is possible to define the following output
vector:

y =


Π(y1)R>1 p1

...

Π(yn)R>n pn

 =


Π(y1)R>1

...

Π(yn)R>n

 p := Cp(t)p. (42)

If we have an additional altimeter sensor, the output of
the altimeter can be written as h = e>3 p. In this case, and
to include this measurement, we can add the row vector
e>3 to the Cp(t) matrix defined in (42). In the case of the
bearing measurements discussed above and a possible
use of an altimeter, we state the following lemma which
is an immediate consequence of Lemma 1 and (42).
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Lemma 3 (A,C(·)) is uniformly observable if and only
if there exist δ, µ > 0 such that for all t ≥ 0 one has

1

δ

∫ t+δ

t

n∑
i=1

Π(Riyi(s))ds+ αe3e
>
3 ≥ µI3. (43)

where α = 1 if the altimeter is used or α = 0 otherwise.

Depending on the number of bearing measurements
available and whether or not an altimeter sensor is used,
we derive the following cases that fulfill the required
observability condition.

Lemma 4 Assume that the velocity v is bounded. Con-
dition (43) is satisfied if one of the following conditions
holds:

i) There exist i, j ∈ {1, . . . , n} and ε > 0, such that for
all t∗ > 0, there exists t > t∗, such that ‖Riyi(t) ×
Rjyj(t

∗)‖ ≥ ε.
ii) at least three cameras are not aligned.

Moreover, if the altimeter is used, condition (43) holds
if either (i) or (ii) are satisfied, or one of the following
conditions holds:

iii) There exist i ∈ {1, . . . , n}, ε > 0, such that for all
t∗ > 0, there exists t > t∗, such that |e>3 Riyi(t)| ≥ ε.

iv) There exist i, j ∈ {1, . . . , n}, such that e>3 (pi−pj) 6= 0.

PROOF. See Appendix C.

Different conclusions can be derived from Lemma 4.
First, regardless whether we use an altimeter or not, if
v is bounded, uniform observability is satisfied if we use

• at least one bearing measurement yi which is not con-
stant for all times. In other words, this requires that
the vehicle is never static nor indefinitely moving in a
straight line with pi.

• at least two bearing measurements yi and yj which are
not aligned for all times. This means that the vehicle
is not indefinitely aligned with both cameras.

• at least three non-aligned cameras, regardless of the
trajectory of the vehicle.

In addition, if we use the altimeter measurement, uni-
form observability is satisfied if

• at least one bearing measurement yi is available, and
the vehicle is not indefinitely located at the same al-
titude as pi.

• at least two cameras are not at the same altitude,
regardless of the vehicle’s trajectory.

Interestingly, the use of an altimeter allows to guaran-
tee uniform observability for all trajectories with only
two cameras installed at different altitudes. This fact can
be explained as follows: if the two cameras are at the
same altitude and the vehicle is moving on a trajectory
passing through both cameras, then all the three mea-
surements (two bearings and altimeter) will be constant.
Consequently, it is not possible to observe the position
of the vehicle since its trajectory does not affect the sen-
sor readings. On the other hand, if the two cameras are
not at the same altitude, the previous scenario is not
possible since any trajectory which is aligned with both
cameras would necessarily cause the altitude to change.
Finally, for planar trajectories at a constant altitude,
uniform observability is guaranteed with the use of one
camera located at a different altitude than the altitude
of the flight.

5 Simulation Results

In this section, we simulate the nonlinear observer of Sec-
tion 4.1 with different position sensing scenarios. In all
simulations, the angular velocity applied to the vehicle
is given by:

ω(t) =


sin(0.1t+ π)

0.5 sin(0.2t)

0.1 sin(0.3t+ π/3)

 (44)

with an initial attitude R(0) = exp([πe2]×/2). The
gyro measurements are corrupted by a constant bias of
2 (deg/sec) in each axis. The inertial earth’s magnetic
field is taken as mI = [0.033 0.1 0.49]> and the earth’s

gravity is g = 9.81 (m/sec
2
).

