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Abstract

In this paper, we consider optimal linear sensor fusion for obtaining a remote state estimate of a linear process based on the
sensor data transmitted over lossy channels. There is no local observability guarantee for any of the sensors. It is assumed that
the state of the linear process is collectively observable. We transform the problem of finding the optimal linear sensor fusion
coefficients as a convex optimization problem which can be efficiently solved. Moreover, the closed-form expression is also
derived for the optimal coefficients. Simulation results are presented to illustrate the performance of the developed algorithm.
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1 Introduction

Wireless sensor networks (WSNs) have been widely
adopted in industrial processes, agricultural irriga-
tion, smart grids, etc. Recently, due to the advances
in wireless communication technologies, especially the
advent of 5G era (Shafi et al. (2017)), the spectrum
of physical networks can be utilized more efficiently.
Hence, more devices can be accommodated, which
establishes the foundations for a large-scale Internet-
of-Things (IoT) (Mekki et al. (2019)), ultra-dense net-
works (Wang et al. (2018)), etc.

In order to reliably operate a large-scale dynamic sys-
tem, it is necessary to obtain an accurate real-time state
estimate at each time step. For this purpose, preliminary
works have investigated management of the channel re-
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sources (Eisen et al. (2019)) as well as design of the data
aggregation (He et al. (2019)) from various sensors. In
this paper, we focus on the fusion problem of data from
multiple sensors observing a physical process in a dis-
tributed manner.

The techniques in sensor fusion were developed for
practical needs in state estimation or hypothesis test-
ing problems. Some earlier works focused on estimating
static variables based on fusion of raw measurements.
For example, decentralized state estimation was in-
vestigated by Xiao et al. (2008) and Behbahani et al.
(2012), where a static unknown variable is estimated
over networked channels, and the power allocation is
optimized. Moreover, linear fusion has also been in-
vestigated in the decision fusion of hypothesis testing
problems, e.g., spectrum sensing in cognitive radio (CR)
network (Quan et al. (2009)).

Later, sensor fusion has been extended to state esti-
mation of dynamic systems. Channel activation over a
graph topology as well as sensor selection problem for
remote estimation has been considered by Yang et al.
(2015).

Aside from fusing the raw measurements, an alternative
approach is to fuse the pre-processed data. The motiva-
tion is to save the communication resources. Linear com-
pression of the sensor data before transmission is pro-

Preprint submitted to Automatica 16 February 2021

ar
X

iv
:2

01
2.

04
89

6v
2 

 [
ee

ss
.S

Y
] 

 1
5 

Fe
b 

20
21



posed by Zhang et al. (2003). Along this direction, smart
sensors are employed to recursively extract information
from the raw observations of dynamic systems.

The foundation of optimal linear fusion for smart sensors
is laid by Sun and Deng (2004). Later works by Chen
et al. (2014, 2016) extend it to cases with channel fail-
ures or bandwidth constraints. To avoid high computa-
tional complexity, Wu et al. (2019) proposed an efficient
algorithm for linear state fusion with scalar fusion coef-
ficients. However, all these works assumed local observ-
ability of the entire process.

For example, when a large-scale dynamic system is moni-
tored by a sensor network with each sensor observing cer-
tain sub-components of the system state, it is no longer
feasible to estimate the system state locally. This col-
lectively observable scenario has been addressed by Liu
et al. (2017), where the centralized Kalman filter can
be recovered by a linear combination of the local esti-
mations on the observable subspace of each sensor. The
subspace decomposition methods for state estimation
is also investigated by Yu et al. (2019). Meanwhile, He
et al. (2018) considered a distributed state estimation
problem with graph topology, and covariance intersec-
tion (CI) fusion strategy is adopted to bound the estima-
tion error. A more recent result on distributed estima-
tion for WSN is proposed by Talebi and Werner (2019),
where the optimal performance of a centralized Kalman
filter is recovered through average consensus algorithms
on the local state estimates and the local covariance in-
formation from the population of sensors with collective
observability.

In this work, we consider linear state fusion over lossy
networks with collective observability. With Kalman
decomposition, the observable subspace of each sensor
is identified. Compared with Liu et al. (2017), local
estimates on the observable subspace of the sensors
are transmitted to the remote state estimator through
unreliable channels, and the optimal fusion coefficients
are determined online. Several challenges emerge in our
problem setup:

(1) When collective observability is assumed, a global
state estimate is infeasible at each sensor locally. As
a result, it is necessary to propose a framework where
smart sensors can pre-process their raw measure-
ments effectively before transmitting over unreliable
channels, and the remote state estimator is capable
of recovering a state estimate of the entire system;

(2) Due to the lack of local observability, each sensor is
merely capable of obtaining a “reduced-order” in-
formation on the system state, which causes the sin-
gularity of the collective covariance matrix, hence re-
sults in Sun and Deng (2004); Chen et al. (2014) are
not applicable. Alternative approaches are required to
compute the optimal fusion coefficients;

(3) For linear state fusion, it is desirable to obtain a
closed-from solution of the optimal fusion coeffi-
cients in order to analyze the performance and the
variation of optimal coefficients given different system
parameters.

To cope with these difficulties, we have made the follow-
ing contributions:

(1) To perform sensor fusion with collective observabil-
ity, we adopt Kalman decomposition and subspace
projection to extract informative data from the ob-
servation of each sensor, which generalize previous
works on linear fusion based on smart sensors by Sun
and Deng (2004); Chen et al. (2014, 2016) with local
observability;

(2) For online implementation of the linear sensor fusion
over lossy channels, we transform the original op-
timization problem for calculating the optimal coef-
ficients for unbiased linear state fusion as a linear
programming (Theorem 1), which features a com-
plexity ofO(n5N2.5), where n is the dimension of the
state of the dynamic process and N is the number of
sensors. The complexity of our solution is comparable
to O(n3N3) in locally observable scenarios considered
by Sun and Deng (2004); Chen et al. (2014). Besides,
this approach avoids the computation of matrix inver-
sions. The stability of the fusion estimation is shown
in Proposition 1;

(3) In order to obtain a closed-form expression for the
optimal fusion coefficients, we draw an analogy with
our problem and the minimum-variance unbiased esti-
mate of an unknown parameter. According to Gauss-
Markov theorem with singular covariance by Al-
bert (1973), the closed-form optimal fusion coefficient
is obtained (Theorem 2).

The remainder of this paper is organized as follows. In
Section II, preliminary results on state estimation over
a communication network is given, and the optimal un-
biased linear state fusion with collective observability
is posed as an optimization problem. Section III trans-
forms it as a linear programming (LP), and shows the
stability of the proposed fusion scheme. Section IV gives
the closed-form fusion coefficients. Numerical results are
given in Section V to illustrate the performance, and
conclusions are drawn in Section VI.

