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Abstract

In this technical communique, we propose a novel observer-based adaptive scheme to deal with the parameter estimation
problem of biased sinusoidal signals. Different from the existing adaptive frequency estimation scheme, the proposed scheme
can achieve fixed-time frequency estimation, whose convergence time is independent of the initial errors. Simulation example
with different initial values shows the effectiveness of the theoretical result.
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1 Introduction

The problem of frequency estimation for sinusoidal
signals is a very important and fundamental issue in
both theoretical and practical applications, such as
the rejection of periodic disturbance (Shi, Xu, Gu, &
Zhang, 2019) and the control of power systems (Rao,
Soni, Sinha, & Nasiruddin, 2019). Since then, a large
number of approaches have been proposed to solve the
frequency estimation problem including Kalman filters
(Hajimolahoseini, Taban, & Soltanian-Zadeh, 2012),
adaptive notch filters (Hsu, Ortega, & Damm, 1999),
time domain-based methods (Angrisani, D’Apuzzo,
Grillo, Pasquino, & Moriello, 2014), algebraic identifica-
tion (Trapero, Sira-Ram¨ªrez, & Batlle, 2007), adaptive
phase-locked-loop approaches (Karimi-Ghartemani, &
Ziarani, 2004) and state-variable filtering techniques
(Pyrkin, Bobtsov, Efimov, & Zolghadri, 2011).

Another important class of algorithms used in the fre-
quency estimation is the so-named adaptive observer ap-
proach. By modeling sinusoidal signals as observable lin-
ear systems where the frequency is treated as unknown
parameter, an observer with adaptive parameter can be
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designed to achieve frequency identification (Marino, &
Tomei, 2002; Xia, 2002; Hou, 2012). In Chen, Pin, Ng,
Hui and Parisini (2017), the adaptive observer-based es-
timation scheme was used to estimate the frequency of
single sinusoidal signals with structured and unstruc-
tured measurement disturbances. The frequency estima-
tion problem for more complicated multiple sinusoidal
signals with bounded perturbations on the measurement
was addressed in Pin, Wang, Chen and Parisini (2019)
by using the adaptive observer approach.

Note that most of the existing results in the literatures
can only achieve asymptotic frequency estimation. In
the recent work Pin, Chen and Parisini (2017), by using
a volterra operator combined with a second-order slid-
ing mode-based adaptation law, a new volterra opera-
tor based adaptive frequency estimator was developed,
which can achieve finite-time frequency estimation of bi-
ased sinusoidal signals. In Li, Fedele, Pin and Parisini
(2016), the algorithm in Pin et al. (2017) was extended
for the parameter estimation of a biased and damped si-
nusoidal signal. Inspired by the work of Pin et al. (2017),
the finite-time estimation problem ofmultiple biased and
damped sinusoidal signals was solved in the most recent
paper Chen, Li, Pin, Fedele and Parisini (2019).

It can be clearly seen that the convergence time of the
conventional adaptive estimator is dependent on the ini-
tial estimation errors and will grow as the initial er-
rors grow. Although finite-time adaptive estimator has
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a faster convergence speed, the settling time still de-
pends on the initial estimation errors. As an exception,
the finite-time estimator in Chen et al. (2019) was de-
signed by using an algebraic method. To overcome this
drawback, the notation of fixed-time stability was pro-
posed (Andrieu, Praly, & Astolfi, 2008; Polyakov, 2012).
Based on this notation, many remarkable results have
been developed (Polyakov, 2012). However, to the best
of the authors’ knowledge, the results about fixed-time
adaptive frequency estimator haven’t been reported in
the literature.

In this technical communique, a novel fixed-time estima-
tion algorithm is proposed for estimating of biased si-
nusoidal signals. To design the estimator, an fixed-time
observer-based adaptive scheme is developed. Different
from the existing asymptotic and finite-time adaptive
estimators, the convergence time of the proposed algo-
rithm is bounded by a fixed time which is independent
of the initial errors. This is also the main contribution
of the technical communique.

Notation: Throughout the technical communique, we de-
fine ⌊x⌉α = |x|αsign(x), ∀α > 0, x ∈ R.