5.1 Range Measurements

Here we assume available four non-coplanar source
points p1, · · · , p4 located at p1 = 0 and pi+1 = ei, i =
1, 2, 3. We consider a vehicle moving along the circular
trajectory

p(t) =


1.075 cos(πt/4) + 2.5

1.075 sin(πt/4) + 1.5

2.2

 . (45)

The initial conditions for the observer states are ẑ(0) =

b̂ω(0) = 0, R̂(0) = I3, and P (0) = I9. The parameters of
the observer are selected as k1 = 2, k2 = 1, ρ1 = 1, ρ2 =
0.1, εb = 0.001, c5 = 0.06, ĉ2 = 15, γ = 2, V (t) = I3
and Q = 5I4. The simulation results given in Figure 2
show that the proposed observer was able to estimate the
position, velocity, acceleration, attitude and gyro bias
using IMU and range measurements.
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Figure 2. Estimation errors and trajectory in the case of 4
non-coplanar range measurements.

5.2 Bearing Measurements

Here we consider inertial frame bearing measurements as
described in Subsection 4.3.3. Consider a vehicle moving
on following eight-shaped trajectory:

p(t) =


cos(t/2)

sin(t)/4

−
√

3 sin(t)/4

 . (46)

The initial conditions for the observer states are ẑ(0) =

[1 1 1 1 1 1 1 1 1]>, R̂(0) = I3, b̂ω(0) = [0 0 0]> and
P (0) = I9. The parameters of the observer are selected
as k1 = 2, k2 = 1, ρ1 = 1, ρ2 = 0.1, εb = 0.001, c5 =
0.06, ĉ2 = 15, γ = 2, V (t) = I3 and Q = Im. We consider
two simulation scenarios. In the first scenario, we con-
sider a single camera, located at p1 = [2, 2, 2]> pointing
towards the origin, providing a single bearing measure-
ment. In the second scenario, we consider a single bear-
ing measurement along with an altimeter. Figures 3 and
4 show the evolution of the different estimation errors
versus time. In both scenarios, the estimation errors con-
verge to zero. However, adding the altimeter sensor in
the second scenario has considerably improved the con-
vergence rate compared to the first simulation scenario
without an altimeter.

6 Experimental Results

In this section, we experimentally validate the proposed
nonlinear navigation observer on a dataset recorded with
a custom Quadrotor platform.

6.1 Experimental Setup

The vehicle (see Figure 5), based on a DJI-450 frame,
is equipped with a Pixhawk flight controller unit (PX4

Figure 3. Estimation errors and trajectory in the case of a
single bearing measurement.

Figure 4. Estimation errors and trajectory in the case of a
single bearing measurement and an altimeter sensor.

Figure 5. Quadrotor vehicle used in the experiments. (1) Pix-
hawk Flight Controller Unit (FCU). (2) Companion com-
puter Nvidia Jetson TX1. (3) Optical Markers for the mo-
tion capture system (MOCAP). (4) Optical Marker used for
bearings computations.

software) and a Nvidia Jetson TX1 as companion com-
puter. The Pixhawk unit is equipped with a 16 bit
gyroscope (L3GD20H) and 14 bit accelerometer and
magnetometer sensor (LSM303D), all the sensors mea-
surement are sent to the companion computer using

9



Figure 6. Position of the four cameras used for bearing mea-
surements and 3D true trajectory vs estimated trajectory.

mavlink/mavros protocol. A custom trajectory track-
ing non-linear controller based on (Kai et al., 2017) has
been implemented on PX4 open source flight control
software.

An OptiTrack motion capture system, comprising 8 cam-
eras, is used along with optical markers mounted on the
quadrotor (see Figure 5) in order to provide full pose
ground truth measurements. The linear velocity is ob-
tained from the position via a filtered numerical deriva-
tive. OptiTrack Camera SDK have been used to retrieve
bearing measurements of the optical marker located on
the top of the Pixhawk (Figure 5 item (4)) from each
camera. A ground computer, connected to the motion
capture system, sends ground truth measurement and
bearings to the Nvidia TX1 over WiFi.

6.2 Experiment and Results

In the experiment, the quadrotor is commanded to track
the following Lemniscate trajectory (depicted in Figure
6)

pref (t) =


0.8 cos(wrt)

0.5 + 0.8 sin(2wrt)

1 + 0.8 sin(2wrt)


with wr = 0.16π, while maintaining a constant yaw an-
gle of−90 degree. Notice that, due to the under-actuated
nature of the vehicle, the roll and pitch angles can not
be arbitrarily chosen and their time behaviours depend
on the position control loop.