Notations:

Denote the space of n × n positive semi-definite ma-
trices as Sn+, and the space of n × m real matrix as
Rn×m. For any singular M ∈ Rm×n, its Moore-Penrose
pseudo-inverse is denoted as M† ∈ Rn×m. An identity
matrix in Rn×n is denoted as I(n). We denote a block
diagonal matrix with diagonal elements D1, D2, . . . , Dl

as Diag(D1, D2, . . . , Dl). An indicator function is de-
fined as δkj = 1 if k = j and δkj = 0 otherwise. Given
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an operator T : X → X, the operation of applying it
recursively is denoted as T m = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸

m

.

In order to clarify the meanings of different variables
in this paper, we have summarized them in a table in
Appendix A.

2 Preliminaries

In this paper, we consider a group of N different smart
sensors observing a linear process and forwarding their
local state estimates to a remote state estimator through
multiple independent lossy channels separately (Fig. 1).
The transmitted packets will be dropped with a certain
probability, and the packet dropout for each channel fol-
lows an independent Bernoulli process.

At the other side of the channels, in order to obtain a
global state estimate incorporating the received data,
the remote state estimator employs a linear fusion
scheme.

Fig. 1. Remote state estimation of a linear process over mul-
tiple independent lossy channels.

2.1 Process and sensor models

The process dynamic is given by

xk+1 = Axk + wk, (1)

and each sensor takes its measurement independently
with the following observation equation

y
(i)
k = Cixk + v

(i)
k . (2)

In (1) and (2), the state variable is xk ∈ Rn, and the ob-

servation of the state at time k by sensor i is y
(i)
k ∈ Rmi .

Assume the initial state variable x0 ∈ Rn follows Gaus-
sian distribution N (x0,Π0) with Π0 ≥ 0. The Gaussian
white noise in the system dynamics iswk ∼ N (0, Q) with
Q ≥ 0 and E[wkw

′
j ] = 0 for any k 6= j. The observation

noise is v
(i)
k ∼ N (0, Ri) with Ri > 0 and E[v

(i)
k v

(i)′

j ] = 0
for any k 6= j and i = 1, 2, . . . , N . It is assumed that wk

and vk are uncorrelated. Besides, the initial state vari-
able x0 is independent of wk. The observation noise pro-

cess v
(i)
k from different sensors are uncorrelated as well.

Assumption 1 Assume Q > 0 and the system is col-
lectively observable, i.e., (A, [C ′1 C

′
2 . . . C ′N ]

′
) is observ-

able.

Remark 1 Note that the assumption Q > 0 is slightly
stronger than the conventional assumption of controlla-
bility of (A,

√
Q). This is to ensure that whenever the

original state variable is projected onto the observable
subspace of sensor i, which generally has a dimension
smaller than n, controllability will still hold for the sub-
system.

For each sensor i, it will first employ Kalman de-
composition on (A,Ci), and then the Kalman filter
is adopted to obtain an optimal linear estimate of
the state variable xk on the observable subspace of
(A,Ci). Denote the local state variable in the ob-

servable subspace of sensor i as χ
(i)
k ∈ Rni , where

ni = rank[C ′i A′C ′i A′2C ′i . . . A′n−1C ′i]
′. According

to Kalman decomposition, there exists an orthogonal
coordinate transformation Ti = [Vi,o Vi,o]

′ ∈ Rn×n such

that TiT
′
i = In. By defining χ

(i)
k := Tixk through a

change of basis, an equivalent dynamic model of the
linear process (1) is

χ
(i)
k+1 = TiAT

′
iχ

(i)
k + Tiwk =

[
Ai,o Ãi

O Ai,o

]
χ

(i)
k + Tiwk,

(3)
where i = 1, 2, . . . , N .

The locally observable state at sensor i can then be ex-

pressed as χ
(i,o)
k := V ′i,oxk ∈ Rni and its correspond-

ing process noise is w̃
(i,o)
k := V ′i,owk. Thus, its dynamic

model is

χ
(i,o)
k+1 = Ai,oχ

(i,o)
k + w̃

(i,o)
k , i = 1, 2, . . . , N, (4)

with the Gaussian white noise w̃
(i,o)
k ∼ N (0, Q̃i,o),

where Q̃i,o = V ′i,oQVi,o. The initial state variable follows

χ
(i,o)
0 ∼ N (χ

(i,o)
0 , Π̃

(i,o)
0 ), where Π̃

(i,o)
0 ≥ 0.

The equivalent observation equation is

y
(i)
k = Cixk + v

(i)
k = CiT

′
i · Tixk + v

(i)
k = C̃iχ

(i,o)
k + v

(i)
k ,
(5)

where C̃i := CiVi,o, and i = 1, 2, . . . , N .

Remark 2 In the transformation matrix Ti = [Vi,o Vi,o]
′,

the basis Vi,o ∈ Rn×ni,o consists of no column vec-
tors forming an orthonormal basis of the unobservable
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subspace of (A,Ci) while Vi,o ∈ Rn×ni,o consists of
orthonormal basis vectors of the observable subspace,
which are linearly independent of the basis of unobserv-
able subspace. Thus, by definition of Kalman decompo-
sition, the pair (Ai,o, C̃i) is observable for any sensor
i = 1, 2, . . . , N .

In order for each sensor to locally obtain a state estimate,

a Kalman filter is implemented for estimating χ
(i,o)
k . For

each sensor i, it will treat its own observation y
(i)
k of the

linear process (1) as an input, and perform the following
recursive update functions to obtain a local state esti-

mate χ̂
s,(i)
k .

χ̂
s,(i)
k|k−1 = Ai,oχ̂

s,(i)
k−1 ,

P
s,(i)
k|k−1 = hi(P

s,(i)
k−1 ),

K
(i)
k = P

s,(i)
k|k−1C̃

′
i[C̃iP

s,(i)
k|k−1C̃

′
i +Ri]

−1,

χ̂
s,(i)
k = χ̂

s,(i)
k|k−1 +K

(i)
k (y

(i)
k − C̃iχ̂

s,(i)
k|k−1),

P
s,(i)
k = g̃i(P

s,(i)
k|k−1),

(6)

where hi and g̃i : Sn+ → Sn+ are defined as follows:

hi(X) , Ai,oXA
′
i,o + Q̃i,o, (7)

g̃i(X) , X −XC̃ ′i[C̃iXC̃ ′i +Ri]
−1C̃iX. (8)

The recursion starts from χ̂
s,(i)
0 = χ

(i)
0 and P

s,(i)
0 =

Π̃
(i)
0 ≥ 0, and the convergence result will be shown in

Lemma 1.