2 Problem Formulation and Preliminaries

The biased sinusoidal signal considered in this technical
communique is presented as follows:

y(t) = A+Bsin(φ(t)), φ̇(t) = w, φ(0) = φ0, (1)

where y(t) is measurable with its derivatives y(i)(t), i ∈
N+ unmeasurable; A ∈ R>0, B ∈ R>Bmin

, w ∈
R0∪[wmin,+∝) and φ0 ∈ R are unknown offset, ampli-
tude, angular frequency and initial phase shift with
Bmin, wmin ∈ R>0 can chosen arbitrary small.

Assumption 1 There exists a known positive constant
L and a known positive integer m ≥ 4 such that the m-
order derivative of y(t) satisfies |y(m)(t)| ≤ L.

The objective here is to estimate the parameters w in a
fixed-time independent of initial condition.

Firstly, an arbitrary order differentiator designed in An-
gulo, Moreno and Fridman (2013) will be used here as
an observer to estimate the signal and its derivatives:

żi = −κiθ(t)⌊z̃1⌉
m−i

m − ki(1 − θ(t))⌊z̃1⌉
m+αi

m + zi+1,

i = 1, 2, · · · ,m− 1,

żm = −κmθ(t)sign(z̃1)− km(1− θ(t))⌊z̃1⌉1+α, (2)

where z̃1 = z1−y(t); θ(t) = sign(t−Tu)+1
2 with arbitrarily

chosen Tu > 0; {κi, ki}mi=1 and α > 0 are design parame-
ters selected the same as that in Theorem 1 of Angulo et

al. (2013); the states z1, z2, · · · , zm are the estimations
of y(t), y(1)(t), · · · , y(m−1)(t).

Lemma 1 (Angulo, et al., 2013) For the biased sinu-
soidal signal y(t) under Assumption 1 and the observer
(2), all the signals of system (2) are bounded and there
exists a time T1 independent of initial condition such that
zi = y(i−1)(t), ∀t ≥ T1 is satisfied.

Lemma 2 (Polyakov, 2012) For system ẋ = f(x) with
f(0) = 0, if there exists a continuous radially unbounded

and positive definite function V (x) such that V̇ (x) ≤
−αV 1+ 1

µ − βV 1− 1
µ with α, β > 0 and µ > 1, then the

origin of this system is globally fixed-time stable and the
settling time function T can be estimated by T ≤ πµ

2
√

αβ
.

3 Design of Fixed-Time Frequency Estimator

For the sinusoidal signal presented in (1), we have
y(1)(t) = wBcos(wt+φ0), y

(3)(t) = −w3Bcos(wt+φ0),
which will result in the following relation:

y(3)(t) = −w2y(1)(t). (3)

By integrating both side of (3) over the time interval
[t−r, t] with design positive constant r to be determined
later, we have

ζ

∫ t

t−r

|y(1)(τ)|dτ =

∫ t

t−r

|y(3)(τ)|dτ, ∀t ≥ r, (4)

where ζ = w2. Defining two auxiliary variables

γ1(t) =

∫ t

t−r

|y(1)(τ)|dτ, γ2(t) =

∫ t

t−r

|y(3)(τ)|dτ, (5)

then (4) can be rewritten as

ζγ1(t) = γ2(t). (6)

Note that the auxiliary variables γ1(t), γ2(t) are unavail-
able for the unmeasurable signals y(1)(t) and y(3)(t). By
substituting the estimation values of y(1)(t), y(3)(t) into
(5), two new auxiliary variables γ̂1(t), γ̂2(t) are obtained
for ∀t ≥ 0 as:

γ̂1(t) =

∫ t

t−r

|z2(τ)|dτ, γ̂2(t) =

∫ t

t−r

|z4(τ)|dτ, (7)

where z2(t) = z4(t) = 0 for ∀t ∈ [−r, 0).

3.1 Some Propositions

In the following, some properties of the auxiliary vari-
ables γ̂1(t), γ̂2(t) will be introduced firstly.
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Proposition 1 The variables γ̂1(t), γ̂2(t) are bounded
and γ̂1(t) = γ1(t), γ̂2(t) = γ2(t) holds for ∀t ≥ T1 + r.