During the experiment, only four cameras have been
used for bearing measurements. The inertial positions
and orientations with respect to the inertial frame of the
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Figure 7. Estimation errors in case of 4 bearing measure-
ments for the Quadrotor vehicle.

cameras (see Figure 6) are the following:

p1 =

[
0
0
2.8

]
, p2 =

[
2.89
0

2.57

]
, p3 =

[
−2.44

0
2.42

]
, p4 =

[
0.08
2.65
2.37

]
,

q1 =

[
0
1
0
0

]
, q2 =

[
0.5
0

−0.86
0

]
, q3 =

[
0.45
0

0.89
0

]
, q4 =

[
0.32
0.63
−0.63
0.32

]
.

The parameters of the observer are selected as k1 = 10,
k2 = 1, ρ1 = 4, ρ2 = 1.0, εb = 0.001, c5 = 0.3, ĉ2 = 30,
γ = 2, V (t) = 12I9 and Q = 2I12. The initial condi-

tions for the observer states are ẑ(0) = 09×1, R̂(0) = I3,

b̂ω(0) = 03×1 and P (0) = 10I9.

Figure 6 shows the 3D trajectory of the vehicle ver-
sus the observer estimated trajectory, whereas Figure 7
shows the time evolution of the different estimation er-
rors. Plots clearly show that the estimated attitude R̂,
estimated position p̂ and estimated velocity v̂ converge
to the real attitude R, real position p and ground truth
velocity v of the quadrotor, respectively.Note that the
noise in the velocity error (Figure 7) is mainly due to
ground truth obtained by numerical derivation as shown
in Figure 8.

6.3 Implementation Aspects

Although the attitude observer in (19)-(20) is designed
on SO(3), it is possible to lift its dynamics to the unit-
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Figure 8. Time behaviour of the components of the real and
estimated linear velocity.

quaternion space S3 as follows:

˙̂q =
1

2
T(ω̂) q̂, (47)

with ω̂ := ωy − b̂ω + k1σ2 and

T(ω̂) :=

[
0 −ω̂>

ω̂ −[ω̂]×

]
.

The use of the unit-quaternion representation (4 state
components) for the observer implementation is more
computationally efficient than the use of the rotation
matrix representation (9 state components).

In our implementation, the attitude estimation kinemat-
ics in (47) have been discretized as follows (Whitmore
(2000)):

q̂k+1 =
[
cos (0.5‖ω̂k‖τ) I4 +

τ

2
sinc (0.5‖ω̂k‖τ)T(ω̂)

]
q̂k,

with

sinc(α) =

 1, if α = 0,
sinα

α
, elsewhere.

and the sampling period τ = 5ms. Note that this dis-
cretization preserves the unit quaternion constraint and
thus no normalization is required at each integration
step. The estimated rotation matrix can be retrieved
from the unit-quaternion as R̂k = R(q̂k), where the Ro-
drigues map is given by R : S3 7→ SO(3) such that q :=
[q0, q

>
v ]> → R(q) = (q20 − ||qv||2)I3 + 2q0[qv]× + 2qvq

>
v .

The translational estimation dynamics (17)-(18) have
been discretized using forward Euler integration with
the same frequency of the IMU (200Hz).

7 Conclusion

In this work, we proposed a nonlinear observer relying
on IMU (accelerometer, gyroscope and magnetometer)
measurements, and full/partial position information, for
the simultaneous estimation of the position, velocity, ori-
entation, and gyro bias. It employs a Riccati-like gain
update which allows to possibly include the noise char-
acteristics. The orientation estimates are obtained di-
rectly on the Special Orthogonal group of rotations. The
stability of the closed-loop system is proved to be expo-
nential with a domain of attraction that can be arbitrary
enlarged. A detailed observability analysis has been car-
ried out for different types of measurements (full posi-
tion, ranges, bearings, altimeter), and conditions on the
number and location of the sensors with respect to the
vehicle, guaranteeing the viability of the proposed ob-
server, have been derived. It is shown that the use of
an altimeter relaxes the observability requirements, and
enhances the observer’s convergence rates. For example,
in the case of two bearings and an altimeter, uniform
observability is guaranteed for all trajectories as long as
the two cameras are installed at different altitudes.