2.2 Communication over independent lossy channels

Denote by λi ∈ (0, 1] the packet arrival rate associated

with sensor i. For the packet containing χ̂
s,(i)
k transmit-

ted by sensor i at time k, the arrival indicator is defined
as

γ
(i)
k :=

{
1, χ̂

s,(i)
k arrives at the remote state estimator;

0, Otherwise,

(9)

with P
(
γ

(i)
k = 1

)
= λi.

2.3 Sensor fusion at the remote state estimator

Define the “holding time” of each sensor as the number
of consecutive time steps from the moment it receives its
latest data packet to the current time k, as expressed by

τ
(i)
k := k − t(i)k , (10)

where t
(i)
k := max{t ≤ k : γ

(i)
t = 1}.

Before we go into the details of the fusion methods, it is
necessary to calculate the individual state estimates at
the remote state estimator based on the received infor-
mation set I(i)

k . Denote the remote state estimate in the

observable subspace of sensor i as χ̂
(i,o)
k , then

χ̂
(i,o)
k := E[χ

(i,o)
k |I(i)

k ] = E[χ
(i,o)
k |{χ̂s,(i)

t
(i)

`

}k`=0]

= E
[
A
τ
(i)

k
i,o χ

(i,o)

k−τ(i)

k

+

τ
(i)

k
−1∑

t=0

Ati,ow̃
(i,o)
k−t−1

∣∣∣∣χ̂s,(i)k−τ(i)

k

]
= A

τ
(i)

k
i,o χ̂

s,(i)

k−τ(i)

k

. (11)

Next, we project these individual estimates χ̂
(i,o)
k back

into the original space of state variables xk. In particular,
we fill the unobservable modes with zeros, then the pro-

jection is given by x̂
(i)
k = T ′i ·[O χ̂

(i,o)′

k ]′ = Vi,oχ̂
(i,o)
k ∈ Rn.

We adopt a linear fusion scheme such that the local state
estimates from different sensors are incorporated into an
unbiased estimate of the state xk ∈ Rn at the remote
state estimator, as follows.

x̂k =

N∑
i=1

W
(i)
k x̂

(i)
k =

N∑
i=1

W
(i)
k Vi,oχ̂

(i,o)
k , (12)

where we choose the coefficient matrixW
(i)
k at each time

k ∈ N+ to ensure that
N∑
i=1

W
(i)
k Vi,oV

′
i,o = I(n). This con-

straint gives an unbiased linear fusion. Moreover, we as-
sume the packet dropout rate and the process dynamics
satisfies the following assumption.

Assumption 2(
1− min

1≤i≤N
λi

)
ρ2(A) < 1.

Assumption 2 originates from Sinopoli et al. (2004),
which ensures the stability of remote state estimation
over a lossy channel.

2.4 Error covariance of the fused state estimate

DenotePk as the estimation error covariance of x̂k, which
is defined by

Pk = E[eke
′
k], (13)

where ek := xk − x̂k is the error of the remote state
estimate.
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It is desirable to obtain a closed-form expression of Pk
based on the linear fusion scheme (12). We firstly estab-
lish the convergence of the local Kalman filter by verify-

ing the controllability of (Ai,o,
√
Q̃i,o) and the observ-

ability of (Ai,o, C̃i) (Kailath et al. (2000)).

Lemma 1 Based on Assumption 1, the pair (Ai,o,
√
Q̃i,o)

is controllable and (Ai,o, C̃i) is observable for any i. As

a result, the estimation error covariance P
s,(i)
k of the

local Kalman filter (6) converges exponentially to the

steady-state error covariance P
(i,o)

> 0.

PROOF. We show the controllability of

(
Ai,o,

√
Q̃i,o

)
first. According to Assumption 1, Q > 0. It remains
to verify that Q̃i,o := V ′i,oQVi,o ∈ Rni,o×ni,o is positive
definite.

Given the fact that TiT
′
i = I for Ti =

[
Vi,o Vi,o

]′
,

it is straightforward to obtain that V ′i,oVi,o = I(ni,o)

and V ′i,oVi,o = I(ni,o), thus rankVi,o = ni,o and
rankVi,o = ni,o. Now we take an arbitrary but
fixed non-zero vector xi,o ∈ Rni,o/{0}, and since

‖Vi,oxi,o‖2 = x′i,oV
′
i,oVi,oxi,o = ‖xi,o‖2 > 0, a

higher-dimensional non-zero vector can be obtained as
Vi,oxi,o ∈ Rn/{0}. As a result, given Q > 0, we can
obtain by definition of a positive definite matrix that
x′i,oV

′
i,oQVi,oxi,o > 0 for any fixed xi,o ∈ Rni,o

/{0}.
Therefore, it is verified that V ′i,oQVi,o > 0.

Based on Popov-Belovich-Hautus (PBH) test, the con-

trollability of

(
Ai,o,

√
Q̃i,o

)
is equivalent to

rank
[
Ai,o − λI

√
Q̃i,o

]
= ni,o, ∀λ ∈ R.

We can then get n ≥ rank
[
Ai,o − λI

√
Q̃i,o

]
≥

rank
√
Q̃i,o = rank Q̃i,o = ni,o, ∀λ ∈ R, which indicates

that

(
Ai,o,

√
Q̃i,o

)
is controllable.

The pair
(
Ai,o, C̃i

)
is observable due to the properties

of Kalman decomposition. Hence, the controllability of(
Ai,o,

√
Q̃i,o

)
as well as the observability of

(
Ai,o, C̃i

)
has been verified successfully.

Next, it comes to the convergence property of the local
Kalman filters (6) given the above results. From Kailath

et al. (2000), the controllability and observability shown
above ensure the convergence of the local Kalman filter.

Specifically, there is a unique fixed-point P ∗(i,o) > 0 for
the Riccati equation X = hi ◦ g̃i(X), which corresponds
to the steady-state prediction error. Then, the steady-

state estimation error is P
(i,o)

= g̃i(P
∗(i,o)).

As Ri > 0 for any i, based on the information form of
a Kalman filter and matrix inversion lemma, it can be
obtained that

P
(i,o)

= g̃i(P
∗(i,o)) =

[
I + P ∗(i,o)C̃iR

−1
i C̃i

]−1

· P ∗(i,o).

As the steady-state prediction error P ∗(i,o) > 0, we can

obtain that P
(i,o)

> 0.