Proof of Proposition 1. It can be concluded form Lemma
1 that zi, i = 1, · · · ,m are bounded and therefore
γ̂1(t), γ̂2(t) are also bounded. Note that

γ̂1(t)=

∫ t

t−r

|y(1)(τ)|dτ+
∫ t

t−r

(

|z2(τ)|−|y(1)(τ)|
)

dτ.(8)

Define eγ1
=

∫ t

t−r

∣

∣|z2(τ)| − |y(1)(τ)|
∣

∣dτ ≥ 0. Then, we
have

γ1(t)− eγ1
≤ γ̂1(t) ≤ γ1(t) + eγ1

. (9)

It is noted that when t ≥ T1+ r, we have eγ1
= 0, which

implies that γ1(t) ≤ γ̂1(t) ≤ γ1(t) holds for ∀t ≥ T1 + r,
i.e., γ̂1(t) = γ1(t) holds for ∀t ≥ T1 + r. Similarly, we
can also obtain that γ̂2(t) = γ2(t) holds for ∀t ≥ T1 + r,
which completes the proof of Proposition 1. �

Proposition 2 When w 6= 0 and t ≥ T1 + r, the signal
γ̂1(t) satisfies a persistent excitation condition, i.e., for
any given constant r > 0, we can also find a constant
ǫ > 0 such that γ̂1(t) ≥ ǫ holds for ∀t ≥ T1 + r.

Proof of Proposition 2. When t ≥ T1 + r, it follows from
Proposition 1 that

γ̂1(t) = γ1(t) = Bw

∫ t

t−r

|cos(wτ + φ0)|dτ. (10)

Note that the period of |cos(wt+φ0)| is π/w. Thus, over
any time interval [tx1, tx2] with tx2 − tx1 ≥ πk/w, k ∈
N+, the integral of |cos(wt+ φ0)| satisfies

∫ tx2

tx1

|cos(wτ+φ0)|dτ ≥k

∫ π/w

0

|cos(wτ+φ0)|dτ =2k/w.(11)

In the following, the conditions r ≥ π
w and 0 < r < π

w
will be discussed separately.

(i) When r ≥ π
w , the time interval over [t− r, t] satisfies

t − (t − r) = r ≥ π
w . Therefore, by using (10) and (11)

with k = 1, we have γ̂1(t) ≥ 2B ≥ 2Bmin. Choosing
ǫ = 2Bmin, we have γ̂1(t) ≥ ǫ.

(ii) When 0 < r < π
w , one can calculate that

∫ t

t−r |cos(wτ + φ0)|dτ ≥ 2
∫ r

2

0 |sinwτ |dτ =
2−2|cos rw

2
|

w .

Along with (10), we have γ̂1(t) ≥ 2B(1 − |cos rw
2 |) ≥

2Bmin(1 − |cos rwmin

2 |). Letting ǫ = 2Bmin(1 −
|cos rwmin

2 |), we have γ̂1(t) ≥ ǫ.

Hence, the proof of Proposition 2 is completed. �

3.2 Main Result

Define the estimates ŵ, ζ̂(t) of w, ζ, which is updated by
the following adaptive law:

˙̂
ζ(t)=



























− γ̂−1
1 (t)

(

α1e
1+ q

p

γ + β1e
1− q

p

γ + ζ̂(t)
(

|z2(t)|

−|z2(t−r)|
)

−
(

|z4(t)|−|z4(t−r)|
)

)

, if γ̂1 > ǫ,

− α1ζ̂
1+ q

p (t)− β1ζ̂
1− q

p (t), otherwise,

ŵ(t)=|ζ̂(t)|1/2, (12)

where

eγ = ζ̂(t)γ̂1(t)− γ̂2(t), (13)

and α1, β1 are positive constant, 0 < q < 2p are odd in-
tegers, ǫ > 0 is selected according to Proposition 2, γ̂1(t)
is defined in (7), z2(t), z4(t) are the states of the observer
(2). The frequency estimator can be implemented as (2),
(7), (12) which will result in the following theorem.

Theorem 1 For the biased sinusoidal signal y(t) defined
in (1), if Assumption 1 is satisfied, then the frequency
estimator (2), (7), (12) can achieve fixed-time frequency
estimation, i.e., there exists a time Tmax independent of
initial condition such that ŵ(t) = w holds for ∀t ≥ Tmax.