A Proof of Theorem 1

Thanks to assumption that (A,C(·)) is uniformly ob-
servable and the fact that Q(t) and V (t) are uniformly
positive definite and bounded matrices, there exist (see
(Bucy, 1972)) positive scalars β1 and β2 such that β1I ≤
P (t) ≤ β2I for all t ≥ 0. Note that these scalars are in-
dependent of γ, see (Johansen and Fossen, 2015, Lemma
6). Furthermore, in view of Assumption 3 and property
(2) of the projection mechanism, the bias estimation er-

ror is bounded such that ‖b̃ω‖ ≤ 2c5+εb := cb. It follows,
using Assumption 2, that

‖g(t, R̃, b̃ω)‖ ≤
√

8c3|R̃|+ c2‖b̃ω‖
≤
√

8c3 + c2cb := cg.
(A.1)

Furthermore, in view of (23), the time derivative of
P−1(t) satisfies

1

γ
Ṗ−1

= −P−1A−A>P−1 + C>(t)Q(t)C(t)− P−1V (t)P−1

= C>(t)Q(t)C(t)− P−1V (t)P−1 − P−1(A−
PC>(t)Q(t)C(t))− (A− PC>(t)Q(t)C(t))>P−1.

(A.2)
Now, consider the Lyapunov function candidate

V(t, ζ) :=
1

γ
ζ>P−1(t)ζ. (A.3)
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It follows, from (31), (A.1) and (A.2), that the time-
derivative of V(t, ζ) in (A.3) satisfies

V̇(t, ζ) = −ζ>(C>(t)Q(t)C(t) + P−1(t)V (t)P−1(t))ζ+

2

γ4
ζ>P−1B2g(t, R̃, b̃ω)

≤ −vm
β2
2

‖ζ‖2 +
2cg
β1γ4

‖ζ‖

≤ − vm
2β2

2

‖ζ‖2, ∀‖ζ‖ ≥ 4cgβ
2
2

γ4β1vm

≤ −γβ1vm
2β2

2

V(t, ζ), ∀‖ζ‖ ≥ 4cgβ
2
2

γ4β1vm
.

(A.4)
Let cζ and T be any two positive constant scalars. Con-

sider the set Ω = {(t, ζ) : V(t, ζ) ≤ γ−7c2ζβ
−1
2 }. For

any (t, ζ) ∈ Ω one has ‖ζ‖2 ≤ γβ2V(t, ζ) ≤ (cζγ
−3)2.

On the other hand, if (t, ζ) /∈ Ω and if we pick γ ≥
4β
− 3

2
1 β

5
2
2 cgc

−1
ζ v−1m then

‖ζ‖2 ≥ γβ1V(ζ) > γ−6c2ζβ1β
−1
2 ≥

(
4cgβ

2
2

γ4β1vm

)2

.

(A.5)

It follows in view of (A.4) that for all (t, ζ) /∈ Ω one has

V̇(t, ζ) ≤ −γβ1vm
2β2

2

V(t, ζ). Hence, (t, ζ) must enter Ω

before the following time:

T ∗ =
2β2

2

γβ1vm
ln

(
γ7β2V(0, ζ(0))

c2ζ

)
(A.6)

which can be tuned arbitrary small by increasing the
value of γ. The following result immediately follows:

∀cζ , T > 0,∀ζ(0),∃γ1 ≥ 1 s.th. γ ≥ γ1 ⇒
‖ζ(t)‖ ≤ γ−3cζ , ∀t ≥ T. (A.7)

Now we show that the gains can be tuned to guarantee

forward invariance of the set f(ε). Let ε ∈ (
1

2
, 1) and let

the initial conditions be such that R̃(0) ∈ f(ε). The time

derivative of |R̃|2, in view of (8) and (19) and making
use of (Berkane et al., 2017, Lemma 2), satisfies

d

dt
|R̃|2 = −1

4
tr(R̃[−R̂(b̃ω + k1σ2)]×)

= −1

4
tr(Pso(3)(R̃)[−R̂(b̃ω + k1σ2)]×)

= −1

2
ψ(R̃)>R̂(b̃ω + k1σ2)

≤ ‖b̃ω‖+ k1‖σ2‖
≤ cb + k1(ρ1‖mI‖2 + ρ2c2ĉ2) := cR.