From Lemma 1, we conclude that the optimal Kalman

gain K
(i)
k also converges to a constant value K∗i =

P ∗(i,o)C̃ ′i[C̃iP
∗(i,o)C̃ ′i+Ri]

−1. For simplicity of analysis,
we assume the local Kalman filters at the sensors have
been operating for an adequately long time such that
each has converged to its steady-state at k = 0.

As overlaps may exist among the observable subspaces
of different sensors, the local state estimates obtained
by each sensor may correlate with each other. Denote
the error of local state estimator i at time step k is

Es,(i)k = χ
(i,o)
k − χ̂s,(i)k ∈ Rni,o . Thus, it is also necessary

to analyze the convergence of the cross-covariances be-

tween the estimation errors Es,(i)k and Es,(j)k with i 6= j.

Lemma 2 For each pair of different local state esti-
mators i, j ∈ {1, 2, . . . , N} (i 6= j), the recursive up-

date of cross-correlation matrix Γijk := E[Es,(i)k Es,(j)
′

k ] ∈
Rni,o×nj,o is

Γijk+1 = Tij(Γijk ), (14)

where the mapping Tij : Rni,o×nj,o → Rni,o×nj,o is

given by Tij(X) = (I −K∗i C̃i)hij(X)(I −K∗j C̃j)′, with

hij : Rni,o×nj,o → Rni,o×nj,o defined as hij(X) :=
Ai,oXA

′
j,o + V ′i,oQVj,o. As k → ∞, when the local

Kalman filters converge to their steady states, the cross
correlation matrix also converges to a fixed point of the
mapping Tij, denoted by Γij, i.e., lim

k→∞
Γijk = Γij.

PROOF. First, we show the update function (14). Ac-
cording to the system model (1), (4) and the update
functions for the Kalman filter (6), the estimation error
at the local state estimator i can be expressed as

Es,(i)k = χ
(i,o)
k − χ̂s,(i)k

= (I −K∗i C̃i)Ai,oE
s,(i)
k−1 + (I −K∗i C̃i)w̃

(i,o)
k−1 −K

∗
i v

(i)
k .

5



Then the cross-correlation at time step k can be ex-
pressed as

Γijk = (I −K∗i C̃i)hij(Γ
ij
k−1)(I −K∗j C̃j)′

= (I −K∗i C̃i)(Ai,oΓ
ij
k−1A

′
j,o + V ′i,oQVj,o)(I −K∗j C̃j)′

= Tij
(

Γijk−1

)
. (15)

Now, we pick two different initial values Γij0 and Γ̃ij0 for
the cross-covariance between sensor i and j. It can be
obtained that∥∥∥Γijk − Γ̃ijk

∥∥∥ =
∥∥∥Tij(Γijk−1)− Tij(Γ̃ijk−1)

∥∥∥
=
∥∥∥(Ai,o −K∗i C̃iAi,o)(Γ

ij
k−1 − Γ̃ijk−1)(Aj,o −K∗j C̃jAj,o)′

∥∥∥
= · · ·

=
∥∥∥(Ai,o −K∗i C̃iAi,o)k(Γij0 − Γ̃ij0 )(Aj,o −K∗j C̃jAj,o)′k

∥∥∥
≤
∥∥∥(Ai,o −K∗i C̃iAi,o)k

∥∥∥ · ∥∥∥Γij0 − Γ̃ij0

∥∥∥·∥∥∥(Aj,o −K∗j C̃jAj,o)k
∥∥∥.

According to Corollary 5.6.14 in Horn and Johnson
(1990), for a matrix norm ‖·‖ and an arbitrary square

matrix X ∈ Rn×n, there is ρ(X) = lim
k→∞

∥∥Xk
∥∥ 1

k . In

other words, for any ε > 0, there exists a K0 > 0 such

that
∣∣∣∥∥Xk

∥∥ 1
k − ρ(X)

∣∣∣ < ε for all k > K0, which is

equivalent to that for any k > K0,

(ρ(X)− ε)k <
∥∥Xk

∥∥ < (ρ(X) + ε)k. (16)

Take ε := min{ 1−ρ(Ai,o−K∗i C̃iAi,o)
2 ,

1−ρ(Aj,o−K∗j C̃jAj,o)

2 ,
ρ(Ai,o−K∗i C̃iAi,o)

2 ,
ρ(Aj,o−K∗j C̃jAj,o)

2 }, there is∥∥∥Γijk − Γ̃ijk

∥∥∥ ≤ [ρ(Ai,o −K∗i C̃iAi,o) + ε]k ·
∥∥∥Γij0 − Γ̃ij0

∥∥∥·
[ρ(Aj,o −K∗j C̃jAj,o) + ε]k, ∀k > K0.

Since by Kalman decomposition that (Ai,o, C̃i) is ob-
servable for all i, under the steady-state optimal Kalman
gain K∗i , we must have Ai,o − K∗i C̃iAi,o stable, i.e.,

ρ(Ai,o −K∗i C̃iAi,o) < 1. Based on the chosen ε, there is

also ρ(Ai,o−K∗i C̃iAi,o)+ε < 1 and ρ(Aj,o−K∗j C̃jAj,o)+

ε < 1. As a result, we have lim
k→∞

∥∥∥Γijk − Γ̃ijk

∥∥∥ = 0 for any

initial values Γij0 , Γ̃ij0 ∈ Rni,o×nj,o .

Thus, we can conclude that the sequence {Γijk }k≥0 con-

verges. Its limit Γij ∈ Rni,o×nj,o is the steady-state
cross-covariance between sensor i and j.

Denote the individual estimation error corresponding to

each sensor i as E(i,o)
k := χ

(i,o)
k −χ̂(i,o)

k , and the associated
error covariance matrix is

P
(ii)
k = E[E(i,o)

k E(i,o)′

k ] = h
τ
(i)

k
i (P

(i,o)
), (17)

which only depends on the “holding time” τ
(i)
k of state

estimator i = 1, 2, . . . , N .