Proof of Theorem 1. For the condition w ∈ [wmin,+ ∝),
the derivative of eγ can be calculated with (7) as

ėγ =
˙̂
ζ(t)γ̂1(t) + ζ̂(t) ˙̂γ1(t)− ˙̂γ2(t)

=
˙̂
ζ(t)γ̂1(t) + ζ̂(t)(|z2(t)| − |z2(t− r)|)
−(|z4(t)| − |z4(t− r)|). (14)

It follows from Proposition 2 that γ̂1(t) ≥ ǫ holds for
∀t ≥ T1 + r. Therefore, when t ≥ T1 + r, substituting
the adaptive law (12) into (14) will lead to

ėγ = −α1e
1+ q

p

γ − β1e
1− q

p

γ . (15)

The derivative of Lyapunov function V = 1
2e

2
γ along (15)

satisfies

V̇ = −21+
q

2pα1V
1+ q

2p − 21−
q

2p β1V
1− q

2p , (16)

which implies that V and thus eγ will converge to zero
in a time Tmax2 independent of initial condition, i.e.,
eγ = 0 holds for ∀t ≥ T1 + Tmax2 + r. According to

(13), eγ = 0 means ζ̂(t)γ̂1(t) = γ̂2(t). Note that γ̂1(t) =
γ1(t), γ2(t) = γ̂2(t) holds for ∀t ≥ T1 + r. Therefore,
when t ≥ T1 + Tmax2 + r, we have

ζ̂(t)γ1(t) = γ2(t). (17)
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Subtracting (17) with (6), we have (ζ − ζ̂(t))γ1(t) = 0,

which means that ζ̂(t) = ζ and thus ŵ(t) = w holds for
∀t ≥ T1 + Tmax2 + r.

When w = 0, it is easy to verify that γ̂1(t) = γ1(t) = 0
holds for ∀t ≥ T1+r. Then, when t ≥ T1+r, the adaptive

law (12) reduces to
˙̂
ζ(t) = −α1ζ̂

1+ q

p (t) − β1ζ̂
1− q

p (t),
which is fixed-time stable (Polyakov, 2012). Similar to
previous analysis, we can conclude that there exists a

fixed-time Tmax1 such that ζ̂(t) = 0 holds for ∀t ≥ T1 +

Tmax1 + r. Note that ζ̂(t) = 0 implies ŵ(t) = w = 0
holds for ∀t ≥ T1 + Tmax1 + r.

Define Tmax = T1 + r + max{Tmax1, Tmax2}. We can
conclude that ŵ = w will be established for ∀t ≥ Tmax,
which completes the proof of Theorem 1. �

4 Robustness Analysis

In practice, one never has access to perfect measure-
ments. Therefore, the robustness analysis of the pro-
posed algorithm in the presence of measurement noise
will be given in the following. Suppose that the signal
y(t) is measured in the presence of bounded measure-
ment noise n(t) : |n(t)| ≤ η, i.e., the measurement ŷ(t)
satisfies ŷ(t) = y(t) + n(t). By replacing y(t) with the
ŷ(t) in the observer (2), the following accuracies

|z̃i|,|zi−y(i−1)(t)|≤O(η(m−i+1)/m), i = 1, · · · ,m, (18)

can be obtained after finite-time (Angulo, et al., 2013).
In view of (18), the following accuracies

|γ̃1(t)| , |γ1(t)− γ̂1(t)| ≤ O(η(m−1)/m),

|γ̃2(t)| , |γ2(t)− γ̂2(t)| ≤ O(η(m−3)/m), (19)

can also be obtained after finite-time.

Note that for the existence of noise, the persistent exci-
tation condition in Proposition 2 may not be satisfied.
This make the estimator (12) inactive or only active for
some instants, which is separated by the threshold ǫ.
Take a very particular case for example, n(t) = −y(t)
and ŷ(t) = 0. In this case, the perturbed measurement
ŷ(t) cannot be used to estimate the frequency. Latter, we
will show that when the the persistent excitation con-
dition is still satisfied even in the presence of noise, the
proposed frequency estimator is ISS with respect the
measurement noise n(t).

It follows from the proof of Theorem 1 that eγ = 0 and

thus ζ̂(t)γ̂1(t) = γ̂2(t) can be established after finite
time. Equation (6) can be rewritten as ζγ̂1(t)− ζγ̃1(t) =
γ̂2(t)−γ̃2(t). Then, subtracting the above two equations,

we have |ζ̃(t)| , |ζ̂(t) − ζ| ≤ |γ̂−1
1 (t)(γ̃2(t) − ζγ̃1(t))| ≤

ǫ−1|γ̃2(t)|+ |ζ||γ̃1(t)|. Therefore, ζ̃(t) and the estimator
error w̃(t) = ŵ(t) − w is ISS with respect the measure-
ment noise n(t), which can be summarized as follows:

Corollary 1 Suppose that the measurement ŷ(t) still
satisfies the persistent excitation condition in Proposi-
tion 2. Then, the estimator error w̃(t) = ŵ(t)−w is ISS
with respect to any bounded measurement noise n(t).