Let us define tR := (ε2 − |R̃(0)|2)/cR. Hence, for all

0 ≤ t ≤ tR, one has R̃(t) ∈ f(ε). Pick 0 < T ≤ tR and
cζ := min(c̄ζ/k1, ĉ2 − c2) for some arbitrary c̄ζ > 0. By
(A.7) there exists γ∗ ≥ 1 such that if one chooses γ ≥ γ∗
then ‖ζ(t)‖ ≤ γ−3cζ for all t ≥ T . In this case, one has

‖B>2 x̂‖ = ‖âI‖ = ‖aI − âI − aI‖ = ‖B>2 Lγζ − aI‖
= ‖γ3B>2 ζ − aI‖ ≤ γ3‖ζ‖+ c2 ≤ cζ + c2 ≤ ĉ2.

(A.8)
Consequently, for all t ≥ T , one has satĉ2(âI(t)) = âI(t).
It follows that the innovation term σ2 in (21)-(22) is
written as follows:

σ2 = ρ1(mB × R̂>mI) + ρ2(aB × R̂>âI)
= ρ1(mB × R̂>mI) + ρ2(aB × R̂>aI)+

ρ2(aB × R̂>(âI − aI)
= 2R̂>ψ(MR̃)− ρ2(aB × R̂>B>2 Lγζ),

(A.9)

where we defined M := ρ1mIm
>
I + ρ2aIa

>
I and used

(Berkane and Tayebi, 2017b, Proposition 3) to derive the
last equation. Note that M is positive semidefinite and
has rank equals 2 (by Assumption 1). It follows that

d

dt
|R̃|2 = −k1ψ(R̃)>ψ(MR̃)− 1

2
ψ(R̃)>(R̂b̃ω−

k1ρ2(R̂aB)×B>2 Lγζ)

≤ −4k1λ
E(M)
min |R̃|

2(1− |R̃|2) + |R̃|‖b̃ω‖+
+ γ3k1ρ2c2|R̃|‖ζ‖

≤ −4k1λ
E(M)
min |R̃(t)|2(1− |R̃(t)|2) + cb + ρ2c2c̄ζ

(A.10)
where inequalities from (Berkane et al., 2017, Lemma

2) have been used with E(M) :=
1

2
(tr(M) −M>) for

any M . Note that the matrix E(M) is positive definite

in view of Assumption 1. Now assume that |R̃(t)| = ε

and k1 > (cb + ρ2c2c̄ζ)/(4λ
E(M)
min ε2(1− ε2)) then, for all

t ≥ T , one has

d

dt
|R̃(t)|2 ≤ −4k1λ

A
minε

2(1− ε2) + cb + ρ2c2c̄ζ < 0.

This implies that |R̃(t)| is strictly decreasing whenever

|R̃(t)| = ε. It follows from the continuity of the solutions

that R̃(t) will not leave the ball f(ε) for all t ≥ T . Recall

also that |R̃(t)| ≤ ε for all t ≤ T (since T ≤ tR). This
implies that the set f(ε) is forward invariant. Now, let
us show exponential convergence. Consider the following
Lyapunov function candidate:

W(ζ, R̃, R̂, b̃ω) := |R̃|2 +
µ1k1
2k2

b̃>ω b̃ω +µ1b̃
>
ω R̂
>ψ(R̃)+

γ7V(t, ζ), (A.11)
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where µ1 is some positive constant scalar and V(t, ζ) is

defined in (A.3). Using the fact that ‖ψ(R̃)‖ ≤ 2|R̃|, it
can be verified that W satisfies the quadratic inequality
ς>P1ς ≤W ≤ ς>P2ς where the matrices P1 and P2 are
given by

P1 =


1 −µ1 0

−µ1
µ1k1
2k2

0

0 0
γ6

β2

 , P2 =


1 µ1 0

µ1
µ1k1
2k2

0

0 0
γ6

β1

 .

Let us compute the time derivative of the cross term
X := b̃>ω R̂

>ψ(R̃). First, one has

Ẋ = b̃>ω R̂
>E(R̃)

(
−R̂b̃ω − k1R̂σ2)

)
−

b̃>ω [ω + b̃ω + k1σ2]×R̂
>ψ(R̃)+

Pεbc5
(
b̂ω, k2σ2

)>
R̂>ψ(R̃).