The cross correlation matrix P
(ij)
k := E[E(i,o)

k E(j,o)′

k ] can
be expressed as

P
(ij)
k = E[E(i,o)

k E(j,o)′

k ]

= E[(χ
(i,o)
k − χ̂(i,o)

k )(χ
(j,o)
k − χ̂(j,o)

k )′]

= E[(A
τ
(i)

k
i,o χ

(i,o)

k−τ(i)

k

+

τ
(i)

k
−1∑

t=0

Ati,ow̃
(i,o)
k−t−1 −A

τ
(i)

k
i,o χ̂

s,(i)

k−τ(i)

k

)

(A
τ
(j)

k
j,o χ

(j,o)

k−τ(j)

k

+

τ
(j)

k
−1∑

t=0

Atj,ow̃
(j,o)
k−t−1 −A

τ
(j)

k
j,o χ̂

s,(j)

k−τ(j)

k

)′]

= E[(A
τ
(i)

k
i,o E

s,(i)

k−τ(i)

k

+

τ
(i)

k
−1∑

t=0

Ati,ow̃
(i,o)
k−t−1)·

(A
τ
(j)

k
j,o E

s,(j)

k−τ(j)

k

+

τ
(j)

k
−1∑

t=0

Atj,ow̃
(j,o)
k−t−1)′]

= A
τ
(i)

k
i,o ΓijA

′τ(j)

k
j,o +

min{τ(i)

k
,τ

(j)

k
}−1∑

t=0

Ati,oV
′
i,oQVj,oA

′t
j,o,

(18)

where the third equation is based on (4) and (11), the
fifth equation holds as the Kalman filter (6) reaches
steady state.

This expression of P
(ij)
k depends on the holding time τ

(i)
k

and τ
(j)
k , and it holds for any i 6= j, i, j ∈ {1, 2, . . . , N}.

Denote the stacked fusion-coefficient matrix by Wk :=

[W
(1)
k W

(2)
k . . . W

(N)
k ]′ ∈ RnN×n and Vo :=

[V1,oV
′
1,o V2,oV

′
2,o . . . VN,oV

′
N,o]

′ ∈ RnN×n. Suppose
the fusion coefficients are chosen appropriately such

that
N∑
i=1

W
(i)
k Vi,oV

′
i,o = W ′

kVo = I(n), i.e., it provides an
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unbiased linear fusion. Then, the error covariance of the
fusion estimation x̂k is thus

Pk = E[eke
′
k] =

N∑
i=1

N∑
j=1

W
(i)
k Vi,oP

(ij)
k V ′j,oW

′(j)
k = W ′

kΣWk,

(19)

in which the covariance matrix Σ ∈ RnN×nN is

Σ :=
V1,oP

(11)
k V ′1,o V1,oP

(12)
k V ′2,o . . . V1,oP

(1N)
k V ′N,o

V2,oP
(21)
k V ′1,o V2,oP

(22)
k V ′2,o . . . V2,oP

(2N)
k V ′N,o

...
...

. . .
...

VN,oP
(N1)
k V ′1,o VN,oP

(N2)
k V ′2,o . . . VN,oP

(NN)
k V ′N,o

 .
(20)

2.5 Problem formulation

The problem of optimal linear fusion at the remote state
estimator is stated as an optimization problem which
minimizes the estimation error (19) by designing the fu-
sion coefficient.

Problem 1 (Unbiased linear state fusion)

min
Wk∈RnN×n

tr(Pk),

s.t. W ′
kVo = I(n),

where tr(Pk) = tr(W ′
kΣWk) according to (19).

3 Main results

We transform Problem 1 as a linear programming (LP),
for which efficient algorithms exist.

3.1 Optimal linear fusion coefficients

First, we show the positive semi-definiteness of the ma-
trix Σ ∈ RnN×nN .

Lemma 3 The matrix Σ ∈ RnN×nN in (20) is symmet-
ric and Σ ≥ 0.

See Appendix B for proof.

In order to efficiently calculate the optimal fusion coeffi-
cients and to show the stability of the optimal linear fu-
sion estimation, it is helpful to reformulate Problem 1. In
order to do so, we introduce a new auxiliary variable and
relax the constraints. The relaxed version of the original
sensor fusion problem is given as follows.

Problem 2 (Relaxed optimization problem)

min
Wk∈RnN×n,Xk∈RnN×nN

tr (ΣXk) , (21)

s.t. W ′
kVo = I(n) and Xk �WkW

′
k.

It can be verified that Problem 2, as a relaxed prob-
lem, has no loss of optimality compared to the original
Problem 1 on linear fusion. This result is stated in the
following lemma, of which the proof establishes the ne-
cessity for the optimal solution pair to take equality in
the constraint Xk �WkW

′
k.

Lemma 4 The optimal solution to Problem 2 coincides
with the optimal solution to Problem 1.

See Appendix C for proof.

With help from Lemma 4, we are able to build the bridge
for the equivalence between Problem 1 and a linear pro-
gramming.

Problem 3 (Transformed linear programming)

max
Wk∈RnN×n,Λ1∈Rn×n

1

2
tr (Λ1) , (22)

s.t. W ′
kVo = I(n) and 2ΣWk = VoΛ

′
1.

Theorem 1 The Problem 1 for finding the optimal fu-
sion coefficients can be solved through the linear program-
ming in Problem 3.

See Appendix D for proof.

Based on the complexity of linear programming as an-
alyzed by Vaidya (1989), Problem 3 can be solved in
polynomial time O(n5N2.5). Hence, with Theorem 1, ef-
ficient algorithms exist for calculating the optimal fusion
coefficients.

3.2 Stability of the remote state estimate

The stability of this remote fusion estimation is given in
the following proposition.

Proposition 1 Denote as P ∗k the error covariance of
the remote state estimate under the optimal fusion coef-
ficients W ∗

k given by the solution to Problem 1 at time k.
Then,

lim
k→∞

tr (E[P ∗k ]) <∞. (23)

See Appendix E for proof.
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3.3 Closed-form optimal fusion coefficients by Gauss-
Markov theorem

In Problem 3, we have formulated the problem of find-
ing the unbiased linear state fusion coefficients as a lin-
ear programming (LP), which can be solved efficiently.
Meanwhile, we are interested in obtaining a closed-form
expression of the optimal fusion coefficients.

The classical parameter estimation problem given a
noisy linear observation is analyzed by Albert (1973),
where the covariance matrix of the observation noise
is possibly singular. The explicit parameter estimation
problem is formulated as follows.

Consider observations of the form

z = Hx+ v, (24)

where H ∈ Rn×p is the observation matrix, and the
vector x ∈ Rp is a constant but unknown vector to be
estimated. The zero-mean observation noise v ∈ Rn has
a singular covariance matrix V ∈ Rn×n with V ≥ 0.

Now, we plan to find a linear estimate of the parameter x
based on the noisy observation z ∈ Rn, i.e., to find the
appropriate gain K ∈ Rp×n such that the estimate x̂ ∈
Rn is

x̂ = Kz. (25)

We hope to find an unbiased estimate which minimizes
the estimation error, hence this can be formulated as a
constrained optimization problem.