5 Simulation
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ŵ

Method proposed in Pin et al. (2017)
Method proposed in this paper

0 5 10 15 20 25 30 35 40
1.9

2

2.1

Fig. 1. Frequency estimation in the absence of noise by
using the proposed method and the method proposed in
Pin et al. (2017): Above. small initial estimation error

condition w̃(0) = −1; Below. large initial estimation error
condition w̃(0) ≈ 2235.

In this section, simulation results for the frequency esti-
mation of the signal y(t) = 4sin(2t+2)+10will be given.
For the observer (2), we select κ1 = 16, κ2 = 88, κ3 =
140, κ4 = 110, k1 = 24, k2 = 216, k3 = 864, k4 = 1296,
Tu = 3 and α = 0.6. Select r = 1 for the auxiliary
variables γ̂1(t), γ̂2(t) defined in (7). For the adaptive law
(12), we select p = 3, q = 1, ǫ = 0.01 and α1 = β1 = 1.
To show the effectiveness of the proposed method, the
finite-time adaptive frequency estimator proposed in Pin
et al. (2017) will be used to make simulation comparison
with parameters selected as β1 = 1, β2 = 2, β3 = 3, β̄ =
2.5, g = 0.1, ga = 25, L1 = 1.5, L2 = 1.1 and δǫ = 0.001.

Firstly, simulation results in the absence of measurement
noise by using the proposed method and the method
proposed in Pin et al. (2017) is given in Fig. 1. Different
initial conditions are used to make comparison. It can be
clearly observed from Fig. 1 that the proposed method
can achieve exact estimation of the frequency within a
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Fig. 2. Frequency estimation in the presence of noise by
using the proposed method and the method proposed in
Pin et al. (2017): Above. small initial estimation error

condition w̃(0) = −1; Below. large initial estimation error
condition w̃(0) ≈ 2235.

fixed-time 5s no matter how large the initial values are
selected, while the settling time of the method in Pin et
al. (2017) grows from 5s to 25swhen the initial condition
grow. To show the robustness of the proposed method, a
bounded measurement noise |n(t)| ≤ 0.25 is considered
in Fig. 2. It can be observed from Fig. 2 that similar to
the existing method, our proposed method is also ISS
with respect to bounded measurement noise n(t).

Note: More details about the simulation can be found
in Appendix attached at the end of the manuscript.

6 Conclusion

This technical communique has developed a fixed-time
frequency estimator for biased sinusoidal signals for the
first time. How to extend the result to handle multiple
biased and damped sinusoidal signals is the future work.
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Appendix A. M-files and Simulation Results

The detailed m-files of the simulation results presented
in Figs. 1-2 are given in the Appendix A.1 and A.2, re-
spectively. Moreover, the m-files and simulation results
for Example 3 in Pin et al. (2017) with different initial
values w̃(0) are also given in Appendix A.3. It can ob-
served from Fig. A.1 in Appendix A.3 that the settling
time of the method in Pin et al. (2017) grows from 1s to
more than 700s when the initial error conditions grow.

Appendix A.1:M-file of the proposed algorithm to
generate the simulation result in this paper

clear all;
close all;
clc

dt=0.000001;T=10;L=160;A=10;B=4;
w=2;r=1;afa1=1;beta1=1;Tu=1;afa=0.6;
q1=1;p1=3;q2=1;p2=3;g1=0;g2=0;
ka1=5*L^(1/4);ka2=3*L^(1/3)*ka1^(2/3);
ka3=1.5*L^(1/2)*ka2^(1/2);ka4=1.1*L;
k1=24;k2=216; k3=864;k4=1296;
z1(1)=0;z2(1)=0;z3(1)=0;z4(1)=0;

hy=1;%Small initial error condition
%hy =5*10^6;%Large initial error

condition

for i=1:T/dt
t=i*dt;
theta=(sign(t-Tu)+1)/2;

y(1)=0; y(i+1)=B*sin(w*t+2)+A;
%hhy(i)=B*sin(w*t+2)+A+2*cos(0.05*t

);
y1(1)=0; y1(i+1)=B*w*cos(w*t+2);
y2(1)=0; y2(i+1)=-B*w^2*sin(w*t+2);
y3(1)=0; y3(i+1)=-B*w^3*cos(w*t+2);