In addition, using (Berkane et al., 2017, (31), Lemma 2),
one has the following bound

−b̃>ω R̂>E(R̃)R̂b̃ω = −‖b̃ω‖2 + b̃>ω R̂
>(I −E(R̃))R̂b̃ω

≤ −‖b̃ω‖2 + 2c2b |R̃|2.

Moreover, in view of (A.9), the following upper bound
for σ2 can be derived

‖σ2‖ ≤ 4λE(M)
max |R̃|+ ρ2c2γ

3‖ζ‖. (A.12)

It follows, using (Berkane and Abdelhamid, 2019, (18)),
that

− k1b̃>ω R̂>E(R̃)R̂σ2 = k1b̃
>
ω R̂
>(I −E(R̃))R̂σ2−

k1b̃
>
ωσ2 ≤ k1|R̃|2b̃>ωσ2 + k1

√
2|R̃|‖b̃ω‖‖σ2‖−

k1b̃
>
ωσ2 ≤ −k1b̃>ωσ2 + 8k1λ

E(M)
max cb(

√
2 + 2)|R̃|2+

2k1γ
3ρ2cbc2(

√
2 + 2)|R̃|‖ζ‖.

Besides, the following bounds are easily derived

− b̃>ω [ω + b̃ω + k1σ2]×R̂
>ψ(R̃)

= −b̃>ω [ω + k1σ2]×R̂
>ψ(R̃)

≤ cω‖b̃ω‖‖ψ(R̃)‖+ k1‖b̃ω‖‖ψ(R̃)‖‖σ2‖
≤ 2cω‖b̃ω‖|R̃|+ 16k1λ

E(M)
max cb|R̃|2+

+ 4k1γ
3ρ2cbc2|R̃|‖ζ‖.

and

Pεbc5
(
b̂ω, k2σ2

)>
R̂>ψ(R̃) ≤ k2‖σ2‖‖ψ(R̃)‖

≤ 4k2λ
E(M)
max |R̃|2 + 2k2γ

3ρ2c2|R̃|‖ζ‖.

Consequently, one deduces that

Ẋ ≤ −‖b̃ω‖2 − k1b̃>ωσ2 + (α1 + k1α2)|R̃|2+

γ3(α3 + k1α4)|R̃|‖ζ‖+ 2cω‖b̃ω‖|R̃|, (A.13)

where α1 = 8c2b + 4k2λ
E(M)
max , α2 = 8λE(M)

max cb(
√

2 + 4)),

α3 = 2k2ρ2c2 and α4 = 2ρ2cbc2(
√

2 + 4). Consequently,
in view of the above obtained results, one has

Ẇ ≤ −4k1λ
E(M)
min (1− ε2)|R̃|2 − µ1‖b̃ω‖2

+ 2γ3c2β
−1
1 ‖ζ‖‖b̃ω‖+ (1 + 2µ1cω)|R̃|‖b̃ω‖

+ µ1(α1 + k1α2)|R̃|2 − γ7vmβ−22 ‖ζ‖2

+ γ3(k1ρ2c2 + 4
√

2β−11 c3 + µ1(α3 + k1α4))|R̃|‖ζ‖
= −ς>12P12ς12 − ς>13P13ς13 − ς>23P23ς23

(A.14)
where ςij = [ςi, ςj ]

> and the matrices Pij are given by

P12 =

k1(2λE(M)
min (1− ε2)− µ1α2

)
− µ1α1 −(

1

2
+ cωµ1)

∗ µ1

2



P13 =


2k1λ

E(M)
min (1− ε2) −γ

3

2
(k1ρ2c2 + 4

√
2β−1

1 c3+

+µ1(α3 + k1α4))

∗ γ7vm
2β2

2


P23 =


µ1

2
−γ3β−1

1 c2

−γ2β1−1c2
γ7vm
2β2

2

 .
Now, if we pick µ1 > 0 such that µ1 < λ

E(M)
min (1− ε2)/α2

and choose the gains k1 and γ such that

k1 > max

{
2µ1k2,

2α1µ
2
1 + (1 + 2cωµ1)2

2µ1λ
E(M)
min (1− ε2)

}
,

γ > max

{
4β2

2c
2
2

µ1vmβ2
1

,

β2
2(k1ρ2c2 + 4

√
2β−1

1 c3 + µ1(α3 + k1α4)2

4k1λ
E(M)
min (1− ε2)vm

}
,

then we can verify that matrices P1, P2, P12, P13 and
P23 are all positive definite. The exponential stability
immediately follows.