The objective can be expressed as

E[‖x̂− x‖2] = E[‖Kz − x‖2]

= E[‖(KH − I)x+Kv‖2]

= E[‖(KH − I)x‖2] + tr(KVK ′).

In order for the state estimate to be unbiased, it is nec-
essary to have E[x̂ − x] = 0, i.e., KH = I, and the ob-
jective function becomes tr (KVK ′). According to Lu-
enberger (1997), the constrained optimization problem
is given as follows.

Problem 4 (Minimum-variance unbiased estimate)

min
K∈Rp×n

tr (KVK ′) ,

s.t. KH = I.

Due to the singularity of the covariance matrix V , the
closed-form solution is obtained based on the results on
Gauss-Markov estimate by Albert (1973), of which the
main result is stated in the following lemma.

Lemma 5 (MVUE with singular covariances)
When the covariance V ∈ Rn×n is a singular matrix,
the optimal solution to Problem 4 is

K∗ = H†[I − (LV L)†LV ]′, (26)

where L := I −HH†.

The structural similarity between the fusion estimation
in Problem 1 and MVUE in Problem 4 motivates us to
find an optimal linear fusion coefficient in closed-form.

Theorem 2 (Closed-form solution to Problem 1)
The optimal fusion coefficients in the unbiased linear
state fusion in Problem 1 can be expressed as

W ∗
k = [I(nN) − (MΣM)†MΣ]V ′†o , (27)

where M := I(nN) − VoV
†
o .

PROOF. Based on the comparison between Prob-
lem 1 and Problem 4, the result follows directly
from Lemma 5.

4 Simulation

In this section, we consider a linearized model of in-
verted pendulum Messner et al. (1999) to verify the per-
formance of the proposed unbiased linear fusion scheme.
The following parameters are chosen:

• Mass of the cart M = 0.5 Kg;
• Mass of the pendulum m = 0.2 Kg;
• Coefficient of friction for cart b = 0.1 N/m/s;
• Length to pendulum center of mass l = 0.1 m;
• Moment of inertia of the pendulum J = 1 Kg ·m2.

We denote the cart’s displacement as x and the pendu-
lum angle as φ, i.e., the deviation of the pendulum’s po-
sition from equilibrium. The following continuous-time
dynamic equation is obtained,
ẋ

ẍ

φ̇

φ̈

 =


0 1 0 0

0 −(J+ml2)b
p

m2gl2

Jp 0

0 0 0 1

0 −mlb
p

mgl(M+m)
p 0




x

ẋ

φ

φ̇

+


0

J+ml2

p

0

ml
p

u,

where p := J(M + m) + Mml2 and u is the external
force.
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To discretize the system dynamics, we apply zero-order
holding (ZOH) with sampling time Ts = 0.001s and ob-
tain the discrete-time linear dynamic model as Xk+1 =

AXk + Buk, where Xk := [xk ẋk φk φ̂k]′ is the state
variable, and uk is the control input.

In this simulation example, we assume that a random
perturbation force is imposed on the cart. Specifically, we
model the control input as a Gaussian white noise uk ∼
N (0, σ2) with σ2 = 10. Define Q := E[Buku

′
kB
′] =

σ2BB′ ≥ 0,then the dynamics of the linear process be-
comes

Xk+1 = AXk + wk, (28)

where the Gaussian white noise wk := Buk ∼ N (0, Q)
and E[wkw

′
j ] = 0 for any k 6= j.

Different sensing technologies are employed to measure
the states of the inverted pendulum, e.g., infrared rays
and mechanical sensors, etc. Suppose the measurement
functions are

y
(i)
k = CiXk + v

(i)
k , i = 1, 2, . . . , 10, (29)

where v
(i)
k ∼ N (0, Ri) with Ri > 0 and E[v

(i)
k v

(i)′

j ] = 0
for i = 1, 2, . . . , 10 and any k 6= j.

In (29), the observation matrices are chosen as

C1 =
[
0 0.2 0 0

]
, C2 =

[
1 0.5 0 0

0.5 1 0 0

]
, C3 =

[
1 0 0 0

]
,

C4 =
[
0 0 0.5 0

]
, C5 =

[
1 0 0 0.4

0.2 0 0 1

]
, C6 =

[
0 0 0 1

]
,

C7 =
[
0 0 1 0

]
, C8 =

[
0 0 1 0

]
, C9 =

[
0 1 0 0.4

0 0.5 0 1

]
,

C10 =
[
0 0 0 1

]
,

and the error covariance matrices of the observations
noise are

R1 = 0.04, R2 = Diag(0.02, 0.01), R3 = 0.16,

R4 = 0.01, R5 = Diag(0.04, 0.01), R6 = 0.35,

R7 = 0.02, R8 = 0.25, R9 = Diag(0.01, 0.03),

R10 = 0.09.

The packet arrival rates of the communication chan-
nels for these sensors are: [λ1, λ2, . . . , λ10] =
[0.5, 0.6, 0.7, 0.6, 0.7, 0.5, 0.8, 0.5, 0.7, 0.6].

Hence, each sensor is only capable of observing a cer-
tain “sub-component” of the system state, whereas the

Fig. 2. Numerical simulation of the state estimation error.

remote state estimator can fuse the local information
linearly to obtain a stable global state estimate.

It can be verified that Assumption 2 is satisfied, i.e.,
(1− min

1≤i≤N
λi)ρ

2(A) = 0.5× 1.00042 < 1. The process is

simulated for 50 sample trajectories, and we obtain the 2-
norm ‖ek‖ of the fusion estimation error averaged over
all sample paths. The results are shown in Fig. 2, where
the centralized Kalman filter with perfect channels is the
benchmark.

The simulation result indicates that the fusion estima-
tion has achieved a better performance than the esti-
mate generated based only on the observations by some
individual sensors; e.g., sensor 1, sensor 2 or sensor 8 as
plotted in Fig. 2, which illustrates the effectiveness of the
proposed linear fusion scheme. As mentioned before, the
optimal fusion coefficient can be solved in polynomial
time O(n5N2.5). Therefore, linear fusion can effectively
and efficiently integrate information from different sen-
sors. Next, we pay attention to the quality of fusion es-
timation on the observable subspace of each sensor, as
shown in Fig. 3.