wz1(i)=z1(i)-y(i);
%wz1(i)=z1(i)-hhy(i);
z1(i+1)=(-ka1*theta*sign(wz1(i))*(

abs(wz1(i)))^(3/4) -k1*(1-theta)
*sign(wz1(i))*(abs(wz1(i)))
^((4+ afa)/4)+z2(i))*dt+z1(i);

z2(i+1)=(-ka2*theta*sign(wz1(i))*(
abs(wz1(i)))^(2/4) -k2*(1-theta)
*sign(wz1(i))*(abs(wz1(i)))
^((4+2*afa)/4)+z3(i))*dt+z2(i);

z3(i+1)=(-ka3*theta*sign(wz1(i))*(
abs(wz1(i)))^(1/4) -k3*(1-theta)
*sign(wz1(i))*(abs(wz1(i)))
^((4+3*afa)/4)+z4(i))*dt+z3(i);

z4(i+1)=(-ka4*theta*sign(wz1(i))-k4
*(1-theta)*sign(wz1(i))*(abs(
wz1(i)))^((4+4*afa)/4))*dt+z4(i
);

if i<r/dt+1

g1=abs(z2(i))*dt+g1;
g2=abs(z4(i))*dt+g2;
hy=hy;

else

h=i -1000000;
a(i)=z2(i -1000000);
g1=(abs(z2(i))-abs(z2(i -1000000)))

*dt+g1;
g2=(abs(z4(i))-abs(z4(i -1000000)))

*dt+g2;

e(i)=hy*g1-g2;

if g1 >0.01

v=-1/g1*(afa1*e(i)^(1+q2/p2)+
beta1*e(i)^(1-q1/p2)+hy*(abs(
z2(i))-abs(z2(i -1000000))) -(
abs(z4(i))-abs(z4(i -1000000))
));

hy=v*dt+hy;

else

hy=(-afa1*hy^(1+q2/p2)-beta1*hy
^(1-q1/p1))*dt+hy;

end

end

hw(i)=abs(hy)^(1/2);
w1(i)=w;

end
t=dt:dt:T;
figure;
plot(t,hw ,t,w1);

Appendix A.2: M-file of Pin et al. (2017) to gen-
erate the simulation result in this paper

clear all;
close all;
clc

dt=0.000001;T=40;A=10;B=4;w=2;
b1=1;b2=2;b3=3;b=2.5;g=1;deta =0.001;L1

=10;L2=2;
xi11(1)=0;xi13(1)=0;xi21(1)=0;xi23(1)

=0;xi31(1)=0;xi33(1)=0;
r1(1)=0;r2(1)=0;yo(1)=0;

%ho(1)=1;% small initial error
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condition
ho(1)=5*10^6;%large initial error

condition

for i=1:T/dt
t=i*dt;
%signal y=B*sin(w*t+2)+A
% y(i)=B*sin(w*t+2)+A+2*cos(0.05*t)

;
y(i)=B*sin(w*t+2)+A;

%signal F1(t,t) and its derivatives
F11 ,F12 ,F13 (in view of Eq

.(16))
F1=1-3*exp(-b*t)+3*exp(-2*b*t)-exp

(-3*b*t);
F11=b1 -3*(b1 -b)*exp(-b*t)+3*(b1 -2*b

)*exp(-2*b*t)-(b1 -3*b)*exp(-3*b
*t);

F12=b1^2 -3*(b1-b)^2*exp(-b*t)+3*(b1
-2*b)^2*exp(-2*b*t)-(b1 -3*b)^2*
exp(-3*b*t);

F13=b1^3 -3*(b1-b)^3*exp(-b*t)+3*(b1
-2*b)^3*exp(-2*b*t)-(b1 -3*b)^3*
exp(-3*b*t);

%signal F2(t,t) and its derivatives
F21 ,F22 ,F23 (in view of Eqs

.(16) and (20))
F2=F1;
F21=b2 -3*(b2 -b)*exp(-b*t)+3*(b2 -2*b

)*exp(-2*b*t)-(b2 -3*b)*exp(-3*b
*t);

F22=b2^2 -3*(b2-b)^2*exp(-b*t)+3*(b2
-2*b)^2*exp(-2*b*t)-(b2 -3*b)^2*
exp(-3*b*t);

F23=b2^3 -3*(b2-b)^3*exp(-b*t)+3*(b2
-2*b)^3*exp(-2*b*t)-(b2 -3*b)^3*
exp(-3*b*t);