B Proof of Lemma 1

Sufficiency: first note thatC>(t)C(t) = H>C>p (t)Cp(t)H
with H = [I3, 03×3, 03×3]. Since A is constant, the ob-
servability Gramian of the pair (A,C(·)) can be written
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as

W (t, t+ δ) =

=

∫ t+δ

t

exp(A(s−t))>H>C>p (s)Cp(s)H exp(A(s−t))ds.

Moreover, since A is nilpotent with index 3 (i.e., A3 =
0), the observability matrix of the pair (A,H) satisfies
rank(H,HA,HA2) = rank(I9) = 9 and, hence, the pair
(A,H) is Kalman observable. Finally, all the eigenvalues
of A are zero (thus real). It follows, by direct application
of (Hamel and Samson, 2017, Lemma 2.7), that the PE
condition (33) guarantees that the pair (A,C(·)) is uni-
formly observable.
Necessity: we proceed by contradiction and assume that
the PE condition of Lemma 1 does not hold, i.e.,

∀δ, µ > 0,∃t ≥ 0 : min
z∈S2

∫ t+δ

t

‖Cp(s)z‖2ds < µ. (B.1)

Consider a sequence {µq}q∈N of positive numbers con-
verging to zero, and an arbitrary positive scalar δ. Then,
there must exist a sequence of time instants {tq}q∈N
and a sequence of unit vectors {zq}q∈N ⊂ S2 such that
1
δ

∫ tq+δ
tq

‖C(s)zq‖2ds < µq for any q ∈ N. By the com-

pactness of S2, there exists a sub-sequence of {zq}q∈N
which converges to a limit z ∈ S2. Moreover, since Cp(t)
is bounded and the interval of integration is fixed, it fol-
lows that

lim
p→∞

∫ tp+δ

tp

‖Cp(s)z‖2ds = 0. (B.2)

Let ε, δ > 0 be arbitrary. Let p be large enough

such that
∫ tp+δ
tp

‖Cp(s)z‖2ds ≤ ε. Now pick x =

[z>, 01×3, 01×3]> 6= 0. It follows that Akx = 0 for all
k ≥ 1 and H exp(At)x = Hx = z. Therefore

∫ tp+δ

tp

‖Cp(s)H exp(A(s− t))x‖2ds =∫ tp+δ

tp

‖Cp(s)z‖2ds ≤ ε,

which shows that (A,C(·)) is not uniformly observable.

C Proof of Lemma 4

Let us prove the result by contradiction. Assume that
(43) is not satisfied. That is to say,

∀δ, µ > 0,∃t ≥ 0,
1

δ

∫ t+δ

t

n∑
i=1

Π(Riyi(s))ds+ αe3e
>
3 < µI3.

(C.1)

Let {µp}p∈N be a sequence of positive numbers converg-
ing to zero and let δ > 0 be arbitrary. In view of (C.1),
there must exist a sequence of times {tp}p∈N and a se-
quence of unit vectors {zp}p∈N such that

∀p ∈ N,
1

δ

∫ tp+δ

tp

n∑
i=1

‖Π(Riyi(s))zp‖2ds+ α(e>3 zp)
2 < µp.

(C.2)

Since S2 is compact, there must exit a sub-sequence of
{zp}p∈N that converges to some limit unit vector z̄ ∈ S2.
It follows that

lim
p→∞

1

δ

∫ tp+δ

tp

n∑
i=1

‖Π(Riyi(s))z̄‖2ds+ α(e>3 z̄)
2 = 0.

(C.3)

This is equivalent to

α(e>3 z̄)
2 = 0 (C.4)

1

δ
lim
p→∞

∫ δ

0

‖Π(Riyi(tp + s))z̄‖2ds = 0, i = 1, · · · , n.