As observed from Fig. 3, the optimal linear fusion does
not necessarily improve the estimation performance in
every subspace of the state space. However, since this
fusion estimation achieves a better accuracy in the state
estimate globally, a tradeoff is achieved among different
sensors when calculating the fusion estimation at the
remote state estimator. For example, according to the
Kalman decomposition (3), sensor 3 and 7 are observ-
ing unstable modes of the dynamic system, thus the im-
provements on the estimation errors in their correspond-
ing observable subspaces are more crucial. Hence, more
weights are placed on them while performing linear fu-
sion. On the other hand, sensor 1 and 6 are observing
stable modes of the dynamics, thus information from

9



Fig. 3. Error of fusion estimation at the observable subspace
of each sensor.

these sensors may be sacrificed during linear fusion.

5 Conclusion

In this paper, we consider an unbiased linear state fusion
problem where local observability is not guaranteed for
each sensor and the communication channels are lossy.
More specifically, each sensor generates an optimal state
estimate with a local Kalman filter on its observable
subspace, which is then forwarded through lossy chan-
nels to the remote state estimator for linear fusion. We
propose a networked sensor fusion scheme under col-
lectively observability assumption. The optimal linear
fusion coefficients are found through a linear program-
ming. Moreover, the closed-forms expressions of the co-
efficients are obtained. In the future, globally optimal
state fusion scheme as well as sensor fusion in presence
of data-injection attacks or eavesdroppers can be con-
sidered.
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A Summary of Variable Notations

Variables Meanings

xk State variable of the linear process

wk Gaussian i.i.d. white noise in the dy-
namics

Q Variance of wk

y
(i)
k Observation by sensor i

v
(i)
k Gaussian i.i.d. white observation noise

at sensor i

Ri Variance of v
(i)
k

χ
(i,o)
k Projected state variable xk on the ob-

servable subspace of smart sensor i

χ
(i)
k = [χ

(i,o)
k χ

(i,o)
k ] Equivalent expression of state xk on

a new basis

Ai,o System matrix on the observable sub-
space of smart sensor i

w̃
(i,o)
k The projection of wk on the observ-

able subspace of smart sensor i

Q̃i,o Variance of w̃
(i,o)
k

χ̂
s,(i)
k The estimate of state χ

(i,o)
k given by

the local Kalman filter at sensor i

Es,(i)
k The error of state estimate χ̂

s,(i)
k

χ̂
s,(i)

k|k−1 The prediction of χ
(i,o)
k at time k

P
s,(i)

k|k−1 The error covariance associated with
the prediction χ̂

s,(i)

k|k−1

P ∗(i,o) The steady-state value of P
s,(i)

k|k−1

P
s,(i)
k The error covariance associated with

the state estimate χ̂
s,(i)
k

P
(i,o)

The steady-state value of P
s,(i)
k

χ̂
(i,o)
k The remote version of the state esti-

mate χ̂
s,(i)
k

E(i,o)
k The error of state estimate χ̂

(i,o)
k

P
(ii)
k The error covariance of state estimate

χ̂
(i,o)
k

P
(ij)
k The cross-covariance of the error of

state estimate χ̂
(i,o)
k and χ̂

(j,o)
k

x̂
(i)
k The projection of χ̂

(i,o)
k back to the

original state space with zero-padding
on the unobservable modes

x̂k The linear fusion estimation of state
variable xk

Pk The error covariance associated with
the fusion estimation x̂k

Vi,o The basis matrix for the observable
subspace of sensor i

W
(i)
k The linear fusion coefficients for

weighting the state estimate in the ob-
servable subspace of sensor i
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B Proof of Lemma 3

PROOF. Denote Ek = [E ′(1,o)k E ′(2,o)k . . . E ′(N,o)k ]′,

Pk = [P
(ij)
k ]1≤i,j≤N and V = Diag(V1,o V2,o . . . VN,o),

the matrix Σ can be expressed as Σ = V PkV
′, where

Pk := E[EkE ′k] ≥ 0. By definition, it is known that

P
(ii)
k := E[E(i,o)

k E(i,o)′

k ] is symmetric for any k ∈ N+

and i. Then, it can be directly obtained that each

diagonal block Vi,oP
(ii)
k V ′i,o ∈ Rn×n in the matrix

Σ is symmetric. Hence, it remains to show that

Vi,oP
(ij)
k V ′j,o = (Vj,oP

(ji)
k V ′i,o)

′ holds for any off-diagonal

elements i 6= j, i.e., P
′(ji)
k = P

(ij)
k . According to As-

sumption 1 and (18), given that Q > 0 is symmetric, it

suffices to show Γ
′
ji = Γij .

According to Lemma 2, it can be concluded that Γij
and Γji are limits of the sequences {Γijk }k≥0 and {Γjik }k≥0

generated by recursively adopting the operators Tij
and Tji separately. For arbitrary initial values Γij0 ∈
Rni,o×nj,o and Γji0 ∈ Rnj,o×ni,o , with similar arguments
as in the proof of Lemma 2, we can obtain that∥∥∥Γijk − Γ′jik

∥∥∥ ≤ ∥∥∥(Ai,o −K∗i C̃iAi,o)k
∥∥∥ · ∥∥∥Γij0 − Γ′ji0

∥∥∥·∥∥∥(Aj,o −K∗j C̃jAj,o)′k
∥∥∥

≤ [ρ(Ai,o −K∗i C̃iAi,o) + ε]k ·
∥∥∥Γij0 − Γ′ji0

∥∥∥·
[ρ(Aj,o −K∗j C̃jAj,o) + ε]k, ∀k > K0,

where the last inequality is based on (16), and 0 <

ρ(Ai,o−K∗i C̃iAi,o)+ε < 1 and 0 < ρ(Aj,o−K∗j C̃jAj,o)+
ε < 1.

Hence, for any initial values Γij0 and Γji0 , it can be con-

cluded that 0 ≤
∥∥∥Γij − Γ

′
ji

∥∥∥ = lim
k→∞

∥∥∥Γijk − Γ′jik

∥∥∥ = 0,

i.e., Γij = Γ
′
ji.

Therefore, the symmetric matrix Σ = V PkV
′ ≥ 0.

C Proof of Lemma 4

PROOF. As Xk � WkW
′
k � 0, there is Xk −

WkW
′
k � 0. For any pair of optimal solution (W ∗

k ,X
∗
k),

we can construct an auxiliary variable pair
(
W ∗

k , X̃
∗
k

)
such that X̃∗k = W ∗

kW
′∗
k . Hence, the constraints are

still satisfied. Moreover, the value of the objective func-
tion in Problem 2 achieved under the auxiliary variable

pair is

tr
(

ΣX̃∗k

)
= tr

(
Σ(X̃∗k −W ∗

kW
′∗
k )
)

+ tr(ΣW ∗
kW

′∗
k )

= 0 + tr
(

Σ
1
2W ∗

kW
′∗
k Σ

1
2

)
≤ tr

(
Σ

1
2X∗kΣ

1
2

)
= tr(ΣX∗k),

where the inequality is due to the constraint Xk �
WkW

′
k.