%signal F3(t,t) and its derivatives
F31 ,F32 ,F33 (in view of Eqs

.(16) and (20))
F3=F1;
F31=b3 -3*(b3 -b)*exp(-b*t)+3*(b3 -2*b

)*exp(-2*b*t)-(b3 -3*b)*exp(-3*b
*t);

F32=b3^2 -3*(b3-b)^2*exp(-b*t)+3*(b3
-2*b)^2*exp(-2*b*t)-(b3 -3*b)^2*
exp(-3*b*t);

F33=b3^3 -3*(b3-b)^3*exp(-b*t)+3*(b3
-2*b)^3*exp(-2*b*t)-(b3 -3*b)^3*
exp(-3*b*t);

%auxiliary systems (22) to generate
auxiliary signals in (19)

xi11(i+1)=(F11*y(i)-b1*xi11(i))*dt+
xi11(i);

xi13(i+1)=(F13*y(i)-b1*xi13(i))*dt+

xi13(i);
xi21(i+1)=(F21*y(i)-b2*xi21(i))*dt+

xi21(i);
xi23(i+1)=(F23*y(i)-b2*xi23(i))*dt+

xi23(i);
xi31(i+1)=(F31*y(i)-b3*xi31(i))*dt+

xi31(i);
xi33(i+1)=(F33*y(i)-b3*xi33(i))*dt+

xi33(i);

% auxiliary signals K (in view of Eq
. (19))

K1a=xi13(i)-F12*y(i);K2a=xi23(i)-
F22*y(i);K3a=xi33(i)-F32*y(i);

K1b=F11;K2b=F21;K3b=F31;
K1d=xi11(i)-F1*y(i);K2d=xi21(i)-F2*

y(i);K3d=xi31(i)-F3*y(i);

%vector form (inview of Eq. (26))
Ka=[K1a;K2a;K3a];Kd=[K1d;K2d;K3d];F

=[K3b -K2b;K1b -K3b;K2b -K1b];
K1=Ka '*F;K2=Kd '*F;

% Deformation of the system (In view
of (27) -(29))

dr1=abs(K1)-g*r1(i);dr2=abs(K2)-g*
r2(i);

r1(i+1)=dr1*dt+r1(i);r2(i+1)=dr2*dt
+r2(i);

% adaptive law (In view of (32))
Ro(i)=r1(i)-r2(i)*ho(i);
if r2(i)>deta

ho(i+1)=(yo(i)+L1*abs(Ro(i))
^(1/2)*sign(Ro(i))-ho(i)*
dr2+dr1)/r2(i)*dt+ho(i);

else
ho(i+1)=ho(i);

end
yo(i+1)=(L2*sign(Ro(i)))*dt+yo(i);

%Frequency estimation
hw(i)=abs(ho(i))^(1/2);
w1(i)=w;

end
t=dt:dt:T;
figure;
plot(t,hw ,t,w1);

Appendix A.3: M-file and Simulation Results for
Example 3 in Pin et al. (2017)

clear all;
close all;
clc

dt=0.000001;T=2;A=2;B=3;w=4;b1=1;b2=2;
b3=3;b=2.5;g=3;deta =0.0001;L1=30;L2=2;
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xi11(1)=0;xi13(1)=0;xi21(1)=0;
xi23(1)=0;xi31(1)=0;xi33(1)=0;
r1(1)=0;r2(1)=0;yo(1)=0;

ho(1)=5^(1/2);%Small initial error
condition

%ho(1)=5*10^2;%Initial error condition
hw -w=17.3607

%ho(1)=5*10^9;%Initial error condition
hw -w=7*10^4

%ho(1)=5*10^10;%Initial error
condition hw-w=2.2*10^5

%ho(1)=5*10^11;%Initial error
condition hw-w=7.07*10^5

for i=1:T/dt

t=i*dt;
y(i)=B*sin(w*t+pi/4)+A;

%signal F1(t,t) and its derivatives
F11 ,F12 ,F13 (in view of Eq

.(16))
F1=1-3*exp(-b*t)+3*exp(-2*b*t)-exp

(-3*b*t);
F11=b1 -3*(b1 -b)*exp(-b*t)+3*(b1 -2*b

)*exp(-2*b*t)-(b1 -3*b)*exp(-3*b
*t);