(C.5)

Now, since v is bounded, the function ‖Π(Riyi(tp +

s))z̄‖2 is uniformly continuous and thus Cauchy-
continuous. This implies that ‖Π(Riyi(tp + s))z̄‖2
is a Cauchy sequence of continuous functions and
lim
p→∞

‖Π(Riyi(tp + s))z̄‖2 exists. Applying Lebesgue

theorem, one has limp→∞
∫ δ
0
‖Π(Riyi(tp + s))z̄‖2ds =∫ δ

0
limp→∞ ‖Π(Riyi(tp + s))z̄‖2ds = 0. Since the func-

tion lim
p→∞

‖Π(Riyi(tp + s))z̄‖2 is uniformly continuous

and non-negative, it follows from (C.5) that

lim
p→∞

‖Π(Riyi(tp + s))z̄‖2 = 0, ∀s ∈ (0, δ), i = 1, · · ·
(C.6)

Now, since ‖Π(y)x‖2 = x>Π(y)x = −x>[y]2×x = ‖y ×
x‖2 for all x, y ∈ S2, it follows that

lim
p→∞

‖Riyi(tp + s)× z̄‖ = 0, ∀s ∈ (0, δ), i = 1, · · ·
(C.7)

This also implies that

∀ζ > 0,∃p∗,∀p ≥ p∗, ‖Riyi(tp + s)× z̄‖ < ζ,

∀s ∈ (0, δ), i = 1, · · · (C.8)

Let s ∈ (0, δ/2) and pick ζ = ε/2. Then, there exists p∗
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such that for all p ≥ p∗

‖Riyi(tp + s)× z̄‖ < ε/2, (C.9)

‖Rjyj(tp + δ − s)× z̄‖ < ε/2, (C.10)

for any i, j. Now since ‖x× y‖2 = −y>[x]2×y = y>(I3 −
xx>)y = 1 − (x>y)2, for all x, y ∈ S2, and using the
result in (Wang and Zhang, 1994), we obtain

‖x× y‖ ≤ ‖x× z‖+ ‖z × y‖,∀x, y, z ∈ S2 (C.11)

Using this latter fact, inequalities (C.9)-(C.10) imply
that

‖Riyi(tp + s)×Rjyj(tp + δ − s)‖ < ε. (C.12)

Since δ can be arbitrary large and s can be arbitrary
small, this last equation contradicts item i) of the
Lemma. Furthermore, note that for any t ≥ 0 and any
i, j we can write

‖z̄ × (pi − pj)‖2 = ‖z̄ × (p(t)− pi)‖2 + ‖z̄ × (p(t)− pj)‖2

− 2(z̄ × (p(t)− pi))>(z̄ × (p(t)− pj))
= β2

i (t)‖z̄ ×Riyi(t)‖2 + β2
j (t)‖z̄ ×Rjyj(t)‖2

− 2βi(t)βj(t)(z̄ ×Riyi(t))>(z̄ ×Rjyj(t))

where βi(t) = ‖p(t)− pi‖ and βj(t) = ‖p(t)− pj‖. How-
ever, lim

p→∞
z̄ ×Riyi(tp + s) = 0 for i = 1, · · · . By select-

ing t = tp + s and letting p go to infinity in the above

equation, it follows that ‖z̄ × (pi − pj)‖2 = 0 and, thus,
z̄ is parallel to (pi− pj) for any i and j. If we have three
source points pi, pj and pk that are not aligned, it is not
possible to have z̄ to be parallel to (pi−pj) and (pi−pk)
simultaneously. Therefore, item ii) of the lemma holds.
If the altimeter is used, (C.4) implies that e>3 z̄ = e>3 (pi−
pj) = 0 which contradicts item iv) of the lemma. Finally,

in view of (C.6), we have lim
p→∞

((Riyi(tp + s))>z̄)2 = 1

and lim
p→∞

Π(Riyi(tp + s))z̄ = 0. Therefore,

lim
p→∞

e>3 Π(Riyi(tp + s))z̄ (C.13)

= e>3 z̄ − lim
p→∞

(e>3 Riyi(tp + s))(Riyi(tp + s)>z̄)

(C.14)

= ± lim
p→∞

(e>3 Riyi(tp + s)) (C.15)

= 0 (C.16)

for all s ∈ (0, δ), where we have used the fact that e>3 z̄ =
0 if the altimeter is used. This contradicts item iii) of
the lemma.
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