Since the pair (W ∗
k ,X

∗
k) is an optimal solution, there

should be tr (ΣX∗k) ≤ tr
(

ΣX̃∗k

)
. Hence, we obtain

that tr
(

ΣX̃∗k

)
= tr (ΣX∗k), i.e., the optimal value of

the objective function in Problem 2 can be achieved
with strict equality Xk = WkW

′
k.

Thus, there is no loss of optimality restricting the fea-
sible decision variable in Problem 2 to be constrained
by the equality Xk = WkW

′
k. This gives tr (ΣXk) =

tr (ΣWkW
′
k) = tr (W ′

kΣWk) = tr (Pk). In other words,
the optimal solution W ∗

k to Problem 1 will coincide with
the optimal solution to Problem 2.

D Proof of Theorem 1

PROOF. In order to transform the original Problem 1
equivalently as a linear programming (LP), we find the
dual problem of Problem 2 and verify that strong duality
holds.

Denote the Lagrangian multiplier associated with
W ′

kVo = I(n) as Λ1 ∈ Rn×n. The one associated

with Xk �WkW
′
k is denoted as Λ2 ∈ RnN×nN , which

satisfies Λ2 � 0. Hence, the Lagrangian is expressed as

L (Wk,Xk,Λ1,Λ2) = tr (ΣXk)− tr
(
Λ′1(W ′

kVo − I(n))
)

− tr (Λ′2(Xk −WkW
′
k)) .

Now, we apply Karush-Kuhn-Tucker (KKT) condition
to characterize the optimal solution to Problem 2.

∂
∂Wk

L (Wk,Xk,Λ1,Λ2) = 0;
∂

∂Xk
L (Wk,Xk,Λ1,Λ2) = 0;

W ′
kVo = I(n);

Xk �WkW
′
k;

Λ2 � 0;

tr (Λ′2(Xk −WkW
′
k)) = 0.

Through manipulating the KKT conditions, we obtain
that

Λ2 = Σ; 2ΣWk = VoΛ
′
1; W ′

kVo = I(n).
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Hence, the objective of the dual problem of Problem 2
will be

max
Λ1,Λ2

min
Wk,Xk

L (Wk,Xk,Λ1,Λ2)

= max
Λ1,Λ2

tr (Λ1) + tr (Λ′2WkW
′
k)− tr (Λ′1W

′
kVo)

= max
Λ1,Λ2

1

2
tr (VoΛ

′
1W

′
k) = max

Λ1

1

2
tr (Λ1) .

Thus, the dual of Problem 2 is Problem 3. It remains to
check the strong duality.

From Problem 2, the objective tr (ΣXk) and the con-
straint W ′

kVo = I(n) are linear, while the matrix in-
equality constraint Xk � WkW

′
k can be equivalently

expressed as [
I(n) W ′

k

Wk Xk

]
� 0,

which is a convex constraint.

For a variable Wk satisfying W ′
kVo = I(n), if we

pick Xk = WkW
′
k + εI(nN) with ε > 0, the Slater’s

condition hold, i.e., W ′
kVo = I(n) and Xk �WkW

′
k are

satisfied at the same time. Therefore, strong duality is
verified, hence Problem 1 is equivalent to Problem 3.

E Proof of Proposition 1

PROOF. As shown in Theorem 1, the optimal solution
to Problem 1 is equivalent to Problem 2. Denote its op-
timal solution as (W ∗

k ,X
∗
k), then for any pair of feasible

variables (Wk,Xk), it can be obtained that for any Xk

the error covariance P ∗k under optimal fusion coefficients
satisfies

trE[P ∗k ] = E[tr (P ∗k )] = E[tr (ΣX∗k)] ≤ E[tr (ΣXk)].
(E.1)

Hence, it suffices to show that E[tr (ΣXk)] <∞.

Based on Assumption 1, the linear process is collec-
tively observable by the N sensors. Hence, we have
rank [V1,o V2,o . . . VN,o] = n, as shown below by con-
tradiction.

Assume that rank[V1,o V2,o . . . VN,o] < n, then there

exists a non-zero vector v ∈ R
∑N

i=1
ni,o/{0} such

that [V1,o V2,o . . . VN,o]v = 0 ∈ Rn. As v 6= 0, there
exists a sensor i0 with Vi,ovi = 0 for a non-zero vi ∈
Rni,o/{0}, hence rankVi,o < ni,o, which contradicts

with V ′i,oVi,o = I(ni,o) given by Kalman decomposition.
Consequently, we have rank[V1,o V2,o . . . VN,o] = n.

The rank of matrix Vo ∈ RnN×n satisfies

n ≥ rankVo ≥ rank
(
Diag(V ′1,o, V

′
2,o, . . . , V

′
N,o) · Vo

)
= rank [V1,o V2,o . . . VN,o]

′
= n,

i.e., the matrix Vo is of full row rank. Thus, the con-
straint WkVo = I(n) is feasible.

Now, we arbitrarily pick and fix a W satisfying WVo =
I(n). Based on Schur decomposition, we can obtain

that W W
′ � mI(nN) where m > σ2

max(W ), i.e,

the square of the maximum singular value of W . We
choose X = m · I(nN), then the pair

(
W ,X

)
is feasible

in (21) at any time k.

According to (E.1), it can be concluded that

trE[P ∗k ] ≤ E[tr
(
ΣX

)
] = m · E[tr (Σ)]

= m · E[

N∑
i=1

tr
(
V ′i,oVi,oP

(ii)
k

)
] = m · E[

N∑
i=1

tr
(
P

(ii)
k

)
]

≤ m ·
N∑
i=1

ni,o ·
{
E[ρ2τ

(i)

k (Ai,o)]·[
tr
(
P

(i,o)
)
−

tr
(
V ′i,oQVi,o

)
1− ρ2 (Ai,o)

]
+

tr
(
V ′i,oQVi,o

)
1− ρ2 (Ai,o)

}
<∞.

The last inequality holds according to Assumption 2, as

E[ρ2τ
(i)

k (Ai,o)] =

∞∑
k=0

ρ2k (Ai,o) · P
(
τ

(i)
k = k

)
=

∞∑
k=0

ρ2k (Ai,o) · λi(1− λi)k

≤ λi
∞∑
k=0

[(
1− min

1≤i≤N
λi

)
ρ2(A)

]k
<∞.

Therefore, the remote state estimate is stable.
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