F12=b1^2 -3*(b1-b)^2*exp(-b*t)+3*(b1
-2*b)^2*exp(-2*b*t)-(b1 -3*b)^2*
exp(-3*b*t);

F13=b1^3 -3*(b1-b)^3*exp(-b*t)+3*(b1
-2*b)^3*exp(-2*b*t)-(b1 -3*b)^3*
exp(-3*b*t);

%signal F2(t,t) and its derivatives
F21 ,F22 ,F23 (in view of Eqs

.(16) and (20))
F2=F1;
F21=b2 -3*(b2 -b)*exp(-b*t)+3*(b2 -2*b

)*exp(-2*b*t)-(b2 -3*b)*exp(-3*b
*t);

F22=b2^2 -3*(b2-b)^2*exp(-b*t)+3*(b2
-2*b)^2*exp(-2*b*t)-(b2 -3*b)^2*
exp(-3*b*t);

F23=b2^3 -3*(b2-b)^3*exp(-b*t)+3*(b2
-2*b)^3*exp(-2*b*t)-(b2 -3*b)^3*
exp(-3*b*t);

%signal F3(t,t) and its derivatives
F31 ,F32 ,F33 (in view of Eqs

.(16) and (20))
F3=F1;
F31=b3 -3*(b3 -b)*exp(-b*t)+3*(b3 -2*b

)*exp(-2*b*t)-(b3 -3*b)*exp(-3*b
*t);

F32=b3^2 -3*(b3-b)^2*exp(-b*t)+3*(b3
-2*b)^2*exp(-2*b*t)-(b3 -3*b)^2*
exp(-3*b*t);

F33=b3^3 -3*(b3 -b)^3*exp(-b*t)+3*(b3
-2*b)^3*exp(-2*b*t) -(b3 -3*b)^3*
exp(-3*b*t);

% auxiliary systems (22) to generate
auxiliary signals in (19)

xi11(i+1)=(F11*y(i)-b1*xi11(i))*dt+
xi11(i);

xi13(i+1)=(F13*y(i)-b1*xi13(i))*dt+
xi13(i);

xi21(i+1)=(F21*y(i)-b2*xi21(i))*dt+
xi21(i);

xi23(i+1)=(F23*y(i)-b2*xi23(i))*dt+
xi23(i);

xi31(i+1)=(F31*y(i)-b3*xi31(i))*dt+
xi31(i);

xi33(i+1)=(F33*y(i)-b3*xi33(i))*dt+
xi33(i);

% auxiliary signals K (in view of Eq
. (19))

K1a=xi13(i)-F12*y(i);K2a=xi23(i)-
F22*y(i);K3a=xi33(i)-F32*y(i);

K1b=F11;K2b=F21;K3b=F31;
K1d=xi11(i)-F1*y(i);K2d=xi21(i)-F2*

y(i);K3d=xi31(i)-F3*y(i);

%vector form (inview of Eq. (26))
Ka=[K1a;K2a;K3a];Kd=[K1d;K2d;K3d];F

=[K3b -K2b;K1b -K3b;K2b -K1b];
K1=Ka '*F;K2=Kd '*F;

% Deformation of the system (In view
of (27) -(29))

dr1=abs(K1)-g*r1(i);dr2=abs(K2)-g*
r2(i);

r1(i+1)=dr1*dt+r1(i);r2(i+1)=dr2*dt
+r2(i);

% adaptive law (In view of (32))
Ro(i)=r1(i)-r2(i)*ho(i);

if r2(i)>deta
ho(i+1)=(yo(i)+L1*abs(Ro(i))

^(1/2)*sign(Ro(i))-ho(i)*
dr2+dr1)/r2(i)*dt+ho(i);

else
ho(i+1)=ho(i);

end
yo(i+1)=(L2*sign(Ro(i)))*dt+yo(i);

%Frequency estimation
hw(i)=abs(ho(i))^(1/2);
w1(i)=w;

end
t=dt:dt:T;
figure;
plot(t,hw ,t,w1);
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Scenario (a): w̃(0) ≈ −1.7.
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Scenario (b): w̃(0) ≈ 17.
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Scenario (c): w̃(0) ≈ 7 ∗ 104.
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Scenario (d): w̃(0) ≈ 2.2 ∗ 105.
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Scenario (e): w̃(0) ≈ 7 ∗ 106.
Fig. A.1. Simulation results for Example 3 in Pin et al. (2017) with different initial values w̃(0).
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